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ABSTRACT. We consider the minimization problem for an average distance functional in the plane, 

among all compact connected sets of  prescribed length. For a minimizing set, the blow-up sequence in the 

neighborhood of any point is investigated. We show existence of  the blow up limits and we characterize 

them, using the results to get some partial regular#y statements. 

1. Introduction 

The problem we deal with, known as "irrigation problem," was first introduced in [4], in 
the general framework of transport problems endowed with regions (called Dirichlet regions) in 
which transport is free of charge. 

Although, the formulation given in [4] is quite general, in this article we are concerned with 
the following instance of the problem: 

rain F ( E )  = f~ d(x, E)tz(dx)  : E C ~ compact and connected, 7-/1 (E) _< l ,  (1.1) 

where ft C ]K 2 is a bounded open domain, d(x, E) denotes the distance from the point x to the 
set ~ , / z  is a given probability measure on f2, and the Hausdorff measure NI  (~)  cannot exceed 
a prescribed value I > 0. 

As a possible interpretation, we may regard E as a resource, whose amount is limited by the 
constraint 7/1 (Z) < l, to be distributed over a region ~2. Since the functional F ( E )  is the average 
distance of a point x ~ ft to E, minimizing F ( ~ )  means letting the resource be as widespread as 
possible throughout the region ft. Of course, the measure/z reflects the fact that some subregions 
of ft might have a higher, or lower priority in being close to the resource E. Finally, the imposed 
connectedness of E prevents the infimum of F from being zero, and is a natural constraint in 
several applications, such as image reconstruction (trying to recover a line E from a pixel cloud/z 
in a picture) or urban planning (when ~ is a subway network in a city ft with population density 
Iz). 
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Existence results for the minimum problem (1.1) can be achieved by Golab's theorem (see, 
for instance, [3]) and are the starting point of  [4]. 

An interesting feature of  this problem is its link with the theory of  optimal transportation: 
Indeed, for any ~ ,  there holds 

F(I~) = inf {Wl(/z, v) l spt(v) C E} , (1.2) 

where Wl is the Wasserstein distance (see [2]). 

In the first article on the subject [4], after proving the existence of  solutions, some questions 
concerning the minimizers are posed and some partial answers are provided. Stronger results on 
the structure of  a minimizer I~ are obtained in [5]. To recall the results from [4, 5] which are 
relevant to the present article, let us introduce some notation which will be used throughout. 

Let E be a minimizer of  (1.1). We denote by t : ~2 ~ E a fixed measurable selection 
of  the projection multimap, i.e., t is a measurable map such that, for every x ~ f2, there holds 
Ix - t (x) l  = d(x ,  I~). The measure/z  and the map t induce a measure ~ on E defined by 
ap = t~g, that is, 

gr(E) = l z ( t - l ( E ) )  for every Borel set E C IR 2 . (1.3) 

Of course, ~p is a probability measure concentrated on E. Estimates on the measure ~p will be 
crucial in the sequel. 

The result from [5] which is most relevant to our purpose states that, topologically, E 
is equivalent to a finite graph without cycles, whose vertices have order at most three. More 
precisely, (see [5] for more details): 

�9 E is the union of  finitely many injective Lipschitz curves with endpoints (called 
"branches" of  Z). 

�9 Any two branches have at most one endpoint in common. 

�9 E has no loops (i.e., I~ 2 \ E is connected). 

�9 For every x ~ ~ ,  exactly one of  the following three possibilities occurs: 

1. x is in the relative interior of  one branch and belongs to no other branch of  E. In 
this case, we say that x is an ordinary point of E. 

2. x is an endpoint of  exactly one branch of  Z. We say that x is an endpoint of E. 

3. x is an endpoint o f  exactly three branches of  E . We say that x is a triple junction. 

�9 Every endpoint of  E is an atom for the measure $ .  

�9 There are at least two endpoints in E. 

In this article we focus on the existence and characterization of  blow-up limits of  ~.  More 
precisely, we say that E has a blow-up limit K at x0 ~ E, if the localized and rescaled sets 
(E f3 Br(x,o) -- xo) / r  converge, in the Hausdorff distance as r ~ 0, to some set K C BI (here 
and throughout, Br(xo) denotes the ball of  radius r centered at x0, whereas Br denotes the ball 
centered at the origin). 

In particular, we prove (see Section 3) that E has a blow-up limit K at every point x0, and 
we are able to characterize K according to the nature of  the point x0. More precisely, it turns out 
that K is a radius o f  the unit ball, if xo is an endpoint, is the union of  two radii if x0 is an ordinary 
points (the two radii forming a diameter unless x0 is an atom for ~),  or is the union of  three radii 
forming angles of  120 ~ if x0 is a triple junction. 
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Concerning the regularity of E, we can prove a partial result (see Section 4), namely that 
every branch of E is a C 1'1 curve in a neighborhood of a point x0, provided that diam(t -1 (x0)) 
is sufficiently small. Curiously enough, it turns out that this assumption is always satisfied if x0 
is a triple junction, hence the three branches starting at a triple junction are indeed C l, 1 near the 
singularity, and their tangents form angles of 120 degrees at x0. 

Finally, we stress the fact that the existence of the blow-up limits in the Hausdorff distance 
at a point x0 is linked to differentiability of E at x0. In fact, parametrizing every branch of E 
by arc length curves, it is not difficult to check that our results on blow-ups imply the existence 
of the derivative as a unit vector in the classical sense, or at least the existence of the derivatives 
from each side in the unlucky case of the limit being a corner. 

This article involves several different variational techniques to get necessary optimality 
conditions; most of them are simply based on first-order perturbations of the minimizer, i.e., the 
key ingredient is stationarity instead of minimality. We cite in connection to this feature of our 
work the classical article [1] on regularity of stationary one-dimensional structures. However, 
some cases studied in this article have been solved by more variational techniques, such as by 
F-convergence. 

2. Notation and auxiliary results 

For the setting of the problem we refer to the introductory section. From now on f2 will be 
a convex and bounded open subset of ~2 and E a fixed minimizer of problem (1.1). Since f2 is 
supposed to be convex we know that E C ~ is a solution also to problem (2.1): 

min F ( E )  = f~ d(x, ~) Iz(dx) : E C ]K 2 compact and connected, ~ I ( E )  < l .  (2.1) 

This is a consequence of what proven in [6], i.e., that E is always contained in the convex hull of 
the support of/z, and so there is no matter if we enlarge the domain. In the sequel, to get rid of 
possible boundary difficulties, we will silently use the fact that E minimizes also in problem (2.1). 

The measure/z will be considered to be absolutely continuous with respect to the two- 
dimensional Lebesgue measure/~2 and its density to belong to L~176 We will denote by 
t : f2 ~ E a fixed measurable selection of the projection multimap, i.e., t is a measurable map 
such that, for every x, it holds Ix - t(x)l = d(x, E). By ~p we will denote the measure on 
given by t~/z, which does not depend on the choice of the selection t, since t is uniquely defined 
s everywhere. 

We will call C any positive, finite constant depending only on f2, # and E that may be 
enlarged at will. Every time a new, larger constant C is needed, the value of the former will be 
considered to be enlarged as necessary, without changing the notation C. 

Finally, given two sets A, B E/~2, we denote by dH(A, B) their Hausdorff distance, i.e., the 
infimum of those positive numbers h such that A C (B)h and B C (A)h, where (A)h denotes a 
neighborhood of A of width h. 

Remark 2.1. Let F be a Lipschitz curve with endpoints x, y and let ~ be the segment from 
x to y. Then the Hausdorff distance dH (F, ~-y) coincides with the smallest h > 0 such that F is 
contained in a ho-neighborhood of ~-y. Indeed, letting h0 denote such smallest h, it suffices to 
observe that ~ is contained in a h-neighborhood of F; in fact, for every z ~ ~'Yy, there is at least 
a point of F on the line through z perpendicular to ~-y. 
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Remark 2.2. Moreover, we have 

7-/l(F) > ~/4dH(F, ~ ) 2  q_ Ix -- yl 2 . (2.2) 

To see this, take a point p E F a distance exactly dH(F, Yy) to the segment ~-y (such a point exists 
due to the previous remark); then clearly 

'~l(r) ~ Ix - pl + Ip - y l ,  

and minimizing the last expression over all possible p gives the desired estimate (the minimum 
is achieved at a point p belonging to the axis of 2-y). 

We use here the fact that endpoints are atoms for ap to establish a basic estimate which will 
be useful in the sequel. 

Lemma 2.3. There exists C > 0 with the following properties. Let U be any open subset of  
E and let V be a compact set in R 2 such that (E \ U) U V is connected. I fE  \ U contains at least 
one endpoint of  Tt , then 

~ I ( u )  < ~ I ( v )  + Cap(U \ V)maxd(z, V) (2.3) 
zEU 

and 

7-{l(u) _< 7--LI(V) q- C ~ ( U  \ V) dH(U, V). (2.4) 

The proof uses some ideas from [5]. For the sake of completeness, we provide all the details. 

Proof. We can assume that 7r < 7r 

Let a 6 E \ U be an endpoint of E (hence an atom for ap), and set A = t - l ( a ) .  Since A is 
the intersection of a convex set and g2, and/z(A) = ~t({a}) > 0, then A has non empty interior. 
Let B(y, p) be a small closed ball of  radius p > 0, centered at some point y 6 A and contained 
in A, such that a ~ B(y, p) and Iz(B(y, p)) > 0. Letting l = H I ( u )  - ~ I ( v ) ,  we construct a 
new competitor E '  as follows: 

E t = ( E  \ U)  U V U s  t , 

where st is the closed segment of  length l, that lies on the half-line from a to y and has a as one 
endpoint. Clearly, .HI (EI) = N1 (E).  Moreover, E '  is compact and connected (the segment st 
touches E \ U at a,  and (E \ U) U V is connected by assumption), hence the minimality of  E 
implies that 

ff2 d(x, E ) I z ( d x ) <  ff2 d(x, E ' ) l z ( d x ) .  (2.5) 

Note that, by construction, d(x, E ' )  _< d(x, E) for all x E f2 such that t(x) r U k v,  hence in 
particular, from (2.5) we find 

f8  - < f ( d ( x , E ' ) - d ( x , E ) ) I z ( d x ) .  (2.6) (y,p) (d(x, E) d(x, E ' ) ) )  Iz(dx) _ -'(u\v) 

For every x ~ B(y, p),  we have d(x, E) = Ix - al, and d(x, E' )  < d(x, sl). Hence, we find 

s ( d ( x , E ) - d ( x , E ' ) ) ) # ( d x ) >  s ( I x - a l - d ( x ,  s l ) ) Iz(dx)=:I( l ) .  (2.7) 
(Y,P) (Y,P) 
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Considering for a while l as a parameter, we want to estimate from below the last integral I (l) 
as a function of l (i.e., the length of the segment st), on the interval [0, ~ l  (E)]  (having defined 
1 = ~ I ( u )  - ~ I ( V ) ,  we are not interested in I(l) when 1 > 7-/l(E)): It is clear that I(1) is 
non decreasing in l, and one can easily check that when l is small enough (for instance, such that 
2l < ]y - al - p), there holds I(l) > el for some s > 0 (which depends only on p , /z  and on the 
distance la - Yl). Since l(l)  is non decreasing, reducing, if necessary the value of s we obtain 
that an estimate of the kind l(l)  > el holds for all l e [0, ~ I ( E ) ] .  Therefore, plugging this 
estimate in (2.7) and using (2.6), we obtain 

tz(dx) . (2.8) 
l(u\v) 

Note that s can also be made independent of the particular endpoint a that we have chosen in 
E \ U, since E has only finitely many endpoints: Therefore, we may work with some s which 
depends only on E,  and not on U.Then, observing that 

sup (d(x, E') - d(x, E))  < sup (d(x, V) - d(x, U)) < supd(z,  V) ,  
xe t  -1 (U\V)  xEt -1 (U) zeU 

from (2.8) one obtains (2.3). Finally, (2.4) is an easy consequence of (2.3). [ ]  

We face an important particular case when the set V is a segment. 

Lemma 2.4. There exists C with the following property. Let F C E be a closed injective arc, 
with endpointsx, y, such thatF\{x, y} contains no triple junctions ofE andC~p (F\{x,  y}) < 1/2. 
Then 

7-/l(F) < [x-y]§ (2.9) 

dn (F, Yy) _%< CTr(I" \ {x, y})lx - Yl, (2.10) 

~ I ( F )  ___ I x - y l ( l + C T t ( F \ { x , y } ) 2 ) ,  (2.11) 

7-/1(I TM) < 2Ix - Yl. (2.12) 

Proof. We apply the previous lemma with U = F \ {x, y} and V the segment from x to y 
(note that (E \ F) U V is connected since we have replaced a simple curve by another curve with 
the same endpoints). Then (2.9) follows from (2.4). Moreover, on squaring (2.2) one obtains 

4dn  ( F , ~ )  2 _< (7-/1 (F) § Ix - yl)(7-tl(I ") - I x  - y[) _ < 2 ~ - ~ l ( r ) ( ~ - ~ l  ( I  ")  - I  X - y[ ) .  (2.13) 

If we temporarily set A = 7-[ 1 (F) - Ix - Yl and we square (2.9), we get 

A 2 < C ~ ( F  \ {x, y})2 dH (F, ~yy)2 < CTt( I. \ {x, y})27-/1 (I")A 

where we used also (2.13). Then we get 

A < C~(I-' \ {x, y})2"]-/l(l-'). (2.14) 

To estimate ~1 (F) we use the estimate on A: 

7-tl(F) - Ix - Yl = A < CTt(F \ {x, y})ZT-t1(F), 

which, under the assumption CTt(F \ {x, y}) < 1/2, provides 

~7-/ '(F) < ( 1 -  C~p(F \ {x, y})2)7 . /1(1- , )<11_ y , ,  (2.15) 
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which is (2.12). Then, from (2.14) and (2.15), we get also the estimate 

A < C ~ ( F  \ {x, y})lx - Yl 

and, by recalling (2.13) and (2.15), (2.10) is valid as well. Finally, (2.11) follows from (2.9), 
and (2.10). [ ]  

2.1.  T h e  f u n c t i o n  0 a n d  its v a r i a t i o n  

Take a point x0 e E and consider a branch of E starting at x0: We may regard it as an 
injective Lipschitz curve y : [0, T] ~ E,  parameterized by arclength, such that y(0)  = x0 and 
y ( T )  is either an endpoint, or a triple point of  E. Of  course, we suppose that T > 0 and that y 
contains neither endpoints nor triple junctions in its relative interior. 

We will prove that, if r > 0 is small enough, then y touches OB(xo, r) at exactly one point; 
in this way, we can define for small r > 0 the function O(r), i.e., (choosing polar coordinates 
centered at x0) the angular coordinate 0 of  the (unique) point where y touches OB(xo, r). We 
will also prove some regularity properties of  the function 0 (r). 

Choose a certain radius r0 > 0, such that the ball B(xo, ro) contains no endpoint and no 
triple junction of E,  with the only possible exception of x0. In particular, y meets OB(xo, r) at 
least once, for every r < r0. 

We have the following. 

T h e o r e m  2.5. Consider xo �9 E and ro > 0 such that B(xo, ro) contains no endpoint and 
triple junction other than, possibly, xo itself. For any r < ro, set 

tl = rain {t > 01 y( t )  e OB(xo, r)}, t2 = max {t _< T I y( t )  e OB(xo, r ) } .  

I f  C~p(y((0, t2]) < 1, then tl = t2, i.e., y touches O B(xo, r) exactly once. 

P r o o f  Let us set for brevity Y0,1 = y([0 ,  t l ] ) ,  Y0,2 = y([0 ,  t2] ) and Yl,2 = y ( [ t l ,  t2 ] ) .  We 
apply Lemma 2.3, with U = Y0,2 \ {y(0), y(t2)} and V equal to a suitable rotation of Y0,1 around 
x0, of  an angle A0, in such a way that the point y( t l ) ,  after the rotation, overlaps with y(t2). 
Observing that 7-[ 1 (U) - ~ l  (V) = ~.~1 ( Y l , 2 ) ,  (2.3) implies that 

7-Ll(y1,2) < C ~  (Y0,2 \ {x0}) max d ( x ,  V ) .  
" x6}'0,2 

(2.16) 

To estimate the max in the right-hand side, let us split Y0,2 = YO,1 g Y1,2. Since V is a rotation of 
Y0,1 which sends the boundary point y (tl) to y (t2), there holds 

max d(x, V) < IV(q) - y(t2)l _< ~1(Y1,2) �9 
x6yO.l 

Moreover, since y(t2) e V we find 

d(x ,  V) < Ix - y(t2)] < diam(y1,2) < ~'~l(yl,2) 

since Y1,2 is connected. Plugging these estimates into (2.16), we find 

~t~a(yl,2) 5 C~'~I(yl ,Z)~(Y((0,  t2])) �9 (2.17) 

Under the assumption C ~ ( y ( ( 0 ,  t2])) < 1 it is clear that we get 7 - L l ( y l , 2 )  = 0 and also tl = t2, 
since y is injective. [ ]  



Blow-Up of Optimal Sets in the Irrigation Problem 349 

If  we want the last result to be useful, it is necessary to establish the following. 

L e m m a  2.6. For any xo ~ E there exists ro = ro(xo) > 0 sufficiently small such that, for any 
r < ro, the ball B(xo, r) contains no triple junction nor endpoint other than, possibly, xo itself, 
andC~p(y((O, t2])) < 1. 

Proof .  It is immediate to satisfy the first constraint (no triple junction nor endpoint in the 
ball) since such points are finite. To satisfy the second requirement it is sufficient to show 
that the diameter of  y((0,  t2]) tends to 0 when r ~ 0. In fact, proven this, we would have 
~ (y ( (0 ,  t2])) < 7t(B(xo, 8(r) \ {xo}) with 6(r) ~ 0. Since the measure of  the ball without the 
center tends to vanish with the radius, the thesis would be achieved. 

To prove that diam(y((0,  t2])) tend to 0 suppose, on the contrary, that there exists 8 > 0 and 
rj 

a sequence of radii rj ~ 0 with diam(v((0,  t 2 ]) > 8 and fxo - y((O, t2J]) = rj. In the limit we 
would get a loop in this branch of  E, and this is a contradiction. [ ]  

To strengthen the result, we can make it quite uniform. This uniformization result will be 
useful in the sequel too. 

T h e o r e m  2.7. For any E 1 C E compactly contained in the complement o f  the atoms o f  mass 
at least (2C)-1 and o f  triple junctions and endpoints (which is the complement o f  a finite seO 
there exists ro = ro[E1] such that, i f  r < ro and xo ~ El ,  then C ~ ( B ( x o ,  r)) < 1/2, no triple 

junction nor endpoint belongs to B(xo, r ), and C ~ ( y ( ( 0 ,  t2]) < 1 (as in Theorem 2.5). 

Proof .  We can consider separately the three requirements, and then choose the smallest radius. 

It is easy to deal with the statement on balls: Otherwise there would exist a sequence of 
centers x~ and of  radii r n ~ 0 with the mass of  the corresponding balls greater than (2C)-1.  By 
passing to a converging subsequence it would be straightforward to get the existence of  a point ~6 
which would be an atom of mass at least (2C) -1, obtained as a limit of  the considered sequence 
of  centers, which is a contradiction. 

The requirement on triple junctions and endpoints is easily satisfied thanks to the assumption 

on El.  

As far as the curves V((0, t2]) are concerned it is a little more difficult. Suppose on the 
contrary that there exists a sequence of  arcs Yn ([0, t~ ]) for which the distance IV n (0) - Yn (t~) I = rn 
is arbitrarily small and the measure ~p (Yn ([0, t~])) larger than C -1. Up to subsequences we may 
assume that all this arcs are contained in one of  the finitely many parts ~]i consisting in the support 
of  an injective simple curve y and that they converge in the Hausdorff distance to a closed subset 
of  Ei. The map y provides an omeomorphisme between ~]i and the interval [0, 1]. Because it 
is well known that Hausdorff convergence on compact sets depends only on topology and not on 
metric (see, for instance, [7]) we can deduce that we have convergence also of  the images of  the 
arcs in [0, 1]. The images are clearly segments and so the same holds for the limit. The condition 
that the distance between the extremal points Xn, Yn of the arcs goes to 0 says that, for a certain 
X E E 1 , we have Xn ~ x, Yn "+ x and this fact is conserved by the omeomorphisme. As a 
consequence also the extremal points of the segments in [0, 1] collapse to the same point in the 
limit and so the limit must be a single point. Regarding this fact in ~2 i it is easy to deduce that we 
have a limit consisting in a single point which must be an atom of at least mass C -  1, which is a 
contradiction. [ ]  

As a consequence of what we have just proved, there exists well defined and continuous a 
function 0 : (0, r0] --+ S 1 such that O(r) is the angle of  the unique point of  the curve y which lies 
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on 0 B(xo, r). The value ro has to be small enough and can be chosen quite uniformly according to 
Theorem 2.7, or depending on xo, if x0 is one of the dangerous points (triple junctions, endpoints, 
atoms of mass at least (2C) - l ) .  From now on, ro will always denote such a radius chosen in this 
way. 

T h e o r e m  2.8. The function 0 is locally Lipschitz on (0, ro]. Moreover, for almost every 
r e (0, ro) we have 

[0'(r)[ < C ~p (B---~o, r)  \ {xo}) 

r 

Proo f  Consider two rays 0 < r < R < r0 and the variation A0 of the angle 0 between the 
two values of  the ray. 

Let Ar  = R - r, y -- 1~ n OBr and x = ~ n OBR. We apply Lemma 2.3 with U = 
y G BR \ {x0}, and V given by two parts: A rotation of y n Br of  an angle A0 around x0 (in such 
a way that the image y~ of y under the rotation is collinear with x0 and x), and the segment y x .  

Setting I" :=  y n BR \ Br, the Hausdorff distance from F to the segment ~-~ can be bounded 
by C]y - x]Tt(F \ {x}) due to (2.10), whereas the distance from y'2 to y'x equals [y - y'[, hence 

maxd(z, V) < e ly  - x[r \ {x}) + [y - y'[ < C(rAO + Ar)lP(BR \ {x0}) + rAO. (2.18) 
ZE1 ~ 

Moreover, for every point in y n Br there is a point in V at a distance less than rAO (just follow 
the point along the arc, as it rotates), hence combining this with (2.18) we find 

maxd(z ,  V) <_ rAO + C(rAO + Ar)r \ {x0}) < CrAO + CAr~(BR \ {x0}) �9 (2.19) 
zEU 

Then from (2.4) we find 

7"/1 ( U )  - -  "1-/1 ( V )  < C ~ ( U  \ V) ( rAO + A r ~ ( B R  \ {x0}))  �9 

By our construction, the left-hand side equals 7-/1 (F) - Ar  > ly -- x[ -- Ar ,  hence we find 

[y - x[ - Ar < C~p(BR \ {xo})(rAO + Ar~(BR \ {x0})) , (2.20) 

having used U \ V C BR \ {x0}. Now for the left-hand side a simple computation yields 

[ y - x l - A r  = ~/(Ar)  2 + 2 r ( r + A r ) ( 1 - c o s A 0 ) - A r  > 

Ar l + ( - - - ~ r ) 2 ( 1 - - c o s A 0 ) - - I  > C A r \  (Ar) 2 A Ar ] ' 

having used elementary estimates such as ~/1 + x 2 - 1 > C(x 2/x x) and (1 - cos t) >_ Ct 2. 
Now, getting back to (2.20) and writing 0R for O(BR \ {x0}), we see that either 

r 2 ( A 0 )  2 
Ar (Ar)  2 < C ~ R r A O + C ~ 2 A r ,  

o r  

is satisfied. 

rAO 
Ar 

Ar 
<_ Cr + CCt2 Ar 
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The first case provides a quadratic estimate like A 2 < CAB + CB 2, which implies A _< 
(1 v 2C)B, where A = AO/Ar  and B = ~R/r .  The second one, under the assumption that 
2C~PR < 1, gives rAO <_ 2 C e d A r  < ~PRAr and so the same linear estimate. 

So far we have obtained 
AO c ~ R  < 
A r -  r 

which gives local Lipschitz continuity of  0, as far as 7tR/r remains bounded, i.e., as far as r stays 
bounded away from 0. By passing to the limit as R ~ r we get also the bound on the derivative 
required by the statement of the theorem. [ ]  

Remark 2.9. What we have just proved is useful when one wants to show uniqueness of  the 
possible limits of subsequences of  (E A Br)/r: It is often enough to find a limit to 0 (r) as r -+ 0. 
To achieve it, it would be enough to have 0 6 BV(O, ro), since any function with bounded 
variation near 0 satisfies a Cauchy condition near the same point, and so it is enough 

fo r~ ~P(Br) dr < + ~  
F 

2.2. Blow-up limits, up to subsequences 

L e m m a 2 . 1 0 .  Chooseapointxo E E and, foreveryr > O, letZr = EAB(xo ,  r). Thefamily 
of  rescaled sets r -1 (Er - xo) is compact, in the metric space of  all non empty compact subsets 
of  B---~ endowed with the Hausdorff distance. I f  r f l (Er , - xo) converge to some set K c B1 for 
a suitable subsequence rj  ~ O, then: 

1. I f  xo is an endpoint, then K is a radius orBs. 

2. I f  xo is a simple point, then K is the union of  two radii of  B1, which form an angle of  at 
least 120 ~ 

3. I f  xo is a triple junction, then K is the union of  three radii orB1, forming angles of120 ~ 

P r o o f  We can assume that x0 is the origin of  the coordinates. 

According to the results in [5], there are p branches of  E going out of  x0, with p 6 {1, 2, 3} 
according to the nature of  x0. We can regard these p branches as p injective curves yi : [0, 1 ] ~ E, 
with yi (0) = x0. Moreover, these curves meet only at the starting point x0 (otherwise E would 
have a loop), and Theorem 2.5 implies that, when r is small enough, each Fi has a unique 
intersection with the circle 0 Br. As a consequence, we can reparameterize each Yi in such a way 
that for r ~ [0, r0] we have Yi 00Br = {yi(r)}, and hence also Er = Ui yi( [  0, r]). 

Thanks to the choice of  r0 (small enough), we can suppose that Er contains no triple junctions, 
other than (possibly) x0. Then applying Lemma 2.4 with I ~ = yi([0, r]) for some i, (2.10), 
and (2.11) yields 

dH (yi([0, r]), xoYi(r)) < CrTt (Br \ {x0}) �9 (2.21) 

Moreover, letting Kr = Ui xoyi (r) denote the union of  the p radii of  Br from the center to the 
points Yi (r), using (2.21) for i = 1 . . . . .  p yields 

dH(~r ,  Kr) <_ CrTz (Br \ {x0}) �9 

Now observe that 7z (Br \ {x0}) --~ 0 as r ~ 0. Then such an estimate is the key tool. Indeed, 
given a sequence of  radii rj ~ O, passing to subsequences (not relabelled) we may suppose that 
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the sets r71Krj converge, in the Hausdorff distance, to some set K, which clearly is the union of 
q radii O(Bl ,  with 1 < q < p. When p = 1 this proves the lemma. 

Now suppose that p = 2. To complete the proof, it suffices to prove that q = 2 (i.e., that no 
two radii of Kr/r  overlap in the limit). 

To this end, we suppose that there exists some e > 0 and a subsequence of radii (still denoted 
by r j) such that the angle formed by, say, the radii xoyl (r j) and xoY2(rj) is less than 2/3rr - e 
for every j ,  and we seek a contradiction. 

Let us apply Lemma 2.3 to the sets U = 0'1 ([0, rj]) tD y2([0, rj])) \ {X0, yl(rj), ~/2(rj)}, 
and V equal to the Steiner connection of the three points xo, Yl (r j )  and F2 (r j). Since clearly 
7-tl(U) > 2rj and dH(U, V) < 2rj, from (2.4)we find 

2rj < 7-t 1 (V) + C ~  (Brj \ {x0}) 2rj . 

Now, due to our assumption on the angle, one can check that there exists 3, depending only on 
e > 0, such that 7-/l(V) _< (2 - 8)rj. Then we obtain 

2rj < ( 2 -  S)rj + C ~  (Brj \ {x0})2rj u  

and we get a contradiction for small enough rj since ~(Brj \ {x0}) ~ 0. 

When p = 2, this shows that the two radii forming Kr tend to form an angle, in the limit, 
which is at least 120 ~ Hence, the limit set K is, in this case, the union of exactly two radii of  B1, 
whose angle is at least 120 ~ 

Finally, when p = 3 is suffices to repeat the same argument, to every pair of  radii in Kr. [] 

For the case of  ordinary points, we give also a stronger result. 

L e m m a  2.11. Suppose xo is a simple point with ~P({xo}) = 0 and r j --> 0 a sequence of  radii 
such thatr~ 1 (Erj - xo) converge to a set K C B---~. Then K is a diameter (i.e., the angle between 
the two radii given by Lemma 2.10 is in fact, 180~ 

Proof. As usual, we will suppose xo = 0. By Lemma 2.10 we know that K is the union of 
two radii, forming an angle ot > 120 ~ If  we set E O O Brj 1 2 = {x j, xj }, we may say 

2 =  7 - / l ( K ) <  liminfT-/l ( E r J  ~ < l iminf  Ixj - x } [  (1-[-Cl~r(~arj) 2) = 2 s i n ( 2  ) . 
j--++oo \ rj / j--++oo rj 

Here the first inequality is a consequence of Golab's  Theorem, while the second comes from 
(2.11). This easily implies a = 180 ~ and the thesis. [ ]  

2.3. F-Convergence 

We want here to give a useful F-convergence result finding a F-limit to functionals minimized 
by sets of  the form )"]Jr : :  ~ ("1B(X0, r).  Here we state our theorem by considering only the case 
when x0 is an endpoint, but the same result is true, with small modifications, also for any point of  
Z which is an atom for 7t. A slightly more sofisticated F-convergence result concerning atomic 
ordinary point will be developed in Section 3. 

Let us consider an endpoint of  E which we will call 0 and a small Br around it. Let Xr be 
the only point of  intersection of E and the boundary of the ball Br. It is clear that Er minimizes, 
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among all compact  connected sets F such that Xr ~ F and 7-/1 (F)  < 7/t  (Xr) ,  the quantity 

d(x, F)  tz(dx) , (2.22) 
r 

where A r  = t - l ( E r )  is the set of  points projected to ~r. What we want to investigate now is 
whether we can find a limit of  a proper rescaling of  the functional appearing in (2.22), in order 
to get information on the limits of  ]~r/r. Let us consider the functionals defined on the set X of  
compact  connected sets contained in the closed ball of  radius 2 and of  length less than 2 (which 
is a compact  metric space, if  endowed with the Hausdorff  topology, as a consequence of  Golab 's  
Theorem), given by: 

/ 

I fAr/r(d(x, F)  -- d(x, 0)) rnrl~ #(dx)  
Fr (1') / 

1 + ~  

if  T 6 F, (1') < �9 

otherwise.  
(2.23) 

Here we denote by m r  the division by r ,  i.e.,: m r ( x )  = x / r .  

Each functional Fr is then minimized by Er/r ,  as far as such sets have length smaller than 2. 
This happens for small r ,  since it holds 

l im - -  - -  1 , 

r-+O r 

as a consequence of (2.11). 

Let us denote by D the application D(x) = x/[x] that gives the direction of  a non-zero 
vector and by v the measure on S 1 given by v = D~(#Iao), where A0 is the set of  point projected 
to the endpoint O. 

L e m m a 2 . 1 2 .  Suppose that on a certain subsequence (not relabeled) it holds Xr / r --9. 2: Then 

it holds Fr r_~ F, where the F-convergence is intended with respect to the Hausdorff convergence 
on X and F is given by 

I f  $1 -~*(v[r)v(dv) 
F( r )  = 1 + ~  

i f  x E F and 7-/1(1')_< 1" 
(2.24) 

otherwise. 

As  usual, 8*(v]1') = supy~r, v . y. As  a particular consequence Nr / r  converges in the Hausdorff 
distance to a minimizer of  F. 

P r o o f  Let us start by the P - l im inf inequality. We have to prove that, for any 1" 6 X and 
Pr -+ P we have lim inf Fr (1"r) -> F ( F ) .  We may suppose that Fr (Fr)  is finite for a subsequence, 
otherwise the l im inf is + ~ ,  and so we have a sequence of  sets 1'r approaching F in such a way 
that Xr ~ Fr and ~ l ( F r )  _< 7"tl(Er)/r -+ 1. It is clear so far that 1' satisfies the constraints 
Y 6 F and 7-/1(I ") < 1, as a consequence of  Handorff  convergence's properties. 

For every x we denote by yx(Fr) (one of) the nearest point(s) to x belonging to 1'r and by 
Zx (Fr)  (one of) the point(s) realizing the max in SUpzcr r x . z .  Notice that zx (1'r) depends actually 
only on D(x). For every point x we have 

X X 
d(x, I ' r )  - d(x, O) = d(x,  yx(Fr)) - d(x,  0) >_ - - -  �9 yx ( r r )  _> - - -  " Zx(rr) �9 

Ixl Ixl 
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So we may estimate 

Fr(rr) > 
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L x . lz(dx) Zx(I'r)mrg 
r/r Ixl 

[ .  - D ( x )  �9 ZD(x)(I'r) #(dx)  
dA r 

= fa-D(x)'Z~ -O(x)'zo(x~(Fr)Iz(dx). 
0 r\AO 

The latter term in the last line tends to 0 with r because the integrand is bounded by 2 and the set 
on which we integrate converges to the empty set. The former indeed is equal to 

f s  -8*(vlFr)v(dv) ~ F(F)  
1 

where the convergence relies on the fact that Hausdorff convergence implies pointwise conver- 
gence of the support functions 8* (see, for instance, [7]). The F-liminf inequality is then proved. 

Let us pass to the F-limsup inequality. For every fixed F such that F(F)  < +oo, we have to 
find a sequence (r'r)r ---> F such that lim sup Fr(Fr) < F(F).  For each r it is sufficient to rotate 
F so that its intersection with the boundary of the unit ball becomes Xr instead of x and to perform 
an omothety around Xr in order to satisfy the length constraint. We have hence a sequence of 
sets l- 'r  such that Fr(Fr) is finite and given by the integral expression in (2.23), for which it holds 
r ' r  ---+ F in the Hausdorff distance. This convergence is true thanks to Xr ~ s and to the fact 
that convergence holds also for the ratios of the omotheties, which are prescribed by the length 
constraints. It remains to estimate Fr (l'r). For each couple of point x, z we have 

Izl 2 
< - D ( x )  �9 z + - -  

21xl 
Ix - z l -  lxl = Ixl 

So we may write 

( ~  2x -z [zl 2 ) 
1 "~j-f + ] - ~  - 1 

f 
Fr(rr) / (Ix - zx(Fr)l - Ixl) mr~ lz(dx) 

JA r/r 
L (  [ZD(x)(Fr)I2~,~[ .] <_ - D ( x ) .  ZD(x)(I~r) + ~ mr~ lz(dx) 

r/r 

= L - - D ( x ) ' Z O ( x ) ( r r ) t Z ( d x ) + f A  -D(x) 'ZD(x)(I 'r) lz(dx)  
0 r\Ao 

+ r fA [ZD(x)(Fr)[2 
r 2lxl # (dx ) .  

In the last sum, the first term yields F(F)  in the limit, while the second and the third tend to zero. 
[ ]  

2.4. I terated est imates  for small  d iameters  

We show here that, if the diameter of the transported set to a certain point of E is sufficiently 
small, the measure ~(Br), for balls centered around that point, can be estimated by r itself. 

L e m m a  2.13. There exists a constant C such that, given xo E E, and ro chosen as usual, i f  
we set k = diam(t-l(Bro)), for allr <_ ro/2 it holds 

~(Br) < Ck (r + ~P(B2r)) �9 (2.25) 
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Proof .  Consider a point of  E,  which we will call 0, together with two balls around it, of  radii 
r and 2r < ro, respectively. Let Xl, x2 be the intersection points of  E and the boundary of the 
biggest ball. We can for each segment Oxi consider the Hausdorff distance dH (E~r, Oxi) between 

it and the corresponding branch of E and the distance dH(~2r, 0Xl tO 0x2). We have a set K in 
which E2r is contained, i.e., the set obtained by fattening the two segments by a quantity equal 
to the latter distance. We may estimate, using each branch of E2r as 1-' in (2.10), 

dH (P,2r, 0Xl U0X2) < max dH ( ]~r ,  0X--~ < Crllr(B2r ) . 
i=1,2 

Consider now the set K I = K tq Br and its convex hull K" .  Since we want to estimate the area of  
the set transported to Br it is sufficient to estimate the area of  the set of  points which are closer to 
K "  than to the points xi. Moreover, being k greater than the diameter of  t -1 (Br), we can replace 
this set by its intersection with Bk. We include this set in the union of 

�9 two stripes T1, T2 which are 2r wide and each 7) is orthogonal to Oxi and has the points 
0 and xi on its boundary, 

A 

�9 a sector E of amplitude 180 ~ - xlOx2 starting from 0, delimited by the boundaries of  
the stripes ]q passing through the origin, 

�9 four small sectors Ci,j, each of them delimited by the boundary of the stripe 7) passing 
through xi and the axis of  the segment ~ ,  where the points Yi,j are the corner points 
of  the boundary of K "  near x i . 

A 

The amplitude of these last sectors is the same of the angle OxiYi,j, which can be estimated by 
C~(B2r)  thanks to the estimate on the Hausdorff distance. We know that also the amplitude ot 
of  the sector E can be estimated the same. In fact, we can consider in (2.11) F = •2r, x --- Xl 
and y = x2. We obtain 

2r < 7 - ~ l ( ~ 2 r ) < 2 r c o s ( 2 ) ( 1  q-Clff(~2r)2)  , 

and, dividing by 2r and using (cos •)-1 ~ 1 + Cfl 2, which is true for fl < zr, we get 

~2 < C1/r(~2r)2 . 

Being/z  a measure with an L ~176 density, it is enough to estimate the areas of 7), E and Ci, j 
intersected with Bk, and we obtain 

~ ( n r )  < C(kr  + k2~r(n2r)) . 

For simplicity we will estimate k 2 by Ck. [] 

The interest in the estimate (2.25) is that we can iterate it, especially when we have small 
diameters of  the transported sets. 

T h e o r e m  2.14. Suppose that there exists rl < ro/2 such that k = d iam( t - l (B(xo ,  rl)))  < 
1 / (2C). Then, for all r < rl we have an estimate like 

Ckr ( 2r ) l~ 
~r(Br) < - -  q- (2.26) 

- 1 - 2Ck \ rl / 
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P r o o f  
obtain 
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Fixed r < rl we can find an integer h such that r l / 2  < r2 h < rl. Iterating (2.25) we 

h -1  C k r  
~(Br )  < Ckr E ( 2 C k ) i  + (Ck)h~(Br l )  < - -  

- - 1 - 2Ck i=0 \ r l  / 
[] 

Notice that, due to the semicontinuous behavior of the diameter of the transported set, 
saying that there exists a small rl such that diam(t -1 (Brj)) < 1/(2C) is the same as saying that 
diam(t -l({x0})) < 1/(2C). 

Notice also the following useful consequence. 

Corollary 2.15. I f  xo �9 E and diam(t - l  ({x0})) < 1/(2C), then ~P({x0}) = O, i.e., all atoms 
o f  Tt have transported sets with large diameter. 

Proof .  Just use (2.26) and r = limr ~(Br) .  [] 

3. Blow-up limits 

3.1. Triple junctions 

We make here use of the previous section's tools to establish the expected result regarding 
singular points of  E. For simplicity we will always center our analysis in a point x0 supposed to 
be the origin. 

Theorem 3.1. Suppose 0 E E is a triple junction: Then there exists the limit as r ~ 0 o f  
Er / r in the Hausdorff  distance and it is composed by the union o f  three rays with 120 ~ angles. 

P r o o f  Thanks to Lemma 2.10 (which states that the limits up to subsequences are shaped like 
the union of  three rays angled 120 ~ ) we just need to show the uniqueness of  those limits. By 
means of Remark 2.9, it is enough to achieve 

~0 r0 < -~-OO . (3.1) 
~/,(B(0, r)) 

dr 
r 

We will show that, for small r, it holds ~(B(0 ,  r)) < Cr 2, thus achieving the goal. 

Let us consider small values of r, such that the angles between the points of  intersection of  
E with the boundary of  B(0, 3r) are all smaller than 130 ~ (we know that for small r this happens, 
otherwise we could produce a subsequence having a limit different from the admissible ones). 
Consider now a point x at a distance Ix] = cr from the origin: We want to show that, if c is 
great enough, it is not possible to have x E t -1 (B(0, r)). Supposing on the contrary that x is 
transported to B(0, r), we gain that no point of E is contained in the ball centered in x and of  
radius r(c - 1). In particular, no point of Z may lay on the part of aB(0, 3r) contained in such 
a ball. Yet, the amplitude of  such arc depends only on c and, as c increases to infinity, tends 
to 2arccos(1/3)  > 130 ~ This would mean that, for big c, we would have an arc of  130 ~ on 
0B(0, 3r) without any of the three points of  intersection with Z, which is a contradiction. So 
there exists a constant co such that t - ]  (B(0, r)) C B(0, cor) and this, since ~ e L ~ completes 
the proof. [ ]  

R e m a r k  3.2. Notice that (3.1) remains true also in the case where the measure/z, instead of  
being L ~ ,  is simply L p with p > 1, because in this case, we can use Holder inequality to get an 
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estimate like 
~(B(O, r)) < Cr 2-2/p , 

and this is sufficient for the convergence of  the desired integral. 
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3.2. Endpoints 

Here we will state an analogous theorem concerning existence of  the limit near an endpoint 
of  E, giving also a characterization of  the direction of  the ray we find as a limit. We use the same 
notation as in the F-convergence subsection, from which this theorem arises. 

Theorem 3.3. I f  O is an endpoint o f  Z the limit Of Er / r in the Hausdorff distance as r -+ 0 
exists and is given by a single ray from the origin in the direction o f - f ) ,  where f) is given by 

f) = fs l  v v(dv) . 

Proof. Thanks to Lemma 2.10 it is enough to determine the direction of  the rays that can 
be possible limits of  subsequences. To do this we use the F-convergence result provided in 
Lemma 2.12. In fact, every set K limit of  a subsequence of  Er / r  intersecting 0B1 in a point 
2 must be the set maximizing f s  ~ ~*(vlF)v(dv) among all sets F compact, connected, passing 

through 2 and such that "H 1 (F) < 1. This maximizer is always a segment of  unit length directed 
from 2 according to the vector f). But we also know that 0 6 K and the only possible position for 
2 so that the maximing set passes through the origin is 2 = -,kf). Then 2 is uniquely determined 
and the limit of  Er/r  exists. [ ]  

3.3. Ordinary points 

Our next step is establishing existence of  the same limit in the four cases in which we will 
divide thegeneral case of  an ordinary point. In fact, we will classify these points x0 according to 
the shape of  the set T(xo) = {x ~ f2 : d(x,  Y,) = Ix - x01}. This set coincides up to negligible 
sets with t -1 (x0). Moreover, T(xo) is always a convex set, thus endowed with its own entire 
dimension: It may be 0, 1, or 2. The four cases will be given by 

1. T(xo) = {x0}, i.e., dimension 0; 

2. T(xo) is a segment starting in x0 (a subcase of  dimension 1); 

3. T(xo) is a segment having x0 in its relative interior (the other subcase of  dimension 1); 

4. T(xo) is two-dimensional (i.e., with non empty interior). 

Let us start from the easiest of  the four cases: 

Theorem 3.4. Suppose 0 is an ordinary point o f  type 3: Then there exists the limit o f  ]~r / r as 
r --+ 0 in the Hausdorffdistance and it is the diameter composed by the two unit rays orthogonal 
to the segment T (0). 

Proof. No optimality of  E is here required: Just notice that E is contained in the complement 
of  two suitable balls tangent in 0 to the segment orthogonal to T(0). [ ]  

Now we move to a case just a little more complicated: 
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T h e o r e m  3.5. Suppose 0 is an ordinary point o f  type 2: Then there exists the limit o f  E r / r as 
r ~ 0 in the Hausdorffdistance and it is the diameter composed by the two unit rays orthogonal 
to the segment T (0). 

Proof .  Now we can only ensure that E stays outside a single ball tangent in 0 to the segment 
orthogonal to T(0): This is enough to say that, provided a limit of a subsequence is a diameter, 
it must be the diameter orthogonal to T(0). But every limit of subsequences here is a diameter, 
thanks to Lemma 2.11, since ap({0}) = / z ( T  (0)) = 0. So the limits are uniquely determined and 
this makes the limit exists. [ ]  

Our next case uses something more, because here T (0) gives no information on the possible 
limit. 

T h e o r e m  3.6. Suppose 0 is an ordinary point o f  type 1: Then there exists the limit o f  Er / r as 
r ~ 0 in the Hausdorffdistance and it is a diameter. 

Proof .  By using Lemma 2.11 on subsequences we know that any limit point in the Hausdorff 
distance has to be a diameter and, to identify it, it is enough to show that the function 0 (with 
respect to any of the two branches of  ~ going out from 0) has a limit. As usual, we will look for 

�9 . r 0 the mequahty f0 O(8(0,r))r dr < +oo ,  required by Remark 2.9. Here we can use the result valid 

when diam(t  -1 (0)) is small ,  given by Theorem 2.14, (we have actually a vanishing diameter) to 
establish an estimate like ~P(Br) < Cr for small r. This gives the convergence of the integrand 
and the proof is achieved. [ ]  

The last case requires something more, that we will state as another F-convergence lemma. 
This time we will use the fact that N f3 Br minimizes, among all sets F sharing with it the same 
two intersections with O Br, the functional 

fA d(X, F)Iz (dx)  + P(7"L1 (Nr) -7-/1(I")) , 
r 

(3.2) 

where the quantity P(e)  is defined, for e < 0, as the increase in the functional if we cut away 
a curve of length - e  > 0 starting from a given endpoint in N (it is in fact, a penalization, if F 
is too long), while for e > 0 it is the diminution (a negative quantity) of  the functional, if we 
add a straight line segment e-long starting from the same endpoint, in the direction of the tangent 
vector in it (which exists and coincides with the direction of fi(x0), thanks to Theorem 3.3). We 
give now an estimate precise of  the term P,  in term of the saved/lost length e (if we save length 
we have e > 0 and P < 0, and vice versa). Let v0 be the unit vector in the direction of ~(x0), 
that we know is the tangent vector to E in the endpoint that we call x0. If  e > 0 we can estimate 

P(e)  
[ 

< 1 (Ix - e v o l -  Ixl) u(dx) 
JA o(xo)-xo 

< - e v o .  + I~(dx) = - e v o .  f~(xo) + o(e) �9 
o(xo)-Xo ~ 

if, on the other hand, e < 0 we have 

f 
P(e)  < ] (Ix - wel - d(x ,  E))  l z (dx ) ,  

JA ~ (xo) 
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where we is the point of  E situated after an arc Fe of  length lel starting form the extremal point 0 
and re = diam(Fe) (for small ~ it holds re = [we - x01). We may go on with the estimation with 

P(e) <_ s (Ix - wel-lx - xol)  (dx) + fA (,x - we l - -d (x ,  E))  Iz(dx) 
0 (x0) r~ tx 0) \A0 (x0) 

< --(we -- xo) �9 fJ(xo) + o(e) + relz(Ar~ (xo) \ AO(XO)) . 

For small e it is clear that rs = Iwe - x01 < IEI and moreover, we have (we - xo)/re = - v o  - 8e 
with 8e ~ 0 as e ~ 0. We can then estimate again 

P(e)  < revo . v(x0) + re~e �9 fJ(xo) + o(e) + o(re) < - e v o  " v(x0) + o(e) . 

Notice that such estimates can be used in fact to get a precise quantitative version of  part of  
the proof Lemma 2.4. 

So in the the minimization problem given by (3.2) it is still true that Er minimizes, if we 
replace the real penalization by a function given by P(e)  = - c e  + o(e), where c = v0. fi(x0) = 
Iv (x0) I. We may also require 

P(e)  > - c e ,  (3.3) 

because the minimization is preserved, if we make bigger the value of  the functional on sets 
different from the minimizer: In this case, no matter if the value of  P is made bigger outside 0 
(it's the same reason for which we have only given estimate from above of  the real penalization). 
We now rescale the functionals as before, obtaining that E r / r  minimizes 

- -  X r , X  r E I ~ , [ f A r / r ( d ( x , F )  Ixl) m r ~ # ( d x ) + l p ( r ( l r - 7 - g l ( F ) ) )  if 1 2 
F r ( r )  = 

+ o e  otherwise, 

where Ir = ,]_~1 ( E r ) / r  --~ 2 [as usual, it is a consequence of  (2.12)] and Xr 1 and Xr 2 are the points 
in which E r / r  intersects the boundary of  the unit ball. 

L e m m a  3.7. Let  F denote the functional given by 

[ c(2- 7-tl(r)) i l  f x l , x  2 E r 
F(F)  = [ +f s~cxf 6* (v lF)v (dv )  - otherwise.  

Then Fr r ,  F with respect to the Hausdorff  convergence on the space X o f  compact connected 
sets contained in a fixed large closed ball, provided x~ --* x i for i = 1, 2. 

Proof .  The proof is close to that of  Lemma 2.12: for the F-liminf inequality fix a F and 
an approaching sequence (Fr)r and use the same estimate to deal with the integral term of  the 
functionals Fr and F.  For the penalization term, thanks to (3.3), we have 

- c ( 1  - ~ I ( F ) )  _< l iminf  1 P(r( lr  - ~ l ( F r ) ) )  �9 
r r 

For the proof of  F-limsup inequality it is sufficient to build a sequence ( F r )  r such that it 
converges to F, the points x / belong to Fr and we have 7-/l(Fr) ~ 7-/I(F): The convergence of  
the last term follows then from the asymptotic behavior near 0 of  the function P and the first can 
be estimated the same as in the proof of  Lemma 2.12. To obtain such a sequence it is sufficient 
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i X i i The convergence x r ~ implies the to apply to F an affine transformation sending x i to %. 
convergences we need. [ ]  

We can now state the last theorem regarding existence of the limit. 

Theorem 3.8. Suppose 0 is an ordinary point o f  type 4: Then there exists the limit o f  Er / r as 
r --~ 0 in the Hausdorffdistance and it is a corner composed by two unit rays. 

Proof .  Being X a compact metric space (see, for instance, [3]), a consequence of  our previous 
F-convergence result (Lemma 3.7), all limits of  E r / r ,  that we know must be the union of  two 
segments (Lemma 2.10), must minimize the functional appearing in Lemma 3.7. We will now 
try to identify those pair of radii that may be minimizers, exactly as in the proof of  Theorem 3.3, 
in order to have uniqueness of  the limits and then the existence of  the limit. 

Let us consider a ball in which the vertical ray directed upwards is given by the vector ~. 
We want to show the existence of  the limit of  E r / r ,  so we must identify the possible limits 
of  subsequences as a unique one. We stress that this is strongly different from saying that the 
functional F has a unique minimizer: For every converging subsequence we have a different 
functional F,  depending on the limit points x i. What we want to do is show that there exists just 
one possible choice of  x i, i = 1, 2 so that the comer composed by the rays arriving in such two 
points minimizes the corresponding functional. We may identify the points x i by means of  the 
angles or, fl between the corresponding rays and the horizontal line. Notice that, if we have some 
two rays as a limit of  subsequence, the set A0 has to be contained in the sector having 0 has a 
vertex and the normal vector to the rays as boundary directions. This implies in particular, that 
a,/~ >_ 0. 

Consider now the ellipse having x i as focuses and 2 as the length of  the greater axe. The 
center 0 lies on it. The tangent direction to the ellipse is not horizontal unless a = ft. Any F 
consisting by two segments joining, in order, x 1 , y, and x 2, where y lies on such an ellipse can be 
used as a variation to K (being K the comer we're taking into consideration as limit of  ~ r / r )  and 
provides the same value as K to the length-penalizing term. Yet, if y has a positive component 
in the direction of  ~, the integral term turns out to be strictly lesser. This shows that only cr = fl 
is possible. 

We are now going to perform variations in which we move the vertex of  the comer up, or 
down to a certain value y of  the J-component. The value of F on the set F obtained in such a 
way can be estimated by 

f s  v .  v(dv)  - c(2 - N I ( F ) )  = I~1 + cT-tl(F) - 2c ,  yvo ~ y 

1 

where vo is the unit vector in the direction of  ft. By fi we mean the vector calculated at 0, while 
we denote by ~(x0) the one obtained at the endpoint x0. Notice that c = IO(x0)l. We have 
N I ( F )  = 2~/cos 2 ot + (y - sin or) 2 and we may write at the first order in y: 

F ( F )  = - y  Ivl + c y s i n a  + o ( y ) .  

Optimality of  K (i.e., y = 0) gives so necessarily 1~] = c s ina ,  and this completes the determi- 
nation of  a .  [ ]  

4. Something more on regularity 

We present in this section a regularity result, as a by subproduct of  our previous analysis. 
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Theorem 4.1. Let  y be an arc length parametrization o f  a subset E1 C E consisting o f  
a simple curve with no triple junction nor endpoint in its relative interior, such that i t  holds 
k = SUpx~ 1 diam(t -1 {x}) < 1/(2C). Then y ~ C l'l and i tho lds  

Ck IY"I < 
- 1 - 2Ck  

Proo f .  Notice that the condition on the diameters of the transported sets prevents E1 to contain 
atoms, thanks to Corollary 2.15. So, writing E 1, if necessary, as a countable union of  subsets, we 
can suppose that it is compactly contained in the complement of  triple junctions, endpoints and 
atoms with mass larger than (2C) -1 . 

Because of  semicontinuity, for every point x 6 E1 it will exist a ball B(x ,  rl)  such that 
diam(t -1 (B(x ,  rl)))  < 1/(2C). We can also suppose rl < r0[E1] (the radius defined in Theo- 
rem 2.7). Then for every y E B(x ,  r l /2 )  it holds diam(t -1 (B(y ,  r l /2) ) )  < 1/(2C). This means 
that we can use estimate (2.26) in all these points. By using also Theorem 2.8 we can then say 
that, whenever Yl = y ( q )  and Y2 = y(t2) are points in such a neighborhood at distance r, we 
can estimate 

Ckr  
AO(yl ,  Y2) --< - -  + rC~C(rl) , 

1 - 2Ck  

where AO(yl ,  Y2) is the angle between the tangent vector to E in Yi and the segment ~ (such 
an angle can be estimated by the variation of  the function 0) and c~ is an exponent greater than 1. 
By writing the same inequality interchanging the role of Yl and Y2, summing up, and taking into 
account that y is an arc length parametrization, so that all derivatives are unit vector determined 
only by the direction of the tangent vector, we get 

Ckr  
lY'(q) - V'(t2)l < - -  + rC~C(rl) �9 (4.1) 

- 1 - 2Ck 

Taking into account that r = lYl - Y2] _< Iq - tzl, this implies that y is locally C 1,1, and so it 
has almost everywhere a second derivative. Passing to the limit in (4.1) we get 

Ck 
ly"(ol  < - 1 - 2Ck  

for almost every t. [ ]  

Let us have a look to some consequences. First of  all we see that the situation analyzed in 
Theorem 3.6 is in fact impossible to be found. 

Corollary 4.2. No ordinary point  xo in E is such that T (xo) = {xo}. 

Proo f .  Just notice, that, thanks to Theorem 4.1, in a neighborhood of  such a point we should 
have a C ~'1 curve. But for y e C l'l in every point of the curve we have a positive radius ball 
to which ~/is tangent from outside in the considered point. This ensures the existence of  some 
more points, different from x0, which are transported to x0. [ ]  

Next consequence deals with triple junctions and can be considered a quite complete answer 
to the question about them posed in [4]. We will state it in the form of an all-inclusive theorem. 

T h e o r e m  4.3. Suppose that xo ~ E is a triple junction: Then the three branches o r e  starting 
from it are parametrized by arc length by C 1'1 curves at least in a neighborhood o f  xo and have 
tangent vector in xo which form three 120 ~ angles. 
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Proof Just use previously proved results (Theorem 3.1) and notice that, due to t-l(Br) C 
Bcor, we have diam(t -1 (x0)) = 0, which is enough for Theorem 4.1 and local C 1'1 regularity. [ ]  
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