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ABSTRACT.  We discuss non-negative solutions of a Lotka-Volterra 
competing species system which includes the effect of diffusion. We 
discuss when the populations coexist, and secondly the behaviour of 
the system when the interaction between the systems are large. The 
limiting problems here raise interesting questions for scalar equations. 

In this paper,  we discuss the system 

- A u  = u(a - u -  cv) 

- A v  = v ( d  - v - e u )  

U - ~ v = O  

in a (1) 

on Of~. 

We are interested in non-negative solutions. Here ~t is a bounded do- 

main in R ~ with smooth boundary  and a, c ,d ,e  > 0. In fact, we will 

mainly be interested in the case where c, e are large. The system arises 

for the t ime independent  solutions of the parabolic system 

Ou 
0-7 - A u  = u ( a  - ~ - e v )  

Ov 
s - ~ - A v = v ( d - v - e u )  i n g t •  (2) 

u =  v = 0 on 0 n  • [ 0 , ~ ) .  

Here s > 0. This system is a simple two species Lotka-Volterra pop- 

ulation model where we incorporate the effect of the diffusion of the 

species in the domain: u(x) represents the populat ion of the species u 

at the position x while v(x) represents the population of the species v 

at x. We will usually take Dirichlet boundary  conditions though much 
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of the theory also applies to Neumann boundary  conditions. We will 

comment  explicitly in a few cases where there are noticeable differ- 

ences. Note that  since u and v represent populations it is natura l  to 

assume they are non negative. It turns out that  this simple system has 

surprisingly rich behaviour. Note that  c and e being large corresponds 

to the two species each interacting strongly with the other species. 

We say that  a non-negative solution of (1) is stable if it is stable 

as a solution of the parabolic system (2). Technically, we should spec- 

ify the space the equation is defined on. For example, we could use 

LP(Ft) | LP(fl) for suitably large but finite p. Instability and asymp- 

totic stability are defined analogously. 

We will always assume that  a, d > )~1, where )~1 denotes the smallest 

eigenvalue of - A  on Ft for Dirichlet boundary  conditions. The reason 

for this assumption is that  otherwise (1) and (2) are ra ther  uninterest- 

ing. For example, if a _< ~1, it is easy to show that  any non-negative 

solution of (1) satisfies u = 0 while any solution of (2) with non-negative 

initial values satisfies u(t) --+ 0 as t --~ ~c. For both (1) and (2) it is 

then quite easy to obtain a ra ther  complete understanding of v as well. 

If we look for solutions of (1) with v = 0, it is easy to see that  

- A u = u ( a - u )  inFt  
(3) 

u = 0 on OFt. 

It is well known and easy to prove that  there is a unique non-trivial 

non-negative solution of (3) denoted by g. (This uses a > )h.) Thus 

the non-negative solutions with second component zero are (0,0) and 

(~, 0). By a similar argument  if we look for non-negative solutions 

with first component zero, we obtain exactly two (0, 0) and (0, ~). The 

solutions (0, 0), (fi,0) and (0, ~) are usually called semitrivial solutions. 

It is easy to use the maximum principle to show that  any other non- 

negative solution (u,v) of (1) has the property that  u(x) > 0 and 

v(x) > 0 on all of Ft. We call these positive solutions. They correspond 

to populations where both species coexist. In general, it seems difficult 

to say when a positive solution exists, when it is unique and what  the 

dynamical  behaviour of (2) is, though a great deal is known. See [4] 

and [5] and [22] where many further references can be found. 
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For the  remainder  of this paper ,  we consider the  special case when 

c and  e are bo th  large. In this  case it is known t h a t  there  is a posit ive 

solut ion and  the  quest ion is on the number ,  s tabi l i ty  and asympto t i c  

behaviour  of the  posit ive solutions. Note t ha t  one can prove the  exis- 

tence of a positive solut ion by applying degree theory  in the cone K of 

non-negat ive  funct ions  in L P ( f t ) |  The key point  is to note  t ha t ,  

if c and  e are large, (g ,0)  and (0,5) are stable solutions of (2) and this  

can be used to calculate  the indices of (~, 0) and (0, 5) as fixed points  of 

(1) in K .  Here we use the  main  result  in [8] to calculate the  indices of 

(~, 0) and  (0, 5) relat ive to K .  It turns  out  t h a t  degree theory  in cones 

is a very useful tool  for s tudy ing  the  existence of positive solutions of 

(1) (cp [5]). 

If c and  e are large, the first quest ion to ask is what  is the a sympto t i c  

behaviour  of solutions.  For simplicity, we assume t h a t  ce -1 ~ 1 as e --* 

oc t hough  our methods  could handle  cases where c e  - 1  ---+ a E [0, oo] 
as e --~ oc. Then  it turns  out  [9] t h a t  there are three  possibilities for 

posi t ive solutions.  We assume t h a t  (uilv4) are posi t ive solutions of (1) 

for c = ci, e = ei, where e~ --* cc and  c i / e i  ~ 1 as i --* ec. Then ,  af ter  

t ak ing  subsequences,  one of the  following holds: 

(i) eiul  ~ ft and clvi --~ f~ in L ~ ( f t )  as i ~ ec where (~ ,5)  is a 

posit ive solution of 

- A u  = u (a  - v)  

- A v = v ( d - u )  i n f~  (4) 

u =  v = 0 on Oft.  

(ii) ui ~ w0 + and  vi ---* - w  o in LP(f~) for all p < oo as i ---* ~ where 

Wo is non- t r iv ia l  and  changes sign and  wo solves 

A w = a w  + + d w -  - I w l w  in 

w = 0  on Oft ,  
(5) 

(where w = w + + w - ) .  
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(iii) ei[[ui[[oo ~ c~, c~[[vi[[~ ~ oo, [[ui[[oo + [[vi[[oo ~ O, 

(Hu lloo)-l i +, (llv fl )-lvi -Wl  in Lp(a) for all p < 
as i ~ oo where w: is a non-trivial  changing sign solution of 

A w = a w  + + d w -  i n f t  
(6) 

w = 0  on Oft, 

We discuss each of these types of solutions. Firstly, we discuss su- 

lutions of type (i). We firstly note tha t  there is a converse result. If 

(~, ~) is a non-degenerate  ( that  is, the linearization is invertible) posi- 

tive solution of (4), then for all large c and e there is a (locally) unique 

positive solution of (1) with eu near fi and cv near ~. Note tha t  these 

solutions of (1) are small solutions. If (6) has only the trivial solution, 
it can be shown tha t  there is an a priori bound  in L~176 | L ~ ( f t )  for 

the positive solutions of (4) and the sum of their fixed point  indices is 

indexLoo(n)(/): , 0) w h e r e / ) l w  = ( - A ) - l ( a w  + + d w - ) .  Here the fixed 

point  indices for the system are indices relative to the natura l  cone K of 

non-negat ive functions in L ~176 (ft) |  L~176 This is the first of a number  

of ra ther  surprising connections between the compet ing  species system 
with large interact ions and so called jumping  nonlinearities. The  lat- 
ter have been extensively studied for quite different reasons. Fur ther  
references on them can be found in [1], [14], [15], [17] and [23]. How- 
ever, it is unclear if (4) always has a positive solution (for a, d > ,,~1) 
even if we assume tha t  (6) has only the trivial solution. (Note tha t  

indexLoo(a)(/): , 0) may well be zero.) In the case of Neumann  bound-  

ary conditions,  there is a noticeable difference in the theory because 

the na tura l  analogue of (4) always has a simple constant  solution. Note 

also tha t  (4) may sometimes have several positive solutions. Lastly, the 

solution of type (i) of (1) can always be shown to be unstable solutions 

of (2). 
We now discuss solutions of type (iii). There is a problem here (and 

this also affects cases (i) and (ii)). (6 ) i s  not well unders tood  though  

there are many  partial  results. See the references ment ioned above. For 

example,  it has been conjectured tha t  A0 = {(a, d) E R 2 : (6 has a non- 

trivial solution} has empty  interior. (This has been proved for generic 

domains  in [13].) Assuming this, we see tha t  case ( i i i ) is  an unusual  
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case. Note however that  as we vary a or d so that  indexL~o(~)(/}l, 0) 
changes solutions of this type must occur. (This then corresponds to 

a change of solutions from type (i) to type (ii)). It can be shown [11] 
that  solutions of this type are always unstable. 

Lastly, we consider solutions of type (ii). This is the most inter- 

esting case. Firstly, note that  solutions of type (ii) correspond to the 

two species u and v largely segregating to mostly "live" on different 
parts of the domain. This seems to have biological interest. We first 

consider when (5) has changing sign solutions. To do this, we need 

to consider some results on the structure of A0. It was proved in [1] 
(see also [16]) that  there is a continuous strictly decreasing curve T in 

(,~1, oo) X (/~1, (:X:)) such that  (A2, A2) e T , T  contains points with a arbi- 
trarily large, T symmetric for reflection in the line a = d, T C_ A0 and 

A0 does not intersect the component W of ((A1, ~o) • (A1, ~o)) \T con- 

taining (,~1 + 12), ~(,~1 + ,~2)). Geometrically, W is the set of points 

in (~1, ec )x  (I1, ec )"be low" T. Then it can be proved [9] that  (5) has a 

changing sign solution if and only if (a, d) E (hi,  ec) x (,~1, e c ) \ ( W  U T) 
(geometrically, (a, d) is "above" T). This is a variational argument.  
The proof shows that  if (a, d) ~ A0, zero is a solution of mountain pass 

type of (5) if and only if (a ,d)  E W. (Here we mean mountain pass 
in the sense of [19].) The solutions that  we find here are obtained by 
variational arguments and hence it is not clear they will necessarily 
yield solutions of (1). (Note that  (5) has a variational structure but 
(1) does not seem to.) However, if (5) has only finitely many solutions 
and if (a ,d)  is above T, a mountain pass type argument implies that  
(5) has a changing sign solution ~ of fixed point index - 1 .  One can 
then use a degree argument to prove that  if c, e are both large and ce -1  

is close to 1, then there is a positive solution (u, v) of (1) with u close 

to ~5 + and v close to - ~ -  in LP(a) .  It is also (locally) unique if ~ is 

non-degenerate.  These arguments do not use that  ~ is of mountain- 

pass type but only that  it has non-zero degree. Note that ,  by a result 

in [13] (which is an improvement of [25]), for generic a ,  all non triv- 

ial solutions of (5) are non-degenerate. Note also that  one could use 

Morse theory arguments to show that  (5) has at least two non-trivial 
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changing sign solutions in many  cases (as in [10]). Thus  we usually 

obtain mult iple solutions of (1) in this way. Finally note tha t  if a = d 

is large a result of Clark [3] implies that  (5) has many changing sign 

solutions and thus,  usually in his case, (1) has many  positive solutions 

(for c, e large, c / e  close to 1). 

A more interesting and difficult question is when (5) has a stable 

changing sign solution (stable for the natura l  corresponding parabolic 

equat ion) .  This is of interest because, if w is a non-degenerate  solution 

of (5), then  the corresponding solution of (1) of type (ii) (for c, e large 

and c / e  near 1) are stable (as solutions of (2) ) i f  and only if w is stable. 

This  is proved in [11]. Note tha t  this is the only way in which we 

obtain stable positive solutions of (1) for c, e large (and c / e  close to 1). 

Thus  it is of considerable interest to decide when (5) has a stable sign 

changing solution. This seems a difficult problem. Here, for once, it is 

interest ing to s tudy the case where c and e are large and c / e  is close to 

E [0, co]. In this case there is a completely analogous theory where 

the l imiting equat ion (5) is replaced by 

- A u  = a u + d u  - - a ( u + )  2 + ( u - )  2 in (7) 

with Dirichlet boundary  conditions. (The equat ion needs to be changed 
slightly if c~ = c~). If c~ is large or small (including c~ = 0) it is proved 

in [12] tha t  (7) has no stable sign changing solution and hence by [11] 

it follows tha t  (1) has no stable positive solution for c, e large with c / e  

close to ~. It can also be proved tha t  (7) never has a sign changing 

solution if 9t is a ball or an annulus (and thus never if n = 1). There  

are a number  of other results on the non-existence of sign changing 

stable solutions of (5) in [12]. Unfortunately,  they show tha t  some 

of the s tandard  techniques for obtaining sign changing solutions f rom 

positive solutions usually yield unstable solutions. 

On the other hand,  there are three known methods  for sometimes 

const ruct ing sign changing stable positive solutions; by domain varia- 

t ion a rguments  (as in [7]), by minimizat ion and by singular per turba-  

t ion (F convergence) methods .  We discuss briefly the second and thi rd  

of these. 
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Rather surprisingly, it can turn out that  the global minimizer of 

the natural  functional corresponding to (7) (which is necessarily stable) 

may sometimes change sign if the non-linearity is not odd. Of course, 

if this occurs, we have stable changing sign solutions. That  this can 

occur was first observed by Sweers [26] for a closely related problem by 

choosing smooth domains approximating a domain with a corner. In 

fact with care, one can show that  this can even occur with ~ strongly 

convex in R 2 with two axes of symmetry.  These examples have (x 

small and d large. Note that  the global minimum must preserve the 

symmetries.  Sweers (personal communication) pointed out an easy 

proof of this, which answers a question in [12]. Note that  the Neumann 

problem behaves somewhat different since it is known [2] and [20] that  

both (1) and (7) (with Neumann boundary conditions) have no stable 

non-constant  positive solutions when gt is convex. 

Another  approach to find stable positive solutions of (7) is to s tudy 

- e A u = a u  + + d u - - a ( u + )  2 + ( u - )  2 i n ~  (8) 

with Dirichlet boundary  conditions. Here e is positive and smM1. Note 

that  this is a special case of (7) (after rescaling). We assume that  

a3a -1  = d3 (which corresponds to certain areas under the integral 

of the nonlinearity being equal). We assume this condition for the 

remainder  of this article. (Indeed, if this fails and if ~ is convex, 

we conjecture that  (8) laas no stable sign changing solution for small 

positive e.) In this case F convergence ideas ([21] and [12])imply that  

there is a natural  limit problem as e ~ 0 of the form 

cl Pe r~{x :  u(x )  = ac~ -1}  + c 2 H n - l { X  C c9~ : u ( x )  = av~ -1 }  

where Pern is the perimeter  in the sense of [18], we are loking at func- 

tions u of bounded variation in fl such that  u(x )  e {-at, ac~ -1} a,e. in 

and H~-I  is n - 1 dimensional Hausdorff measure. Note that  since 

u is of bounded variation, u has a trace on 0~  by [28]. cl and c2 are 

constants determined by integrals of the nonlinearity. Cl > 0, Ic21 < Cl 

and any other Cl and c2 can occur (for a suitable nonlinearity). 
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It can be shown [21] that  any isolated local minimizer of this limit 

problem generates local minimizers of our original problem for small e. 

These solutions have transition layers near the part  of the boundary  of 

{x �9 ~ : u(x) = aa  -1} in the interior of ~. Thus it is of considerable 

interest to s tudy this limit problem. Unfortunately,  it does not seem 

easy. If n _< 7, a result of [27] implies, for a local minimizer, the' bound- 

ary T of {x �9 ~ :  u(x) = ax -1} is smooth in the interior of ~ and thus 

this part  of T has mean curvature zero. Thus, if n = 2, this boundary  

consists of straight lines in the interior of ~. However, even knowing 

this, it does not seem easy to unders tand the local minimizers of the 

limit problem when n = 2. This is, in part,  a geometric problem (when 

we look for local minimizers amongst those u where the transition lay- 

ers are straight lines). The corresponding problem in the Neumann 

case is much easier to analyze because, in this case, e2 = 0. 
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