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ABSTRACT. — We show how the recent ¢« matrix theory » for unbounded
operator matrices can be used in order to discuss linear reaction-diffusion
systems. In particular we obtain information on the existence of a dominant
eigenvalue and on the asymptotic behavior of the solutions.

1. - UNBOUNDED OPERATOR MATRICES.

Formally any matrix <d:= (Ay). . Where the entries A, are
linear operators from a Banach space E; into another Banach space
E; yields a linear operator on the product space & :=FE,; X ... X E,
by defining
f1 g1

.

A

I

fa On

where g; :22 Ayf; for (fi, .., fs.) €€. Some of the basic matrix
j=1

operations such as addition and multiplication remain valid, but

others such as the formation of « determinant » or «trace» do not

make sense anymore. In addition, if the entries 4, are allowed to

(*) This paper has been written during a visit at Tulane University,
New Orleans. The author gratefully acknowledges the kind hospitality of
J. A. Goldstein and partial support from a National Science Foundation grant.
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be unbounded operators, as is necessary for most applications, new
difficulties occur. For instance it is not clear and by no means trivial
how to choose an appropriate domain D(.g) for the operator asso-
ciated to the formal mapping above.

Among the many things that may go wrong for unbounded
operator matrices let me mention one additional example.

EXAMPLE. - Let A be a closed unbounded operator with domain
D(A) on a Banach space E. Consider

0 Id)

A=
(Id A

with domain D(c4) :=E X D(A) which again is a closed operator
on E X E. Since the entries of .4 commute, one might expect — as
in arbitrary commutative rings — that ¢ is invertible in &
(i.e. 0¢a(cq)) if and only if det ¢ is invertible in E. Since
det og4=-—Id the second statement holds but ¢ has only a formal
inverse

—A Id)

_1.=
AT (Id 0

which is not a bounded operator.

In a series of papers and in collaboration with P. Charissiadis,
K. J. Engel and A. Holderrieth we have tried to develop a systematic
theory for unbounded operator matrices (see the references). In this
note it is shown how these results can be applied to a concrete
system of linear evolution equations yielding detailed information
on the qualitative behavior of the solutions of this system.

2. - A LINEAR REACTION-DIFFUSION SYSTEM.

Reaction-diffusion systems are important and quite difficult
equations having numerous applications and a rapidly growing
theory. From the huge literature we only mention [Sm] and the
recent article by Amann [A]. Since it is our intention to make
evident the basic ideas from our < matrix theory » we consider a
very simple linear system as it occurs e.g. in [D-L] or [H-M] or
as the linearization of certain nonlinear systems (e.g. in [M]).
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Let £ be a bounded smooth domain in R* and take coefficients
a; € C, byeC(2) for 1 <4,j <n. If A denotes the Laplacian (or
a more general elliptic partial differential operator) then we define
the following system

(81 % u(x, t)==-2 ay Auy(z, t) + E bi(x) ui(z, t)

j=1 e

for 1<i<n,z€Q and t=>0. We assume Dirichlet boundary
conditions

w(zx,t)=0 for xz€3Q
and initial values

w(z, 0)=/f(x) for z€Q.

In order to apply our general theory to this special system we
rewrite it in matrix form.

Consider A with Dirichlet boundary conditions as a closed
operator on E := L2(2) with domain D(A) and identify the func-
tions b, with the corresponding multiplication operators fis by f
on E. On the product space

e:=L*() X .. X [*(2)

we then study the Cauchy problem
(S2) u(t) = 4qu(t), u(0)=(f1, ..., fa),

where od := (Ay) axn= (@GgA + by)nxnand u(t) € €. The domain
D(o4) of -4 is obtained by observing that the b,’s are all bounded
and therefore D(o4) coincides with D(<do) Where oo == (a4A s xn.
Hence o4 with domain

D(cd) :={(f1, - fNEC: X, af;€D(A) for i=1,..,n}

j=1

is a closed, densely defined, linear operator on € (gsee [El]). We
show that the operator theoretical properties of ¢ determine exi-
stence and qualitative behavior of the solutions of (S;) and (Ss).
We start by studying the spectrum of 4.
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3. - SPECTRAL THEORY, I.

If the coefficients by are supposed to be constant then the en-
tries A, commute. Therefore we obtain o(cg) from the spectral
mapping theorem in [E-N], [E1l]. In the non-constant situation it
is much more difficult and new tools are necessary. We start by
looking at the 2 x 2-case.

It was I. Schur who observed that (scalar) 2 X 2-block ma-
All A12
A21 A22
« Schur complement » Az, — Aa; A7’ Aye is invertible provided AR}
exists (see e.g. [L-T], p. 46). This idea can be generalized to our
operator matrix context (see [N3], Sect. 2) and can be applied to
the computation of ¢(4).

trices 4 =( )vare invertible if and only if the so-called

PROPOSITION. -.Let <4 = (Ay):x2 be the above operator matrix
and assume that o(A,,) is known. Then for A¢o(A1) we have A€o(A4)
if and only if 1€0(Age + Azn(A— Ay) 1 Ap).

We have thus reduced the problem of determining the spectrum
of the operator ¢ in the product space € to a problem for the
« characteristic operator function » in the factor space E.. In the
following corollary we give an explicit matrix representation for
the resolvent R(1,o4) := (A —c4) ! in the remaining resolvent set
(@) \o(411).

COROLLARY. - For 1€ ¢ (c4)\o(A11) one has

R(4, Au)Id + A R(}) Ay R(3, An)) R(4, Ay) AR (l)>

R, od) =( R() Ax R(L, A E®

where R(1) :=R(A, A2z + A21 R(}, A1) A1)

This representation for R(4,.4) allows to extend the above ar-
guments to bigger matrices. Consider the 3 X 3 matrix ¢ = (4y)sxs
as a 2 X 2 block matrix whose upper left entry is ods == (Ay)axa.
Then 4 € o(g)\(6(=d2)Uo(A1)) if and only if 1 is in the spectrum

A
of the corresponding Schur complement Az (A3 Ass) R(z,odg)( Aza >
13



OPERATOR MATRICES AND REACTION-DIFFUSION SYSTEMS 189

Here it is essential that we allowed product spaces made up by dif-
ferent factor spaces (E? and F in our case) and that we had an
explicit representation for R(4, ~4s).

One might proceed in this way, but clearly the formulas will
quickly become very messy.

4. - WELL-POSEDNESS.

The existence of solutions to our system (S2) is guaranteed if
(and in a certain sense only if) ¢ generates a strongly continuous
semigroup on €. For this the bounded entries b;; do not matter and
we can assume o4 = (a;; A). Such operator matrices have been stu-
died in great detail and generality in [N2], [E2] and [E-N2].

We recall from [G] that the Laplace operator A generates on
E = I2(2) an analytic semigroup of angle % Therefore it follows

from [N2], Thm. 2.8 that the generator property of ¢ is characte-
rized by the location of the eigenvalues of the coefficient matrix
(a@4)axn alone. Using in addition that A has compact resolvent on ¥
we obtain the following resulf.

PROPOSITION. - The following assertions are equivalent.

(a) The operator matriz <4 = (@y A + by)awn generates a strongly
continuous semigroup on &.

(b) All eigenvalues i of (ai)nxn satisfy Rel > 0 and A=20 is a pole
of the resolvent of order at most one.

In that case the semigroup (e't),~, is analytic and <4 has compact
resolvent.

5. - POSITIVITY.

Once we know that solutions to our Cauchy problem (S.) exist
(i.e., if o4 generates a semigroup (et#A),-,on ) then it is of great
importance for theory and applications to know when all solu-
tions corresponding to positive initial values remain positive for
all ¢ > 0. This property is expressed by the fact that the semigroup
(e*#?) ;o consists of positive operators on the Banach lattice €.
See [N1].
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PROPOSITION. - For the semigroup (e'#A),~, generated by
A= (A nxn = (a5 A + by)axn on € the following assertions are
equivalent.

(a) 0 < etAfor all t = 0.
(b) 0 < etiifor all t > 0 and 0 < Ay for i+ j.

(¢) 0 < ay and by real valued for i=1, ..., n and-ay;=.0,.b;; = 0 for
5= 4.

Proof. - The equivalence of (a) and (b) has been shown in [N2]
and [N-C] under more general assumptions. For the remaining
equivalence we observe first that A;=—ay A 4 by generates a posi-
tive semigroup on E if and only if a; > 0 and b, is real valied
(see [N1]: the generator of a positive semigroup is « real »). Since
the differential operator A never maps all positive functions in
its domain into the cone of positive functions we conclude that
0 < Ay if and only if a;=0 and b;; > 0. Hence (b) and (c) are
equivalent. [ |

REMARK. - Reaction-diffusion systems satisfying condition (c)
are called cooperative systems. We have shown that these conditions
are necessary and sufficient for positivity.

6. - SPECTRAL THEORY, II.

From now on we assume that the conditions from Section 5
implying positivity are satisfied. Then it is known (see [N1]) that
<4 and *he corresponding semigroup (ef#),-,possess a quite rich
spectral theory. These geometric properties of o(og¢) will turn out
to be mcre useful than the attempt in Section 3 to compute oicqg)
precisely. We now gather some qualitative information on o(-¢) which
follows from general operator and semigroup theory.

LEMMA 1. - The resolvent of od== (ay A + byluxn i8 compact.
Therefore o(4) 18 a discrete set of eigenvalues.

Proof. - The resolvent R(i, A) and hence the resolvent of
diag(ay A) is compact. But this property is preserved under bounded
perturbations. a



OPERATOR MATRICES AND REACTION-DIFFUSION SYSTEMS 191

LEMMA 2. - The semigroup (eh),-, is analytic, hence the
spectrum o(og) is bounded on imaginary strips of the form
{1€ C: a < Rei < 8}.

Proof. - That (e*#4)is analytic has been observed above. There-
fore the spectrum of 4 is contained in some proper sector (see [G])
and obviously bounded on imaginary lines. (]

For the following lemma and later use we introduce the spectral
bound

8(cq) :=sup{Rel : 1 €o(4)}
of 4.

LEMMA 3. - The semigroup (e*#) is positive, hence its boun-
dary spectrum o, (c4) :=o0(cd)N{s(c4) + IR} is «cyclic», i.e. if
$(cd) + tpu€o(cq) then s(4) + itku€o(4) for all KEZ.

Proof. - This Perron-Frobenius type result is due to G. Greiner
and can be found in [N1], C-III, Cor. 2.12. [ ]

Combining all these lemmas we obtain the existence of a domi-
nant (or: leading) eigenvalue of 4.

PROPOSITION. - If g == (@ A + by)nxn Satisfies the positivity
assumptions from Section 5 then there exists a real eigenvalue 2o
of <4 such.that

Rel < Ao

for all other eigenvalues A€ a(4).

Proof. - From Lemma 3 it follows that s(c.4) € 6(4) and there-
fore s(_4) is an eigenvalue by Lemma 1. If there is another eigen-
value s(cq) + tu for u=0 then there are infinitely many on the
line s(-4) 4+ iR contradicting Lemma 2. Hence there are only finitely
many eigenvalues in the strip {1€ C:s(cd) —¢ < Rei < s(4)}
and 4o =8(4) is dominant. |

REMARK. - We point out that in this section we did not use the
matrix structure but only certain functional analytic properties of
the operator 4.
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7. - STABILITY.

« Stability » in our situation means that all solutions of (S;)
converge to zero as t goes to infinity. More precisely we want that

lim [Jett|| =0.

By the infinite dimensional analogue of Liapunov's theorem (see
e.g. [N1], A-IV, Remark 1.7) this is equivalent to the fact that
s(cqd) < 0. Since -4 has a dominant eigenvalue i, (see Section 6)
it suffices to determine the sign of 1,. The following proposition
shows how this problem in the product space € can be reduced
to n problems in the factor space E. To that purpose we consider
each principal submatrix

Ar 1= (Ayexs
as a 2 X 2 block matrix
Ay 1 B )

o =(
e Ay,

Alk
on E* = E*1 X E, where B, = : and @ = (Az1, ooy Arg_1)
Ak-—lk

(see also Section 3). Then we obtain the following characterization
of stability.

PROPOSITION. - Let o= (Anxn = (a5 A + bi)uxn sotisfy the
posilivity assumptions from Section 5. Then the following assertions
are equivalent.

(@) lim, _, o ||et#|| = 0.

(b) Ao=15(4) < 0.

(¢) s(cdi) < 0 for k=1, ..., n.

(d) s(A1) < 0 and 8(Ap — @rcbio1Be) < 0 for k=1, ..., n.

(e) s(a A + bu) < 0,8(aze A + bz — b2y (ay: A+bu)1be) <0, ...,
8(% A + bm —eﬁ c»en——ll C.Bn) < 0'
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Proof. - The equivalence of (a) and (b) is shown in [N1], A-IV,
(1.8). Condition (c¢) clearly is stronger than (b). Since the off-
diagonal entries of ¢ are all positive it follows from the mono-
tonicity of the spectral bound (see [N1], C-II, Lemma 4.10) that
8(cdi) < s(c4q) for all k. Therefore (b) implies (c¢). The apparently
more complicated condition (c) now allows to reduce the problem
to the factor space E. In fact it follows via the Schur complement
characterization from Section 3 that s(o8) < 0 if and only if
$(clx-1) < 0 and $(Aw— @rclis1 Br) < 0. See [N4] and [C-N]
for more details. Hence (d) and (c¢) are equivalent. Condition (e) is
only a more concrete version of (d). [ ]

REMARKS. - 1. For complex matrices od== (ay).xn condition (d)
is equivalent to

(d) (—1)+1det i< 0 for k=1,..,n.

This means that — -4 is a so called « M-matriz » (see [L-T],
Sect. 15.2).

2. If the coefficients by in o¢= (a; A + by) are constant and
therefore the entries of ¢ commute it follows from the spectral
mapping theorem for the resolvent (see [N1], A-III, Prop. 2.5) that
(d) is equivalent to

(d”) The scalar matrix A := (ay 8(A) + by)
satisfies the condition (d’).

This again is equivalent to
(d”) The eigenvalues of A have negative real part.

In this case we are thus able to characterize stability for (S,)
in terms of purely finite dimensional conditions.

8. - CONVERGENCE TO EQUILIBRIUM.

In this final section we face the situation when the dominant
eigenvalue 2, of o4 is zero. In that case the corresponding eigen-
functions are invariant under the semigroup (e#4),-,. The most
interesting case occurs when this eigenspace is one-dimensional and
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spanned by a strictly positive element in ©. This always holds if
the semigroup (e'#?),-., is irreducible on & (see [N1], C-III, Prop. 3.5).
It is therefore quite useful that in our case we are able to charac-
terize irreducibility in terms of an associated scalar matrix.

PROPOSITION. - Let g = (ay; A + by) satisfy the positivity as-
sumptions from Section 5 with ag > 0. Then the following assertions
are equivalent.

(@) The semigroup (e'#t);~, is irreducible in 2.

\ 12 by =0
' 0 if b¢j=0
in R (see [L-T], Sect. 15.1 or [Sch], Chap. I).

(b) The matrix D := () with 8y :== is irreducible

Proof (*). - It is well known that A, hence axA + by (see [N1],
B-111, Ex. 3-10 and C-III, Prop. 3.3) generate irreducible semigroups
on E. Therefore the only closed invariant ideals in & for the ope-
rator matrix diag(agA -+ by) are of the form J :=J; X ... X J,
where J,— {0} or J;=F for i==1, ..., n. Since -4 is a positive per-
turbation of diag(aesA + by) it suffices to consider ideals of the
above form and we can assume J,—..—=J, = {0} and J;, ;=...=
=J,==FE for some k. Such an ideal is .g-invariant if and only if
bj=0forl<i<k<j=<n,ie, if and only if the scalar matrix
D is reducible. [ ]

If (e'#),~ is irreducible if follows from the classical Krein-
Rutman theorem (see [N1], C-III, Prop. 3.5) that the dominant
eigenvalue A,=0 is a simple pole of the resolvent. It is therefore
possible to decompose € into the fixed space of (etA),.,, which is
one-dimensional, and a (e*A)-invariant subspace on which the re-
stricted semigroup has spectral bound (and by [N1], A-IV growth
bound) strictly smaller than zero. We therefore conclude that
(e*#) o converges (in operator norm and exponentially) to a strictly
positive projection onto its one-dimensional fixed space. The case
A7 0 can be reduced via rescaling ([N1], A-I, 3.1) to the above
situation. The information obtained so far will now be collected in
one final theorem and stated in terms of the solutions of the original
reaction- diffusion system (S,).

(*) Due to W. Arendt.
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THEOREM. - Assume that the coefficients in (S,) satisfy ay = 0,
bu real-valued for i=1,..,n and a,;=0, b; > 0 for i %7 and that

‘ | 1 if b;=0
D := (3}« with Oy 1= ? 0 if b;=0
==

18 an irreducible mairixz. Then there exist a unique real number i,
and strictly positive functions

@ = (D1, ..., Pu) € (LX), ¥ 1= (¥4, ..., V) € (LH(Q))

such that for every initial function f := (fi, ..., fa) € (L2(Q2))* the
solution u(t, x). 1= (w1 (2, t), ..., U (z, t)) of (S.) satisfies

-1l —lim e ™, = (3 [ fi@ wio) dz ) o,

j=0

for i=1, ..., n and uniformly on the unit ball of (L*(2)). In parti-
cular, if =0 then all solutions of (S,) converge to a unique, equi-
distributed equilibrium.

SUNTO. ~— In questo lavoro si mostra come la teoria delle matrici con ope-
ratori non limitati & utile per lo studio dei sistemi lineari di reazione-diffusione.
Si ottengono risultati sull’esistenza di un autovalore dominante e sul comporta-
mento asintotico delle soluzioni.
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