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ABSTRACT. - -  We show how the recent r matr ix theory } for unbounded 
operator matrices can be used in order to discuss linear reaction-diffusion 
systems. In part icular  we obtain information on the existence of a dominant 
eigenvalue and on the asymptotic behavior of the solutions. 

1. - UNBOUNDED OPERATOR MATRICES. 

Formal ly  any matr ix  ~ :~--(A~j),,~ ,~ where the entries A~j are 

linear operators f rom a Banach space Ej into another  Banach space 
E~ yields a linear operator  on the product space • : ~ E ~  X ... X E .  
by defining 

i ! gl) f~ g~ 

where g~ : ~  A~jfj for  ( f l ,  ..., fn) E~.  Some of the basic mat r ix  
1=I 

operations such as addition and multiplication remain valid, but  
others such as the format ion of r de terminant  >> or r t race �9 do not 
make sense anymore.  In addition, if the entries A~j are allowed to 
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be unbounded operators,  as is necessary for  most applications, new 
difficult ies occur. For  instance it is not  clear and by  no means tr ivial  
how to choose an appropr ia te  domain D(~_~) fo r  the operator  asso- 
ciated to the  formal  mapping above. 

Among the many things that  may  go wrong for  unbounded 
opera tor  matr ices  let me mention one additional example. 

EXAMPLE. - Let A be a closed unbounded operator  with domain 
D(A) on a Banach space E. Consider 

( 0 
c~:---~ Id A 

with domain D ( ~ )  : ~ E  X D(A) which again is a closed operator  
on E X E. Since the entries of ~ commute, one might  expect  m as 
in a rb i t r a ry  commutat ive rings m tha t  ~ is invertible in e 
(i.e. 0~o(c_~)) if  and only if  det  ~_~ is invertible in E. Since 
det  ~ - -  - -  Id the second s ta tement  holds but  ~ has only a formal  
inverse 

~4-I :---~ Id 

which is not a bounded operator.  

-) 
0 ' 

In a series of papers  and in collaboration with P. Charissiadis, 
K. J. Engel and A. Holderr ie th  we have tr ied to develop a systemat ic  
theory  fo r  unbounded opera tor  matr ices  (see the  references). In  this 
note it is shown how these results can be applied to a concrete 
system of linear evolution equations yielding detailed information 
on the qualitative behavior of the solutions of this system. 

2.  - A L ~  REACTION-DIFFUSION SYSTEM. 

Reaction-diffusion systems are  impor tant  and quite diff icult  
equations having numerous applications and a rapidly growing 
theory.  F r o m  the  huge l i tera ture  we only mention [Sin] and the 
recent  article by  Amann [A].  Since it is our  intention to make  
evident the  basic ideas f rom our  r matr ix  theory �9 we consider a 
ve ry  simple linear system as i t  occurs e.g. in [D-L] or [H-M] or  
as the  linearization of certain nonlinear systems (e.g. in [M]). 
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Let Y2 be a bounded smooth domain in 1R ~ and take coefficients 

o~j E (~, b~j E C(~) for 1 _< i, ] ~_ n. I f  A denotes the Laplacian (or 
a more general elliptic partial differential  operator) then we define 
the following system 

--~-~ u~(z, t : ) =  Z eh , Au~(x, t) -+- Z b,,(x)u,(z,,t) 
. i~ l  j m l  

for 1 < _ i ~ n ,  xEi2 and t_>O. We assume Dirichlet boundary 
conditions 

and initial values 

u~(x , t ) - -O for x E a ~  

u~(x,O)~f~(x) for ~Eg2. 

In order to apply our general theory to this special system we 
rewrite it in matr ix form. 

Consider A with Dirichlet boundary conditions as a closed 
operator on E : ~  L2(~) with domain D ( A )  and ident i fy  the func- 
tions b,j with the corresponding multiplication operators f~-> b~jf 
on E. On the product  space 

e :---- L ~ (~)  • ... • L ~ (~ )  

we then study the Cauchy problem 

(S:) u ( O = ~ u ( O ,  u(o)-----. ( fa ,  .... I . ) ,  

w h e r e ~  :~- (A~j)~• (a~jA -{- b~j)~• u(t) E e .  The domain 
D(~_~) of ~ is obtained by observing that  the b~j's are all bounded 
and therefore D(c4) coincides with D(o#0) where o#o : =  (a~tA)~xn. 
Hence ~ with domain 

~t  

D ( ~ )  : ~ { ( f a ,  .... f , ) E C  : Z a~jfjED(A) for i~---1 .... ,n}  
jffil  

is a closed, densely defined, linear operator on ~ (see [El] ) .  We 
show that  the operator theoretical properties of ~ determine exi- 
stence and qualitative behavior of the solutions of (81) and (S~). 
We s tar t  by studying t h e  spectrum of ~ .  
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3. - SPECTRAL THEORY, I.  

If  the coefficients b~ are supposed to be constant then the en- 
tries A~ commute. Therefore we obtain o(o#) from the spectral 

mapping theorem in [E-N], [E l i .  In the non-constant situation it 

is much more difficult and new tools are necessary. We start  by 

looking at the 2 X 2-case. 

It was I. Schur who observed that  (scalar) 2 X 2oblock ma- 

trices O# ~-~ A2~ A~., a r e  inve~ible if and only if the so.-ealled 

r Seh~r complement,  A ~ A 2 1  A~ ~ A12 is invertible provided A ~  ~ 

exists (see e.g. [L-T], p. 46)~ This idea can be generalized to our 

operator matrix context (see [N3], Sect. 2) and can be applied to 

the computation of o(o#). 

PROPOSITION. - . L e t  O# ~ (A6/)2x2 be the above operator matrix 
and assume that o(All) is known. Then far 2~o(All) we have 2Eo(O# ) 
if  and only if  2 E~(A~ ~ A 2 1 ( 2 ~ A l , )  -1 A 1 2 ) .  

We have thus reduced the problem of determining the spectrum 
of the operator O# in the product space e to a problem for  the 
r characteris~iv operator func t ion ,  in the factor space E2. In the 
following corollary we give an explicit matrix representation for 
the resolvent R(2,O#) :~--- (2--O#)-1 in the remaining resolvent set 
e(o#) \o(A,,). 

COROLLARY. - For ~ E ~ ( O # ) \ o ( A ~ )  one has 

[R(2, A~)(ld % A~ R(2) A2~ R(2, A~)) R(2, Ali) A12 R(~)~ 
R(2,O#) \ R(2) A2~ R(2, Au) R(2) ] '  

where R(2) :--- R(2, AN ~ A21R(2, All) A12). 

This representation for R(~,~.~) allows to extend the above ar- 
guments to bigger matrices. Consider the 3 X 3 matrix O# ~ (A~j)3• 
as a 2 X 2 block matrix whose upper left entry is o#2 :== (A~jh• 
Then ~Eo(O#)\(o(O#2)Uo(A11)) if and only if 2 is in the spectrum 

of the corresponding Schur complement As~-}- (A31 A32) R(~,O#~) A13 
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Here it is essential that we allowed product spaces made up by dif- 
ferent factor spaces (E ~: and E in our case) and that we had an 
explicit representation for R(~, ~ ) .  

One might proceed in this way, but clearly the formulas will 
quickly become very messy. 

4 .  - W E L L - P O S E D N E S S .  

The existence of solutions to our system ($2) is guaranteed if 
(and in a certain sense only if) r generates a strongly continuous 
semigroup on C .  For this the bounded entries b~j do not matter and 
we can assume o~ --- (a~j A). Such operator matrices have been stu- 
died in great detail and generality in [N2], [E2] and [EoN2]. 

We recall from [G] that  the Laplace operator A generates on 

E ~ L2(.Q) an analytic semigroup of angle -~ .  Therefore it follows 

from [N2], Thm. 2.3 that  the generator property of ~ is characte- 
rized by the location of the e!genvalues of the coefficient matrix 
(a~j),• alone. Using in addition that A has compact resolvent on E 
we obtain the following result. 

PROPOSITION. - The following assertions are equivalent. 

(a) The operator ma t r i z  ~ ~ (a~ A q- b~j),, • ,, generates a strongly 
continuous semigroup on e .  

(b) All  eigenvalues ~ of (a~j),x~ sat is fy  Re2 > 0 and 2 ~ 0 is a pole 
of the resalvent of order at most  one. 

In that case the semigroup (et,A)~>o is analytic and o4 has compact 
resolvent. 

5. - POSITIVITY. 

Once we know that solutions to our Cauchy problem ($2) exist 
(i.e., if ,:4 generates a semigroup (et,A)t~o on e )  then it is of great 
importance for theory and applications to know when all solu- 
tions corresponding to positive initial values remain positive for 
all t >_ 0. This property is expressed by the fact that the semigroup 
(et,4)t>0 consists of positive operators on the Banach lattice C .  
See [N1]. 
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PROPOSITION. = For the semigroup (e~,,~)t~o generated by 
r (A~i)n• ~ (a~s A + b~j)~• on C the following assertions are 
eq~dvalent. 

(a) 0 <_ etc~for all t >_ O. 

(b) 0 <_ e t~"  for  all t >_ 0 and 0 <_ Att for  iV: ]. 

(c) 0 <_ c~ and b ,  real valued for  i x  1, .... n and~a~j~-.O,:b~s >_ 0 for  

Proof.  - The equivalence of (a) and (b) has been shown in IN2] 
and [N-C] under more general assumptions. For the remaining 
equivalence we observe first  that Au ~---a, A + b ,  generates a posi- 
tive semigroup on E if and only if a~ _> 0 and b, is real valued 
(see [N1] : the generator of a positive semigroup is r real ,). Since 
the differential operator A never maps all positive functions in 
its domain into the cone of positive functions we conclude that 
0_<A~# if and only if a ~ j ~ 0  and b~j>_0. Hence (b) and (c) are 
equivalent. �9 

REMARK.  - Reaction-diffusion systems satisfying condition (C) 
are called cooperative systems. We have shown that these conditions 
are necessary and sufficient for positivity. 

6. - SPECTRAL THEORY, II. 

From now on we assume that the conditions from Section 5 
implying positivity are satisfied. Then it is known (see [N1]) that 
car and *,he corresponding semigroup (et,~)t~opossess a quite rich 
spectral theory. These geometric properties of o ( ~ )  will turn out 
to be mcre useful than the attempt in Section 3 to compute o~_~) 
precisely. We now gather some qualitative information on o (r162 which 
follows from general operator and semigroup theory. 

L E M M A  1. - The resolvent of r  /~ + b~#),~• is compact. 
Therefore o(o4)  is a discrete set of eigenvalues. 

Proof.  - The resolvent R(~, A) and hence the resolvent of 
diag(au A) is compact. But this property is preserved under bounded 
perturbations. �9 
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LEMMA 2. The semigroup (e~,~)t~o is analytic, hence the 
spectrum o(o~) is bounded on imaginary strips of the form 
{ ~  ~ :  ~_< Re~ </?}. 

Proof. - That (et,~)is analytic has been observed above. There- 
fore the spectrum of r is contained in some proper sector (see [G] ) 
and obviously bounded on imaginary lines. �9 

For the following lemma and later use we introduce the spectral 
bound 

s ( ~ )  :~- sup{Re2 : ~ ~ o(r 

of ~ .  

LEMMA 3. - The semigroup ( e ~ )  is positive, hence its boun- 
dary spectrum o + ( ~ )  :~o(or  ~ i ~ }  is r cyclic, ,  i.e. i f  
s (~_~)-~-i#Eo(or then s(c,C)-~ i k # E o ( ~ )  for all k E Z .  

Proof. - This Perron-Frobenius type result is due to G. Greiner 
and can be found in IN1], C-III, Cor. 2.12. �9 

Combining all these lemmas we obtain the existence of a domi- 
nant (or: leading) eigenvalue of ~A~. 

PROPOSITION. - I f  r ~ (Vhtj A ~- b~)n• satisfies the positivity 
assumptions from Section 5 then there exists a real eigenvalue )~ 
of o~ such, that 

Re2 < ~o 

for all other eigenvalues 2 E ~(~_~). 

Proof. - From Lemma 3 it follows that  s ( ~ ) E  ~(r and there- 
fore s(or is an eigenvalue by Lemma 1. If there is another eigen- 
value s(or +/~u for u V: 0 then there are infinitely many on the 
line s (o6) -}- i ~ contradicting Lemma 2. Hence there are only finitely 
many eigenvalues in the strip {hE ~ : s(cA~)--~ _< Re~ _ s(cA0} 
and ~o ~-s(cA0 is dominant. �9 

REMARK. - We point out that  in this section we did not use the 
matrix structure but only certain functional analytic properties of 
the operator ~ .  
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7. - STABILITY. 

r Stabil i ty  >) in our si tuation means that  all solutions of ($2) 
converge to zero as t goes to infinity. More precisely we want  tha t  

lim Ilet ll---- 0 .  

By the infinite dimensional analogue of Liapunov's theorem (see 
e.g. [N1] ,  A-IV, Remark  1.7) this  is equivalent to the fac t  tha t  
s (oa)  < 0. Since oa  has a dominant  eigenvalue 2o (see Section 6) 
it suff ices to determine the sign of ~o. The following proposition 
shows how this problem in the product  space ~ can be reduced 
to n problems in the fac tor  space E. To that  purpose we consider 
each principal submatr ix  

oa~ : =  (A~h• 

as a 2 X 2 block matr ix  

o a ~  \ C ~  A ~  

on E ~ = ~ 7  ~-1 X E, w h e r e  r  a n d  e u  = (Akl ..... A~k_~) 

Ak_ is 

(see also Section 3). Then we obtain the following characterizat ion 
of stability. 

PROPOSITION. - Let  oa ~-- (A{~),• -~- (a~j A + b{j),x, sat is fy  the 
posit ivi ty assumptions f r o m  Section 5. Then the following assertions 
are equivalent. 

(a) limt ~oo Ile'~ll ----- 0. 

(b) 20 . =  s ( o a )  < O. 

(e) s(oa~) < 0 for  k =  1 ..... n. 

(d) s (A l l )  < 0 and s (A~k- -e~oa~_~l  r < o for  k---~ 1, .... n. 

(e )  8(0,11 A 2f_ b l l )  < 0 ,8 (a22  /k -{- b22--b21(aalA-{-b11) -1 b12) < 0 . . . . .  

s ( a .  A + b . - - ~ .  r q3.) < 0. 
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Proof. - The equivalence of (a) and (b) is shown in [N1], A-IV, 
(1.8). Condition (c) clearly is s t ronger  than (b). Since the off- 
diagonal entries of r a re  all positive it follows f rom the  mono- 
tonicity of the spectral bound (see IN1], C-II, Lemma 4.10) that  
s(cA~) ___ s(cA0 for  all k. Therefore  (b) implies (c). The apparent ly  
more complicated condition (c) now allows to reduce the  problem 
to the factor  space E. In fact  it follows via the Schur complement 

character izat ion f rom Section 3 tha t  s(cAt~)< 0 if and only if 

s(cAt~_l) < 0 and s ( A ~ - -  e k ~ [ ~ _ l  r < 0. See IN4] and [C-N] 
for  more  details. Hence (d) and (c) a re  equivalent. Condition (e) is 
only a more concrete version of (d). �9 

REMARKS.- 1. For complex matrices r (a~j).• (d) 
is equivalent to 

(d') ( - -  1) k+l det ~A~k < 0 for k ~ 1, ..., n .  

This means tha t  --oAF is a so called r M-matrix �9 (see [L-T], 
Sect. 15.2). 

2. If  the coefficients b~ in ~_~ ~--- (a~j A ~- b~i) are  constant and 
therefore  the  entries of ~ commute it follows f rom the spectral 
mapping theorem for  the resolvent (see IN1],  A-III,  Prop. 2.5) tha t  
(d) is equivalent to 

(d") The scalar mat r ix  A : ~  ( a ~ s ( A )  ~ b~j) 
satisfies the condition (d') .  

This again is equivalent to 

(d'") The eigenvalues of A have negative real part.  

In this case we are  thus able to character ize stability for  ($2) 
in t e rms  of purely f ini te  dimensional conditions. 

8. - C O N V E R G E N C E  TO E Q U I L I B R I U M .  

In  this f inal  section we face the situation when the dominant  
eigenvalue ~o of cA[ is zero. In tha t  case the corresponding eigen- 
functions are  invar iant  under  the  semigroup (e~#4)t~0. The most  
interest ing case occurs when this eigenspace is one-dimensional and 
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spanned by a str ict ly positive element in ~ .  This always holds if 
the semigroup (etr is irreducible on e (see IN1],  C-III, Prop.  3.5). 
I t  is therefore  quite useful tha t  in our  case we  are  able to charac- 
terize irreducibil i ty in terms of an associated scalar matrix.  

PROPOSITION. - Let  ~ ~--- (a~ A ~ b~j) sat is fy  the posi t ivi ty  as- 
sumptions f r o m  Section 5 w i th  a~ ~> O. Then the following assertions 
are equivalent. 

(a) The semigroup (et~)t~o is irreducible in e .  

l i f  b,j V= O 
(b) The matr ix  D : ~  (5~j) w i th  ~r :~- ~ 0 i f  b~j ~ 0 is irreducible 

in ?~ (see [L-T], Sect. 15.1 or [Sch], Chap. I). 

Proof  (*). - I t  is well known that  A, hence auA + b~ (see [N1],  
B-III,  Ex. 3-10 and C-III, Prop. 3.3) genera te  irreducible semigroups 
on E. Therefore  the only closed invar iant  ideals in C for  the ope- 
ra tor  mat r ix  diag(auA ~ b~) are  of the  form J : ~ J l  X ... X J ,  
where  J r :  { 0 } or J~ ~ E for  i ~ 1 .... , n. Since o~ is a positive per- 
turba t ion  of diag(auA + b~0 it suffices to consider ideals of the 
above fo rm and we can assume J1 J k ~ { 0 }  and J k + i - -  - -  

J~ ~ E for  some k. Such an ideal is r if and only if 
b~j ~ 0 for  1 _< i _< k ~ ] _< n, i.e., if and only if the scalar mat r ix  
D is reducible. �9 

I f  (et,~)t~o is irreducible if  follows f rom the classical Krein- 
Rutman theorem (see [N1],  C-III, Prop. 3.5) tha t  the dominant  
eigenvalue 20 ~ 0 is a simple pole of the resolvent. I t  is therefore  
possible to decompose C into the f ixed space of (et,~)t~o, which is 
one-dimensional, and a (et,~)-invariant subspace on which the re- 
str icted semigroup has spectral  bound (and by IN1],  A-IV growth  
bound) str ict ly smaller than zero. We therefore  conclude that  
(e t'~) t~0 converges (in opera tor  norm and exponentially) to a str ict ly 
positive project ion onto its one-dimensional fixed space. The case 
~oV=0 can be reduced via rescaling ( [N1] ,  A-l, 3.1) to the above 
situation. The information obtained so f a r  will now be collected in 
one f inal  theorem and stated in terms of the solutions of the original 
reaction- diffusion system ($1). 

(*) Due to W. Arendt .  
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THEOEEM. - Assume that the coefficients in ( S 1 )  sat is fy  au >_ O, 
b,  real-valued for  i ~ 1, ..., n and a~j ~---O, b~j >_ 0 for  i r ] and that  

1 i f  b~jv~O 
D : ~  (8,j)~.<,, w i th  ~ :~- I 0 i f  b~j---- 0 

is an irreducible matrix .  Then there exist a unique real number  20 
and strictly positive functions 

r :---- ( v l ,  ..., v , )  e (L'(O))-, ~ : ~  ( ~ ,  ..., ~ , )  ~ (L'(O))- 

such that  for  every initial function f : ~  ( f l ,  ..., f ,)  E (L~(O))" the 
solution u(t,  x). :----- (ul(x, t), ..., u ,(x,  t)) of (St) satisfies 

j=0 ~ 

for  i----- I, ..., n and un i formly  on the unit  ball of (L2(~)) ~. In parti- 
cular, i f  20 ~---0 then all solutions of  ($1) converge to a unique, equi- 
distributed equilibrium. 

SUNTO. - -  In questo lavoro si mostra come la teoria delle matrici con ope- 
ratori n o n  limitati ~ utile pe r  lo studio dei sistemi lineari di reazione-diffusione. 
Si ottengono risultati  sull'esistenza di un autovalore dominante e sul comporta- 
mento asintotico delle soluzioni. 
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