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The first-order integer-valued autoregressive(INAR(1)) process 
with Poisson marginal distributions is considered. It is shown that 
the sample autocovariance function of the model is asymptotically 
normally distributed. We derive asymptotic distribution of Yule- 
Walker type estimators of parameters. It turns out that our Yule- 
Walker type estimators are better than the conditional least squares 
estimators proposed by Klimko and Nelson(1978) and A1-Osh and 
Alzaid(1987). Also, we study the relationship between the model 
and M/M/oo queueing system. 

1 I n t r o d u c t i o n  

In the past several years, discrete valued stationary processes have 

been the object of several articles. A great deal of research has been 

devoted to some discrete model building. McKenzie(1986, 1988) 

investigated some properties of negative binomial and geometric and 

Poisson ARMA models. A1-Osh and Alzaid(1987) introduced what 

they have called integer-valued first-order autoregressive(INAR(1)) 
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model and dealt with discrete time stationary processes with Poisson 

marginal distributions. Recently, AI-Osh and Aly(1992) and Aly 

and Bouzar(1994) suggested some advanced integer-valued ARMA 

models. 

The INAR(1) model is of the following form 

X,  = a * X,-1 + W,, n = 0, + l ,  =k2,... (1.1) 

where X ,  is a Poisson random variable with parameter 0 for all n 

and a * X = x E i = l  B i ( a ) ,  where B i ( a )  is a sequence of independent 

identically distributed binary random variables with P ( B ~ ( a )  = 1) = 

1 - P ( B , ( a )  = O) = a which is independent of X and W,. As the 

usual continuos AR(1) model, we assume that X,-1 and W, are 

independent. Then one can easily show that a �9 X,-1 and W, are 

both Poisson random variables with parameters a~ and (1 - a)8, 

respectively and the marginal distribution of model (1.1) can be 

expressed as follows: 

o o  

x ,  (1.2) 
i=O 

Define X,, to be the number of counts at time n in a system. Let 

W,~ be a set of objects and W, be the number of objects in W,. For 

example, W,~ and IV, might be the wating line and the number of 

wating line, respectively, in a queueing system at time n. Then we 



can also define (1.2) in another way: a '  �9 W._, = Ew~ -' y ~ - O  with 

Y~) defined by: 

YJ!~) = { 1, 

O, 

if j t h  element of I,'Y,, is present in the system at 

time n + k with probability a i 

otherwise. 

And 

PLY.(.") 1, Y.(.") 1, Y.(.") = 1] = ~il a~2-il ~;,-ik_l = a;k. 
L ~ , t  1 = 3 , t 2  ----- " " " ' 3 , t k  " " " 

(1.3) 
The a/h can be interpreted as the probability that an element of W,, 

will be element of X,~+ik (this element might be present in the system 

during times preceding n + ik as well). 

The purpose of this paper is to derive the asymptotic behavior 

of sample mean and sample autocovariance functions and to inves- 

tigate the limiting distribution of a certain estimator of parameter 

(a,O) in the model (1.1). As an application, in section 3, we present 

the methods for estimation of parameters in the model (1.1) and 

compare our results for estimators of a and 0 to those of Al-Osh 

and Alzaid(1987) and Klimko and Nelson(1978) by the variances of 

estimators. Also, we study the relationship between the model (1.1) 

and M/M/oo queueing process in equilibrium. 
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2 A s y m p t o t i c  D i s t r i b u t i o n s  o f  S a m p l e  

A u t o c o v a r i a n c e  F u n c t i o n  

The estimators which we shall use for the autocovariance func- 

tion "r(P) and the autocorrelation function p(p) = 7(p)/ 'r(0) from 

observations of X x , . . . ,  X ,  are 

n - - p  

Xt(p) = n -1 ~_,(Xt - Xn)(Xt+p - X , ) ,  p = 0 , 1 , 2 , . . .  
t----1 

with f(,., = n -1 ~t"-.=l Xt  and 

~(v) = ~(v)/~(o), 

respectively. For any integer h, the autocovariance function of an 

INAR(1) process {Xn} defined as (1.1) from Al-Osh and Alzaid(1987) 

is 

7 (+h)  = C o v ( X , ,  X,,~h) = ctlhtO 

and hence the process {An} has the nonnegative autocorrelation 

function p(-4-h) = al hI. 

After some extremely tedious calculation using (1.2) and (1.3), 

we obtain that  for h,p ,q  > 0 and # = E ( X t )  = O, 

E(XtXt+p)  = 0 2 + 0a", (2.1) 

E(XtXt+pXt+p+h) = 03 + 02(a p + ~p+h + ah) + 0ap+h (2.2) 



and 

E ( X ,  - # ) ( X t + , ,  - g ) ( X t + p + h  - #)(Xt+p+h+q - # )  

= E ( W , ) ~ a i + P + h + '  

i = 0  

+ 7(p)7(q)+7(p+h)7(h+q)+"/(p+h+q)7(h).  (2.3) 
1'1 

Define 5(h) = n -1E(Xt-#)(Zt+h-[, l ) .  Then  we have the following 
t = l  

results. 

o o  

Lemma 2.1. If {Xt} is the INAR(1) process and Xt ~ ~_, ai*Wt-i, 
i = 0  

where {Wt} is a Poisson random variable with parameter ( 1 -  a)O, 

then 

(i) lim nVar()(,~) = 01 + ct 
,~--.r 1 - 

and (ii) lim nCov(fQ,;~(h))= 1-,,,, ..oo Oa h + h , 

Proof.  To show (i), by (2.1) 

if h = O, 

if h >  1. 

E(X~) ( ~  = E 1 ~ Xt X, = 
- '2 t = l  s= l  

r t - - 1  

p= l  

n - 1  

1 [n'O'+ nO + 2  ~ . ( n - p ) O .  p] 
n 2 

p = l  

Thus ( ) Va,'(Yc.) = ! o + (n - p)o,~p 
7"/, "" p = l  

291 
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This shows (i) by letting n ~ ~ after multiplying n to the both 

sides of the above equation. Observe for (ii) that 

E Xt (X,-O)(Xo+h -0 )  

= n" - l " l  l p~=o I -P)E(Xt(Xt+p-O)(Xt+p+h-O)) 

I h-1/I 

7tp h \ 
(2.4) 

By (2.1)and (2.2), the equation (2.4)is 1 "-p._~01 (1 n p-) _ _ (Oa p+h + n _ 
O,,/(h))-{- l h-1 P)  1 ' ~ - ; ( - ~ )  

-p_~l( 1 - n  _ (O•h+OT(h))+ n = 1 -  (OoF+Ov(h)). 

Hence ,~-,~lim nCov(X,~,~l(h))=Oah(11 - + a + h )  ' c ~  ifh>_ 1. 

Lemma 2.2. Let {Xt} be the same form as in Lemma2.1. Then, 

for p > q, 

lirn nCov( ~,(p), ~,(q) ) 

1 _ a ~ P  20[(1 - a2){p(1 + Oa -p + Oct,) 

-q(1 + Oct-, - Oct') - Octq} 

= +(1 + ~)~ + 2 o ~  + o~-~(1 + ~)], 
cd' [(1 - c~2)(p + 20p - O) 

1 --Z--~O +(1 + a) 2 + 30 + Oa2], 

if q_> 1, 

if q =  0. 



Praot ' .  By (2.1 ], (2.2) and (2.3), one can show tha t  

l = l  t = l  

1 cP----q-* 

+~(())(P - ( - q) + 7(P - ()7(( + q)) 
p--I 

+~ (~ - ()(o~+, + ~(( + q)~(p - () + 7(()~(( - p + q)) 
(=p--q 

+ ~(~ - ~)(o~+, + ~(~)~((- p + q) + ~(~ + q)~(~ _p)) 
(=p 

q--1 

+ ~-~.(n - ()(Oa (+" + 7(()7(( - q + P) + 7(~ + P)7(q - ()) 
~=1 

n--I 

+~(~ - ()(o~+, + ~(()~(( - q + p) + ~(( + p)~(,~ - q))}. 
(=q 

(2.5) 
Subtracting 3'(P)~'(q) from the bo~h sides of (2.5) and letting t h e m  

n -~ ~ after mult iplying n since 7(h) = e~O ̂ , we have the  results. ' 
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Let 

be the (h + 1) x (h + 1) dimensional matr ix  with 

and 

Vn = lira nVar(f(.), 

v~ = (~i~c~ 

v~2 - l im ~ C o v ( ~ ( p ) , ~ ( q ) ) ,  

Then we have the following theorems. 

p = 1 , . . . , h ,  

p,q = 1 , . . . , h .  
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T h e o r e m  2.3. 

to Poisson(0), then 

v~ 

Proof. 

If {X,} is an INAR(1) model and X, is according 

~(o) 

~(i) 

,~(h), 

d , N  

r 0 

~ ( 0 )  

7(1) 

,~(h) 

v) 
We first define a sequence of (h + 2) random vectors {Zt} 

by 

z; = (x;, x ;x; ,  x zxh , , . . . ,  x;x,'+~), 

where X;  = ~ a ~ * Wt-i. Since Zt is a strictly stationary (m + h) 
i=0 

dependent sequence, one can show by m-dependent C.L.T. and the 

Cramer-Wold device that  

I 2~ ' 

~ (0)  

v~ ~(~) 
d 

~ 

, N  

~ . ( h ) ,  

(8., 
.~(o) ] 
7m(1) , Vm , 

~7~(h)j  

(2.7) 

w h e r e ) ( ~ =  1 ,~ _ - �9 �9 ; E ,=I  x;, ~ ( p )  = .1 E , = ~ ( x ,  - o ~ ) ( x , + ~  - on) ,  o~  = 

0(1 - am+') ,  7-~(P) and V,~ such that  7,~(V) --* 7(P) and V= --* V as 

m -+ oo. Note that  

w~( vr~( 2~ - 2~) ) 

j=l i=m+l 

_ 2 ~ (~- ---  -~--" - ~) '~ - - 
2 



2a(1 - a" - l )~  < Oa "*+1 (1 + -1-~- ~ ] .  

Thus we have, for e > O, 

Moreover, from the similar calculation in Lemma 2.2 and the pre- 

ceding arguments, it can be shown that 

l i m  lim sup P[v/-nt~,m(p)- ~ ( p ) -  7re(P)+ ~'(P)I > e] = 0. (2.9) 

Hence, (2.7)-(2.9) establish the claim by an application of Proposi- 

tion 6.3.9 in Brockwell and Davis(1987) since 0n ---* 0 and l/'~ --* V 

&S m - - - * ( ~ ,  

Next we show that, under the conditions of Theorem 2.3, "~(p) 

and :r(P) have the same asymptotic distribution. 
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Theorem 2.4. When Xt is according to the model (1.1), then 

4-~ 

~(o) 

~(i) 

~(h),  

d, N 

;(o) ) 
;(1) , v , 

~-r(h) J 

n - h  

where ~t(h) = n-Xy]~ ( X , -  f(,~)(X,+h -- fQ),  '7(h) = E ( X , - O ) ( X t + h -  
t = l  

O) and V is defined by (2.6). 
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Proof. From Proposition 7.3.4 in Brockwell and Davis(1987), 

simple algebra gives, for 0 _< p ~ h, 

= V ~ ( ) ( . - 8 )  E X ' + - E X ' + p -  1 -  
t = l  7l t = l  

I 1 ~_, (Xt - 8)(X,+p - 8). (2.10) • (&+e) 

The last term in (2.10)is %(1), since n-1/2E ~_, ( X , - 8 ) ( X , + p -  
L=n--p+ l 

O) <_ n-l12pT(O ) and n-1/2p~(0)---*0 as 71-+oo. And the first term 

in (2.10)is also %(1), since v/-~()(,,- 0) = Op(1) and )~ & 0 by 

Theorem 2.3. This completes the proof. 

3 A p p l i c a t i o n s  

3.1 E s t i m a t i o n  o f  P a r a m e t e r s  

In what follows we investigate two methods for estimating the 

parameters in the INAR(1) model. The methods for estimating the 

parameters which we mention here are the Yule-Walker type esti- 

mation and the conditional least squares estimation . We present 

the Yule-Walker type estimators of parameters by using the results 

of section 2. The conditional least squares estimation is first con- 

sidered by Klimko and Nelson(1978) and applied by Al-Osh and 

Ahaid(1987). 



3.1.1 T h e  Y u l e - W a l k e r  T y p e  E s t i m a t o r s  
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From section 2, we can easily obtained various Yule-Walker type 

estimators for parameters in INAR(1) model (1.1). One of several 

estimators is 

n-1 
= ~(1) = E , = ,  ( X ,  - X , . , ) ( X , + ,  - X,~)  

ET_-,(X, - X~)2 

and ~ = s  

T h e o r e m  3.1 Under the same assumptions given in Theorem 2.4, 

we have 

= 6 l + c r  ~(1) W = (w,j), i , j  1 , 2 ,  w l l  = w , 2  = where  ~(I)  - -?(0)' 1 - 4 '  

~(1 - . )  
W2t = 0 a n d  W22 -- 0 dr (1 -- Or2). A n d  hence  0 and  & are  

asymptotically independent. 

P roof .  

O, p(1) = -y(o)~(1) = c~ and 

The proof is straightforward by Theorem 2.4, since 7(0) = 

W = D V D '  = 

l + a  0 

0 0 + (1 - ~2 

where V is defined by (2.6) and 

D = O  -1 
(00:) 

0 --oc 
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3.1.2 The  Condit ional  Least Squares Est imators 

A1-Osh and Alzaid(1987) applied to the conditional least squares 

method for estimation of parameters in the INAR(1) model which 

was developed by Klimko and Nelson(1978). It is based on min- 

imization of the sum of squared deviations about the conditional 

expectation 

E ( X , / X , _ , )  = c~X,_x + (1 - a)O. 

They estimate (~ and 0 by trying to minimize the conditional sum of 

squares 

c,,(,~,o) = E [ ( x , -  E(X,/X,_,)] ~ 
~=1 

with respect to ~ and 0. The estimators are 
n X - 1  n n 

E,~I X,-x 2 - n-'(E,"_, X,_,) 2 ' 

11 n 

t = l  t = l  

and by Theorem (3.2) of Klimko and Nelson(1978), (&, 0) are asymp- 

totically normally distributed as 

where the limiting covariance matrix V - 1 W V  -a is 

( + / 1 -  -  0/1 + 

- ~ -  20(1+ ~) i_-- go(4o + 1)(~ + 1 ) 1  
Note that as we expect, the marginal limiting distribution of the 

conditional least squares estimator dc is the same as that of our 

estimator ~ but our estimator 0 is better than/~c from the comparison 

of the variances. 



3 . 2  
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Relationship between INAR(1) and M/M/oo 
Queueing System 

The time series processes have already been used for modelling in 

queuing problems. Steudel and Wu(1977) show that the queue be- 

havior of a uniformly sampled queueing system with a single server 

and Poisson-exponential activities(M/M/1) is adequately described 

by an AR(1) model. McKenzie(1988) investigated that the Pois- 

son AR(1) is in fact the M/M/oo queueing observed at regularly 

spaced intervals of time. This was noted also by Steutel et e1.(1983). 

McKenzie(1988) also shows that the Poisson MA(q) is the M/D/oo 
queueing system. 

In this section, we will investigate the relationship between the 

INAR(1) model and M/M/oo queueing process in equilibrium. 

Let Q, be the queue length at time n in a M/M/oo queueing 

system with arrival rate gl and service rate/z2 and p = ~tl/g2. Then, 

Q. = Q._, + A . -  ~,~, n = 1,2,. . .  (3.1) 

where Q,,-1, A,, and #,  represent the number Of customers not com- 

pleting their service at time n - 1, the number of new customers 

arriving at a system during the time interval (n - 1, n] and the num- 

ber of all customers completing their service during the time interval 

(n - 1, n], respectively. Since # ,  depends on Q,-1 + A,, we may de- 

composite #,, as g,O_ 1 + #~, where g ,o l , g  ~ depends on only Q,-1 
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and A,,, respectively. That is, equation (3.1) can be represented by 

the following form 

Q. = Q.-I - / ~ - i  + A. - / ~ .  (3.2) 

We may define Z = Q,~-I - / t~ -1  and Y = k,  -/~,~. Obviously, 

from the structure of (3.2), Z _> 0 and Y >_ 0 a.s. and by Poisson 

thinning process, Z and Y are independent. Then we can show 

that the distribution of Z is as follows. Let T~ be the remaining 

service time for customer i during the time interval (n - 1,n]. By 

the memoryless property of the exponential distribution, Ti has an 

exponential distribution with parameter/t2. Hence one can show that 

by independence of T~ for i = 1 ,2 , . . . ,  Q , - I ,  

P ( Z = k )  = 
m=k 

~ m!  

m=k F'~! 
k - - e - t ' 2  ) e " 

= k! , k = 0 , 1 , 2 ,  . . . .  

where P ( Q , - 1  = m )  = e-,,p" ,~ is the equilibrium distribution of 

M / M / o o  queueing system. This implies that Z and Y are indepen- 

dent Poisson random variables with parameters pe -~'2 and p(1 - e -~'2), 

respectively. Thus the previous arguments imply that the queue 

length process in M / M / o o  system can be represented as INAR(1) 

model (1.1) when a = e - ~  and 0 = p. 

We now investigate asymptotic behavior of estimators in M / M / o o  

queueing process with Q,~ 1 ,, = ~ E~=I Q~. 
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Theorem 3.2 Let Q, be the queue length at time n of M/M/oo  

in equilibrium with arrival rate pl and service rate p2. Then an 

estimator of ( ~ ,  ~2) is (ill = (~,&, fi2 = -log&) and 

where & = ~"--11 ( Q i -  (~,)(Qi+l - -  Q,~) 
~"~iL1 (Qi -- 0 . )  2 

1 + a +  2) + O(1 - a ) ( a  + 
= (o'ij), i , j  = 1,2, fill ----" 81oga( 1 - a  a2 

~ _  I--o~ 
8(1 + a)), 0"12 = 0"21 ---- log a -{- (a -{- 8(1 + or)), a22 -- ~ (or -{- 

e(1 + 

Proof.  Since E(Q,) = p = ~1/~2 and Cov(Q,,Q,_l)  = a = 

e -"2, a moment estimator of (~1,#2) is (fil,fi2) and the asymptotic 

normality of (ill, fi2) is immediate by Theorem 3.1. 

Remark :  From Theorem 3.2, one can easily find the estimator of 

(~1, ~2) and its asymptotic distribution by only observing equal-time 

spaced queue lengths in M/M/oo  system. 
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