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In the present paper we are going to extend the likelihood ratio test to the case in which the available 

experimental information involves fuzzy imprecision (more precisely, the observable events associated 

with the random experiment concerning the test may be characterized as fuzzy subsets of the sample 

space, as intended by Zadeh, 1965). In addition, we will approximate the immediate intractable 

extension, which is based on Zadeh's probabilistic definition, by using the minimum inaccuracy principle 

of estimation from fuzzy data, that has been introduced in previous papers as an operative extension of 

the maximum likelihood method. 
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1. INTRODUCTION 

Experiments are going to be considered in which the person responsible for observation 

cannot always crisply perceive their outcomes, but each observable elementary event may 

only be assimilated with a fuzzy subset of the sample space (Zadeh, 1965) or, more precisely, 

with fuzzy information, as intended by Tanaka, Okuda and Asai (1978, 1979), and Zadeh 

(1978), that is defined as follows: 

Let X be a random experiment characterized by a probability space ( X, i3x,P e ), where 

Pe belongs to a specified parametric family of probability measures { Pe ' 9 e (~ } on ( X,I~ X ). 

We hereafter assume that the sample space X is a set in a euclidean space (usually R) and 

~X is the smallest Borel ~-field on X. In addition, the parameter space O is a set in a euclidean 

space so that the unknown parameter 0 is numerical or vector-valued. 

Definition 1.1. A fuzzy event x on X, characterized by a Borel-measurable membership 

function IJ-x from X to the unit interval [0,1], where p.x(X) represents the "grade of 

membership" of x to x ,  is called fuzzy information associated with the experiment X. 



192 

The scheme in Figure 1 explains the mechanism that leads to the obtention of fuzzy 

information according to the notation in Definition 1.1. 
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Fig. 1. Process leading to fuzzy information 
associated with a random experiment 

The grade of membership ~x(X) describing the fuzzy information x is often interpreted 

as a kind ot "probability with which the person responsible for observation perceives x when 

x is the true experimental outcome". On the basis of this interpretation Tanaka et aL (1979) 

define the collection of all available observable elementary events as an orthogonal system 

associated with X, that is 

Definition 1.2. A fuzz 2 information system (f.i.s.) ~ associated with the experiment 

X is a fuzzy partition with fuzzy events on X, that is, a finite set of fuzzy events on X satisfying 

the o r l h o g o n a l l t y  c o n d i t i o n  

7_, p.x(X) =1 for all x E X  
X E X  

It Should be emphasized that X is an ordinary set whose elements are fuzzy subsets. 

For this reason, we could easily construct a o-field on .]C (e.g., parts of X ). 

In order to state a probabilistic model for the random experiments involving fuzzy 

imprecision we can now introduce the probability of a fuzzy event (Zadeh, 1967). 

Definition 1.3. The probability distribution on X induced by P0 is the mapping 

-/:)0 from X to [0,1] given by 

-P0 ( x ) = j x  ~x (x) dPo(X) foragl x ~ X  

Remark 1.1: When we adopt the procedures we are now going to develop, the 

orthogonality condition assumed for the set of all available fuzzy observations from the 

experiment is not a strong constraint (in other words, the orthogonality condition does not 

mean loss of generality, and it will considerably simplify the extension in Section 2). This 

circumstance is confirmed in greater detail later (Remark 3.3). 

Consequently, although the probabilistic framework is not enough by itself to provide us 

with a suitable model, the Theory of Fuzzy Sets complements the Probability Theory and allows 
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On the basis of these arguments and concepts we have previously extended methods 

to solve some statistical problems with imprecise data (1984a, 1984b, 1985a, 1985b, 1986a, 

1986b, 1987a, 1988a, 1988b). In particular, we have developed (1986a) the extension of the 

Neyman-Pearson method of testing simple statistical hypotheses and the Bayes method for 

composite hypotheses (1986b) from fuzzydata. 

In the same way, we are now going to extend the likelihood ratio test concerning 

composite statistical hypotheses, when the available experimental information is fuzzy. 

If a simple random sampling of size n from the experiment X = ( X,13x,P e ), e e O, is 

considered and the ability to observe does not permit one to perceive exactly the experimental 

outcomes, the following notions (1984a, 1984b, 1985a, 1985b, 1986a, 1986b, 1987a, 

1988a, 1988b) supply an operative model to express the available sample observations with 

fuzzy imprecision: 

Let X (n) = ( xn,I]xn,P o ), 0 e O, be a simple random sample of size n from X, and let 

X be a f.i.s, associated with X. 

Definition 1.4. An n-tuple of elements in X ,  ( x 1 ..... x n ), representing the algebraic 

product of x 1 . . . . .  and x n , is called s a m p l e  f u z z y  i n fo rmat ion  o f  s ize  n f r o m  X 

(where ( x ,  x ' )  = algebraic product of x and x ', with I t ( x ,  x ' )  (x,x ') = Itx(X) Itx ,(x') ). 

Definition 1.5. A fuzzy random sample o f  size n f rom X ,  X (n), (associated with 

the random sample X (n)) is the set consisting of all algebraic products of n elements in X 

Remark 1.2: It is worth emphasizing that we could use a more general definition for the 

concepts in Definitions 1.3 and 1.4, so that the membership function of each n-tuple (x I ..... 

X n ) would be  given by the express ion let (Xl ..... Xn )(x 1 ..... Xn) = f ( ItXl (x 1 ) ..... I'tx (Xn),Xl, 
n 

.... x n ), f being a function taking on the values  in the unit interval [0,1] and satisfying 

some natural conditions. But, in practice, when we consider examples involving probabilities 

one of the most operative and suitable functions is the product of the first n components. This 

suitability is conlirmed by the fact that the probabilistic independence of the experimental 

performances implies that (in the Zadeh's sense, 1967) of the fuzzy observations trom them, 

whenever f is the product above. 

2. AN IMMEDIATE EXTENSION OF THE LIKELIHOOD RATIO TEST WITH FUZZY DATA 

Consider the randomexperiment X = ( X, Sx, P e ), 0 e 0,  and a f.i.s. X' associated 

with X. Let ( x l ,  ..., x n ) be a sample fuzzy information from X ,  and let v(x) denote the 

observed absolute frequency of the fuzzy information x in the considered sample fuzzy 

information. Then 

Definition 2,1. The expression 

L 0 - ~ L ( x  z . . . . .  Xn ; O ) =  r I  [ p 0 ( x  ) ]v(x) 
x e X  

is called the Eke l ihood  f u n c t i o n  o f  0 f o r  ( x 1 . . . . .  x n ). 
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I~efinition 2.2. A parameter value 0( x I . . . . .  x n ) ~ 0 satisfying the relation 

L ( X l  . . . . .  x n ; ~ ) ( x  I . . . . .  X n )  ) = max L ( x  1 . . . . .  x n ;O ) 

is called maximum likelihood estimate o f  0 in 0 f o r  the sample fuzzy  information 

(x 1 . . . . .  Xn) .  

As the adopted modelization permits us to regard mathematically a random experiment 

providing fuzzy information as a discrete experiment containing r possible outcomes ( r = 

cardinality of X ) the immediate extended likelihood ratio test is given by 

Theorem 2,1. Let X (n) be a fuzzy random sample of size n from the available f.Ls. X 

on the random experiment X, and assume that the parametric probability measure on X 

determines a parametric distribution function that is regular in all of  its first and second 

O-derivatives ( 0  = (01 ..... O k) being a k-dimensional parameter) .  The test consisting in 

rejecting the nullhypothesis H o : 0 ~ O 0 = { (01 ..... Ok) ~ O I 01= 01 ~ .... 0 s = 0s~ }, (s _< k), 

against the alternative H 1 : O ~ ~9 - O c , when - 2 log A n > c, where A n is the statistic 

based on X (n) such that 

A n ~ I 7  [ ~'0 o ( x ) / P O ( x )  iv(x) 
x ~ X  

(~)o = maximum likelihood estimate of O in 0 0 for the obtained sample fuzzy information, 0 = 

maximum likelihood estimate of 0 in e for the obtained sample fuzzy information, v(x)  = 

observed frequency of x in the obtained sample fuzzy information), and c is the 100o~ % 

point of  the chi-square distribution with s degrees of freedom is a test at a significance level 

close to o~ as the sample size n is large (more precisely, when H o is true, the asymptotic 

distribution of - 2 log A n is ~2 s ). �9 

Nevertheless the preceding theorem supplies a procedure that becomes often 

unmanageable in practice because of the difficulties in determining the maximum likelihood 

estimate of a parameter from a sample fuzzy observation ( x 1 . . . . .  x n ) on the basis of 

Zadeh's probabilistic definition (and, lrequently, because of the difficulties in expressing the 

likelihood tunction of 0 for the sample fuzzy information so that its logarithm is easy to derive 

with respect to 0). However, the following example encloses a situation in which the maximum 

like/ihood estimation from fuzzy data is easy to apply: 

~ :  Certain pieces are manufactured by a two-staged process so that in the first 

stage 5 % of pieces have a specific flaw E and in the second one 5 % o1 pieces have 

another specific flaw F. Assume that the presence of both, E and F, in a piece determines its 

defectiveness, and let 0 denote the unknown fraction defective. 

If the mechanisms of detection of E and F are exact, let X be the random experiment 

in which a piece having E is inspected for detection of F. Then, the (conditional given E) 

probabilities associated with X are 

P0 (1) = 20 0 ,  PO (0) = 1 - 20 0, O ~ O = [0,0.05] 

(where we consider x= l  it the inspected piece has F,and x--0 if the inspected piece has not F). 
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Suppose now that the mechanism for detecting E is exact but that for detecting F is not 

exact. In particular, assume that the inspection of each piece for presence of F only allows us 

to distinguish between the vague observations f = "the piece seems to have F",jT -__ "the 

piece seems not to have F (or to have F)", that we describe by means of the following 

membership functions: 

# f (1)  = 0.75, IJ.f(O) = 0.25, I~f(1) : 0.25, #T(O) : 0.75 

Then, the fuzziness in the available information from X leads to the f . i .s . .~  = { f , ~  } 

whose induced distribution is given by 

P 0 ( [ ) = 1 0 0 + 0 . 2 5 ,  . P O ( j T ) = 0 . 7 5 - 1 0 0  , O e  0 : [ 0 , 0 . 0 5 ]  

In order to test the null hypothesis He: 0 = e o = 0.025, n=90 pieces having the flaw E 

are independently examined for detection of the flaw F and provide us with the observed 

6- frequencies v ( f )  = 36, v (7 )  -- 54. According to Definition 2.2, the likelihood estimate is - 

0.015, so that 

7'0o ( f )  = 0.5, % 0  ( f )  = o.5, P0( f )  = 0.4, P (7) = 0.6 

whence - 2 log A n = 3.624 < c = 3.84 = 5 % point of the chi-square distribution with s=k=l 

degree of freedom. Consequently, the extended likelihood ratio test would lead to non 

rejection of the hypothesis H o at the significance level (z = 0.05. 

When to solve the likelihood equation is extremely difficult, it is worth recalling that when 

we try to apply the maximum likelihood method from grouped experimental observations (that 

may be regarded as particular examples of fuzzy information) one must appeal to obtain 

approximate solutions under certain natural assumptions concerning the choice of the 

grouping (Cram~r, 1946). In the same way it would be interesting to try to approximate the 

maximum likelihood estimation from sample fuzzy information under some plausible 

requirements. 

In the following section we will verify that the use of the inaccuracy measure defined by 

Kerridge (1961) allows us to extend the maximum likelihood principle of estimation and this 

extension provides us with a manageable approximation of the trivial extension gathered in 

Definition 2.2. 

3. A N OPERATIVE APPROXIMATION OF THE LIKELIHOOD RATIO TEST WITH FUZZY DATA 

As we have remarked the main inconvenience in applying the immediate extension of 

the likelihood ratio test with fuzzy data in Theorem 2.1 lies in the lack of operativeness in the 

extension of the maximum likelihood principle of estimation proposed in Definition 2.2. 

It should now be pointed out that the operativeness of the maximum likelihood method 

based on exact experimental data is fundamentally caused by the introduction of logarithms 

(because of the form of most of the parameter families of distributions). However, the direct use 

of logarithms in 1-..( x I . . . .  , x n ; 0 ) obviously becomes intractable. On the basis of this 

argument we have suggested in previous papers (1984a, 1987b, 1988b) the procedure we 
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Definition 3.1. Let X = ( X,~x,P 0 ), 0 E O, be an experiment where { Pe ' 0 ~ O } is a 

parametric family of probability measures which is dominated by the counting or the Lebesgue 

measure (generically denoted by ~.). Assume that the set {(x 1 ..... x n) I L( x 1 ..... x n ; 0 ) > 0}, 

which will be denoted by X n, does not depend on 0, L 0 = L( x 1 ..... x n ; 0 ) being the likelihood 

function of 0 for the exact sample point (x 1 ..... Xn). A min imum inaccuracy estimate o f  0 

f o r  t h e  s a m p l e  f u z z y  i n f o r m a t i o n  ( x 1 . . . . .  x n ) is a va lue  O*( x 1 . . . . .  x n ) ~ 0 

satisfying that 

= rain ~(I . t l (Xl  ..... x n ) l ; L o )  ~(I.t i(xl ..... x n )1; LO*( x I ..... Xn)) O E 0 

where 

30 = ~ ( ~  I(x 1 ..... x n )1; L0) 

= -  f X n ~ (X l  ..... Xn)](Xl ..... Xn) log L(x 1 ..... x n ;0  ) d ~.(Xl) ... d ~(Xn) 

(with I ( x  1 . . . . .  x n) [  the "standardized form" of ( x 1 . . . . .  x n ) as defined by Saaty, 1974, 

that is, ~t[ x I (') = IJ'x (')/..~(x), where ~ (x )  = J'X ~tx (x) d ~.(x) ). 

Remark 3.1 : The minimum inaccuracy principle was exhaustively justified in a previous 

paper (1984a). It should be emphasized that it is equivalent to minimize the expression ~3 e 

with respect to 0 to minimize 

- f X n ~t(x 1 ..... Xn)(X 1 ..... Xn) log L(x 1 ..... x n ; e )  d~L(Xl) ... d~.(Xn), 

so that, we have only considered the standardized version of ( x I . . . . .  x n ) to obtain the 

well-known "measure of inaccuracy" defined by Kerridge (1961) between the membership 

function of I ( x  1 .. . . .  x n ) l  and the likelihood function L e (which is only defined for density 

functions). On the other hand, it is worth pointing out an interesting analogy between the new 

suggested extension and the preceding one: the immediate extension of the maximum 

likelihood principle (Definition 2.2) would reduce to minimize the inaccuracy of order [3=2 

(Rathie and Kannappan, 1973, Mathai and Rathie, 1975) between the membership function of 

I ( x  I . . . . .  x n )1 and the likelihood function L e. 

The operativeness of the minimum inaccuracy principle is corroborated in the following 

theorem (Corral et aL, 1984a, Gil et al., 1988b) which establishes a constructive way to easily 

obtain the minimum inaccuracy estimates from the efficient (and, consequently, from the 

maximum likelihood) ones based on exact information. 

Theorem 3.1. Let X = ( X,13x, P e ), e e O, be an experiment where { Pe ' e E O } is a 

parametric family of probability measures which is dominated by the counting or the Lebesgue 

m e a s u r e  

i) 
ii) 

iii) 

~L. Assume that 

0 is an interval in a euclidean space. 

xn = {(x 1 ..... x n) I L( x 1 ..... x n ; 0 ) > 0} does not depend on e. 

Pe determines a parametric distribution function that is regular in all of  its first and 

second e-derivatives. 
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iv) A.( x x . . . . .  x n ) = H [~(x) ]V(X)  < o o .  
x ~ X  

I f  T is an est imator of  0 based on a (nonfuzzy) random sample f rom X and attaining 

the Fr~chet -Cram~r-Rao lower bound for the variance, and with expected value h(O) where 

h is a one-to-one mapping, then there exists a unique min imum inaccuracy est imate of  e for 

( x  1 . . . . .  Xn) given by the value 0 " (  x 1 . . . . .  x n ) ~ 0 such that 

h( 0 " (  x I . . . . .  x n ) ) =S X n ~(Xl , . . . ,Xn) l (x 1 ..... x n) T(x 1 ..... Xn) d ~,(Xl) ... d ~,(Xn) 

R e m a ~  3.2: It is worth emphasiz ing that when we use the min imum inaccuracy principle 

the presence of fuzziness in the exper imenta l  observat ions does not necessar i ly  entai l  an 

increase in the mean square error with respect to the max imum likel ihood one since, according 

to the preced ing theorem,  the m in imum inaccuracy pr inciple usual ly suppl ies est imates 

consisting in "average" max imum likelihood est imates based on exact data. 

Besides, the min imum inaccuracy est imates satisfy the fol lowing invariance property: 

Theorem 3.2. Let X = ( X,I"Jx,P 0 ), 0 ~ O, be an experiment where { P 0 , 0  ~ ~) } is a 

parametr ic  family of  probabil i ty measures which is dominated by the counting or the Lebesgue 

measure %. Let g : 0 ---) s be a one-to-one mapping, .O, = g(O) a set in a euclidean space. I f  

O * ( x  I . . . . .  X n )  is a m i n i m u m  inaccuracy est imate of  0 for  ( X l ,  ..., x n ),  t h e n  

CO*(x 1 ..... Xn) =g(  0 " (  x 1 . . . . .  x n ) ) is a min imum inaccuracy est imate of  co = g( O ) in 

for  ( x  I . . . . .  X n ) .  �9 

In previous papers (1984a, 1988b) several  est imates of the parameters  in the usual 

distr ibutions are determined by means of the min imum inaccuracy principle. 

We are now going to prove that under certain natural assumpt ions a min imum inaccuracy 

estimate of a parameter  for a sample fuzzy information provides us with an approximat ion of that 

in Definition 2.2. 

Let X = ( X,13x,P o) ,  O ~ O,  be an exper iment where { PO ' 0 ~ O } is a parametr ic  

family of probabi l i ty measures which is dominated by the count ing or the Lebesgue measure 

~L. Let X be a f.i.s, associated with X,  with r = cardinal i ly of X .  From now on, we  assume 

that 

i ~ If { P0 ' O ~ O } is dominated by the counting measure, there exist r discrete sets 

S x (eventually overlapping) such that L.J S x = X ( x ~ X ) and with I.l.x (x) > 0 

if x ~  S x ,  = 0  otherwise ( tha t i s ,  S x = support set of x ). 

If { P0 ' 0 E O } is dominated by the Lebesgue measure,  there exist r intervals 

S x (eventually overlapping) such that L) S x = X ( z E X'  ) and with I.tx (x) > 0 

if x e  S x , = 0  otherwise ( t h a t i s ,  S x = support  set of x ), ~ x  b e i n g a  

cont inuous membersh ip  function on X. 

ii*) We agree that  LOL( x I . . . . .  x n ) = ]1 [ .~(x) ]V(x)  < oo and 3 0 = - 7_, v(x)3/Z0(x ) 
x ~ X  x ~ X  

< oo ,  provided that V(x) =~) implies that [A(x)] v(x) = 1 and  v(x).l/Z'o(x ) = O, what- 

eve r  2~(x) and .lEa(x) =. Ix ]J.l ~. i(x) log f(x;0) d ~.(x) (finite or infinite~ mav be_ f 
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being the density associated with P0 with respect to ~,. 

Under such assumptions the maximum likelihood estimate of e for the sample fuzzy 

information (x I . . . . .  Xn) as intended in Definition 2.2 couldr be obtained by minimizing with 

respect to 0 the expression - log s = - '~' v(x) log JS I'tlxl(X) f(x;O) dX(x),whereas the 
x E X  x 

minimum inaccuracy estimate of 0 for the sample fuzzy information (Xl, ..., x n ) is obtained 

by minimizing with respect to 0 the expression ~0 = - ~' V(x) J" glxl(X) log f(x;0) d~,(x). 
x ~ X  Sx 

Consequently, the application of the Weighted Mean Value Theorem of the Integral Calculus to 

the integrals in the preceding expressions entails that the first estimate is a value minimizing 

with respect to 0 the function ,~, v (x )  log T(~x(0); 0) and the second one is a value 

minimizing with respect to 0 the function ~ v(x) log T( TIx(0); O) (where ~x (O) and TIx (0) 

are points in the minimum interval containing S x , and T(.; 0) is a continuous nonnegative 

function extending almost surely the density f(.; O) associated with P0 with respect to the 

measure ~.). 

The preceding analogy makes evident the approximation between the solutions in both 

methods under some plausible requirements concerning the membership function ~x and 

the support sets S x . This approximation is formalized in the following theorem: 

Theorem 3.3. Let X = ( X,I]x,P 0 ), 0 e O, be an experiment where { P 0 , 0  e O } is 

a parametric family of probability measures which is dominated by the counting or the 

Lebesgue measure ~.. Assume that conditions i ~) and if*) are satisfied. Moreover, suppose 

that 

iii*) /f the sample space X is infinite, the n observations from X are classified so that 

the fuzzy events x whose support sets S x are infinite extreme discrete sets or 

intervals (that is, sets whose infimum or supremum are infinite) are not associated 

with any observed values. 

iv*) S x are constructed so that the greater the observed frequency of x the smaller 

X(S x ). 
Then, under the assumptions i)-iv) (Theorem 3.1), an approximate solution of the 

maximum likelihood principle for a sample fuz:'-y information may be obtained by applying the 

minimum inaccuracy principle to the same sample fuzzy information. �9 

On the basis of the preceding result we are going to state a theorem enclosing a result 

leading us to an operative approximation to the extended likelihood ratio test. 

Theorem 3.4. Let X (n) be a fuzzy random sample of size n from the available f.Ls. X 

on the random experiment X, and assume that the parametric probability measure on X 

determines a parametric distribution function that is regular in all of its first and second 

O-derivatives ( 0 = (01 ..... Ok) being a k-dimensional parameter ). Under the assumptions i)-iv) 

and i*)-iv*), and the hypothesis H o : 0 ~ O 0 = { (01 ..... Ok) ~ O I 01= 01~ .... 0 s = 0s~ }, (s _< 

k), the statistic - 2 log An* ,  where An* is the statistic based on X (n) such that 
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A.* -- 1-I [ P0 o'(x)/Po'(x) ]v(x) 
x ~ X  

(0o* -- minimum inaccuracy estimate of 0 in 0 o for the obtained sample fuzzy information, 

O* = minimum inaccuracy estimate of O in O for the obtained sample fuzzy information, v(x) 

= observed frequency of x in the obtained sample fuzzy information), has approximately an 

asymptotic chi-square distribution with s degrees of freedom. �9 

Remark 3.3: In order to confirm that the orthogonality condition assumed for the set of all 

available fuzzy observations from the experiment does not mean loss of generality, it is 

interesting to point out that both, the statistic A n (or An* ) and the maximum likelihood 

principle (or the minimum inaccuracy principle), are obviously scale invariant with respect to the 

membership function of the sample fuzzy information, and to obtain the inference in the 

extended (or approximated extended) likelihood ratio test only requires in practice to know the 

considered sample fuzzy information. Consequently, the above scale invariance makes 

"equivalent" in this test two sample fuzzy observations whose membership functions only differ 

in a multiplicative constant. Thus, if we knew the set of all available sample fuzzy observations 

we could easily construct a set containing equivalent sample fuzzy events for all of them and 

additionally determining an orthogonal system. 

Remark 3.4: Clearly, whenever the null hypothesis we wish to test is simple, we obtain 
t 

that - 2 log A n > - 2 log A n , so that the rejection of the null hypothesis at a given 

significance level by means of the approximated extension guarantees the rejection at that 

level by means of the immediate extension. 

4. ILLUSTRATIVE EXAMPLES 

We now examine several examples in which the shape of the likelihood function in 

Definition 2.1 determines a function so that to solve the likelihood equation becomes almost 

impossible. 

~ :  An investigator is interested in the control of a certain microorganism. He 

intends to prepare slides after treatment by a chemical and then count the organisms per 

square centimeter (random experiment X). Nevertheless, the treatment does not permit him to 

distinguish with sharpness the presence of a microorganism and, consequently, he cannot 

establish the exact number of microorganisms per square centimeter (that he previously knows 

has a geometric distribution), but rather he can only perceive one of the following observations: 

x I = "a very small number of microorganisms are found", x 2 = "approximately a number of 

microorganisms from 5 to 8 are found", x 3 = "a great number of microorganisms are found", 

that the investigator describes by means of the membership function in Figure 2. (Obviously, 

we may easily construct a f.i.s. X' = { Xl ,  x 2 , x3, x 4 } on X = { nonnegative integers }. 
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Fig. 2. Membership functions of "a very small number of microorganisms are found" 
( X l , * ), "approximately 5 to 8 are found" ( X 2 , o), "a great number are found" 

( X 3 , *), and Geometric probability function (f, o). 

In order to test the hypothesis H0: p = P0 = 1/8, (p = probability of success) the 

investigator analyzes n=90 slides which provide the observed frequencies v ( x / )  = 35, 

V(Jr = 34, V(X3) = 21, V(X4) = O. 

According to Theorems 3.1 and 3.2 the minimum inaccuracy estimate of the probability 

p o t  success is given by 
p" = [1 + T,j v(xj) ~ N  x ~ i,~l(X)/90] -1 = 0.132353 

Consequently, 

Pp0 ( x I ) = 0.366341, Pp0 ( x 2 ) = 0.384821, Pp0 ( x 3 ) = 0.188277, 

Pp,(  x I ) = 0.383891, P'p,( x 2 ) = 0.388042, Pp,( x 3 ) = 0.177343, 

whence - 2 log An* = 1.330 < c =1.64 = 20 % point of the chi-square distribution with 

s=k=l degree of freedom and, hence, the null hypothesis could be accepted at significance 

levels lower than o~ = 0.20. 

, ~ :  The observation of the time of attention X (in minutes) to a game in 

four-year old children may be considered as an experiment having exponential distribution and 

providing imprecise information, since the loss of interest in a game does not usually happen in 

an instantaneous way. Assume that the mechanism adopted to measure the time of attention 

only permits us to distinguish the following fuzzy observations: t 1 = "approximately less than 

10 minutes", t j  = "approximately 10j minutes" (j=2,...,8), t 9 = "approximately more than 90 

minutes", that we express by means of the membership functions in Figure 3. 
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10 20 30 40 50 60 70 8=0 90 
X 

Fig. 3. Membership functions of t 1 = "approximately less than 10 minutes", 
t i ="approximately 10i minutes" (j=2,...,8),t 9 ="approximately more than 90 minutes" 

and exponential density function with mean 20. 

In order to test the null hypothesis H0: p. = i~ 0 = 20 ( p. = population mean of X), a 

sample of n=600 four-year children have been examined and the following are the observed 

frequencies: 

v( t ]  ) = 330, v( t  2 ) = 119, v( t  3 ) = 72, v(t  4 ) = 40, v(t  5 ) = 19, v( t  6 ) = 13, v(t  7 ) = 5, v(t  8 ) = 2 

Theorems 3.1 and 3.2 indicated that the minimum inaccuracy estimate of I1 is given by 

~* =600 [T_,j v (9) J'R. x i~lt/1 (x)]-1 = 0.132353 

Consequently, 

P~o ( t I ) = 0.587424, P,o ( t z ) = o.t86195, P~o ( t 3 ) = 0.102165, 

P~o ( t 4 ) = 0.056058, ~'~o ( t 5 )  = 0.030759, ~,~o ( t 6)  = 0.016878, 

P~(t 7) = 0 0 0 9 2 6 1 ,  P~o( t  8 ) = 0 0 0 5 0 8 1 ,  

P I I * ( t ] )  = 0.521785, P p , ( t 2 )  = 0.187783, Pp. , ( t3)  = 0.114045, 

PI~, ( t 4 ) = 0.069263, P~,( t 5 ) = 0.042065, pp..( t 5) = 0.025547, 

PI~,( t7)  = 0.015515, Pp., ( t 8 ) = 0.009428, 

t 
whence - 2 log A n = 12.682 > c =7.88 = 0.5 % point of the chi-square distribution with 1 

degree of freedom and, hence, the null hypothesis must be rejected even at significance 

levels definitively lower than G = 0.005. 
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5. CONCLUDING REMARKS 

The results in this paper may be complemented by the analysis of the asymptotic 

distribution of the statistics in Theorems 2.1 and 3,4 following ideas similar to those developed 

by Wald (1941a, 1941b), and Wilks (1938a), and those carried out by Cram6r (1946), Fisher 

(1924), Chernoff and Lehmann (1954), for the chi-square test for goodness of fit. In addition, 

one can extend in an analogous way the likelihood ratio test for goodness of fit. 

Finally, the results we have developed in this paper could immediately be particularized 

to the special case in which the fuzzy information reduces to grouped data (see, Gil and Corral, 

1987b). 

ACKNOWLEDGEMENT 

Theauthorsaregratefu l for thehel~ulreferee'scr i t ic isms.  

BEFERENCES 

Casals, M.R.. Gil, M.A. and Gil, P. (1986a). On the use of Zadeh's Probabiiistic Definition for Testing 
Statistical Hypotheses from Fuzzy Information. Fuzzy Sets and Systems, 20, 175-190. 

Casals, M.R., Gil, M.A. and Gil, P. (1986b). The Fuzzy Decision Problem: an approach to the Problem of 
Testing Statistical Hypotheses with Fuzzy Information. European J. Oper. Res., 27, 371-382. 

Chernoff, H. and Lehmann, E.L. (1954). The use of the Maximum Likelihood Estimates in X, 2 test for 
Goodness of Fit. Ann. Math. Stat., 25,579-586. 

Corral, N. and Gil, M.A. (1984a). The Minimum Innaccuracy Fuzzy Estimation: an extension of the 
Maximum Likelihood Principle. Stochastica, VIII, 63-81. 

Cramer, H. (1946). Mathematical Methods of Statistics, Princeton University Press. Princeton. 
Fisher, R.A. (1924). The condition under which ~2 measures the discrepancy between observation and 

hypothesis. J. Royal Statist. Soc., 87, 442-450. 
Gil, M.A. (1987a). Fuzziness and Loss of Information in Statistical problems. IEEE Trans. Systems Man 

Cybernet., 17, 6, 1016-1025. 
Gil, M.A. (1988a). Probabilistic-Possibilistic Approach to some Statistical Problems with Fuzzy 

Experimental Observations, In Combining Fuzzy Imprecision with Probabiiistic Uncertainty in 
Decision-Making (J. Kacprzyk and M. Fedrizzi, Eds.). Springer-Verlag. Berlin, (accepted for 
publication). 

Gil, M.A. and Corral, N. (1987b). The Minimum Inaccuracy Principle in Estimating Population Parameters 
from Grouped Data. Kybemetes, 16, 43-49. 

Gil, M.A., Corral, N. and Gil, P. (1985a). The Fuzzy Decision Problem: an approach to the Point 
Estimation Problem with Fuzzy Information. European J. Oper. Res., 22, 26-34. 

Gil, M.A., Corral, N. and Gil, P. (1988b). The Minimum Inaccuracy Estimates in Z 2 tests for Goodness 
of Fit with fuzzy observations. J. Statist. Plan. Inf., 18 (accepted for publication). 

Gil, M.A., L6pez, M.T. and Gil, P. (1984b). Comparison between Fuzzy Information Systems. 
Kybernetes, 13, 245-251. 

Gil, M.A., L6pez, M.T. and Gil, P, (1985b). Quantity of Information; Comparison between Information 
Systems: 1. Nonfuzzy States, 2. Fuzzy States. Fuzzy Sets and Systems, 15, 65-78, 129-145. 

Kerridge, D.F. (1961). Inaccuracy and Inference. J. Royal Stat. Soc., Ser. B, 23, 184-194. 
Mathai, A.M. and Rathie, P.N. (1975). Basic Concepts in Information Theory and Statistics. Wiley 

Eastern Lira. New Delhi. 
Okuda, T., Tanaka, H. and Asai, K. (1978). A Formulation of Fuzzy Decision Problems with Fvzzy 

Information, using Probability Measures of Fuzzy Events. Inform. Contr., 38, 135-147. 
Rathie, P.N. and Kannappan, PI. (1973). An Inaccuracy Function of type B. Ann. Inst. Statis. Math., 25, 

205-214. 
Saaty, T.L. (1974). Measuring the Fuzziness of Sets. J. Cybernet., 4, 4, 53-61. 



203 

Tanaka, H. , Okuda, T. and Asai, K. (1979). Fuzzy Information and Decision in Statistical Model. In 
Advances in Fuzzy Sets Theory and Applications. North-Holland. Amsterdam, pp. 303-320. 

Wald, A. (I 941 a). Asymptotically most powerful tests of statistical hypotheses. Ann. Math. Star., 12, 
1-19. 

Wald, A. (194Ib). Some examples of asymptotically most powerful tests. Ann. Math. Stat., 12, 396-408. 
Wilks, S.S. (1938). The large-sample distribution of the likelihood ratio test for testing composite 

hypotheses. Ann. Math. Stat., 9, 60-62. 
Zadeh, L.A. (1965). Fuzzy Sets. Inform. Contr., 8, 338-353. 
Zadeh, L.A. (1968). Probability Measures of Fuzzy Events. J. Math. Anal Appl., 23, 421-427. 
Zadeh, L.A. (1978). Fuzzy Sets as a basis for a Theory of Possibility. Fuzzy Sets and Systems, 1, 3-28. 

Marfa Angeles Gil and Mafia Rosa Casals 

Departamento de Matem~iticas 
Universidad de Oviedo 
33071 Oviedo, SPAIN 


