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Permutation t e s t s -  a revival?! 
I. Optimum properties 
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It is shown that permutation tests have optimum properties for interesting classes 

of continuous distributions as well as for discrete ones. General conditions suffi- 
cient for uniformly maximal power on subclasses are given. Moreover, a variety 
of examples is presented. 
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1. I n t r o d u c t i o n  

Permutat ion tests play an intermediate role "between" classical paramet-  

ric procedures and rank tests: On the one hand they take into account 
considerably larger classes of distributions than parametric models, on 
the other hand they make (for metric scales) full use of the da ta  and 

avoid the loss of information caused by the reduction to ranks. Never- 
theless, they seem to be of minor importance for practical statistics, the 

main objection being tile computational effort needed for constructing 
tile critical region - but ill the era of computer  intensive methods this 

argument  sounds like a relic of the 60'es. 

1Research supported by Deutsche Forschungsgemeinschaft (DFG) grant No. Schm 
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In the sequel we will show that permutation tests have convincing opti- 
mum properties for continuous distributions as well as for discrete ones. 
The considerations are carried out for the two-sample problem; similar 
results hold true for other types of permutation tests. For the comparison 
of two treatments, these are applied to nl resp. n2 homogeneous items. 
It is assumed that the observational data are reahzations of independent 
random variables X1,1,. . . ,  Xl,nl and X2,1,...,X2,,~2 resp. whose distri- 
butions 1'1 = pX~,, and P2 = pX2,~ are stochastically comparable. For 
the corresponding distribution functions F1, F2 we use the notation 

:=  r ,  _< . [  _>IF2}, J:= := : F ,  = 

and we consider the hypotheses 

H : 9r= + P>, K : 9v<. 

For constructing the critical region of Pitman's two-sample permutation 
test one computes, for all permutations 

7r(x) = (rrl(x),...,Tr,~,+,~(x)) of x = (Xl,I,...,Xl,n,,X2,1,...,X2,n2), 
n l  n l  the values S(~r):= ~i=1 7ri(x) and compares these with So := ~ j = l  x~,j. 

For nearly all theoretical investigations of this problem it is additionally 
assumed that the Fi are continuous (then the Xi,j as well as the S(Tr) 
are a.s. all different); this will be marked by the notion H c and K c resp.. 
In this case the permutation test is unbiased for testing the hypotheses 
H c and K r and it maximizes the power for the class /t" of all normal 
distributions with shifted expectations and equal variances (see e.g. Wit- 
ting/NSlle (1970), Ch. 3.5, or Lehmann (1986), Ch. 5.10/5.11). Our first 
aim is to generahze this result into two directions: 

Although the assumption of (approximate) normal distributions may be 
justified, in many cases, by the central limit theorem, for "skew" distri- 
butions as e.g. in survival analysis other assumptions seem to be much 
more reasonable (e.g. exponential distributions). Hence the question arises 
whether the optimum property of the permutation tests can be extended 
to other interesting classes of distributions. 

The continuity assumption has the advantage (for theoretical considera- 
tions) that all values of the Xi,j and even of the S(rr) are a.s. different. But 
in most practical problems one observes, at least for larger sample sizes, 
ties for the S(zr) - one reason being the restricted accuracy of measure- 
ment. Hence the questions arise how to perform the permutation test in 
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this case and whether one can prove op t imum properties for this case, too 
(surprisingly enough, one can make use of this more complicated struc- 
ture to construct  efficient algorithms for comput ing  the critical region; 
this will be carried out in part  II). 

Both problems are t reated in section 2 in a unified manner .  Applications 
to continuous distributions as well as to discrete distr ibutions with fixed 
suppor t  are given in section 4. 

2. Optimum properties of permutation t e s t s  

Since there does not exist, for the nonparametr ic  hypotheses H and K,  
any uniformly most  powerful level a- test  one looks for tests which are 
unbiased for H against K and uniformly opt imal  on a suitable subclass 

K1 c K .  

Theorem 2.1 
Let T(x) = x[] = t be the order statistic and 

#=(F~,F2)c K ' 
Fi dominated by it; the itn-density ] 

is for fixed t and x E T -  1 ({ t }) i ' 
strictly increasing in ~ G(xl,j) 

where it is a a-finite measure on (IR, IB) and G is strictly increas- 
ing; let a C (0, 1) and 

> 

r  := ~(t) for S(x):= Ea(x l ,~ )  = c(t), 
0 < 

where c(t) and 7(t) are determined such that 

1 
= ~ 1 { ~ :  E ~ G ( . ; ( ~ ) )  > c(t))l+ 

3 ' ( t ) l { ~  �9 ~'~=lG(Tr~(x)) = c ( t ) } l .  
n! 

�9 X Then r := CT(z)( ) is an unbiased level a-test for H against 
K and has, under the unbiasedness condition, uniformly maximal 
power on K u (and hence on each subclass of h'u). 

Proof: We are looking for a solution of 

r  r ~ [0 ,1 ] :  
E~r V O c K  
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(1) 
E~r = sup Eoq) VO E h',. 

e e l , ,  

Under the metric of uniform convergence one obtains that H C/K = ~-= 
and that the power function of each test is continuous on Z'=. Hence every 
unbiased level a-test is similar on .7"_-. Therefore, we restrict attention on 
a solution of 

r  ~ : =  { r  ' ~ - - + [ 0 , 1 ] : E ~ r  VOE.7-=} 
(2) 

E~r = supr E~ r V 0 E /~',. 

Tile order statistic T is sufficient for .T= (see Witting (1985), example 
3.7a) as well as complete - this follows from theorem 3.43 of Witting 
(1985) by replacing 5 c~ by f" (according to Witting (1985), theorem 3.42, 
T is complete for the class P~, of all product measures with the same 
u-continuous marginal distributions; since this is true for all distributions 
u the completeness o f T  follows). 

Hence the solution of (2) is equivalent to the solution of 

dpxl Tox =t T 1]'fr a.s.) 
(3) 

f r dR [IT~ >_ f r dpXIT~162 E CN, V 0 E [(,,, Pf-a.s. 

i.e. computing a uniformly optimal test with Neyman structure with re- 
spect to T. This can be done separately on the sets T- l ({ t}) ,  i.e. by 
solving, for each t, the problem 

dP xlT~ = o~} r E ~Ot := {Ct : T- l ( { t } )  --~ [O, 1] : f Ct :r= 
(4) 

For this aim we need the conditional distributions pXIToX=t i.e. for each 
B E IB n a solution of 

A XIToX-t (5) P(~ - ( B )  d P ~ ' ~  VA E T(IBn). 

Let now II be the set of all permutations on IR n,II~ := {n E I I :~ r (x )=  x} 
the set of all permutations which let x fixed, ~z an arbitrary system of 
representants of II/II~, and fo, fT #~-densities of P0, pT resp. 
(i) Consider m such that #~({x}) > 0 Vx E A. Since ix is a-finite, A is 
countable and one obtains for the right hand side of (5) 

pX(B N T-1(A)) 

= /T-'(A)1R(x)f~(x)d#~(x) 
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= ~ Sw-'({O)iB(x)'f~(x)d/zn(x) 

tEA~E~t (0 
= ~ ~ 1B(~r(t))f, ffr(t))t:({t}) 

tEA ~rq~lt 

whereas the left hand side is 

/m pxIT~ B)dp~~ ( t) = ~ p:lT~ B)fTo (t)#n( {t} )" 
tEA 

Hence we may choose for fT(t) # 0 

(6) p:lToX=t(B ) = E,~e~, ls(Tr(t))fo(r(t)) 
fT(t) 

or, taking into account fT(t) --- E~e,~, f,~(Tr(t)) and the multiplicities, 

XlToX=t E~rEH 1BOr(t))foOr(t)) 
Pj  (B) = E.en  f~(~(t)) 

(ii) Next we assume that  #'~({x)) = 0 Vx E A. Then the set T - l ( { t ) )  
consists of the (almost surely different) points ~'(t), ~" E H, and one obtains 

s 1B(x)f~(x)d#'~(x) = E L(A)1B(x)fe(x)d#'~(x) 
7r E II 

= ~en fA 1BOr(t))f~(~r(t))d#'~(t)= ~ ~en ~ iB(Tr(t))f'Or(t))d#'~(t) 

and 

iA XIToX=t ToX P(~ (B)dP~ (t) = iA p:lT~ 

This leads, for fT(t) > O, to 

pXlToX=t(B ) = ~,~r ls(~r(t))f,~(Tr(t)) 
fT(t ) 

which turns out to be the special version of (6) for the case Ht = {id}. 
(iii) In the general case we split A up into Ad := {t E A :  #n({t})) > 0} 
and Ac := A - Ad. Then (6) yields a solution of 

j. + 

= pX(BNT- ' (A. ) )+ pX(BNT-:(Ad)). 
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In part icular  we obtain 

X[ToX=t - f o ( x )  P~ ({~))--  

For 0 E ~=  it follows 

1 In~l 

which may also be taken for the points t with fT( t )  = O. 

To apply the Neyman-Pearson- lemma we have to consider the statist ic 
f o ( x ) / f T ( t ) .  Due to our assumptions this statistic is, for fixed t and x E 
T-~( t ) ,  an increasing function of ~ G ( z ~ , j )  which is independent  of 0. 
Hence we may choose as an optimal  test 

1 > 

r  = ~ ( t ) : E a ( ~ , j )  = c(t),  
0 < 

where c(t) and 7 ( 0  are determined according to 

(2' 
nX]ToX=t~r-,;-,z ~ X]ToX=t = rT_ ~ (2_ . , t , ( x l , j )>c( t ) )+7( t )P~:  ( E G ( x , , j ) = c ( t ) )  

_ ]lit]n! ]{x e IR '~ : T(x)  = t ; ~ G ( x , d )  > c(t)}] 

+ ~(t)~,*l I{x e m ~ :  T ( z )  = t; E a ( x ~ , j )  = ~(t)}[ 
I b .  

1 
- ~!l{~ e n :  EL- ' ,G(-,(0) > ~(t)}l 

-r(t) ,~, 
+ - ~ 1 { ~  ~ H: E;=~G(~: ; ( t ) )  = c(t)}l 

* x r To solve the initial problem we define r := CT(~)( )" Then is 

measurable;  see Witt ing,  1985, Hilfssatz 3.61, and from P~(N) = 0 V~ E 
9r= we obtain,  for all probability measures [1,1'2, (P1 +P2, P1 +P2) (N)  = 
0 and,  therefore, ( P l , / ) 2 ) ( g )  = 0, i.e. each Pf=-nullset is a pT-nullset  for 

0 E /~'u. Hence r is a. solution of (3) and (2). 

To show tha t  r is unbiased for H against K we consider x, ~ such tha t  
.~i,i = xl,i + 8i,8i >_ O, 1 <_ i <_ nl,]:2,j = x2,j, 1 <_ j < n2. Since the 
p-value of the permuta t ion  test turns out to be 

11  nl p(x) = n! {~" E H:  Ei=lGOri(x))  >_ E'~=lG(xl,i)}l 
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one obtains p(5:) _< p(x) and therefore, r >_ r According to 
Witting & Nhlle (1970), Satz 3.13, now the unbiasedness of r follows. 

This result can, moreover, slightly be sharpened: 

Coro l la ry  2.1 
- X ,  1 LetH u:= {0E H : I %  ' <<#, i =  1,2} and 

:= ( 0  c : i = 1 , 2 } .  

Then r is an unbiased level a-test for H against K, and has, under 
all unbiased level a-tests for H t, against K~,, uniformly maximal 
power on each K1 C h',. 

Proof: Let J~, := H-~, a K~. Then T is also sufficient and complete for 
7)j, (see Witting (1985), Satz 3.42). Hence the result follows by the same 
arguments as before. 

Applying the permutation test one will make use of the fact that all 
permutations 7: C II which merely exchange values within the first nl or 
within the second n2 observations lead to the same value of ~=~1 G0ri(x))" 
Using the notation 

n,~, ,,~ :-- n/(n,~,, n,~ ) 

one therefore obtains a simpler expression to determine c(t) and 7(t): 

1 
a _ (~,) I{~ ~ H,~,,,~ : E~{'=lG(~(x)) > c(t))l 

E~=~G(~(x))  = c(t))l. 

3. Gene ra l  cr i ter ia  

To apply theorem 2.1 to special classes of distributions one has to ensure 
that these distributions belong to [( , ,  i.e. that they are stochastically 
comparable and that they fulfill the monotonicity assumption. For this 
purpose we mention: 

L e m m a  3.1 
Let P(-) = { Po : v~ E O} be a class of distributions Po with densities 
fo = dPo/d# with respect to a a-finite measure # and assume that 
7)0 has increasing likelihood-ratio in id. Then the elements of 1)6) 
are stochastically comparable. 

For a proof see Witting (1985), Satz 2.28. 
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L e m m a  3.2 
Let Po be a one-parameter exponential family in ~(~) and G(x) 
dominated by the a-finite measure it, i.e. the P~ have it-densities 

I~(x) = C(~) er 

and assume that ~ and G are strictly increasing. Then the elements 
of Po are stochastically comparable and for ~1 > ~2 holds 

(r~,, g~) ~ k. 
(i.e. theorem 2. I can be applied). 

Proof: Since Po has monotone likelihood-ratio in G and since G is strictly 
increasing, 7:'o has monotone likelihood-ratio in id; Lemma 3.1 yields the 
stochastic comparability. 

f(x) := Hin:.l 1 ftgl(Xl,i) n2 

is the density of the common distribution; hence we obtain for each per- 
mutation ~r of the nl + n2 components 

r~ 1 

/(~(x)) = [c(~,)l~,[c(~2)] ~ II h (~ (~ ) )  [I h(~j(~))x 
i=1 3=nl +1 

•  G(~ri(x))+ ~(02) ~ G(~rj(x))).  
i----1 j----nl+l 

For fixed x the first four factors are constant; for the remaining term we 
obtain 

exp(~(v~2)(~G(Tri(x))+ E G(~rj(x))))x 
/=1 j=nl+l 

n l  

• exp((~(v~,) - ~'(v~2)) EG(r i (x ) ) ) .  
i=I 

Here again the first factor is, for ~r EI I  and fixed x, constant whereas the 
second is, since ( is strictly increasing, strictly increasing in ,~1 E~=, C(~(x)).  
This yields the assertion. 
On the other hand, one should admit that Lemma 3.2 essentially describes 
the scope where Theorem 2.1 can be applied (comp. sections 1.7 and 4.5 
of Pfanzagl (1994)). Hence Theorem 2.1 mainly unifies and generalizes 
the optimum properties of permutation tests for parametric subclasses 
K1 C K but is far from yielding convincing optimality results for non- 
parametric subclasses. This is underlined also by the applications given 



83 

in the next session. 

4. Examples  

4.1 Con t inuous  d i s t r ibu t ions  

Since the family of normal distributions Af(0, a 2) with fixed a 2 > 0 forms 
a one-parameter exponential family in ( (0)  = O/a 2 and G = id we get 
back the "classical" optimum property: 

E x a m p l e  4.1 (Normal distributions Af(0, a2)) 

K~ := {(X(0~,~2),N(02,~5):  o2 > 0,ol > o2} c ~.c. 

As further optimum properties of the permutation tests we obtain 

E x a m p l e s  4.2 (Gamma-distributions F~,~) 

K5 := {(r~,l/~,, 1"~,1/02) : a > 0, 01 ~> 0 5 :> 0) C /~-c, 

K3 := {(r~,,~, r~2,~) : ~ > 0,01 > 05 > 0} c/~.c. 

Proof: The Lebesgue-density f.,x of a Gamma-distribution F~,~ has the 
form 

/~ a-1 
f ,~ ,a(x) -  F-~)x e-a~ l[0,oo)(x). 

Hence the Gamma-distributions form 

(i) for fixed a > 0 an exponential family in ~'(0) = - 1 / 0  and G = id 

(iX) for fixed A > 0 an exponential family in ( = id and G = ln. 

As special cases we mention 

E x a m p l e  4.3 (Exponential distributions Exp(A) = F~,a) 

E x a m p l e  4.4 (x2-distributions 2 Xn,a :" Fnl2,112a 2 ) 

2 2 ,Xn,(~2)" E[N,~ > a 2  > 0 }  C /~'c, 
2 2 /;~ := {(~:~.~, �9 X~2,~) a > 0 ,  n l , n 5 6 I N , n l  > n 2 )  C /~c. 

E x a m p l e  4.5 (Weibull distributions )4;e,x) 

K 7 := {(}r , ~),02,)~) :,)~ > 0.~ '~l > '~2 ~> O} C KC. 
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Proof: The Lebesgue-density of Wo,,x is 

)tX A-1 
fo,~(x)= v0 ~ exp(-(x/O):~)l(o,oo)(x); 

hence the Weibull-distributions form, for fixed A, an exponential family 
in f(0) = -~--~ and G = id :~. Since the statistic, used for the resulting 
permutation test, depends on A the test can be used only for known A. 

4.2 Disc re te  d i s t r ibu t ions  

E x a m p l e  4.6 (Poisson distributions P(0))  

It's := {(~(01),7~(02)): 0: > 02 > 0} c /~d .  

Proof: The Poisson distributions P(A) form an exponential family in 
( = In and G = id. 

E x a m p l e  4.7 (Binomial distributions B(n, ~)) 

~,9 :=  {(~(,~,O:),Nn,02)): n ~ IN, 1 > 01 > 0~ > 0} c ~.d. 

Proof: The binomial distributions B(n, p) form, for fixed n, an exponential 
family in ((0) = ln(0/(1 - 0)), which is strictly increasing, and G = i d  

E x a m p l e  4.8 (Negative binomial distributions .~fib(n, ~)) 

t ( ,o  := {(Nb(n, O1),Xb(n, O2)):n ~ ~ , 0  < O: < 02 < 1) C R d 

Proof: The negative binomial distributions form, for fixed n, an exponen- 
tial family in ((v ~ = ln(1 - 0) and G = id. 

In particular, the special case of geometric distributions is covered by 
Example 4.8. 

The results of Examples 4.6-4.8 have been obtained already by Schrage 
(1980). 

4.3 D i s t u r b e d  exponen t i a l  families 

Let 7)o be an exponential family as in Lemma 3.2 and g a non-negative 
function such that f~(x)g(x)  is integrabIe. Then obviously there exists a 
norming function C" : 0 -+ IR + such that the distributions/5o defined by 
the densities ],~(z) = C(~) fo(x)g(x)  form an exponential family which 
fulfills the conditions of Lemma 3.2. 

This fact has interesting consequences: 
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(i) In many practical problems it is, due to the structure of the ob- 
served phenomenon, clear that the data are non-negative (e.g. for 
weight, age, energy) or belong to a certain interval (e.g. the values of 
concentrations are always between 0 % and 100 %). If nevertheless 
the assumption of normal distributions is taken into consideration 
it seems to be obvious to multiply the original densities by 1(o,~) 
or 1(0,100) (and to renorm). The resulting permutation test then has 
the same form and the same optimum properties as for the original 
situation. 

(ii) If the data are influenced by parameter-dependent effects as well 
as by parameter-independent ones, with the consequence that the 
densities are of the form 

f~ = h~ .g, 

then the f~ fulfill the conditions of Lemma 3.2 if the h~ fulfill it. 
This means that the permutation test is "robust" against parameter- 
independent disturbations. 

The authors thank an anonymous referee for his careful reading and his 
detailed comments. 
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