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Ordinary rounding does not always satisfy a summation restriction 
on the rounding results. This can be resolved by applying multi- 
plier methods, for which we present an easy-to-implement algorithm 
complemented by remarks on special families of multiplier methods, 
the arithmetic-mean and power-mean method, and a previously un- 
addressed family, the geometric-mean methods. Finally, several ap- 
plications in statistics are pointed out, i.e. rounding percentages in 
descriptive statistics, rounding optimal designs of experiments, and 
rounding optimal sample allocations. 
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1 Introduction 

Ordinary rounding cannot round a finite set of proportions or probabilities in 
such a way as to ensure the rounded numbers to sum up to one. For instance, 
using this procedure for rounding weights of 0.144, 0.534 and 0.322 to percents 
results in a sum of rounded weights equal to 99 instead of t00. If we modify the 
weights slightly to 0.146, 0.535 and 0.319, then the rounded weights total up to 
101. Real data abound with examples suffering from this failure, see Balinski 
and Rachev (1993), or Happacher and Pukelsheim (1996a). 

*The authors would llke to thank  F. Pukelshelm and M. Happ~cher for valuable discusJion 
and the anonymotm referee for thoughtful  comments.  
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The issue can be resolved by applying alternative rounding methods that are 
tailored to the problem. These methods have been used for a long time in the po- 
litical sciences in order to solve the problem of apportionment, that is, rounding 
electoral quotas to a given number of seats. Balinski and Young (1982) outline 
the historical background of this problem and the mathematical issues generated 
by it. Remarkably enough, many methods applied for rounding electoral quotas 
suffer from severe paradoxes, such as the so called population, Alabama, and 
new states paradoxes, see Balinski and Young (1982). 

Table 1 illustrates one of the fatal deficiencies of Hamilton's method, that is used 
for the German Bundestag elections: When applied to the data of the 1880 US 
census, the state of Alabama is alloted 8 seats in the House of Representatives 
out of a total of 299, but is alloted 7 when the total increases to 300 (Balinski 
and Young (1982, page 39)). 

weights 
seats 
seats 

Alabama Texas Illinois others 

0.02557 0.03224 0.06234 0.87985 
8 10 18 263 
7 10 19 264 

total 

1 
299 
300 

Table I. Hamilton's method suffers from a lack of monotonicity, 
also known as the Alabama paradox. 

The three paradoxes mentioned above are avoided by the so called multiplier 
rounding methods. One specific multiplier method is the classical Jefferson 
method, also known as d'Hondt's method. Table 2 shows how this method 
avoids the Alabama paradox when applied to the same data as in Table 1: 

weights 
seats 
seats 

Alabama Texas Illinois others total 

0.02557 0.03224 0.06234 0.87985 1 
7 9 18 265 299 
7 9 18 266 300 

Table 2. Jefferson's method avoids the Alabama paradox. 

Balinski and Young (1982, page 70) showed that multiplier methods are the only 
rounding methods not suffering from the mentioned paradoxes, which makes 
them the most recommendable rounding methods. Their application, however, 
is not straightforward due to the summation restriction on the rounding results. 

Apart from the electoral context, rounding problems with summation restrictions 
occur in many other areas of statistical interest, e.g. design of experiments, 
sampling from stratified populations, and descriptive statistics. The objective of 
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using rounding methods that avoid the paradoxes mentioned above also applies 
to these contexts. 

The rest of this paper is organized as follows: In Section 2, we give a brief intro- 
duction to rounding methods, especially multiplier methods. Section 3 contains 
the main feature of the article, a detailed description of a general algorithm for 
solving rounding problems with multiplier methods. For three special families 
of multiplier methods, the arithmetic-mean, power-mean and geometric-mean 
methods, specific adaptations of this algorithm are discussed in Section 4. In 
Section 5, several applications of this algorithm in different statistical areas are 
iUustrated by examples, and the paper is wound up with conclusions in Section 
6 and some additional remarks on an existing implementation of the algorithm 
presented. 

2 Multiplier rounding methods 

In order to establish a general mathematical model for rounding problems we 
assume weights wt , . . . ,wc  > 0 (with c >_ 2) and an integral number of units 
n >_ 1 to be given. Our objective is to round wl , . . . ,  wc to nonnegative integers 
nt,..., n~ satisfying 

( i = l , . . .  c), ~ n i = n .  n'u/i 

~i  ~ E j  ~7~ ' i=1 

In the political setting introduced in the previous section, the weights wl, �9 w~ 
correspond to electoral quotas of c competing parties, the number of units n 
stands for the number of seats to be aUoted, and the rounded weights n l , . . . ,  n~ 
are the numbers of seats alloted to each party. 

Since there are rounding problems refusing a unique solution, e.g. the problem 
of rounding c equal weights to a number of units n - c + 1, any rounding method 
meeting the summation restriction must give multiple solutions. Therefore, a 
rounding method (for fixed n) is a set-valued function mapping the weights 
vector (wl , . . . ,  wr to a set of solutions of the corresponding rounding problem. 
Moreover, moat rounding methods can not be explicitly represented in terms of 
a closed form expression, but are rather given as algorithms. 

Multiplier methods are essentially based on one algorithm, that has not been 
published in a general, easy-to-implement form so far: After computing the 
normalized weights ~i = wi /~wj ,  i = 1 , . . . , c ,  a multiplier u E (0, co) is 
used for computing the pseudo-quotas P~I , . . . ,  u~c. Since the pseudo-quotas 
are not necessarily integers, they are rounded according to a signpost sequence. 
Note that the resulting first "guess" for a solution of the rounding problem does 
not necessarily satisfy the summation restriction ~ ni = n, and so this initial 
guess has to be adjusted in several iterative steps. This is done by incrementing 
or decrementing components according to criteria determined by the signpost 
sequence. 

A few remarks on some of the notions mentioned above should be added: 
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The multiplier 

The algorithm presented below works with any multiplier v �9 (0, oo). Still it is 
instructive to think of • -- n, which is in fact the most common choice. The 
value of ~ only affects the number of iterative steps that have to be taken. An 
answer to the problem of finding a multiplier so as to minimize the number of 
iterative steps is known only in special cases, see Section 3. 

The signpost sequence 

Balinski and Young (1982, page 99) define a signpost sequence as a strictly 
increasing sequence (s~)k with sk E [h, h+  1] for h E ~o. The signpost s~ marks 
the boundary between the set of numbers that are rounded down to h and those 
that are rounded up to h + 1. With an additional signpost s-1 = 0 this induces 
a rounding function R : [0, c~) -~ ~Io by 

R(~) = k for �9 �9 [s~_,, s~), k �9 ~0 

Note that R is increasing. 

The signpost sequence (st)t also induces two functions, the incrementation cri- 
terion 

Sk 
(k, ~) ~ -, I :  ~o  • (0, oo) -~ [0, oo),  

and the decrementation criterion 

D :  ~o  • (0, oo) -~ [0, oo),  (k, w) ~ s~-_____~1 
uJ 

These functions are used in the iterative steps of the algorithm in order to 
determine the rounded weights that have to be incremented or decremented, see 
Section 3. 

Section 4 gives an overview of three families of multiplier methods and their 
specific implications for the algorithm presented below. 

Handling multiple solutions 

Although rounding problems may have multiple solutions, the set of solutions 
produced by a rounding method can be represented by essentially one: Given 
a solution of a rounding problem, any other solution can be obtained by incre- 
menting or decrementing certain components. The algorithm presented in the 
next section uses signs z~ = -i, 0, 1, i -- I,..., c, in order to indicate components 
that may be decremented by i, must be left unchanged, or may be incremented 
by 1, respectively. Of course, incrementing and decrementing weights must con- 
serve the summation restriction. Generally, if the numbers of signs equal to - 1 
and I are a and b, respectively, then there are (~+b) solutions to the rounding 
problem, see Happacher and Pukelsheim (1996a, Theorem 1). 
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The theoretical background 

The algorithm's theoretical background has been explored in Happacher and 
Pukelsheim (1996a) and Happacher (1996). Happacher and Pukelsheirn (1996a) 
show that there always exists a compact interval of multipliers u* for which the 
summation restriction on the rounding results is satisfied without any iterative 
steps. Yet there is no direct way of computing this interval, which may be 
very small or, even worse, degenerates to a singleton in the case of multiple 
solutions. This makes clear that there is no reliable way of finding an element 
of this interval. Happacher and Pukelshehn have therefore given an alternative 
approach to the rounding problem, which is reflected by the iterative steps of 
the algorithm below. 

3 The algorithm 

Given the assumptions and notations of the previous section, rounding with 
multiplier methods can be carried out according to the following algorithm: 

MULTIPLIER STEP 

1. Compute the normalized weights ~i = w~/~'~=1 wj ,  i = 1 , . . . ,  c. 

2. Compute the rounded pseudo-quotas ~ = R(v@~), i -- 1 , . . . ,  c. 

DISCREPANCY LOOP 

3. Compute the discrepancy d = (~=l n~) - n. 

4. If d -- 0, jump to step 7. 

5. If d < 0, choose i �9 {1,..., c} with l(n~, w,) = rninj=l ..... c l(nj, wj), re- 
place n~ with n~ + 1 and go back to step 3. Oncrementation) 

6. If d > 0, choose i �9 {I,...,c} with D(n~,w~) = maxj'=1 ..... c D(n#, w#), 
replace r~ with n~ - 1 and go back to step 3. (decrementation) 

MULTIPLE SOLUTIONS STEP 

7. Compute s = minj:1 ..... cl(nj,wj) and t = max#=1 ..... cD(nj,w#). 

8. Ift<s, setz~=0, i=1,...,c. Ift=s, set 

1 for l(~,w~)=s 
z~ : -I for D(r~,w~)=t , i=l,...,c. 

0 otherwise 

9. Return the rounded weights nl,..., nc and the signs zl,..., zc. 
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In step 8, only the cases t < s and t = s are distinguished. This is due to a 
result of Happacher and Pukelsheirn (1996a), who showed that 

max DCni, vo,) <_ rain I(ni ,  w,) . 
i=l, . . . ,c i=1, . . . r  

This inequality also shows the aforementioned fact that the set of multipliers u 
leading to a first step discrepancy d = 0 (where the first step discrepancy is the 
discrepancy obtained without running the iterative steps 3-6) forms a compact 
interval, see Happacher and Pukelsheim (1996a). 

Clearly, the above algorithm terminates, as every iterative step decrements the 
absolute value of the discrepancy by one. Note that this algorithm can be imple- 
mented in the general form given above. Implementations of specific multiplier 
methods are then easily obtained by supplying the signpost sequence (sk)h. Such 
specializations are pointed out in the following section. 

Apart from its intuitive appeal, the common choice u = n allows the following 
worst case analysis: 

Proposition 1. Using the multiplier ~, = n, the discrepancy loop of the above 
algorithm terminates after at: most c iterations. 

Proof. Denoting the usual floor function by H ,  the inequality [n~J  _< R(n~,)  _< 
[n~iJ + 1 readily follows from the definition of the rounding function R. Sum- 
mation yields 

C C C 

i : 1  i : 1  / : 1  

Using the inequality n ~ i  -- 1 < [ r ~ i J  ~ n ~ i  we h a v e  

C C 

- c  < _< 0 and 0 _< + c - "  <- 
i=1 i=1 

and hence 
C 

<~ C,  

i=1 

Obviously, the left hand side of this inequality is the number of runs through 
the discrepancy loop. n 

The last inequality of the proof is sharp for n > c, as we can choose the rounding 
function R(.) = [.J + 1 and (non-normalized) weights wl , . . . , toe  E IN with 

Since each run through the discrepancy loop takes c computations of incremen- 
tation or decrementation criteria plus c comparisons, and assuming that the 
number of operations needed for computing a signpost is O(1), the above propo- 
sition implies a worst case overall complexity of O(c2). 
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4 Special multiplier methods 

The classical Jefferson rounding method mentioned in the introduction and other 
popular rounding methods can be embedded into several families of rounding 
methods, which are based on the idea of defining signposts as means. This 
previously neglected idea encloses the arithmetic mean and power mean signpost 
sequences explored by Happacher and Pukelsheim (1996a) and naturally leads 
to the new family of geometric mean signpost sequences. 

Arithmetic-mean rounding methods 

The family of arithmetic-mean rounding methods is defined by the family of 
signpost sequences {(s~))~ l q G [0, 1]} with 

s(~ q) = (1-q)k+q(k+1) = k+q 

for k E ~I0 and q 6 [0, I]. Happacher and Pukelsheim (1996a) introduce this 
family as q-stationary signpost sequences, but we prefer to call these sequences 
arithmetic-mean signpost sequences, because this name displays the principle 
of defining signposts as means, which is common to all families of signpost se- 

quences presented in this section. Since -(q) - s~ q) I holds for any k and ~k+l 
q, these signpost sequences are stationary in the sense defined by Balinski and 
Rachev (1993). 

The family of arithmetic-mean methods includes the three popular methods of 
Adams, Webster and Jefferson, for q = 0, q - 0.5, and q = i, respectively, where 
Jefferson's method is also known as the d'Hondt method. 

Happacher and Pukelsheim (1996a) showed that the multiplier 

results in an expected first step discrepancy d that vanishes asymptotically for 
n -~ oo when the normalized weights are uniformly distributed on the probability 
simplex. Happacher and Pukelsheim (1996b) added the results that under the 
same assumption this multiplier asymptotically maximizes the probability of a 
vanishing first step discrepancy and minimizes the expected absolute first step 
discrepancy. 

Even without any probabilistic assumptions on the weights, this multiplier can 
be motivated by the fact that the worst case bound for the number of iterations 
given in Proposition 1 can be improved: 

Proposition 2. Using the multiplier u = n + c (q - �89 and an arithmetic-mean 
signpost sequence, the discrepancy loop of the above algorithm terrrdnates after 
at most ~ iterations. 

Proos Let Rq(.) denote the rounding function induced by the arithmetic-mean 
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signpost sequence (s~))t. Then, for z 6 [0, oo), we have 

: + 1 - q) = + 1 - qJ 

By the same arguments as in the proof of Proposition 1 we get the inequality 

(v~,-q)-n < ~R,(v~,)-n < ~-~(v~,+l-q)-n 
~=1 ~=1 ~=1 

Substituting ~ by n + c (q - 3) establishes the claim. [] 

Again, the worst case overall complexity of the algorithm is O(c2). 

Contrary to this worst case approach, Happacher (1996) analyzes the asymp- 
totically expected first step discrepancy assuming a uniform distribution of the 
normalized weights. Happacher's results state that the expected absolute value 
of the first step discrepancy is not greater than ~12 for r~ -~ co and c > 12. 
This implies an asymptotically expected overall complexity of O(cS/2). 

Power-mean rounding methods 

Another important family of methods is the family of power-mean methods. 
Here, the signpost sequences are given by 

for k E No and p E [ -co ,  co]. Note that for p 6 { - c o ,  O, co)  this is interpreted 
by taking limits, i.e. 

t (~-~176 t(k~ Vr~'-k-t - 1), t ( k~176  I 

for k E ]No. This family is given by Happacher and Pukelsheim (1996a), who 
call it the family of p-mean rounding methods. 

On the one hand, power-mean methods are important due to the fact that they 
include the five classical multiplier methods of Adams (p = -co),  Dean (p = -1),  
Hill (p = 0), Webster (p = i), and Jefferson (p : co). For an overview of 
classical rounding methods see Balinski and Young (1982). On the other hand, 
the asymptotic behavior for r~ -~ co of power-mean methods with [p[ < co is 
that of Webster's method, see Happacher (1996). Due to this fact, Happacher 
(1996) gives asymptotic analysis only for arithmetic-mean methods, since they 
asymptotically offer a greater range of possibilities, see Pukelsheim and Rieder 
(1992). 

An asymptotic optimality theory on the choice of the multiplier ~ comparable 
to that of Happacher (1996) for arithmetic-mean methods is not available for 
power-mean methods. Similarly, the arguments used in the proof of Proposition 
2 do not apply to this situation. However, u = n is a reasonable choice due to 
Proposition 1. 
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Geometric-mean rounding methods 

Apart from the two above families, which are already mentioned in the litera- 
ture, we suggest the family of geometric-mean rounding methods based on the 
signposts 

for k E N0 and r E [0, 1]. For any r E [0, 1] we have 

l i m u  ( ' ) - k  : r 
k-~oo k 

and hence these signposts sequences are asymptotically stationary just like the 
power-mean signpost sequences, and approximate the arithmetic-mean signpost 
sequences. As a consequence, the asymptotic behavior of geometric-mean round- 
ing methods is as rich as that of arithmetic-mean methods, while power-mean 
methods asymptotically degenerate to only three cases as seen above. Special 
cases included in the family of geometric-mean methods are Adams' method 
(r = 0), Hill's method (r = 0.5) and Jefferson's method (r : 1). 

A noteworthy property of geometric-mean signpost sequences is that u(0 ") = 0 
for any r < 1. Therefore, except for the pathological case n < e, weights are 
not rounded to sero--a property that may be desirable in some contexts. In the 
family of arithmetic-mean methods, only Adams' method shows such behavior. 

Again there is neither an asymptotic optimality theory nor a special worst case 
result for the choice of the multiplier v, and so, owing to Proposition 1, we 
suggest ~ = r,. 

5 Applications in Statistics 

In the following we present applications of multiplier rounding methods in var- 
ious statistical fields, namely descriptive statistics, design of experiments and 
sampling from stratified populations. 

Rounding percentages in descriptive statistics 

Tables of rounded percentages failing to sum up to 100% can be encountered 
in many types of publications. Balinski and Rachev (1993) give examples of 
this phenomenon drawn from newspapers and scientific publications, Diaconis 
and Freedman (1979) compute the probability of a table with ordinarily rounded 
entries summing up to 100% under some distribution assumptions for the entries. 

The Statistical Yearbook 1996 for the Federal Republic of Germany (Statistisches 
Bundesamt (1996)) also contains such examples, e.g. a table of origins of foreign- 
ers living in Germany on December 31st, 1995, distinguished by continents. The 
percentages of foreigners coming from Europe, Africa, America, Asia, Australia 
and Oceania, stateless persons, and persons of unknown nationality sum up to 
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100.1%, while the last line of the table claims a sum of 100%. Table 3 displays 
the original data and percentages given by the Statistical Yearbook and addi- 
tionally shows rounded percentages obtained by Webster's method for n = 1000. 
Obviously, the number of units n can be viewed as the rounding accuracy, and 
so the choice r~ = 1000 corresponds to rounding to tenths of percents. 

Europe 
Africa 
America 
Asia 
Australia/Oceania 
stateless 
unknown origin 

total 

persons 
(in thou~ndJ) 

5 920.3 
291.2 
183.0 
702.9 

9.2 
19.3 
48.0 

7 173.9 

proportions (%) 
ordin,~ry rounding 

proportions (%) 
Webster or Hill 

82.5 82.5 
4.1 4.1 
2.6 2.5 
9.8 9.8 
0.i 0.1 
0.3 0.3 
0.7 0.7 

100.1 100.0 

Table  3. Foreigners living in Germany, distinguished by continents 
oforig/n. The percentages in the third column are taken from Statis- 
tisches Bunde~Lrnt (1996) and fail to sum up to 100%. Webster's and 
Hill's methods cope with this summation restriction by rounding the 
proportion of Americans to 2.5%, as can be seen in the fourth col- 
urnn. 

Generally, we suggest Webster's or Hill's method for rounding percentages in 
descriptive statistics: Both of them are multiplier methods and thus avoid the 
paradoxes described by Balinski and Young (1982), see Section i. Furthermore, 
Webster's method is a generalization of the ordinary rounding procedure, i.e. or- 
dinary rounding and rounding with Webster's method coincide in all cases where 
ordinary rounding happens to meet the summation restriction. Finally, Web- 
ster's and Hill's method each minimize certain measures of the average rounding 
error; more explicitly, given weights u~l,..., wc and a number of units n, Web- 
ster's method minimizes 

among all multiplier methods, while Hill's method minimizes 
2 

in the class of all rounding methods meeting the summation restriction, see 
Balinski and Young (1982, pages 103-105). Note that the signposts defin- 
ing Webster's and Hill's methods are asymptotically equal, and therefore these 
rounding methods coincide for n --~ oo. 
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Other classical multiplier methods minimize measures of maximal rounding er- 
rors and tend to favor small weights (Adams' or Dean's method) or large weights 
(Jefferson's method), which does not seem to be suitable in this context. 

R o u n d i n g  o p t i m a l  e x p e r i m e n t a l  d e s i g n s  

Within the setting of polynomial regression models the theory of design of ex- 
periments supplies results on how to choose optimal designs, see Pukelsheim 
(1993). Generally, a design consists of regression vectors Z l , . . . ,  zc and weights 
wl , . . .  ,we > 0 summing to 1. This specifies to take a proportion ofw~ out of all 
observations under the experimental conditions that correspond to the regres- 
sion vector zi. Given the total number r~ of observations to be taken and an 
optimal design, one faces the problem of rounding the proportions given by the 
design to integral numbers n~ of observations summing up to n. 

Pukelsheim and Rieder (1992) showed that rounding optimal designs with 
Adams' method maximizes a lower efficiency bound within the class of all round- 
ing methods meeting the summation restriction Y~. n~ : r~. Therefore Pukelsheim 
(1993) calls Adams' method the efBcient design apportionment and recommends 
it for rounding optimal designs. Note that, however, Adams' method maximizes 
a lower efficiency bound, not efficiency itself. 

Table 4 reworks Exhibit 12.2 of Pukelsheim (1993, page 310). The weights 
to1 : ~, to2 : I, zos : �89 are given by an optimal design. With different total 
numbers n of observations, Adams' rounding method yields the following results 
for r~, i = 1, 2, 3: 

The total numbers of observations 1, 2, 7, 8, 13, 14, . . .  admit three solutions 
each, which is indicated by trailing '+ '  or ' - '  signs. For instance, the notation 
(nl,n2, na) = ( 3 - , 5 - ,  6+) (see Table 4, n = 14)is shorthand for the set of 
solutions {(2, 5, 7), (3, 4, 7), (3, 5, 6)}. 

R o u n d i n g  o p t i m a l  s a m p l e  a l l o c a t i o n s  

When drawing r~ observations from populations with c strata and known strata 
variances cry, i = 1 , . . . ,  c, the theory of stratified sampling supplies results on 
how to choose allocations, i.e. numbers n~ of observations to be drawn from stra- 
tum i with ~ n~ = n, which are optimal with respect to variance minimization 
of the stratified population mean estimator, see Cochran (1977) for details. More 
explicitly, if p~ denotes the relative size of stratum i within the total population, 
the optimal allocation (n~, . . . ,  n~') is given by 

p~r~ i =  1 , . . . , c .  n " _  Eipj,  j , 

In general, the numbers n~ fail to be integral and therefore need to be rounded. 
Neglecting constant factors, this leads to a rounding problem with weights w~ : 
p~r~ and a number of units r~. 
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1 
2 
3 

4 
5 
6 

7 
8 

9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

n l  

1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 

n2 

- 0 

- 1 

1 
1 
2 
2 

- 2 

- 3 

3 
3 
4 
4 

- 4 

- 5 

5 
5 
6 

6 

n3 

+ 0 + 
- 0 + 

1 
2 
2 
3 

+ 3 + 
- 3 + 

4 
4 
5 
6 

+ 6 + 
- 6 + 

7 
8 
8 
9 

Table  4. Rounding an optimal design with Adams' method: For 
better readabi//ty, the signs z~ indicating multiple solutions have been 
replaced by trai/ing ' + '  or ' - '  signs; rounded weights marked with 
'+ ' or ' -  ' may  be incremented or decremented, respectively, in order 
to obtain alternative solutions to the rounding problem. 

Pukelsheim (1997) showed that  rounding optimal allocations with Jefferson's 
method maximizes a lower bound for the variance ef~ciency within the class 
of all rounding methods respecting the summation restriction, and therefore 
suggested the name efficient sample allocation. Here, variance efficiency denotes 
the quotient of the optimum variance and the variance yielded by the regarded 
allocation. Jefferson's method, however, in general fails to maximize variance 
efHciency itself, as can be seen in Table 5. In this table we consider a population 
with c = 3 s trata  of sizes Pl = 0.35, P2 = 0.45, Ps = 0.2, and strata  variances 
cr~ = 36, cr~ = 4, and ~s 2 = 1. The optimal allocation for sample size n = 300 is 

(n~, n~, n~) = (196.875, 84.375, 18.75), 

which implies the minimum variance 0.03413 of the stratified population mean 
estimator. 

Apart from sub-optimality, Jefferson's method, and more general, all arithmetic- 
mean methods except for Adams' method, suffer from possibly rounding weights 
to zero. In the stratified sampling context this corresponds to neglecting strata 
and leads to biased population mean estimation. In order to illustrate this, 



method nl n2 ns variance 

Adams 196 85 19 0.0341347 
Webster 197 84 19 0.0341339 
Jefferson 198 84 18 0.0341378 

efficiency 

0.9999607 
0.9999832 
0.9998690 

Table 5. Rounding optimal sample allocations with different round- 
•ng methods yields different variances of the stratified population 
mean estimator. Jefferson's method is outperformed by Adams' and 
Webster's method in terms of variance efficiency. (Actually, Adams' 
method gives two solutions, one of which is identical to that given 
by Webster's method.) 
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method 

Adams 
Webster 
Jefferson 
Hill 

nl 

1332 
1333 
1333 
1333 

~2 

667 
667 
667 
666 

n3 
standard 

bias 
devi~ion 

0.33569692 
0.33561145 
0.33561145 
0.33569691 

Table 6. Rounding optimal sample allocations with arithmetic- 
mean methods may lead to a biased stratified population mean esti- 
mator. The last two columns give the standard deviation and bias 
of this estimator. Note that the bias 4 is about twice as large as the 
3~ range of the estimator. 

consider the following parameters, where/~ denotes the mean of the observed 
variable in stratum i: 

p1 = 0.6, ~ = 0.2, ps = 0.2, 
~rl = 16.675, ~r2 = 25.02, ~s = 0.005, 
#Ul = 400, #U2 = 600, #us = 20. 

Rounding the optimal allocation 

(n~, nl, n~) = (1333.111259, 666.755496, 0.133245) 

to a total of 2000 observations with different rounding methods gives the results 
displayed in Table 6. 

As a consequence, we cannot recommend a specific multiplier method for round- 
ing optimal sample allocations, but rather suggest geometric-mean methods with 
parameter r < 1 in order to generate "candidates" for rounded sample alloca- 
tions with maximum efficiency. To the experience of the authors, this is a rea- 
sonable way for practitioners, since variance efficiencies can be easily computed 
and compared. 
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6 Conclusions 

Due to the paradoxes many other rounding methods suffer from, only multi- 
plier rounding methods should be used for rounding weights with a summation 
restriction on the rounding results. When applying multiplier methods, an easy- 
to-implement algorithm can be utilised in order to avoid the problem of finding a 
multiplier yielding rounding results that meet the summation restriction. Differ- 
ent fields of applications may require specific properties of the rounding methods 
used, which can be guaranteed by using special families of multiplier methods. 

As a topic of future research, Pukelsheim's and Rieder's (1992) efficient design 
apportionment and Pukelsheim's (1997) efficient sample allocation could be re- 
viewed. Furthermore, Happacher's (1996) theory on the distributional properties 
of arithmetic-mean rounding methods and the worst case analysis of Proposition 
2 could be extended to other families of multiplier methods. 

Implementation and availability 

The algorithm presented in Section 3 and its specializations for the families 
of arithmetic-mean, power-mean, and geometric-mean rounding methods have 
been implemented at the University of Augsburg. These implementations are 
integrated in the software package Roundpro offering a GNU Emacs based user 
interface. 

Roundpro is available at URL ht tp : / /mw,  t .Nath.Uni-Augsburg.DE/sta/ via 
World Wide Web and requires the freely available GNU Emacs editor and a C 
compiler on a UNIX system. Dorfleitner, Happacher, Klein, and Pukelsheirn 
(1996) may serve as a manual for this software. It can be requested st the 
address given in the header of the present article. 
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