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ABSTRACT. We study the H-regular surfaces, a class of  intrinsic regular hypersurfaces in the setting 

of  the Heisenberg group H n = C n • R =- ~2n+l endowed with a left-invariant metric dec equivalent 

to its Carnot-Carath~odory (CC) metric. Here hypersurface simply means topological codimension 1 

surface and by the words "'intrinsic'" and "'regular" we mean, respectively notions involving the group 

structure o fH  n and its differential structure as CC manifold. In particular, we characterize these surfaces 

as intrinsic regular graphs inside H n by studying the intrinsic regularity of  the parameterizations and 

giving an area-type formula for  their intrinsic surface measure. 

1. I n t r o d u c t i o n  

In this article we study the H-regular surfaces, a class of  intrinsic regular hypersurfaces in 
the setting of  the Heisenberg group H n = C n x ]R - •2n+l endowed with a left-invariant metric 
do~ equivalent to its Carnot-Carath6odory (CC) metric. In particular, we  (locally) characterize 
them as intrinsic regular graphs inside Hn(see Theorems 1.2 and 1.3 below). Here hypersurface 
simply means topological codimension 1 surface and by the word "intrinsic" and "regular" we 
will mean of  notions, respectively, involving the group structure of  H n and its differential structure 
as CC manifold in a sense we  will precise below. 

This notion of  regular hypersurface has been introduced in the setting of  Carnot groups, of  
which H n is the simplest example, in order to study the classical problem of  Geometric Measure 
Theory (GMT) of  defining regular surfaces and different reasonable measures on them. Moreover, 
this problem has been also carried out in the setting of  Carnot groups and more generally in a 
metric space by many authors (see [50], [51], [10], [36], [38], [33], [14], [26], [32l, [13], [3], [4], 
[27], [52], [48], [28], [40], [29], [42] and [6]). On the other hand, the notion of  intrinsic graph 
has been recently introduced and studied in [30] in the setting of  a Carnot group even if it was 
already implicitly exploited in [27]. 
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Throughout this article, we shall denote the points of H n by P = [z, t] = [x + iy, t], z E C n, 
x, y ~ ~n, t 6 I~. If  P = lz, t], Q = [(, r]  G H n and r > 0, following the notations of  [57], 
where the reader can find an exhaustive introduction to the Heisenberg group, we define the group 
operation 

P -  Q :=  [z + (, t + r + 2~m(z~)]  (1.1) 

and the family of  nonisotropic dilations 

3r(P)  :=  [rz, r2t], for r > 0 .  (1.2) 

Moreover, H n can be endowed with the homogeneous norm 

Ilel l~ :=  max {Izl, Itl 1/2 } (1.3) 

and the distance doo we shall deal with is defined as 

d (e, Q):= II a l l  (1.4) 

It is well known that H n is a Lie group of  topological dimension 2n + 1, whereas the Hausdorff 
dimension of  (H n, doo) is Q :=  2n + 2 (see Proposition 2.1). 

(]HI n, doo) provides the simplest example of  a metric space that is not Euclidean, even locally, 
but is still endowed with a sufficiently rich compatible underlying structure, due to the existence of 
intrinsic families of  left translations and dilations, respectively induced from the group law (1.1) 
and dilations (1.2). Indeed, the geometry o f H  n is noneuclidean at every scale, since it was proved 
by S. Semmes [56] that there are no bilitschitz maps from H n to any Euclidean space. Our interest 
can be viewed in the framework of  the general project meant to develop GMT in the setting of  
metric spaces. Such a project, already embryonally contained in Federer's book [22], has been 
explicitly formulated and carried on in the last few years by De Giorgi [18, 19, 17], Preiss and 
Tis~r [54], Kirchheim [36], David and Semmes [14], Ambrosio and Kirchheim [3, 4], Lorent [39] 
and Mattila [45]. It is well known that H n is a Carnot group of Step 2. Indeed, its Lie algebra On 
is (linearly) generated by 

0 0 0 0 0 
= - -  -- 2 x j ~ ,  for j = 1 . . . . .  n; T = - -  , (1.5) Xj  Oxj + 2yj Ot' YJ Oyj Ot 

and the only nontrivial commutator relations are 

[Xj ,  Y j l = - 4 T ,  for j =  1 . . . . .  n .  

Throughout this article, we shall identify vector fields and associated first-order differential 
operators; thus, the vector fields X1 . . . . .  Xn,  Y1 . . . . .  Yn generate a vector bundle on H n, the 
so-called horizontal vector bundle HH n according to the notation of  Gromov (see [33] and [38]), 
that is a vector subbundle of TH n, the tangent vector bundle of  H n. Since each fiber of  HH n can 
be canonically identified with a vector subspace ofI~ 2n+l , each section q9 o f H H  n can be identified 
with a map r : ]HI n ~ ]1~ 2 n + l  . At each point P ~ H the horizontal fiber is indicated as HIHI~, and 
each fiber can be endowed with the scalar product (., .)e and the associated norm [ - IP that make 
the vector fields Xl  . . . . .  Xn,  Y1 . . . . .  Yn orthonormal. Hence, we shall also identify a section of  
HH n with its canonical coordinates with respect to this moving frame. In this way, a section ~o will 
be identified with the function ~0 = (~01 . . . . .  r ) : Hn ~ ]~2n such that q9 = y~ (r Xi  + ~Pn +i ~ ) .  
Analogously, if f is a real function defined in an open subset S'2 C H, its H -gradient is the section 
of HH n defined by V H f  :=  ( X l f ,  . . . .  X ~ f ,  Y l f ,  . . . .  Y n f ) .  As it is common in Riemannian 
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geometry, when dealing with two sections ~o and ~p' whose argument is not explicitly written, 
we shall drop the index P in the scalar product writing (~0, ~/) for (~0(P), ~0'(P))p. The same 
convention shall be adopted for the norm. 

To introduce our results, let us start by recalling some related notions already existing in the 
literature. 

The two key points we want to stress now are the notions of intrinsic regular hypersurface 
and graph in H n. A general and more complete discussion of these topics in Carnot groups can 
be found in [30]. 

Let us recall the notion of regular surface is related to a notion of rectifiability in a metric 
spaces which goes back to Federer (see [22] 3.2.14) and that has been used by Ambrosio and 
Kirchheim (see [3, 41) in the framework of a theory of currents in metric spaces (as for the 
rectifiability in metric spaces see, for instance, [36, 54] and also the monograph [44] and the 
references therein). According to this notion, a "good" surface in a metric space should be the 
image of an open subset of an Euclidean space via a Lipschitz map. Unfortunately, such a notion 
does not fit the geometry of the Heisenberg group, that indeed would be, according with this 
definition, purely unrectifiable (see [3]). On the other hand, in the Euclidean setting R n, a C 1- 
hypersurface can be equivalently viewed as the (local) set of  zeros of  a function f : •n ~ It{ 
with nonvanishing gradient. Such a notion was easily transposed in [27] to the Heisenberg group, 
since there is an intrinsic notion of C~-functions introduced by Folland and Stein (see [24]): 
We can say that a continuous real function f on H n belongs to C ~ ( H  n) if V ~ f  (in the sense 
of  distributions) is a continuous vector-valued function. Thus, an H-regular  surface S will be 
locally defined as the set of  points P E H such that f (P )  = 0, provided that V~qf # 0 on S (see 
Definition 2.13). A few comments are now in place to point out similar geometric properties (in 
the measure theoretical sense) of  the ]HI -regular surfaces and classical (Euclidean) regular surfaces 
and to mention some of their applications. 

First of  all, we point out that the class of  H-regular  surfaces is deeply different from the 
class of  Euclidean regular surfaces, in the sense that there are H -regular surfaces in ]HI 1 = R 3 
that are (Euclidean) fractal sets (see [37]), and conversely there are continuously differentiable 
2-submanifolds in R 3 that are not H-regular hypersurfaces (see [27], Remark 6.2 and Example 2). 
We notice that Euclidean continuously differentiable 2-manifolds are H -regular surfaces provided 
they do not contain characteristic points, i.e., points P such that the Euclidean tangent space at P 
coincides with the horizontal fiber HH'~, at P. Frobenius theorem yields that, for a general smooth 
manifold, the set of  characteristic points has empty interior; in fact there are few characteristic 
points [ 13, 5, 42]. 

The important point supporting the choice of  the notion is the fact that this definition yields 
an Implicit Function Theorem, proved in [27] for the Heisenberg group and in [28] for a general 
Carnot group (see also [11]), so that a H -regular surface locally is a Xi-graph (or a Yi-graph) 
(i = 1 . . . . .  n), namely (see Definition 2.19) there is a continuous parameterization of S 

: w C (Vi, p)  --+ (S,  d~c) (or qb : o9 C (Vi+n, I " l) ---> (S ,  doo) )  (1 .6)  

qb(A) := A.  ((b(A)ei) (or qb(A) := A.  (dp(A)ei+n)) (1.7) 

where r : w --+ R is continuous, Vi := {(x, y, t) ~ H n : X i = 0} (or V/+n := {(x, y, t) ~ H n : 
Yi = 0}), o9 C V j ,  {ej : j = 1 . . . . .  2n + 1} denotes the standard basis in 11{ 2n+1 -- H n and we 
consider p - I �9 I the Euclidean distance on Vj --= ]~2n (j  = 1 . . . . .  2n), (see Theorem 2.16). In 
general, such a parameterization is not continuously differentiable or even Lipschitz continuous. 
Indeed, it was proved in [37] that generally its best Hrlder  continuous regularity turns out to be 
of  order 1/2 with respect to the distances given in (1.6). Nevertheless, from this parameterization 
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we infer that S is a topological submanifold of  dimension 2n. Besides, by using again the Implicit 
Function Theorem and the Blow-Up Theorem (see Theorem 2.17), an area type formula for the 

(Q - 1)-dimensional spherical Hausdorff measure S O-1 induced in (H n, d,,~) and the existence 
of  the tangent group in the sense of  GMT for H-regular surfaces were established (see also [27] 
and [28]). 

Based on this, also the notion of  H-rectifiability was introduced: A set S C H n is said (Q - 1)- 
dimensional H-rectifiable if there exists a sequence of  H-regular surfaces (Si)i in ]HI n such that 

,sQ-1 (S \ U i c N S i )  = O. This intrinsic notion of  rectifiability has been proven particularly useful 
to obtain in [27] an analog of De Giorgi's structure theorem for sets of intrinsic finite perimeter in 
the setting of  Heisenberg group, and later in the setting of  a general Camot group of Step 2 [29]. 
The notions of  Euclidean and H-rectifiability have been compared in [7]; generalizations of this 
notion of  rectifiability have been studied by V. Magnani in [42] for general Carnot groups (see 
also [41] for a general account of  GMT in Carnot groups). 

One of  the main aim of  this article is to find out necessary and sufficient (manageable) 
assumptions on r : co C Vj ~ ]I{ ( j  = 1 . . . . .  2n), besides the continuity, assuring that the 
intrinsic graph 

= G~z,r :=  qb(co) (1.8) S 

is H-regular if ~ : co ~ H" is the map defined in (1.7). Namely which other (minimal) 

assumptions, more than the continuity of  r need in order G i ,  r turns out to be H-regular. 

We will see that these additional assumptions will be characterized in terms of  an intrinsic 
differential structure on the subgroup Vj ------- ]I{ 2n ( j  = 1 . . . . .  2n) induced by the graph distance 
defined on Vj in a classical way. More precisely, without loss of generality we can assume j = 1. 
Then there is a natural identification between V1 and I~ 2" given by the diffeomorphism 

t : R  2" ) V 1 c H  n (1 .9)  

defined when n = 1 as 

t(0, r)  = (o, 0, r ) ,  (1.10) 

while for n _> 2 and (O, v, 15) r R 2n ~ ~r/ X --v]]~2n-2 • ~-r t is defined as 

t ( ( r l ,  V, 15)) = (0 ,  1) 2 . . . . .  1)n, ;1, 1)n+2 . . . . .  1)2n, 15) , (1.11) 

where v = (1) 2 . . . . .  Vn, 1)n+2 . . . . .  U2n ). Thus, since V1 is a subgroup of  H n closed with respect 
to the dilations in (1.2), ][{2n c a n  be endowed through this identification by a structure of  homo- 
geneous group in the sense of  Folland and Stein (see [24]), i.e., we can define a group law in 
~ 2 n  

A * B : = t - I ( t ( A ) . t ( B ) )  A, B ~ R 2n (1.12) 

and a family of  intrinsic dilations 8~ " R 2n -+ ]~2n (k > 0) 

3~(A) :=  t--l(3z(t(A)) ~ ~2n (1.13) 

such that (R 2n, . ,  8~) turns out to be a homogeneous group. 

Then (R 2n, . ,  8~) can be endowed of  a natural intrinsic linear structure and, inspired by 
Pansu's ideas (see [51] and also [27] Section 5 and [41] Section 3.1), we can naturally define a 
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,-linear functional L : ]~2n ~ ]I~ as a homomorphism which is also positively homogeneous of  
degree 1 with respect to the dilations in (1.13). 

Thus, fixed ~b : co C ]I~ 2n ~ ]I~, we can construct a map p ,  : co x co ~ [0, + ~ )  defined as 

p4~(a, B) := lrf - ~l + ]r' - r + Z(dp(a) + fb(B))(q' - q)lU2 (1.14) 

when n = 1, A = (r]', rl), B = (0, r)  6 co and 

pg~(A, B) :=] (O ' ,  v ' ) - ( r / ,  v )122 , , _ ,+ [ r ' -  r +2(q~(A)+g)(B))(O' - O) + r v)] 1/2 (1.15) 

whenn  > 2 ,  A = ( q 1 ,  v/, r,), B = (q, v, r)  C co and 

n 

a ( v ' ,  v ) : =  2 Z (vI'+jvj - v jv '+J)  
j = 2  

t Vl . . .  1)I i ~ 2 n - 2 .  if v = (v2 . . . . .  Vn, Vn~-2 . . . . .  v2,), v' = (v~ . . . . .  v,,, n+2' ' 2,,) 6 

If  there is Cl > 0 such that 

14~(A) - 4~(B)I <_ c~ p4~(A, B) (1.16) 

for all A, B 6 co, then the quantity po in (1.14) and (1.15) is a quasimetric on co (see Proposi- 
tion 3.1). We will call p~ "graph distance" since in this case it is equivalent to the metric d,~ 
restricted to the graph S in (1.8), i.e., there exists c2 > 0 such that 

1 
- -  po(A,  B) < d~(cO(A), ~ ( B ) )  < c2p4~(A, B) V A ,  B ~ co. (1.17) 
C2 

Now we can state our notion of  W~-differentiability. 

Def in i t ion  1,1. Let co C ]I~. 2n be an open set and let q~ : co -+ ~ be a fixed continuous function. 
Let A0 c co and ~p �9 co --~ ~ be given. We say that 7t is W~-differentiable at A0 if there is a 
�9 -linear functional L : ]~2n __+ ]I~ such that 

I~P(A) - ~(Ao) - L (Ao l  * A)] 
lim = 0.  (1.18) 

a---~ ao p4~(A, Ao) 

We say that ~p is uniformly W~~ at A0 if there is a *-linear functional L : 
~2n ~ ]~ such that, if we put 

MO(~, Ao, L, r) :=  sup 
A#A'  

A,XEB(Ao,r) 

I~(a') - ~ r ( A ) -  L(A  -1 . A')I | 
/ (1.19) 

where B(Ao, r) denotes the Euclidean (open) ball centered at A0 with radius r in ]~x 2n,  then 
limr$o M~(~,  A, L, r) = 0. 

It is straightforward that the uniform W e-differentiability implies the W e-differentiability. 
Moreover, it is a good definition since if ~p is Wr at A0 ~ co, then there is an unique 
,-linear functional L : I~ 2n --+ IR verifying (1.18) and we will denote L :=  d w , ~ ( A o )  and we 
will call it the We-differential of  7r at A0. 
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Let Jr : 11~ 2n ~ II~ 2 n - 1  the projection, respectively defined as zr : N2 _ IR, x IRr --+ IR~, 
zr((7, r))  :=  7 when n = 1 and rr : ][~2n ~ .  If{r/ X II~ 2n-2 X IRr ~ lI~ 2 n - 1  ~ ]I~ X ]t~ n-z, 

rr((7, V, r))  :=  (7, v) when n > 2. Let us denote by (., -) the standard scalar product on R ~n-l, 
2n t i.e., (7, 7 ~) :=  7 7 t when n = 1 and ((7, v), (7 t, v~)) :=  7 7 t + Y'~q=2,j#n+l vjvj  when n >_ 2. 

Then we can simply characterize the ,-linear functionals on (R 2n, , ,  3~). Indeed, for every ,-linear 
function L : N 2n --* R there is an unique wL 6 R 2n-1 such that L(A) = (wL, rr(A)) for every 
A E N 2n (see Proposition 2.15). In particular, if ~p : co --~ R is Wr at Ao then we 
will denote W 4 ap (Ao) the unique vector in N 2n - 1 for which dw~, ~p (Ao) (A) = (W r ~p (Ao), ~ (A)) 
for every A 6 ]R 2n. 

The tangent space of V1 is linearly generated by the vector fields which are the restrictions of 
X2 . . . . .  Xn, Y1 . . . . .  Yn, T to V1, and so we can define the vector fields X2 . . . .  Xn, Y1 . . . . .  Y~ 
and f on R 2n given by ~'j :=  ( t - l ) . x j  and Yj :=  0 - 1 ) . y j ,  T :=  ( t -1 ) .T ,  where 0 - 1 ) .  is 
the usual push forward of  vector fields after the diffeomorphism L- 1. In coordinates, they can be 
written as 

Y~ (7, r) O 
337 (1.20) 

T(7, r) = - -  
Or 

if n = 1, and as 

0 0 
Xj (7, v, r)  = ~vj  + 2Vj+n -~r for 

O0 

Yj(7 ,  v, 12) -- 0 2v j  O Ovj+~ ~-r for 

:~(0, v, r) = ~ ,  

j = 2  . . . . .  n 

j = 2 , . . . , n  
(1.21) 

if n > 2. For n + 1 ~ j < 2n we will also use the notation Xj "= Yj_n; notice that the vector 
fields X j, Y j, T are ,-left invariant. 

Let 4~ : co --+ R be a given continuous function and n > 1; we will denote with W ~ :=  

(W~2 . . . .  W~2n) the family of  (2n - 1) first-order differential operators defined by 

O 0 
XJ - -  O V j  "1- 2Vj+n-~T if 2 < j < n 

3 4 r  if j = n + l  Wf := Y , - 4 r  0-0- 
O 3 

Yj-n - Ovj 2vj-n-~r if n + 2 < j <_ 2n , 

while when n = 1 we put W ~ = W :  :=  YI - 44~T = ~ - 4 r  ~ .  

We will prove that if 4~ ~ C 1 (co) then C 1 (co) functions are uniformly Wr too. 
More precisely, if q~, gr E C 1 (w), then ~r is uniformly W~-differentiable at A for every A ~ co 
and 

W~gt(A) = X j ~ ( A )  i f j  ~ n + 1 ; 

r O~(A ) _ 4r O~(A) 
Wn+I~(A)  = 07 Or " 
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In particular, let us notice the (nonlinear) differential operator 

Cl(co) ~ 4' ~ ~4,  := W~+14, (1.22) 

is a Burgers'  type operator which can be also represented in distributional form as 

e234 , _ 04, 204, 2 
at/ Or 

(see also Remark 5.2). 

Now we are in order to state the main results of this article. The former is the characterization 
of EI-regular intrinsic graph G1,r  [defined as in (1.8)] in terms of the uniform Wr 

of 4, " co C R 2n -+ ~ (see Theorem 4.1). Moreover, also an area type formula for G~,r  with 

respect to the (Q - 1)-spherical Hausdorff measure S Q - t  is proved [see (4.2)]. We will collect 
them in Theorem 1.2 below. 

The latter is the characterization of the uniformly W r of 4, �9 to C ~2n ~ ]~ 

in terms of existence of the derivatives W~4, ( j  = 2 . . . . .  2n) in co in a suitable sense (Theorem 1.3 
below). 

Theorem 1.2. Let co C ~2n be an open set and let 4, : co -+ R be a continuous function. Let  

�9 �9 co -+ H" be thefunction d e f i n e d b y O ( A )  := t(A) �9 4,(A)el a n d l e t S  := O(w). Then the 
following conditions are equivalent: 

v(1)(p) (i) S is an H-regular surface and s < 0 for "all P e S, where we denote with 

v s (P)  = (V(s 1) (P)  . . . . .  V (s 2n ) ( P ) ) the horizontal normal to S at a point P E S; 

(ii) (9 is uniformly W r at any A e co, and the vector function Wr �9 co --* 
]I~ 2n-1 is continuous. 

Moreover, for all P e S we have 

. 1 Z 4, / (| 
vs(P)  = V/1 + IW C' ,/1 + [W 4,12} 

(1.23) 

and 

s Q - I ( s )  = c(n) f o  V/I q- IWq~4,12 df'2n (1.24) 

where ~2n denotes the Lebesgue measure on ~2n and c(n) is a suitable constant depending on n 

only. 

Theorem 1.3. Let  co C ~2n be an open set and let 4, : co --~ ~ be a continuous function. Then 

the following conditions are equivalent: 

(i) 4, is uniformly Wr at A for each A E co; 

(ii) there exist w c C~ R 2n-1) such that 
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in distributional sense in 09, and a family {r C C1(09) such that, for any open set 

09' G 09, we have 

CE --+ r and W r r ~ w uniformly on 09' . (1.25) 

Moreover, w = W r162 on 09 and 

I 

lim sup J Ir - r  
r--+0+ / IA - BI�89 

for each open set 09' ~ 09. 

�9 A , B  e 09',0 < I A - B I  < r }  = 0  (1.26) 

The proof of  Theorem 1.2 relies on a Mean Value Theorem for functions in CI(~-]I n) 
(see Lemma 4.2), the Implicit Function Theorem, and Whitney Extension Theorem (see The- 
orem 2.18). In particular, by means of Whitney Extension Theorem and the definition of intrinsic 
graph (1.8), we can transfer the notion of C~ intrinsic differentiablity from lI-I n in the one of 
uniform Wr on the subgroup V1 ~ ~2n and vice versa. 

Theorems 1.2 and 1.3 give some partial answers to the problem of the good parameterization 
of H-regular surfaces proposed in [27]: To find out a model metric space such that each H-regular 
surface can be locally viewed as its image through a bi-lipschitz continuous map (see also [55, 56] 
for similar problems in a more general setting and [52, 12] for Carnot groups). Indeed, from 
Theorem 1.2 we infer that, if S = G~,r := ~(09) is H-regular, then r : (09, pc) --+ ~ is locally 
Lipischitz continuous, i.e., (1.16) locally holds as well as (1.17). On the other hand, (1.17) 
means the parameterization qb in (1.6) is locally bi-lipschitz continuous provided p _-- pc (see 
Corollary 4.3). Moreover, by Theorem 1.3 it can be proved it is no longer true that r : (09, p) --+ R 
is locally Lipischitz continuous when p denotes the so-called parabolic metric on 1R 2 = IR0 x Rr ,  
i.e the metric p ---- P4, in (1.14) with r = 0 (see Corollary5.10). Anyway it is still an interesting 
open problem to understand whether, for instance, for a given H-regular S = G~,r there exist a 
metric p on V1, independent of S, and a suitable locally bi-lipschitz continuous parameterization 
t~ : ~ C (V1,/9) ~ (S, doo) �9 

Let us stress that (1.24) and (1.23) are the exact counterparts of  the analogous formulas 
for the inward normal and the area of  (Euclidean) regular (n - 1)- graphs in R n, provided the 
replacement of  Wr162  with the classical gradient Vr  of the parameterization r 

The proof of Theorem 1.3 relies on the construction of an exponential map for vector fields 

W f ( j  = 2 . . . . .  2n) (see Lemma 5.6) and on a priori uniform H61der continuous estimates for 

C 1 (09) solutions r of the first-order nonlinear PDE's  system 

W ; r  -~- //3j j = 2 . . . . .  2n 

with given wj  E C~ (see Theorem 5.9). Let us notice that the construction of an exponential 

map for the vector field W r is not trivial since its coefficients are only H61der continuous and n+l 
then it requires an ad hoc argument. 

Theorem 1.3 allows also the construction of explicit simple examples of uniform W 4'- 
differentiable functions r : 09 C ]~2 ~ ]1~ which are not Euclidean C 1-regular. For instance, in 
the case of  the first Heisenberg group H 1 the following corollary holds (see Corollary 5.1 1). 

C o r o l l a r y  1.4. Let09 := (a, b) x (c, d) C ~;~2 ~_ ]~0 • ]~r andle t r  : 09 --~ • be a continuous 
function which depends only on r, i.e., r = r  : (c, d) -* JR. Suppose that r 2 : (c, d) --~ R 
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is o f  class C 1 . Then r is uniformly Wr at A for every A c co and 

W e e ( A )  ---- (~3r = - 2 ( r  

195 

In particular, from Corollary 1.4, Theorems !.3 and 1.2 it follows that, if r : R ~ IR, 
r  :=  Irl ~ with 1/2 < a < 1, then the intrinsic graph S = G~,r is a H-regular surface in 

H 1 but no longer an Euclidean regular graph in any neighborhood of  the origin (see Example 3.9 
in [30]). 

Let us point out that, by Theorem 1.2 and the example given in [37] of  an H-regular surface 
in H 1 ---- ~3 not 2-Euclidean rectifiable, it follows that uniformly Wr functions can 
be much more irregular from the Euclidean point of view than the previous one. 

Eventually, let us give a short abstract of  the article. In Section 2 we introduce our notations 
and we recall more or less known results; in Section 3 we study the graph distance and the notion 
of  Wr in/R2u; in Sections 4 and 5 we essentially prove the results, respectively 
collected in Theorems 1.2 and 1.3. 

2.  N o t a t i o n s  a n d  p r e l i m i n a r y  r e s u l t s  

Besides the group operation in H" and the dilations defined in the introduction, it is also 
useful to consider the group translations rp : H u -+ H" defined as 

Q w-~ r e ( Q )  :=  P .  Q 

for any fixed P 6 H n. We denote as p - l  :=  [ - z ,  - t l  the inverse of  P and as 0 the origin of  
R 2n+1 . We shall endow H n with the homogeneous norm II P I1oo :=  max{Izl, I tl 1/2} and with the 
distance, associated to the norm, 

doe(P, Q ) : =  II e - ~  a [ l ~ "  (2.1) 

We explicitly observe the following. 

P r o p o s i t i o n 2 . 1 .  The function d ~  delined by ( 2.1) is a distance in H n and the usual properties 
related with translations and dilations hold, i.e., u P, Q, Q' ~ H n andVr > 0 

doc(rpQ, r p Q ' ) = d o o ( Q , Q ' )  and do~(6rQ, g r Q ' ) = r d o ~ ( Q , Q ' ) .  (2.2) 

In addition, for any bounded subset f2 o f H  n there exist positive constants cl ( f2 ), c2 ( g2 ) such that 

_ _ ~ l  1/2 (2.3) cl(~2)lP - QIR2,+I < doo(P, Q) < c2(f2)lP - -  ~ 1 ~ 2 n 4 - 1  

for P, Q ~ f2. In particular, the topologies defined by d ~  and by the Euclidean distance coincide 
on H n . 

R e m a r k  2.2. We stress that, because the topologies defined by d ~  and by the Euclidean distance 
coincide, the topological dimension of  H n is 2n + 1. On the contrary, the Hausdorff dimension 
of (H n, doc) is Q = 2n + 2. 

From now on, U(P, r) will be the open ball with center P and radius r with respect to the 
distance d~ .  We notice that U(P, r) is an Euclidean Lipschitz domain in ~2n+l. 

There is a natural measure dh on H n which is given by the Lebesgue measure d s  2~+1 = dz dt 
on C ~ • K. The measure dh is left (and right) invariant and it is the Haar measure of  the group. 
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If E C N n then I EI is its Lebesgue measure and ogk will denote the k-dimensional Lebesgue 
measure of  the unit Euclidean ball in I~ k. 

Definition 2.3 (see [22]). We shall denote by ~t~m the m-dimensional Hausdorff measure 
obtained from the Euclidean distance in ~2n+1 _ Hn, and by 7-L m the m-dimensional Haus- 
dorff measure obtained from the distance d ~  in H n. Analogously, S m and s m  will denote the 
corresponding spherical measures. 

Translation invariance and homogeneity under dilations of  Hausdorff measures follow as 
usual from (2.2), more precisely, we have the following. 

Proposition 2.4. Let g2 c H n, p c H n and m , r  E [0, ~ ) .  Then 

~ - ~ ( ' g p ~ ' ~ )  = ~t'~c(~'2 ) and " ~ - ~ ( ~ r  (~'~)) = r m T - L ~ ( ~ ) .  

To simplify the notations it will be sometimes useful to adopt the convention Xj  :=  Yj-n 
for n + 1 < j < 2n, where Xj and Yj ( j  = 1 . . . . .  n) are the generators of  the Lie algebra ~. 
defined in (1.5). 

For sake of  completeness, let us recall here the definition of the Carnot-Carath6odory metric 
associated with X1 . . . . .  X, ,  Y1 . . . . .  Yn. In fact, this definition has been developed in a much 
larger setting (see, e.g., [23, 49]). 

Definition 2.5. We say that an absolutely continuous curve y : [0, T] --~ H n is a subunit curve 
with respect to X l . . . . .  Xn, Y1 . . . . .  I1, if there exist real measurable functions al (s) . . . . .  a2n (s), 
s E [0, T] such that ~ j  a 2 < 1 and 

n n 

ft(s) = Z a j (s )Xj(y(s ) )  + Z aj+n(s)Yj(y(s)), for a.e. s 6 [0, T ] .  
j = l  j = l  

If P1, P2 6 Hn, their Carnot-Carathdodory distance de(P1, Pz) is 

de(P1,/)2) = inf {T > 0 : 3V " [0, T] ~ H n subunit, y(0) = P1, y (T)  = P2} �9 

Notice that the above set of curves joining P1 and P2 is not empty, by Chow's Theorem, since 
the rank of  the Lie algebra generated by X1 . . . . .  Xn, Y1 . . . . .  Yn is maximal, and hence dc is a 
distance on ]I-lI ~. We shall denote by Uc (P, r) the open balls for de. 

The following result is well known: See, for instance, [8, 59]. 

Proposition 2.6. The Carnot-Carathdodory distance dc is (globally) equivalent to the distance 
d~ defined in (2.1). 

If  f2 is an open subset of H n and k > 0 is a nonnegative integer, the symbols C k (f2), C ~ (f2) 
indicate the usual (Euclidean) spaces of  real valued continuously differentiable functions. We 
denote by Ck(f2, H H ' )  the set of all Ck-sections of HIHI" where the C k regularity is under- 
stood as regularity between smooth manifolds. The notions of  Cc~(g2, HIHIn), C~(g2, HHn), and 
Cc~ HH ") are defined analogously. 

Definition 2.7. Let [z, t], P0 6 ]sin be given. We set 

n n 

7rpo([Z, t]) ---- Z xjXj(Po)  + Y~YjYj(Po)  . 
j = l  j = l  
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The map P0 --+ zre0 ([z, t]) is a smooth section of HH n. 

The similarity among some statements in H n with others in ]R 2n+l is clear using intrinsic 
notions of  gradient for functions f : H n ~ R and of  divergence for sections of  HH n . 

Definition2.8. Iff2isanopensubsetofHn,  f E cl(~)andgo=(~Ol . . . . .  gO2n)ECl(~2,HHn), 
define 

V H f  :=  ( X l f  . . . . .  X,,f ,  Y l f  . . . . .  Ynf)  (2.4) 

and 

n 

div~ ~o :=  Z Xj~oj  "Jr- Yj(fln+j �9 

j=l 
(2.5) 

Alternatively, V ~ f  can be defined as the section of  H]HI n 

n 

Vg-~f :=  E ( X j f ) X j  + (Y j f )Y j  
j=l 

whose canonical coordinates are (X 1 f . . . . .  Xn f ,  Yl f . . . . .  Yn f )  (observe that this is consistent 
with the identification we mentioned of sections and their coordinates). 

Finally, we write 

V_qf :=  (X2 f  . . . . .  Xnf,  Y l f  . . . . .  Ynf)  �9 

We shall denote by C~z(f2) the set of continuous real functions f in f2 such that V ~ f  is of  

class C k-1 in f2. Moreover, we shall denote by C~(f2, HH n) the set of  all sections ~0 of  HH n 

whose canonical coordinates ~0j belong to C~:(f2) for j = 1 . . . . .  2n. 

Remark  2.9. We stress that the inclusion c l ( ~ )  C C~z(~) is strict; see, for example, I27], 
Remark 5.9. 

In H n there is a natural definition of bounded variation functions and of finite perimeter sets 
(see [25, 32, 9]). 

Definition 2.10. We say that f " f2 --+ • is of  bounded U-variation in an open set f2 C H n, 
( f  c BVH(f2)),if f E Ll( f2)andi f  

(2.6) 

Analogously the space B IZSAoc(f2) is defined in the usual way. 

Definition 2.11. We say that E C H n is a locally finite H-perimeter set (or a EI-Caccioppoli 
set) if 1E e BV:~.,loc(Hn), where we indicate as 1E the characteristic function of the set E. In 
this case, the measure IV_~:le I will be called H-perimeter of  E and will be denoted by IOEl~:. 

For H-Caccioppoli sets the following divergence-type theorem holds (see I271). 
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T h e o r e m  2.12. There exists a I OEl~-measurable section VE o f  HH n such that 

-s163 (vE,~o) dlOEl~ u e C~C (Q; HHn) ; 

[VE(P)[p = 1 for IOElI~ - a.e. P c H n . 

Here, the measurability o f  vE is meant in the sense that its coordinates Vl . . . . .  v2,, are IO EI~- 
measurable functions. 

The function ve can be interpreted [0 E [H-almost everywhere as a generalized inward "hor- 
izontal" normal to the set E. 

Def in i t ion  2.13. We shall say that S C H n is a H-regular hypersurface if for every P �9 S 
there exist an open hall U(P,  r) and a function f �9 C ~ ( U ( P ,  r)) such that 

S A U(P,  r) = {Q �9 U(P ,  r) : f ( Q )  = 0}; (i) 

V?~f(P)  # 0 .  (ii) 

We will denote with vs (P)  the horizontal normal to S at a point P �9 S, i.e., the unit vector 

V H f ( P )  
vs (P)  .-- 

IV~]f (e) lp  

and with Ti.elS(P) the tangent group to S at P, i.e., the proper subgroup of  ]HI n defined by 

T ~ S ( P )  :=  {Q : ( V:-E(f o rp)(O), rr0(Q)) )0 = 0}. 

Finally, we use the notation T~S(P)  for the tangent plane to S at P, i.e., the lateral P �9 T~S(P) .  

As pointed out in the introduction, Euclidean regular hypersurfaces and of  H-regular hyper- 
surfaces are different classes. 

Let us introduce some useful subspaces of 1~,, (here ~'j means that in an enumeration we 
omit X j): 

o :=  span {Xl . . . . .  X2n} ; 

oj :=  span {X 1 . . . . .  Y t j  . . . .  X 2 n ,  T} (l < j < 2n) ; 

oj :=  span {X1 . . . . .  A'j . . . .  X2n} (1 _< j _< 2n) ; 

[j :=  span {Xj} (1 _< j < 2n) ; 

3 :=  span { T} 

and let zro, z%j, zroj, zr b , zr 3 be the projections of I~n onto o, t~j, o j,  [j, and 3, respectively. Define 
the following subsets of  I~ n: 

O :=  exp(o) = {P �9 II-1! ~ : P2,~+l = 0} ; 

Vj :=  exp(oj) = {P �9 ilqI" : Pi = 0} ; 

Oj : =  exp(oj) = O f 3  Vj = {P �9 H n : p j  = P2n+l = 0} ; 

Lj  :=exp ( [ j )  = {P � 9  n : p i  = O V i  # j } ;  

Z : = e x p ( 3 )  = {P � 9  n : p l  . . . . .  P2n = 0 } ,  
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and let zro, rrv~, zro:,  zrc:, and zrz be the maps defined by exp ozro o exp -1 ,  exp ozr~ o exp -1 
and so on; we will refer to them as orthogonal projections of H n on O, Vj, O j ,  L j ,  and Z. 

The following properties of  these projections are straightforward. 

Proposition 2.14. For any P, Q ~ IE" we have 

fro, (P)  = Jro o zrvl (P)  = Yrvl o Jro (P)  

rcO, (P �9 Q) =rcol (rrol ( P ) -  ~o, (Q))  

7ra(P . Q) = 7ra(P) . 7ra(Q) �9 rrz(:rro(P) �9 n o ( Q ) )  

ilJrM(P)IIoc <_ IIPIIm VM ~ {0 ,  01, V1, L1, Z } .  

Let us observe that Z is the center of  the group, and that only Z, L j ,  and Vj are subgroups; 
Oj is a subgroup only i f n  = 1 (because in this case it coincides with L j ) ,  while O is never a 
subgroup. We agree to indicate with otej the point exp(oeXj) E L j; then for each P ~ H n there 
is a unique way to write P in the form Pv~ �9 PL: for points Pvj ~ Vj, PLj ~ Lj  : It is sufficient 

to take PL i = p j e j  and Pvi = P �9 PIT/ 6 Vj. 

Recalling the definitions of t and of  the product law * on R 2n given in the introduction [see 
(1.10), (1.11), and (1.12)], we will use r~ to indicate the left translation by A in IR 2n. Explicitly, 

i f n  > 1 and A = (q, v, r ) ,  B = (r]', v:, r ' )  ~ ]1~ 2n we have 

where 

A ,  B =  ( r l + r / , v +  v:, r + v' + a ( v , v : ) )  (2.7) 

n 

j=2 

I ! ! if  v = (v2 . . . . .  vn, vn+2 . . . .  V2n), v' = (v~ . . . . .  v n, v,+ 2 . . . .  v2n). Instead if n = 1 and A = 

(rl, r ) ,  B = (O', r ' )  e R a we simply have 

A *  B = (r 1 + r/,  r + r ' ) .  (2.9) 

Notice that in both cases the induced group structure is the one arising from direct product R x IR 
i fn  = 1, and IR x H n - l  i f n  > 1, via the identification R 2n = IR n x (IR 2n-2 x R~) = IR x lI-l! n-1 . 

As we did in the introduction, we can define via t a family of  intrinsic dilations 8~ ()v > 0) 
on R 2'', which can be written explicitly as 

8~(~, v, r )  = (~ / ,  Xv, X2r) for n _> 2 

6107 , r ) = ( ) ~ r / , X 2 r )  for n =  1.  

As we already said, we define a , - l inear  functional L : R 2n ~ ]R as a homomorphism which is 
also positively homogeneous of  degree 1 with respect to the dilations, i.e., L o 6~ = XL. The 
following proposition comes from Proposition 5.4 in [27]: 

Proposition 2.15.  Let  L : •2n ~ R be a .-linear functional; then there is a unique vector 
WL E R 2n-1 such that L ( A )  = (A, WL), where we intend that 

2n 

(A, W L ) = O W l . n . l +  E VjWLj i f  n>_2, W L = ( W L 2  . . . . .  WL2n) a n d A = ( o , v , r )  
j=2, jCn+l  

(A, w E ) = r / W L 2  i f  n =  1 , W E = W r 2 a n d A = ( r / , r ) .  
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Conversely, through the previous formulas we can associate to each w ~ ~2n-  1 a unique *-linear 
functional L w. 

Observe that the choice of the enumeration of the components of  to L has been made in order 
to be coherent with the one made for the components of  v and with the fact that 0 is the (n + 1)-th 
coordinate of  t (A). 

Finally, let us recall the following results, which will be crucial in our article: Their proofs 
can be found in [27]. 

T h e o r e m  2.16 (Implicit Function Theorem). Let  ~2 be an open set in H,,, 0 ~ f2, and let 
f ~ C~(f2) besuch t h a t X l f ( O )  > O, f (O)  = O. Let  

E := ([z, t] E g2 : f ( [ z ,  t]) < 01 

S := {[z, t] E ~2 : f ( [ z ,  t]) = 01 ; 

then there exist 8, h > 0 such that, i f  we put I :=  [ - 8 ,  81 x [ - &  8] 2,,-2 • [ -82 ,  82] C R 2~, 
J :=  {sel ~ L1 :s  c [ - h ,  h]} andLt :=  t ( I )  �9 J ,  wehave tha t  

E has finite H-perimeter in lg ; 
0 E n U = S G L / ;  
rE(P)  -=- - - V ~ f ( P ) / I V H f ( P ) [ p  = v s (P)  forall  P ~ S Qb l .  

Moreover, there exists a unique continuous function r : I --+ [ - h ,  h] such that S N ~ = 
~ ( I ) ,  where �9 is the map I ~ A w-~ t (A)  �9 r  ~ H n, and the H-perimeter has the integral 
representation 

IOEl~(lg) = f IV~f l  2n, X1--~(ap(A))ds  ( A ) .  (2.1 O) 

T h e o r e m  2.17.  Let  f2 be an open set in H n and let E ~ H n be such that 8 E n f2 = S n f2 
where S C H,, is an H-regular surface. I f  Po c S and r > 0 put 

EPo.r "=81 / r (Po  1" E ) =  {P  C~'~ n : ~r(e0 ' 1 '  P)  E E / . 

Then there is a c(n) > 0 such that 

lim IOEI~(U(Po, r)) 
(i) r--,olim IOEPo,rlH(U(O, 1 ) ) = r ~  ~ re,,+l 

(ii) 10EIH L f2 -- c(n) S0-1 L (S n f2). 

..~. ~-~2n(T~ S( pO) 0 U ( 0 ,  1 ) ) = c ( n ) ;  

T h e o r e m  2.18 (Whitney Extension Theorem). Let  F C ~_~n be a closed set, and let f : F --~ 
R, k �9 F ~ HH n be two continuous functions. We set 

R (Q,  P) :=  

and, i f  K C F is a compact set, 

:(e)- :(e)- Q)). 
d(P ,  Q) 

pK(8) :=  sup{lR(Q, P ) I :  P, Q 6 K, 0 < dot(P,  Q) < 8}.  

1 n I f  pK (8) --+ 0 a s 8  --~ 0 for every compact set K C F, then there exist f "  H n --~ ~ ,  f ~ CH(H ) 

such that :~F = f and V:~J~F = k. 
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Taking the Implicit Function theorem into account we can give the following notion of  
intrinsic graph in H ~. 

D e f i n i t i o n  2 .19 .  A set S C K ~ is an Xt-graph if there is a function 4) " co C R 2~ -+ II~ such 
that S : {t(A) - 4)(A)el : A E co}. 

More generally, after fixing an identification t j  : R 2n ~ Vj,  for j = 2 . . . . .  2n we can 
define X j-graphs as those subsets S of H" for which there exists a function 4) : co C IR 2~ ~ R 
such that S = { t j ( A )  �9 4 ) (A)e j  : a c co}. 

A general definition of  intrinsic graph in H n, which applies also to surfaces with topological 
codimension bigger than 1, is given in [30]. In particular, this notion is stable with respect to left 
translations of  the group; more precisely, from Proposition 3.11 in [30] we infer the following. 

Proposition 2.20. L e t S  C H n be an X j -graph, i.e., S = {qb(A) :=  t j ( A ) . 4) ( A )e j : A c o9}. 

L e t  P = (Pl . . . .  P2n+l) ~ H n, P = Pvj �9 PI~ with PLj = p j e j  E L j  and Pvj  ~ Vj .  Then 

the translated set  rt, S still  is an X j -graph;  more  precisely,  i f  we  define crp : ~2,, __+ ~2n by 
a p ( A )  :=  t j l ( p  �9 t j ( A ) ,  p ~ l ) ,  w e h a v e  

r e S  = {qb'(A) :=  t j ( A ) . 4 ) ' ( A ) e j  : A c w'}  , 

where w'  :=  ~r/, (w) and 4)' : w'  --+ R is def ined by  

4) '(a) = p j  + 4)(~rp , ( a ) )  . 

In addition we have ~)' = re  o c~ o a p - l .  

R e m a r k  2 .21 .  In Theorem 2.16, and more generally in the rest of the article, we made a precise 
choice, i.e., to consider only regular hypersurfaces that are zero sets of functions f 6 C~ such 
that X l f  > 0. This fact, somehow, makes Xl a "privileged" direction: For example, observe 
that such surfaces results X1 -graphs, i.e., functions on V1, and that we translate points of V1 by an 
element with all the coordinates null except the first one. One can prove that this is not restrictive; 
the key tool in this sense are the so-called "horizontal rotations," see [43], Section 2.1. 

We end the section with an improvement of  Theorem 2.16. 

Proposition 2.22. Under the same assumptions  o f  Theorem 2.16, let  X j, Yj be the vector 

~r - 2 ~162 on I ,  where  4) and fields defined in (1.20) and (1.21), and let  fl34) be the distribution 
I are g iven  by  Theorem 2.16. Then i f n  > 1 we  have for  j =- 2 . . . . .  n 

~ , j 4 ) _  X j f  Y j f  Y l f  
X l f  o ~ ,  YJ4) --  X l f  o ~ ,  9~34) --  Xlf-- o r (2.11) 

where the equalities m u s t  be understood in distributional sense  on I .  Moreover ,  the H-per ime ter  

has the integral representation 

Et (m=c(n)S  -1L(S n u)= f [l j4)12+l  j4)I 2] dC 2n (2.12) 

I f  n = 1 we have s imp ly  

10EIE(U) = c(1)S Q-1M(S n/A') = f V/1 + [~4)[2 d~Tdr .  
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Proof .  We will give the proof only for the case n _> 2; the generalization to n = 1 should not 
present difficulties. 

Arguing as in Step 1 of the proof of Theorem 2.16 (Theorem 6.5 in [27]) we can suppose 
that there exists a family of functions f~ : L / -+  R such that f~ 6 C ~ (~), Xl fe > 0 on/ / /and 

Xj fE  --+ X j f ,  Yjf~ -+ Yj fe  uniformly on /./ ( j  = 1 . . . . .  n ) .  

Now, following Step 4 of  the same proof, we obtain the existence (for E0 small enough and 
h as in Theorem 2.16) of functions ~bE : 1 --+ [ - h ,  hi, 0 < E < e0 such that 

f ~ ( t ( A ) . r  forall  A c l  

r 1 6 2  uniformly on I f o r  e - - + 0 .  

It is not difficult to prove that q~ E C 1 (I);  indeed, following once again the proof of  the 
Implicit Function Theorem, the fact that f~ 6 C 1 implies that also 

g~ : [ -h ,  hl x I ~ IR 

( ~ , O , v , r )  l ) fE(t(tl, v , v ) . ~ e l )  

is also C I. As q~ is obtained by means of  the classical Implicit Function Theorem (so that 
ge (4~ (r/, v, r) ,  r/, v, r )  = 0), we get that q~E is C 1 too. This implies (it is sufficient to differentiate 
the equality f~(t(~, v, r)  �9 q~ (0, v, r )e l )  -- O)that 

0q~ Yl f~ + 4q5~ Tf~ 
- - ( A )  = (qb~ (A)) 
O0 X l f e  

OqS, ~)xj f" 
- - ( A )  -- - -  (qb, (A)) 
Olgj X l f ~  

O 

- - ( a )  - -  (dp,  ( A ) )  
Ovj+, X l f~  

O49E T fE 
- - ( a )  -- - -  (doe(a)) 
Or X l f~  

f o r a l l A = ( q , v , r ) ~ ] a n d a l l j = 2  . . . . .  n; obviously, q b < i s t h e m a p A i  > t (A) . (pE(A)el .  

Then for j = 2 . . . . .  n we get 

XjfbE -- X j f~  o c~ 
X 1 L  

X l f ,  

O 4)___L~ �9 2 _ Oqb~ Oq)E Y1 fE ~34~ -- 2 349~ 4dp~ - -  -- - -  o ~ 
OTI Or O0 Or Xl fE 

from which (2.1 1) follows. 

The integral representation (2.12) follows from the area type formula (2.1 0), together with 
(2.11). [~ 

R e m a r k  2.23. Starting from Theorem 2.22, it is not difficult to prove the following fact: Let 
f2 be an open subset of  H n, and let f ~ C~(f2) be such that X1 f > 0 on S :=  { f  = 0}. Suppose 
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that S is intrinsically parameterized by ~b : co C N 2n ~ N (i.e., S : =  qb(co), where as usual 
qS(A) : =  t(A) �9 cp(A)el)  and let E :=  { f  < 0}. Then for each Borel set F C f2 we have 

f n ~ 2 ~ "~ [ 3 E I H ( F ) = c ( n ) S Q - I ( F A S ) =  V/I+(~q~)2q-Zj=2[(Xj~b) +(Yjqb)-]dfl . .  2n (2.13) 

�9 -~ (F) 

if n >__ 2, and 

i f n  = 1. 

R e m a r k 2 . 2 4 .  

f ~  ~/1 q- (r 2 d/~ 2 IOEI~(F)  = c ( 1 ) S Q - I ( F  fq S) = - ' (F)  

121 I, Section 3.4. 

(2.14) 

The operator ~3 is known in the literature as Burger 's  operator: See, for example, 

3. Graph distance and W~b-differentiability 

Let co he an open, connected,  and bounded subset of  N 2n = ~ ,  • --oR2n-2 • R~ if n _> 1, of  
/R 2 = N~ • Rr  i f n  = 1. I f n  >_ 2 and A = (t/, v, r )  ~ N 2n and r > 0 arc given, we define 

I r (A)  : =  {(t/', v',  r ' )  c It~2"" I(t/', v ' ) -  (t/, v)l < r, I t ' - -  r]  < r} , 

while i f n  = 1 and A = (t/, r )  we put 

I r (A)  : =  {(t/', r ' )  E1R2: I t / ' -  t/I < r, I t ' - -  r l  < r}  . 

Let  4) : co ~ R be a given function; we will indicate with W r the family of  first-order 

operators (W2 r . . . .  W;~) (the reasons of  the enumeration from 2 will be clear later) defined for 
n > 2 b y  

0 __3 if 2 < j < n  
XJ = 3v~ + 2vj+''  or  - - 

W f  :=  Y1 - 4q~T -- 3 3 30 4~b~- r if j = n + l  (3.1) 

O 2Vj -n  O if n + 2 < j < 2n 
Y J - n -  O1)j Or - - 

= 0 _ 4 4 ) ~ .  while for n = 1 we put W e W2 r : =  Y] - 44~T = 

From now on q~ : co ~ IR will be a fixed continuous function, and qb will indicate the function 
co ~ A w-~ t (A)  �9 q~(A)el e Hn; explicitly 

qb(t/, v, r )  = (~b(t/, v, r ) ,  v2 . . . . .  vn, t/, Vn~-2 . . . . .  V2n, r + 2t/4~(t/, v, r ) )  if n > 2 
qb(t/, r )  = (q~(t/, r ) ,  t/, r + 2t/q~(t/, r ) )  if n = 1 . 

For A, B E co we define the graph distance 

pe(Z,B):--l]~ro,(*(a)-~.r162 (3.2) 

which is equivalent to llZrv~(~(A) -1 �9 ~ ( B ) ) H ~ .  Explicitly, for n > 2 and A = (t/, v, r ) ,  
B = (t/', v ~, r ' )  we have 

Pc(A ,  B)  = ](t/', v') - (t/, v)l + I t '  - r + 2(~b(B) + cp(A))(t/ '  - t/) + cr (v',  v)] 1/2 
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where tr(v:, v) has been defined in (2.8); if n = 1 and A = (r/, r) ,  B t 
pc)(A, B) = Iq' - q[ + I v ' -  r + 2 (0(B)  + 0 (A)) (q '  - q)[ 1/2. 

With this definition we are able to prove the following. 

P r o p o s i t i o n  3.1. I f  there is an L > 0 such that 

[0(A) - ~b(B)l < L pc)(A, B) (3.3) 

for all A, B ~ I, then the quantity PC) in (3.2) is a quasimetric on I, id est 

(i) po(A,B)=OO A=B;  
(ii) po(a,  B) = pc)(B, a); 

(iii) thereexistsq > 1 suchthatpc)(A,B) < q [ p c ) ( A , C ) + p c ) ( C , B ) ]  

for all A, B, C ~ I. 

Proof. The assertions in (i) and (ii) are straightforward, while for (iii) we have 

p4~(a, B) < 2d~(qb(a) ,  O(B))  

< 2 [ d o c ( o ( a ) ,  O(C))  + doo(O(C), qb(B))] 

_< 2[]~b(a) -qb(C)[  +pc)(a, C) + [~b(C) -qb(B)[  +pc)(C, B)]  

<_ 2(L + I )[pc) (A,C)+ pc)(C,B)].  [~ 

= ( r  r t) we have 

Let us observe that if ~b satisfies the condition (3.3), then it is locally 1/2-HOlder continuous 
in the Euclidean sense, i.e., for all compact set K C o2 there exist an L '  = L:(K) > 0 such that 

]0(B) - ~b(A)[ < LtlB - A[ U2 (3.4) 

for all A, B ~ K. First, let us observe that for any P 6 H n, a 6 R 

I l r rz (P '  ~el)lloo _< IIJrz(e)llo~ + ",/21odl/2 Ilzrv~ (P) I I~  2 

Ilsrz(~el �9 P)llo~ _< Ilsrz(P)llo~ + ~,/21o~ll/21lzrv~ (P) l l~  2 �9 

Now let M :=  SUPx 14~1, A :=  supA~K IAI and, as before, 0 :=  0(A),  ~b' :=  0 (B) ;  then 

Ir  - r  < pc)(B, A) (3.5) 

----[IZrOl(- 0 e l - t ( a )  -1 . , ( B ) .  Ce )ll  + I I ~ z ( - ~ e l  . t ( a )  -1 . t (B)"  ~b:el)[]oc 

<_ IB - AI + Usrz(t(A) -1 .  t (B) .  ~b:el)ll~ + 2r ( t ( A ) - ' .  t (B) .  qb:el)[[~ 2 

_< ( 2 x / A +  2x~-M)IB - A] 1/2 + § 

_ < ( 2 x / ~ + 2  2 ~ + C ( K ) ) I B - A I  1/2 

where in the last passage we used (2.3) (this is the reason of  the constant C(K)) .  

Now we have all the tools to state our notion of  Wc)-differentiability as given in Definition 1.1; 
let us remark that, if 7r is uniformly Wc)-differentiable at A, then it is also Wc)-differentiable at 
A, as (1.18) is satisfied with the same L as in (1.19). 

Re mark  3.2. If  ~ is Wc)-differentiable at A, then it is continuous at A. Indeed, if L 6 R 2"-1 
is such that (1.18) holds and wl. is as in Proposition 2.15, then for any B ~ co 

~ ( B )  - ~ (A)  = ~ ( B )  - ~r(A) - ( tVL,  A - l  . B) 
pc)(A, B) �9 pc)(A, B) + (wL, A -1 . B) 
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and we deduce the continuity of  ~p at A from the W ~-differentiability at A together with the fact 
that Pc(A,  B) is bounded near A. 

R e m a r k  3.3. We stress the fact that if ~p : o9 ~ I~ is uniformly Wr at A E o9, 
then ~p is Lipschitz continuous (between the spaces (o9, pr and (~,  deucl)) in a neighborhood of 
A; in fact there exist C, r > 0 such that 

[~(B)  - ~ ( a )  - L ( A  - I  . B ) [  
_<C 

Pc(A,  B) 

for all B 6 /r(A),  whence 

I~P(B) - r _< I(WL, A -1 *B)I  + Cpr  B) < (IWLI + C)pr  B) . 

We will indicate the , - l inear functional L such that (1.18) holds with dw~P(A) ;  we will 
call the vector WL the We-differential of  ~ at A, and we will indicate it with WOap(A), writing 
[Wq)~(A)]j  for WLj, j = 2 . . . . .  2n. These definitions are well posed because of the following. 

L e m r n a  3.4. Let  r  ap : o9 --+ R be such that ~ is W 4~-differentiable at A ~ o9, and let L be a 
.- l inear functional such that (1.18) holds; then L is unique. 

Proof .  We have to prove that, i f w  := wL, w' :=  WL, ~ ]I~ 2n-1  are given by Proposition 2.15, 
then w = w t. We will give the proof only for the case n > 2, as it can be easily adapted for 
n = 1. Therefore let A = (0, v, r):  It is easy to prove that 

lim (w - w' ,  0 7 ' -  r/, v ' -  v)) = 0 .  (3.6) 
B=(rT',v',r')--+A Pc(A,  B) 

Let 
A = {(r/', v', r ' )  E w :  PC(a,  (rl', v', v ' ) )  = 1 ( 7 ' -  r/, v ' -  v)[} 

= {(r v', r') o9: =01  
= {(r/', v', r ' )  C I :  r ' =  r - 2( r  + r  - r/) - a ( v ' ,  v)} 

where, here and in the following, we write r r r  and r instead of r v', r ' ) ,  r v, r) ,  
r  v', r ' ) ,  and r  v, r) ,  respectively. Let 32 > 0 be such that I :=  I~2(A) C o9; we want to 
prove that there exists a 31 > 0 with the property that for all (7', v') with I (O ' -  7, v ' -  v)l < 31 there 
is a r  t c [ r - 3 2 ,  r+32]  suchthat r '  ---- r - 2 ( r 1 6 2  v), i.e., (r/', v t, r ' )  c A. Being 
~b continuous we can suppose that Ir -< M on I;  then, for each (17I, v t) with 1(7' - r/, v' - v)l < 31, 
the functions Y(0',v')(r') := r - 2(~b(rf, v', r ' )  + r v, t))(rl r - 7) - a (v ' ,  v) map the closed 
interval Iv - 32, r + 321 into itself provided 31 is sufficiently small. In fact 

Ig(o',v')(r ') - r[ = 2 ( r  + ~b)(O' - r/) + 2 ~--~7= 2 ( v j v ;+j  - Vn+jV~) 

---- w"n Iv Iv' Vn+j) - Vn+j(v) - v j ) )  (3.7) 2 ( r  + r  - 77) + 2 z-~j=2 ~ j~ n+j - 

< 2M31 + 2Jvl31 

so it is sufficient to choose 31 such that (2M+21v1)31 -< 32. Therefore the fixed point theorem guar- 
anteesthat y(~, ,,) has a fixed point r ' (0 ' ,  v') i f J (0 ' -O ,  v ' - v ) [  < 31,sothat 07', v', r ' ( r / ' ,  v')) 6 , 4 ,  
i.e., P4,((O', v', r '07 I, vt)), (7, v, r))  = I ( r / ' -  ~, v I -  v)l; moreover, it is not difficult to prove that 
r ' ( 0  t, v') --> r if (~', v t) --+ (7, v) [it's sufficient to use the very same estimate as in (3.7)]. Now, 
for each j ---- 2 . . . .  2n, we can easily construct a sequence A h = (77 h, v h , r h) 6 A such that 
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�9 A h --> A; 

h - - v j  > 0  �9 r l h ~ t h v h ~ v i V i T h j a n d p r  A ) = v j  

�9 v h - ~ v a n d p r  A ) = o h - - o > O  i f j  = n + l .  

i f j C n + l ;  

By (3.6) we obtain 

(to -- to', (rlh -- e, vh -- v))  
0 = h~tim pc  ( a  h , A )  =-- w j  - -  tOj 

for all j = 2 . . . .  2n, whence w = w'. F3 

R e m a r k  3.5. Let A E co and P :=  r  = t(A) �9 r  With the same notations of 
Proposition 2.20, set ap-~ (B) :=  t - l ( P  - 1 . t ( B ) .  PLI) and o)' :=  ap-~ (o)). Let ~ |  denote the 
element (0 . . . . .  0, or) e R 2'~ and define 

Ct : o)t > ]R 

B = (r/ ' ,  v ' ,  r ' )  ~ r  - r  = ~ b ( A .  B * ( - 4 r  - 0 ) ) |  - r  ; 

then ~'(o) ' )  = Tp-i (CI)(O))), where as usual @'(B) = t (B)  . r  

It is not difficult to show that a function ~p 6 C~ is Wr (resp. uni- 
formly Wr at B E w if and only if 7z o ae  E C ~  is W#-differentiable 
(resp. uniformly W4"-differentiable) at ap  ~ (B) E o)': The key observation is that pr B ~) = 
pC' (O'p-I (B), Op-i (B t ) ) ) .  

The following proposition shows that uniformly Wr functions have continu- 
ous WO-differentials. 

Proposition 3.6. Let  r  7t : 09 ---> R be two continuous functions; suppose that there exists 
an -A 6 o) such that q~ in uniformly Wr at-A and that 7t is Wr in an 
open neighborhood bl of-A. Then W r : lg ~ R 2n-1 is continuous at-A. 

Proo f .  As usual, we give the proof only for n > 2. 

Suppose that the thesis is not true; then there exist a 3 > 0 and a sequence {A j} C LI t such 
that A ) ~ A and 

IwCv~(#)- w r  ~ 3~. 

By the uniform Wr of  ~O at A we can find an open rectangle I centered at 
such that 

A , B E I  pc (B ,  A) - 
t ! t A=(q,v,r)~B=(~ ,v ,r ) 

There is no loss of  generality if we suppose that A j ~- (0 j , v j , r j)  E I for all j ;  then, using 
the W'P-differentiability of  ~ at A j and reasoning as in Lemma 3.4, we can find a sequence of  



bttrinsic Regular ttypersurfaces in Heisenberg Groups 207 

points  B j = (11 t j ,  V t j ,  r / j )  E I such that 

[~ (B  j)  - ~ ( a J )  - ( W 4 ~ ( A J ) ,  (rl'J - 71J, v 'j - v J)) I 
p c ( B  J, A J) < 8 ; (3.9) 

PC( B j ,  A J) = ' j  - -  J)l; (3.10) 

the (2n - l)-vectors (r/J - 0 j ,  v'J - v J) and (Wr j )  - Wr are (3.11) 
linearly dependent.  

Observe that (3.10) and (3.11) imply that [ ( W ~ ( A  j)  - W(~ (r/J - oJ, v 'j - vJ))l = 
I W 4 ~ ( A  j )  - W 4 ~ ( A ) I p o ( B  j ,  A j )  > 36p~(B j ,  A J). Then, also using (3.9), we get 

I (BJ)- ~ ( A J )  - (Weep(A), (rl ' j  - o J ,  v 'J  - vJ))l 

> I ( w * ~ ( a J )  - w * ~ ( ~ ) ,  (~'J - , / ,  v'J - ~'J))[ 
- p~(BJ ,  AJ)  

[~p(BJ) - ~ ( a  j )  - ( W ~ p ( a J ) ,  (0 'j - oJ, v'J _ v J))[ 

A;) - AJ) 
> > 2~ 
- p4)(BJ, a j )  

which contradicts (3.8). E] 

It is not clear whether the converse is true, i.e., if WqLdifferentiability in an open neighbor- 
hood and continuity of  the W 4'-differential imply uniform W e-differentiability. Observe that this 
is true when we consider the classical notion of differentiability. 

Recalling how we defined the family W e of the 2n- 1 first-order operators W~, the following 

proposition explains why we call the vector wL [with L as in (1.18)1 the We-differential of  ~p: 
The fact is that the j - th  component of  this vector is (at least for regular maps) the derivative of  

in the W) -direction (with the usual identification between vector fields and first-order operators). 

Proposition 3.7. L e t  (b , ap : co --~ ~ be continuous functions such that 7~ is W 4~-differentiable 
a t a p o i n t  A = (17, v , r )  E co (respectively A = (0, r )  i f n  = 1). For j = 2 . . . . .  2n let 
yJ : [ - &  3] --~ co be a Cl-h~tegral curve o f  the vector field Wj 4~ with yJ (o) = A and such that 
the map 

[ -~ ,  ~1 ~ s ,  ~ 4,(• c ]R 

is o f  class C 1 . Then we have 

lim ~t (yJ (s ) )  - ~ ( y J ( o ) )  = [ W g ~ ( A ) ] j  
s--+O S 

(3.12) 

Proof .  Again we accomplish the proof only for n > 2. 

Let us fix the following notation: I f  ) /J(s)  --  (r/(s),  v(s) ,  r(S)) we set 

y / (S)  : =  Vi(S) for 2 < i < 2n, i # n + 1 

Yff+l (S) := F/(S) 

• :=  r ( s ) .  
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For j ~ n + 1 the thesis is obvious: Indeed, we must have yJ(s) = A * exp(s~ ' j )  i.e., 
t(vJ (s)) = L( A) �9 exp(sX j), and so 

pr yJ(s)) = IlrrOl(-4~(a)e, .exp(sXj).4~(vJ(s))el)ll~ 

+ H~rz(-O(a)e~. exp(sXj) .c~(yJ(s ) )e l ) l [oo  = Isl 

which gives immediately (3.12) as a consequence of the WO-differentiability and of the fact that 

y/  (s) =- vi for i ~ {j, 2n + 1} and yj (s) = vj + s. 

For j = n + 1 we have 

and so 

}//n+l ( S )  = U i if i # n + 1,2n + 1 

n + l  
~/n+l ( s )  = 0 + s 

y~+l (s) = r - 4  fo dpOin+l(r))dr 

(3.13) 

Then by (3.14) we get pcb(y n+l (s), A) < (1 + v/-C)[sl and so 

I 7*(~"+l(s)) - gz(Yn+a(0)) - [WC)lp(A)]n+l S I 
Isl 

V/--~) l ap(yn+l(s) ) -- ~(A) - LwC,#(A)(A -1 * • I 
(1 < + 

pq~ (yn+l (s), A) 

By letting s --+ 0 and using the W o-differentiability of ~ at A we get the thesis (3.12). I I  

The following result shows that the class of  ~b, ap such that 7s is W~-differentiable (in fact, 
uniformly W o-differentiable) is not empty, and gives an explicit formula for W ~ ~ .  

p,(• (~,), yn+' (0)) 

= Isl + -4foSgp(yn+l(r))dr + 2 [ q } ( ) ' n + l ( s ) )  -+-~(A)]s 11/2 

( 1 _4foSfb(yn+l(r))dr+2149(yn+l(s))+o(a)]s  11/2) (3.14) =lsl  1+1- ~ 

=: ,sl (l  + ~lA(s)ll/2) . 

We want to prove that IA(s)l < Cs 2 for a certain C > 0; indeed, we have that the map s ~-+ 
y~n++ll (s) is of  class C 2 (because of (3.13) and the hypothesis that s ~ ~b(yn+l(s)) is C 1) and 
then 

io' A(~) = -4  e(• +2[e(•  "§ +e(a)]~ 

L s = -4  [4,(•  +214,(• (3.15) 

= O ( $ 2 )  . 
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T h e o r e m  3.8. Let 4~, ~ c C 1 (co); then 7t is uniformly W r at A for all A E m 
and 

( a O -  4r  a~-~, Y2O, YnlP) (A) W r  = X2~  . . . . .  .Yn~, ~ or: . . . .  

for all A ~ w. In particular, W ~ 7r : co -+ ]1~ 2 n -  1 is continuous. 

P r o o f  Let us fix A = @, g, ~-) c co(A = @,~)  i fn  = 1) and set 

( O~ 0_~_~ ~2~ , . .  ~ n ~ ) ( a ) E ] R 2 n _  . w(A)  :=  -Y2~ . . . . .  Xn~r, ~-O - 4q5 o r '  "'  

if n _> 2, while for n = 1 we set 

w(A) := ~ ( A )  - 4~(A)~Tr (A) . 

Following Definition 1.1, and (1.19) in particular, we have to prove that 

lim MO( ~,  A, w(A),  r) = O . 
r---~0 

(3.16) 

Therefore let B, B'  6 co be sufficiently close to A (in a way we are going to specify), and 
for n > 2 let X, W be the C ~ vector fields given by 

2n O O 
X : =  E ( v ' . - v j )X j , a  W : = - - - 0 r /  4 r  

j=2, j#n+l  

Define 

B* := exp (X--)(B) 

' ' ' - ~2 . ) ,  o )  = B *  (0, (v' 2 -  v2 . . . . .  v n - vn, Vn+ 2 - v.+2 . . . . .  V2n 

= (r/, v', r: - ~ ( v ' ,  v ) )  

B" := e x p ( ( q l - q ) W ) ( g * ) = ( r / l ,  v1, r ") ( f o r a c e r t a i n r : " ) ;  

observe that B* and B" are well defined if B, B t ~ lao(A) for a sufficiently small 30. For n = 1, 
is not defined and we set B* = B and B" := exp((r/' - r /)W)(B) = (rf, r:"). 

As ap is of  class C 1 we have 

~ ( B ' )  - ~ ( B )  = [ ~ ( B ' )  - ~ ( B " ) ]  + [ ~ ( B " )  - ~ ( 8 " ) ]  + [ ~ ( 8 " )  - ~ ( B ) ]  

= [gr(B')  - 7*(B")] + f " ' - "  ( W O ) ( e x p ( s W ~ ( B * ) ) d s  
JO 

1 2n 

+ [  E ( v ) -  v j ) X j ~ ' ( e x p ( s X ) ( B ) )  
J U  j = 2  

j r  ( 3 . 1 7 )  

2n 

= [ ~ ( B ' ) -  lp(B")]  + E (v/.a - v j ) X j O ( A )  
j=2, j~n+l 

+ ( r / ' -  r/)Wgr(A) + o ( l ( r / ' -  r/, v ' -  v)l ) 

= [~r(B') - V(B")]  + (w(A), (r/' - r/, v' - v)) + o(p~(B' ,  B)) . 
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For n = 1 the same calculation leads to 

~h(B 1) - ~ ( B ) =  [~h(B 1) - ~ ( B " ) ]  + w(Z)(71- 7)+ o(P4~(B', B)).  

Therefore it is sufficient to prove that ~ ( B  I) - ~p(B 'I) = o(pi~(B I, B)). We have 

IV,(B/) - ~ ( B " ) I  It1 - r " l ' / 2  
p (81, B) B) 

where 

(3.18) 

{ I~(a') - ~(A")I �9 A' A" } w~o(6) := sup ]~--A--  ~ # ~ Ia(A) , (3.19) 

and where we know that co~(6) --> 0 as 3 $ 0 because of the fact that ~ is C 1. So we have to 
prove that I r '  - r"j l /2/PO (B', B) is bounded in a proper neighborhood of A. Let's observe that 

I t ' -  r"] = r ' - r  +(~(v ' ,  v ) + 4  f f f -~  
do 

< I t ' -  r + 2 ( r  + r  7) +a(v' ,  v)l 

+ 2 2 f f f - " C ( e x p ( s W ) ( B * ) ) d s -  ((p(B') + r  - 7) 
ao (3.20) 

<_ pc~(B', B) 2 + 2]~b(B') - ~b(B")l]7' - 7] + 2]r  - r 7[ 

+ 2 2 fo i f -"  r  (sW)(B*) ds - [ r  + 4~(B*)](7' - 7) 

=: pr 2 + RI(B' ,B) + R2(B',B) + R3(B',B) . 

For the case n = 1 we arrive to (3.20) with the same line (it is sufficient to follow the same steps 
"erasing" the term cr (v', v)). 

Now we want to prove that there exist C1, C2 > 0 such that 

R3(B', B) < cl l7 ' -  71 (3.21) 

R2(B ~, B) < C2pc~(B', B) 2 (3.22) 

for all B I, B ~ I~o(A), and that for all E > 0 there is a ~r c]0, 30] such that, for 6 E]0, ~r 

RI(BI, B) < 171- 712 +  13'- e'l (3.23) 

for all B I, B ~ I~(A). These estimates are sufficient to conclude: In fact, choosing E := 1/2 and 
using (3.20), (3.21), (3.23), and (3.22), we get 

13 I -  3"[ < p4~(B I, B) 2 + C, 171 - 712 + 171 - 712 + I r - ~I']/2 + C2p4~(B 1, B) 2 

whence 

13 I -  r1'l'/2 _< C3p~(B, B') 

which is the thesis. 
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For s ~ [ -60,  60] we can define 

f0 s g(s) :=  2 4 9 ( e x p ( r W ) ( B * ) ) d r  - [ 4 9 ( e x p ( s W ) ( B * ) )  + 49(B*)]s ; (3.24) 

as in (3.15) one can prove that there is a C1 > 0 such that 

Ig(s)l _< ClS 2 for all s ~ [ -80 ,801,  (3.25) 

so that (3.21) follows with s = 01 - 7. 

Define o3r as in (3.19) (with 49 instead of 0) ,  then 

R I ( B , B  !) ~ 2o3~(6)1r162 

12 ~"l < 17I -7  +o3~(6)21~ I -  . 

Since 49 is C 1, o3~(8) ~ 0 for 8 $ 0, and so for all E > 0 there is a 8E > 0 such that for all 
8 E]0, BE] we have o3~(8) 2 < e, whence (3.23) follows. 

Finally, observe that (3.22) follows from R2(B, B I) = 0 if n = 1, and from 

R~(8, B') ---- I r  71149(B)- 49(B*)1 

o(1)) : 17'- 71 (~; - ~j)(~J + 
j=2, j~n+l 

_< 2c217 I -  71Iv'- vl _< c21(71- 7 , ,  o)12 < C2p4~(n I, n)2 

i fn  > 2 .  ;1 

4. H-regular graphs and W~-differentiability 

In this section we are going to characterize the H-regular graphs in terms of  the uniform 
W ~-differentiability of  their parametrizations. The main theorem of the section is the following. 

Theorem 4.1. Let  49 : m -+ ~ be a continuous function and let �9 : o3 --~ H n be the function 
defined by 

@(A) :=  I(A) �9 49(A)el . 

Let S :=  ~(o3). Then the following conditions are equivalent: 

(i) 

(ii) 

Moreover, for all P ~ S we have 

S is an H-regular surface and v~sl)(P) < 0 forall  P ~ S, where v s (P )  = (v(sl)(P) . . . . .  

v~ 2n) (P))  denotes the horizontal normal to S at a point P c S; 

49 is uniformly WC~-differentiable at any A ~ o9. 

and 

E ~ • ~2n- I  (4.1) ! ~ ] (| 
.s(p) = ,/l  + Iw+491:' ( 1 +  Iw+491:] 

s Q - I ( s )  = c(n)fo~ V/I + [W'~49(A)I2 dl~2n(A)" (4.2) 
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Proof .  We will give the proof only for n > 2, since the generalization to n = 1 is immediate. 

Let us begin with the proof of  the implication (i)=~(ii). Let P = ~ ( A )  �9 S, where A = 
(0, v, r )  e w; then there exist an r0 > 0 and a function f �9 C ~ ( U ( P ,  r0)) such that 

S A U(P ,  ro) = {Q �9 U(P,  ro) : f ( Q )  = 0} 

v r ~ f ( O )  = ( X 1 f ( Q )  . . . . .  X n f ( O ) ,  Y I f ( Q )  . . . . .  Y n f ( Q ) )  7 ~ 0 for all Q �9 u ( e ,  ro).  

As vs (Q)  = - v H f ( Q ) / I V n f ( Q ) l ,  by hypothesis we have that 

X l f  (Q) > 0 for all Q ~ S N U(  P, ro) . (4.3) 

Moreover, without loss of  generality we can suppose that 

A = (r/, v, r)  = (0, 0, 0) and P = qb(0, 0, 0) = 0 .  (4.4) 

Indeed, if this is not the case, let us consider S ~ :=  re-~ (S) = qb~(oJ), where we use the same 
notations of  Remark 3.5. We have that S ~ A U (0, r0) is an H-regular surface because it is the zero set 
of  the function f '  :I HI n ~ Q w-~ f ( P.  Q) �9 N, and by left invariance X1 f '  ( Q ) = X l f ( P.  Q) > 0 
for all Q �9 U (0, r0). Finally, (again by Remark 3.5), ~b ~ (which is equal to ~b o ap up to an additive 
constant) is uniformly W e/-differentiable if and only if 4~ is uniformly W r 

By the unicity of  the parametrization provided by the Implicit Function Theorem we can 
assume that there is a g > 0 such that lg = Ig(0, 0, 0) e w and 

f ( ~ ( B ) )  = 0 for all B �9 13-. (4.5) 

With the assumptions in (4.4), by the continuity of  ~b for each r 6]0, r0/4[ there is a 0 < ~r < r 
such that 

I~(l~r(0, 0, 0)) C U(O,r). 

Let us recall the following 

(4.6) 

If(a')- 
< C d ~ ( a ,  a ' ) I IVz~ f ( ' )  - V~af(a) l lL~(u(a ,2a~(a ,a ' ) ) ) .  

The proof of  this fact can be found in [47], Theorem 2.3.3. 

Therefore, for each B = (7, v, r),  B ~ = (0', v', r I) �9 I~r (0), with ~r sufficiently small, we 
get, by applying Lemma 4.2 to our f with P = 0, Q = qb(B), Q' = qb(B'), that 

I(vHI(| 
= ]f(*(B'))-  f ( * ( B ) ) +  (VHf(qb(B)) ,  zr (aP(B)-lqb(B')))1 

C 1 R(~r)do~(fl)(B'), di)(B)) 
(4.7) 

C2 R(~r)[11~" ( q b ( B ) - l * ( B ' ) )  H~ + IlJrol (*(B)-I*(B/)) [l~ 
+ | I1 ] 

<_ C2 e(~r)[l~(n')- q~(n) I + p~(n, n')] 

L e m m a  4.2. Let  f E C I ( u ( P ,  r)). Then there exists a C = C(P ,  ro) such that, for each 
Q �9 U(P ,  ro/2), r �9 ro/4[ and Q' �9 U(Q,  r) wehave  
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where C1 is given by Lemma 4.2 and 

R(~) := sup { II V=~f (.) - V-~i(P')II ~,~(~',2~,~,e' ~",)~ : P" P'' ~ *(I~(0' 0))] 

By the uniform continuity of V-~f : U(0, r0/2) ~ HII-I n we have 

lim R(3r) = O . 
r~,O 

A 

Setting V:~f := (X2f  . . . . .  X,,f, Ylf, . . . .  Ynf), (4.7) and (4.3) imply 

*(B ' )  
- , ( B )  + ~77s7~ CD77 

I{V~-af(O(B)), Jr ( * ( B ) - I r  
Xlf(CP(B)) 

_< [ inf Xif]-lC2R(6r)[i~b(B ') -4J(B) I + po(B, BI)] 
I-B(O,ro) 

for any B, B' 6 I~ r. By (4.8) we can suppose 

C2 1 
infB(O,ro) X1 f 

for a certain ? 6]0, ro/4[, and so 

~(8')  ( ~ ( |  (~ ' -  ~, v ' -  ~)) 
I*(8') -*(B)I ~_ - , (B )  + ~ - / ~  

( ~ ( |  (O' - , .  ~' - ~)) 
+ Xlf(dp(B)) 

_< [[q~(B')-~(B)I + po(B,B')]/2 +C31(17'-O,v I -  v)l 

for each B, B I 6 I~.  Therefore there exists a constant C4 > 0 such that 

1~(8 I) - ,(8)L ~ c4p+(8, 8'). 

Putting together (4.9) and (4.10) we get that there is a C5 > 0 for which 

( ~ ( |  (~ ' -  ~, v ' -  v)) 
(o(B') - (p(B)  + -~l-f-~-(-B~ < C5R(6r)pr B') 

and so 

~ q f  (o), 
49(B') - #9( B) + ( ~ (q' - r I, v' - v) ) 

p+(8,8 ' )  

< C5R(Sr) + sup V-~E/(~(')) V~f(O) 
- 1 8 r ( O )  " - ~ 1 ~  Xlf(O) 

(4.8) 

(4.9) 

(4.10) 

(4.1 1) 
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for each B, B I 6 I?~ r (0) with r < F. Thanks to (4.8) and the fact that f is of  class CI: we get that 

limr+0 L r 1 6 2  0, vKf(0), 8r) = 0, i.e., r is uniformly Wr at 0 and 

A 

w*r  - v :~ f  (o).  
X l f  

(4.12) 

More generally, we can say that 

W r 1 6 2  _ V:~,f 

X l f  
- - ( P )  

from which (4.1) follows because 

VIe f (P)  ( - X l f ( P ) ,  X I f ( P ) W r 1 6 2  
vs(P)  -- 

]Vz~f(P)] ] X l ( f p ) 2 [ 1  + [w~q~(,_l(p))12] 

= ( ] 
v/1 + lw  ,l =' (1 + Iw  l=J 

So the implication ( i ) ~ ( i i )  is completely proved. 

Now we have to prove the converse, i.e., ( i i )~ ( i ) .  Let A = (7, v, r )  E co and P = qb (A) 6 S. 
We have to find an r0 > 0 and a f E C ~ ( U ( P ,  r0)) such that 

S M U(P, ro) = {Q E U(O, ro) : f ( Q )  = 0} 

X l f ( Q )  > 0 for all Q E U(P, ro) . 

(4.13) 

(4.14) 

Let 31 be such that I~ (A) �9 co; as qb �9 co ~ S is an homeomorphism we can suppose that 

s n ~ = |  

for a certain open neighborhood L/ �9 H n of  P.  Let C : =  S M ~ and g : C ~ ~ defined by 
g(z, t) : =  0. Define 

k : C ) H H  n --  R 2n 

(~,,),  , ( 1 , - w ~ , ( |  

We start by proving, thanks to Whitney 's  extension Theorem 2.18, that there is an f E C~z(H',  R) 
such that 

f = - g - O  o n C  (4.15) 

V ~ f ( z , t )  = k ( z , t )  = ( 1 , - W ( ~ r  fo ra l l  ( z , t )  6 C .  (4.16) 

Consider a compact  subset K of  C; for Q, Q'  6 K and 6 > 0 let 

R(Q, Q') :=  g(Q')-g(Q)-(k(Q)'~Q(Q-1Q'))Q = (k(Q)'ZrQ(Q-1Q'))Q 

d~(O, 09 d~(O, 09 
PK(~) :=sup{IR(Q,Q')I : Q,Q' e K,O<d~(O,O') <6} . 
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In order to apply Whitney's Theorem (which will provide the desired f )  we have only to prove 
that 

l im PK (a) = 0 .  (4.1 7) 
aS0 

Let us suppose that the converse is true, id est there is an e0 > 0 such that for all h 6 N 
there a r e  Qh, Qh, c K, O h = ~p(Bh), Qht ---- Op(Bht), B h = (oh, vh, 75h), Bht = (r/ht, 1)ht, Th,) 
for which 

0 < doo(Q h, Qh,) < 1/h (4.18) 

[r eph (nnh, r/h vh, "0 < IR(ah, ah')l < - --{Wg)qb(Bh)' - -  ' --1)h))t 
_ pr Bh,) (4.19) 

where as usual we indicated with ch,, ch the quantities 4~ (B ht) and r (B h), respectively. In (4.19) 
we used the fact that dec(~(B) ,  ~ ( B ' ) )  > p4)(B, B'); this estimate, together with (4.18), implies 
that pr h, Bht)) < 1/h  and so 

](r/h'-  r/h, v a t -  vh)] < 1/h  (4.20) 

[r h t -  r h + 2(r  ht +qoh)(r/ht-  77 h) + a ( v  ht, vh)[ < 1 /h  2 . (4.21) 

If we set M :=  SupK ICl and ot :=  supK 1(77, v)r we get 

I'(ht--I'hl < 1/he + 2rCht +r 21o(o'h,d')l (,) 

< 1/h  2 + 4 M I r / m -  r/hI +2oi ly  h ' -  vh] (**) (4.22) 

<_ C/h 

where C :=  1 + 4 M  + 2 ~  > 0 depends only on K. In ( .)  we used that ~r(v m,v  h) = 
1 ) h t ( l ) h  h t  while (4.20)justifies (**). But since K is compact 2 ~7=2[vh+j(v~ -- v h') -- j n + j -  Vn+j)]' 

there is a B = (r/t, v t, r ' )  e /al (A) D K such that 

lim B h =  lim B h t = B .  
h - - + ~  h---* ~o 

In particular, B h, B ht 6 Ic/h (B), and by (4.19) and the continuity of  the We-differential we get 
that for any h 

0 < ~0 < Mr162 B, w e e ( B ) ,  C / h )  

which contradicts the fact that r is uniformly Wr at B e Ia~ (A). This is sufficient 
to apply Whitney' Extension Theorem, and so we gct the existencc of  an f ~ C~(H n, IR) for 
which (4.15) and (4.16)hold. 

The proof of  the implication (ii)=>(i) will be complete if we prove the validity of  (4.13) 
and (4.14) for a certain r0. Let S t :=  {Q e H n : f ( Q )  = 0, V~-]f(Q) 7~ 0}; as we have already 
shown, we can suppose that P = 0 and A = 0. As 0 6 S A/d C S t we have 

f ( 0 ) = 0  and V ~ f ( 0 ) = ( I , - W r 1 6 2  

and by the Implicit Function Theorem there are an open neighborhood/A t of  0 and a continuous 
function 4 /"  la, (0) such that 

qb t : l a , ( 0 ) ~  S tALF 

B t > t(B) . r  
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is an homeomorphism. Therefore ~1-1($1 N L/I) is an open subset of  I~,(0) which contains 0, 
and so there exists a ~" 6]0, 31[ for which Ia,,(0) C ~I-1($1 N L/I); by the uniqueness of  the 
parametrization we get that ~1 _ r on Is,, (0). 

Now, let///" and///"f be open neighborhoods of 0 in H n such that 

S N b/11 = qb(I~,,(0)) = ~1(I~,,(0)) = SIN 5//1I (4.23) 

and let r0 > 0 be such that U(0, r0) C b/'I N/./i,i. Then by (4.23) we get U(0, r0) fq S = 
U(0, r0) fq S I, from which (4.13) and (4.14) follow. 

Finally, the area type formula (4.2) follows from Corollary 2.23 after finding a global f (that 
is given only locally), which can be done by a standard argument involving a partition of the unity. 
This completes the proof of the theorem. I~ 

C o r o l l a r y 4 . 3 .  Withthesamenotat ionsofTheorem4.1,  supposethatS :=  ~(co) isH-regular; 
then 4 : (co, Pr --+ ~ is locally Lipschitz continuous. 

P r o o f  The thesis follows from Theorem 4.1 and Remark 3.3. 

Now we want to establish some H61der continuity properties for uniformly W o-differentiable 
functions on co and therefore for parametrizations of  H-regular graphs; in particular we want to 
improve the H61der continuity obtained in (3.4). More precisely, we have the following. 

Proposition 4.4. Let  4 : 09 --+ R be uniformly W4~-differentiable at A ~ 09. Then there is an 
ro > 0 such that Iro ( A ) ~ co and 

{14(8 ' ) -4(8)1 8i } 
limr+0 sup ~ - - - B i i 7  T " B, ~ Iro(A), 0 < 18 - Bll < r = O. 

P r o o f  Again we treat only the case n > 2. 

If  B = (0, v, r )  and B I = (0 I, v I, r f) let us set 

/ I 4 ( B ' ) - - 4 ( B ) - - ( W O 4 ( A ) , ( 0  I - O , v ' - v ) ) : B I # B e l , ( A ) I  ; 
R(8) sup  / 8) / 

by the uniform W0-differentiability of  4 at A we now that lima j,0 R(6) = 0. In particular, there 
is an r0 > 0 such that 4 is Lipschitz continuous between the (quasi) metric spaces (/r0(A), P4') 
and It~ (equipped with the standard Euclidean distance), i.e., (3.3) holds. Then by (3.4) [see the 
passages that lead to (3.5)] there is a CI > 0 such that 

pe~(B', B) <_ C I l B ' -  BI 1/2 for all 

But if B ~ # B ~ I t (A) ,  0 < r < ro, we have 

14(8') - 4(8)1 < 
] B ' -  B] 1/2 - 

B', B E Iro(A).  (4.24) 

[4(B' )  - 4 (B)  - ( W r  ( ~ ' -  ~, v ' -  v)) I 

p,(8', 8) 

1(0'- v)l 

f i R ( r )  + C2 tW~4(A) l r  1/2 ---* 0 

p,(B',B) 
[B r - BI 1/2 

< for r $ 0 .  
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This completes the proof. D 

From Proposition 4.4 and a standard compactness argument we get the following: 

Corollary 4.5. Le t  49 : co --+ IR be a continuous function, and let �9 : co ~ ]t-~ n be defined as 

usual: <b(A) = t (A)  �9 49(A)el. Le t  S :=  ~(co), and suppose that S is an H-regular surface with 

V (sl ) ( P ) < 0 for all P ~ S; then for each M G I we have 

Ir  - 49(B)1 } 
lim sup " A, B E co', r 0 r,l,0 I'A~-SB] " ~  0 < IA - BI < = �9 

Finally, we stress an interesting approximation property for the parametrizations of  H-regular 
graphs. 

Proposition 4.6. Let49 : 09 -+ R be a continuous function which is uni formly W r 

at any A E co; then for any A E co there is a S = 6(A) > 0, with I~(A) | co, and a fami ly  

{49E}~>0 C CI(I~(A),  R) such that 

49e --> 49 and W r 49e ---> Wr uniformly on I~ (A)  . 

Proof Arguing as in the proof of  Theorem 4.1 we can suppose that A = 0, qb (0) = 0 and 

S (3 U(O, r) = {P E U(O, r) : f ( P )  = 0} 

for proper r > 0 and f c C1U(0 ,  r) such that f o r - 0 on I t(A),  with 8 sufficiently small. 
Moreover, arguing as in the proof of  the Implicit Function Theorem 2.16 (see [27]), we can 
suppose that, for a certain 0 < r '  < r (and considering possibly a smaller ~), there are two 
families {fi}~>0 C C 1 ( ~ 0 ,  r ' ) )  and {r C C I ( ~ ( A ) )  such that 

fE --+ f and VHfE ---> V H f  

49E ---> r and . . . .  V:~fE o qb E ----> Vrs o qb = Wr162  
X l f ~  X l f  

uniformly on U (0, # )  

uniformly on I~(A) 

where qbE(A) :=  t (A)  �9 49E(A)el is such that f~ o q~ = 0; indeed, the set St :=  {P 6 U(0, r ' )  : 
f ~ ( P )  = 0} D ~ ( I a ( A ) )  is an (Euclidean) Cl-surface, and then its parametrization 49~ is 
uniformly Wr and 

A 

v n f ~  

x ~ f i  

from which the thesis follows. U 

5. Characterization of the uniform W~-differentiability and some applications 

The main result we are going to prove in this section is the following. 

Theorem 5.1. Le t  49 : co --. ~ be a continuous function. Then the fo l lowing conditions are 

equivalent: 

(i) 49 is uni formly  W r at A for each A ~ co; 
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(ii) 
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there exist a w �9 C~ N 2n-1) such that, in distributional sense, 

w = 9 ~  i f  n = l  

and there is a family {~  }~ >o C CI (co) such that, for any open co' ~ co, we have 

~ --~ ~ and W r qS~ --~ w uniformly on o f .  (5.1) 

Moreover. w = WO fb on co and 

{ ,r  - r  } 
lim sup i ~ 1 - 5 ~  " a ,  B e c o ' , 0 < l a - B l < r  = 0  

r _ _ ~ 0  ~- 

for each co' �9 co. 

(5.2) 

R e m a r k  5.2. Let n = l and w - 0 then the functions ~ : o9 ---> R satisfying condition (ii) of  
Theorem 5.1 are entropy solutions of  Burgers' scalar conservation law in classical sense. Indeed, 
by performing the change of variables R 2 = 1Rx x Rt --+ N. 2 ---- Nrl x Rr, (x, t) ~ (t, - 4 x ) ,  
Burgers' operator ~3 can be represented in classical way with respect to the variables (x, t) as 

Ou 10u 2 

if u = u(x,  t) C C 1 (w*) and o)* C ~2 is a fixed open set (see [21], Chapter III, Section 3). In 
this case, condition (ii) of  Theorem 5.1 reads as the existence of  a function u : o)* --+ ~ and of a 
family {u~.}~ C C 1 (w*) such that 

uE ~ u and ~3uE --+ 0 uniformly on o)' (5.3) 

for any open co' ~ co*. Let us assume now co* = (a, b) x ( - 6 ,  3) and let g(x)  :=  u(x,  0) if 
x �9 (a, b). Then we claim u is an entropy solution of the initial-value problem 

Ou 1 0 u  2 _ 0  in (a,b) x (0 ,3 )  + - - 

u = g  on (a ,b)  x { t = 0 } .  

More precisely, by definition (see [211, Chapter XI, Section 11.4.3), we have to prove that 

(YO :r . u e C~ 3), L~oc(a, b)) f3 Lloc(co ) ,  (5.4) 

u(., t) --> g in L~oc(a, b) as t --> 0+ ;  (5.5) 

�9 e ( u ) ~  + d ( u )  d x d t  > 0 (5.6) 

for each v e Cc 1 (~o*), v _> 0 and for each entropy/entropy flux pair (e, d), i.e., two smooth 
functions e, d : R --+ N such that e is convex and er(u)u = dr(u) Yu �9 ~.  Then (5.4) and (5.5) 
follow at once because u c C~ As u~. �9 C 1 (co*) 

a(e(uD) O(d(uE)) 
- -  + - -  - w ~  e ' ( u ~ )  in co* (5.7) 

Ot Ox 

in pointwise sense with w~ = ~3u, and, by (5.3), we ~ 0 uniformly in co' for any open co' �9 co*. 
Therefore multiplying both sides of  (5.7) for a given v �9 C~ (co*), integrating by parts and taking 
the limit as �9 -+ 0 + we get (5.6) too (actually with an equality, so with no entropy production). 
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Remark 5.3. Let n > 2 and let assume that ~b : co --+ R satisfies condi t ion  (ii) of  Theorem 5.1 
with w ---- 0 in an open connec ted  set co C R 2", then ~b is constant  in co. Indeed,  for  a fixed A0 �9 co 
let B = B(Ao, r0) C co an Eucl idean  ball  centered at A0 with radius ro > 0, and, for  a fixed 
r/ �9 !R, let B o : =  {(v, r )  �9 --vl]~2n-2 • ~ r  : (r], V, l") 6 B}, ~b,(v, r )  : =  q~(r/, v, r )  i f  (v, r )  e B , .  

:~ o2n- -2  i~n--I  Since ~b is cont inuous in co, B 0 is an open connected  set , .  ~,, x IRr --  and 

A'jcp 0 = Y j ~ b ,  7 - - 0 i n  B 0 ( j = 2  . . . . .  n), 

in dis t r ibut ional  sense we get  

4~(0, v, r) = q~(rj) V(o, v, r)  �9 B.  (5.8) 

In fact  a Poincar6 inequal i ty  holds  in (H " - l  , de) with respect  to the hor izonta l  gradient  Vn : =  
(X2 . . . . .  Xn, Y2 . . . . .  Yn) (see, for  instance,  [34], Proposi t ion  11.17) and then there exists a 
constant  c > 0 such 

Id&-~,~,UclU~.. <_ cr IV~-~q~01 d s  2"-1 
c(P , r )  c(P,r) 

for  every P �9 H n - l ,  r > 0 such that  Uc(P, r) : =  {Q �9 H n - !  " de(P, Q) < r} c B o and 

1 s (97 ds l 
~grl,Uc : =  •2n_l(Uc(P ' r)) c(P,r) 

On the other hand, by (5.8) we infer 

ar 
~35 = - -  = 0 i n  B 

in dis t r ibut ional  sense. Thus,  $ is constant  in B = B(Ao, ro) for  all Ao �9 co for  sui table r0 > 0. 
As  ~b is cont inuous in co and w is connected  we can conc lude  that  ~b actual ly  is constant  in the 
whole  co. 

In order  to prove Theorem 5.1 we wil l  need some further nota t ion and pre l iminary  results.  

Let  ~b " w --+ IR be a cont inuous function,  and suppose  that for  all A �9 w there are 0 < 32 < 3t 
such that, for each j �9 {2 . . . . .  2n} there exists  a map  

}"j : [--$2,321 X la2 (A) ~ la, (A)  �9 co 

(s, B) ~ > yjB(s) 

such that yfl �9 C 1 ([-32,  32], R 2n) for each B �9 la2 (A) and, with the usual  identif icat ion be tween  
vector  fields and differential  operators ,  

(E.1) 

(E.2) 

S j o y  B if  j # n + l  

q=w;oq= 
0v. 4(~ o y,B+l ) Oq ~rr i f  j = n + l  

y r ( 0 )  = B; 

there is a sui table cont inuous  function t/3j : co ---+ ]~ (depending only on ~b) such that, for 

e a c h s  e [ - 3 2 ,  32], ~b(yf  (s))  - ~b(y 7 (0)) = fo wJ(Y7 (r))dr. 

We wil l  call  the {Fj} a family  of  exponent ia l  maps  of  W 4' at A; we wil l  wri te  expA(SWf)(B ) : =  

• 
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R e m a r k  5. 4. 

R e m a r k  5.5.  

have 
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Notice that if the exponential maps of W e at A exist, then the map 

[ - - ~ 2 , 3 2 ]  3 S I  > 4 ) ( e X p a  ( s W ~ ) ( B ) )  

is of  class C 1 for each j 6 {2 . . . . .  2n} and each B c l~z(A). 

Observe that, because of the left invariance of the fields ~'j ,  for j r n one must 

expA ( s W f ) ( B )  = B ,  t - l ( e x p s X j )  = B ,  t - l ( s  e j ) .  (5.9) 

Moreover, if there are the exponential maps of W e at A [in particular, there are w j  as in (E.2)], 
then for any k = (k2 . . . .  , ~,n, ~.n+2 . . . . .  )~2n) 6 R 2n-2 there exists also an exponential map for 

the field Y~)~jW~i, i.e., there are two continuous maps Vx " [-32,  32] • I~2(A) ---> I~I(A) 09 
(with, possibly, a 32 > 0 smaller than the one in (E. 1), depending on ~) and wx : w --+ lI~ such 
that 

2)z(s, B)  = E ) u W ~ ( y x ( s ,  B ) )  

yx(O, B) = B 

Is 4)(y)~(s, B ) )  - 4)(y~.(O, B) )  = w z ( y ( r ,  B ) ) d r .  

In fact, it is sufficient to take yx(s,  B)  :=  B �9 (0, s~., 0) and wx :=  Y~ ~.jWj. 

The following lemma provides sufficient conditions to guarantee the existence of  exponential 
maps  o f  W e . 

L e m m a  5 . 6 .  Le t  4) �9 o) --> R be continuous, and suppose that 

(i) there exists w ~ C~ such that, in distributional sense, 

w = (w2 . . . . .  W2n) = (X24) . . . . .  ~'n4), ~34), Xn+24) . . . . .  X2n4)) i f  n >_ 2 
w =  f134) i f  n =  1 

(ii) t h e r e i s a f a m i l y o f f u n c t i o n s  {4)E}E>o C C l ( w , ~ )  such t h a t f o r e a c h w  ~ ~ w w e h a v e  

4)E --+ 4), W e" 4)E -+ w uni formly on 0) -7  . 

Then for each A c w there are 0 < 32 < 31 such that, for each j : 2 . . . . .  2n, there exists 

exp A (S W ~ ) (  B ) ~ lal ( A ) ~ o9 for all (s, B) 6 [ -32,  32] x la2 ( A ) ; moreover, 

d 
w j ( B )  = ~-ss4)(expA ( s W f ) ( B ) ) l s =  0 

for each B E 132 ( A ). 

Proo f .  Again we can suppose n _> 2, as for n = 1 the proof can easily be derived. 

There is no problem if j ~ n § 1; in fact by (5.9) it is sufficient to set 

expa ( s W ~ ) ( B )  :---- * exp (s,~j) B 
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which is defined on [ -62,  62] x I82(A) for a sufficiently small 62 with values in ls~(AO)~ o9. 

Then (E.I)  is fulfilled by construction and (E.2) comes from the hypothesis that w j  = Xj4~ in 
distributional sense. 

For j = n + 1 and 6 > 0 consider the Cauchy problem 

0 

re(0, B) = B 

which has a solution y~ : [ -62(E) ,  62(6)] • I82(e)(A) ~ Is~(A). By Peano's estimate on the 
existence time for solutions of  ordinary differential equations we obtain that 82(E) can be taken 
greater than C/II4~ IIL~(I~I(A)) (where the constant C depends only on 81), and so we get a 

62 > 0 such that 82(E) >_ 62 for all E. Now, on the compact [-62,  82] x I~2(A) the functions 
y~ are uniformly continuous, and by Ascoli-Arzel~'s Theorem we get a sequence {eh }h such that 
Eh -*  0 as h -+ ec  and Y~h - +  Y uniformly on [ -~2 ,  62] • I~2(A). Remembering that 

Y~h (s, B) = B + - 40,h (Y,h (s, B))-~r ds 

f0 s ~b~h, , ,~ qSEh (?'~h (S, A)) -- ~bEh (VEh (0, B)) = Wn+lq)EhtgEh~L, B ) ) d s  

and for j ~ ~ we get (all the involved convergences are uniform) 

y(s ,  B) = B + - 4~b(g(s, B)) ds 

fo d~(y(s, B))  - ~(y(O,  B))  = Wn+l (y (s ,  B ) ) d s  

i.e., (E.1) and (E.2). 

As in Euclidean spaces the gradient of  a function is the vector composed by the derivatives 
along the exponentials of  the vectors of the canonical basis, we will prove, in the following 
theorem, that the W~-differential is the vector made by the derivatives along the exponentials of  
W ~ . 

Theorem 5.7. Let  qb : co -+ • be a continuous function such that, for a certain A E co, the 
following conditions are fulfilled: 

(i) there are 0 < S 2 < 61 such that, for each j = 2 . . . . .  2n there exist a family  o f  exponen- 
tial maps 

expA ( sW~)  : [ -62,  62] x la2(a) --+ Ia, ( a ) .  

(ii) for each o9' G co 

{ co, } lim sup : B ' , B  E - -  0 <  ] B ' - B ]  < r  = 0 "  
--Bi  

Then ~ is uniformly W ~ -differentiable at A and 

d 
= j ( e x p A  o . 
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Proof. For n > 2 let A = (~, Y, Y), B = (~/, v, r) ,  B'  = (rf, v t, r ' )  6 co, while for n = 1 
A = (~, Y), B = (O, r) ,  B'  = (0', r ' )  6 co, and let w = (w2 . . . . .  W2n) be as in (E.2). We have 
to prove that 

lim M4j(qb, A, w(A), 6) = 0 (5.10) 
~-~0 

where Me is defined as in (1.19). 

The proof is exactly the same as in Theorem 3.8: At first, for n > 1, we define the vector 
- -  2 n  field X : =  E j = 2 , j # n + l  (v~ - l J j ) W ;  = K~2n Qjt /_.~j=2,jCn+l ~, j -- u j ) X j ,  a n d  t h e n  w e  se t  

B* := expA (X ) (B)  
1 t . .  ' - ~ , ) , 0 )  = ~ �9 (o,  ( ~  - v2 . . . . .  ~ .  - v,,, ~ . + 2  - ~ . + 2 ,  . ,  ~2,, _ 

: (~ ,  t ,  ~ -  ~ ( , ,  v ) ) .  

I f n  = 1, X has no meaning and we simply define B* := B. 

Now the big obstacle is that in general we cannot integrate along the vector field Wn~+l, i.e., 

we cannot define B 't :=  exp((~/' - 0)( 4 - 4 r  however, this problem can be solved 
using the existence of exponential maps, more precisely, by posing 

B" := expA ( ( r / t -  t /)W2+I)(B* ) = 
( O ' , v ' , r ' )  if n > _ 2  

(for a certain r " ) .  
07', r ' )  if n = 1 

Therefore, we can rewrite (3.17) as 

~ ( B ' ) - - ~ ( B )  = [ , ( B ' )  -- , ( B " ) ]  + [ , ( B " )  -- , ( B * ) ]  + [ , ( B * )  -- , ( B ) ]  

__ f 0  r f - r t  - -  [q~(Bt )  - -  ~ ( B U ) ]  -I - Wn+l(eXPA(SW2+l)(B*))ds 
I 2n 

+ L E (v}- vj)wj(exPA ( sX)(B))  (*) 
j = 2  

j # n + l  

2n 

= [ r  - r  + E (v}-vj)wj(A) 
j = 2 , j # n + l  

+ ( r  ~ ) w o + , ( A ) +  o ( 1 ( r  - ~ ,  v ' -  v)l) 
= [qb(B')-fb(B")]+(w(A), (q'-O,v'-v))+o(po(B',B)) 

if  n > 2, and as 

~ b ( B ' ) -  ~b (B)=  [ ~ b ( B ' ) -  q~(B")] + w(A)QT'- 0) + o(pr B)) 

if n = 1. In the passage signed with ( , )  we have used the continuity of  the wj at A. 

Reasoning as in (3.18) and (3.19), the keypoint is again to prove that I t '  - r"[ 1/2/P4~ (B',  B ' )  
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is bounded in a neighborhood of A, and rewriting (3.20) we obtain 

f rf--r/ I t ' -  r"]  = r ' -  r +cr(v ' , v )+  4 ao c~(expA(SW'~+l)(B*))ds 

-< + 2(~(B')  + q~(B))(r/' - q) + o-(v', ")1 

+ qb(expA(SW,~+l)(B*))ds-(dp(B')+qb(B))(rf 
Jo (5.11) 

<__ p{b(B', B) 2 -t- 21,/,(B' ) - * (B") l  1,7' - ,71 + 21, (B) - I r  - ,71 

2 2 f o  ~'-~ 4- (a(exPA(SWt+l)(B*)ds [qb(B") + qS(B*)] (rf - r/) 

=:  pg~(B',B) 2 4- RI (B ' ,B)  4- R2(B' ,B) 4- R3(B' ,B)  

for n > 2; for n = 1 simply do not consider the term cr(v', v). Therefore we have once again 
to prove (3.21), (3.22), (3.23); this can be done following exactly the same line as in the proof 
of  Theorem 3.8 and using (E.1) and (E.2): The only thing one must pay attention to is to write 

expA (. Wt+ 1 ) instead of exp(. W) in (3.24). 

Now the proof of Theorem 5.1 is in order. 

Proof  o f  Theorem 5.1. We will accomplish the proof only for n > 2, because as usual the 
generalization to n = 1 is immediate. Let us begin with the proof of  the implication ( i )~( i i ) .  

The statement in (5.2) follows from Theorem 4.1 and Corollary 4.5. By Proposition 4.6 we 
get that for each B e co there is a 6 (B) > 0 (such that la(s) (B) ~ co) and a family of  C 1 functions 

{qS~,B :I8(8)(B) ---> R}0<E<I such that 

~bE,B --+ r and W4~,,Bq&,B --+ W4~ck uniformly on Ia(B)(B) . (5.12) 

As 5 r := {Ia(B)(B) : B c co} is an open covering of co we can associate a partition of the 
unity {Oi : i c N} which is subordinate to it, i.e., 

Oi c C~(co), 0 < Oi < 1 on co for all i (5.13) 

{spt Oi }ieN form a locally finite covering of co, and for all i ~ N 
there is an li := 18(B(i))(B(i)) C ~ such that spt Oi C Ii (5.14) 

O(2 

E O i  --= 1 o n w .  (5.15) 
i=1 

Let ~ , i  :~--- ~)E,B(i) : ]~2n ~ ]I~, where from now on, if necessary, we use the convention 
oe 0 of  extending functions by letting them vanish outside their domain. Let ~b~ := Y~i=l ifll)E, i ' by 

construction ~b~ e C 1 (co) and 

O~E k / OOi 0~9~,i ~ 
= + oi ( v . )  

0/7 i=1 07 j 

= -Y"'-~ i OVj /] OVj i=1 ~ OVj ' + Oi 

Of~ vo I / O0 i OfbE,i 

i=1 

(n > 2) 

(V n) .  
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In particular, 
O O  

WeE~e = Z (r -]-oiweeee ' i )  on co. 

i=1 

We have to show that (5.1) holds for any fixed o)' ~ co; by (5.14) there is only a finite number 
- -  - -  k of index il . . . . .  ik such that o)'A spt Oih # 13 'r h = 1 . . . . .  k, and o)~ C Uh= 1 spt Oih. Then 

k k 

~br ~- ~Oih~)~,ih and q~ = Z O ih~9  on o9 .--7 (5.16) 

h=l  h=l  
k 

W ~be ~b, = Z (~b~:'ih We` Oi,~ q'- Oih WdP' O,,ih ) on o)--7. (5.17) 
h=l  

Equations (5.16) and (5.17), together with (5.12), give 

~bE --~ q~ (5.18) 
k 

W4"~bE ~ Z (~bWi;~ + Oih Wefb) =: w (5.19) 
h=l 

uniformly on o):, where we put 

W~:=(X2Oih, SnOih OOih 4 00ih Y2Oih, YnOih) 
,h . . . . .  o,7 ~ -~r  . . . . . .  

Observing that ~hk=l ~bW/~ h = 0 we get that w = Weq~ 6 C~ ]I~ 2 n - l )  and  

w : . . . . .  . . . . .  

in distributional sense. 

The reverse implication (ii)=~(i) follows from Lemma 5.6 and Theorem 5.7. The hypothe- 
sis (ii) of  Theorem 5.7 [i.e., the assertion in (5.2)] is satisfied because of the following Theorem 5.9: 
The key observation is that, thanks to the uniform convergence of ~br and W e" ~bE, we can estimate 
114'~ IIL~t,.") and II We'4,~ IIL.~(o:) uniformly in e for any co" @ co. Moreover, the uniform conver- 
gence of W e'  cPE allows us to choose a modulus of  continuity for W e` 4~E which is independent 
of  E. Therefore there is a function ot :]0, + ~ [ - +  IR, which does not depend on E, such that 
limr--,0 a ( r )  = 0 and 

8', } sup [ ~ - - B i l -  ~- : B E o)', 0 < I B ' -  B 1 < r  < or(r) 

which implies (5.2). [~ 

Theorem 5.8. Le t  I C IR 2n be a rectangle and let (b E C 1 ( I )  be such that Wed~ = 
(w2 . . . . .  w2n) ~ C~  ]~2n - l ) ,  i.e., 

{ :~:e: = w j,  ~ j~  = w:+. 
O(o _ 449 0_~_~ = W n +  l . 
-~o or 

for all j = 2 . . . . .  n 
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Then for all rectangle I '  ~ I there exists a functionet :]0, +oc [ - - ,  [0, +oc[ ,  which depends only 

on I" ,  IIr (where I"  is any open rectangle such that l '  ~ I"  �9 I) ,  on II Wr162 and 
on the modulus o f  continuity ofwn+l  on I ' ,  such that l imr~0 ~(r)  = 0 and 

Ir  - r  } 
sup F~-__--B-I1-- ~ : A, B e I ' ,  O < IA - BI < r < o r ( r ) .  (5.20) 

Proof .  As usual, we can suppose n > 2; the proof can be easily adapted to the case n = 1. 

Let's begin by setting K :=  SUpaei,, IAI, M :=  114~llt~<I'>, N :=  II W~r let/3 bethe 
modulus of continuity of Wn+l on I ' ,  i.e., an increasing function ]0, + e c [ ~  r --+/3(r) ~ [0, +c~[  
such that IWn+l(A) - w,+I(B)I  < /3(IA - BI) for all A, B c I "  and limr--,0/3(r) = 0. We 
divide the proof in several steps. 

S t ep  I .  Let us fix another rectangle J C R 2" such that I '  ~ J @ I ' ,  and let us introduce the 
following notation: For A = (~, v, r )  6 J we define YA as the curve solution of  the Cauchy 
problem 

~;A(t) = 3-0 4r  0-7 

/ yA(r]) = A .  

By standard considerations on ordinary differential equations, we have YA ~ C 1 ( [ 1 / -  e, r / +  
e], I ' )  for a certain E > 0 which does not depend on A; moreover, we can choose ~ so that 
ya([rl -- E, 0 + e]) C J for all A 6 I ' .  Let ya( t )  = (rl + t, v, ra( t ) ) ;  then 

d2 
dt2 rAo(t) = [-4~b(YAo(t))] = --4Wn+l(Yao(t)) �9 (5.21) 

S t ep  2. Set 8(r) :=  max{r U4,/3(Erl/4)L/2}, where E > 0 is a constant which will be specified 
later; we start by proving that ot'(r) < S(r) + 2NU26(r)  + N r  1/2 for r "sufficiently small" (in a 
way we are going to specify, but depending on K, M, N and 13 only), where 

{ Iq~(A) - r  , } 
o t ' ( r ) : = s u p  [-A----B-li ~ : A = ( r l ,  v , r ) , B = ( r l , v , r ' ) ~ l ' , O < l A - B l < r  . 

Suppose on the contrary that there exist A = (77, v, r),  B = (0', v, 3') 6 I '  such that I A - B I 
is "sufficiently small" and 

Iq~(A) - r  

IA - BI 1/2 
> a + 2N1/23 + N r  1/2 , 

where from now on we will write 8 instead of  S (IA - B I). We observe explicitly that by definition 
of  3(r) we have 8' :=  S(Ir - rL[) < 6 and so 

/3(1  - + 8MI  - v'] 1/2/8) 
32 

e(l+-+'l§ ') 
< 

S t2 

e0+-+'l§ +'1 '/4 ) 
- -  812 
< 1 

(5.22) 

provided E > 0 is such that Ir - CI + 8MIr  - r ' l  1/4 < E I r  - r ' l  1/4. 
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Let C : =  (0, v, C)  6 F ;  as [A - C] 1/2 = Iv - •'11/2 and [C - BI 1/2 = Irl - r/t[ 1/2 we have 

<~ + 2N1/23 + Nrl/2 < I~b(A) - 4)(B)I 

- I ,  - , '1  + Iv -  '11/2 

I r  - r  I r  - r  < + 
- [r - r'[ 1/2 [ q -  qt] 1/2 =:  R1 + R2 �9 (5.23) 

Therefore, up to subsequences, we can suppose that we have always R1 _> 3 or R2 > +2N1/23 + 
Nrl/2. 

S t e p  3. We want to prove that the first case cannot occur; in fact, we will prove that 

I r  - r  < 8  
['r - -  "t"[ 1/2 --  

for A, B 6 J (not for I t only!). We can suppose that r > r '  (for the other case it is sufficient to 
exchange the roles of  A and C). Consider YA and YC; thanks to (5.21) we have, for t E [ q - ~ ,  r/+~] 

r A ( t ) - - ' c c ( t ) = r - - r ' +  "rA (r/) -- "cO (r/) § [ izA(r)- - fc(r)]dr  ds 

K < r - r ' - 4 ( t  - ~)[4~(A)-4~(C)] - 4 [Wn+l(YA(r))-Wn+l(Yc(r))]drds 

< r - r ' - 4 ( t  - n ) [ C ( A ) - C ( C ) ] + ( t - , ) a ~ ( l r  - r '  I +SMlt - O[), 

(5.24) 

where in the last inequality we used the fact that 

IYa(r) -- yc( r ) l  lYA(0) -- YC(0)I § Ir -- 0l (llfAIIoo -t-Ilfcl[o~) 

< I v - -  r ' [  + 8 M [ t -  r/[. 

If  q~(A) - ~b(C) > 0 put t :=  r / +  (r  - l")1/2/~ in (5.24), and t : =  0 -- ( r  - rt)l/21~ otherwise; 
if  Ir - CI is "sufficiently small" ya( t )  and gc(t) c I" are well defined (it is sufficient to take 
E > (Z" - -  "t J )  1 / 4  > ( ' r  - -  " r t ) l / 2 / c ~  = It - 01) and from (5.22), (5.24) and R1 > g we get (in both 
cases) 

r A ( t ) -  r c ( t )  < r - r ' - 4 ( r  - r ' )  + (r  - r ' ) / ~ ( l r  - r '  I + 8 M l r  - r ' [ ' / 2 / ~ ) / 3 2  

_ < - 2 ( r -  r ' )  < 0 .  
(5.25) 

This leads to a contradiction: In fact l" A and rc  are solutions of  the same Cauchy problem 

f (s)  = -4q~(s,  v, r ( s ) )  

with initial data r(~/) = r and r t, respectively. The contradiction is given by the fact that two 
such solutions cannot meet, while ra(q) -- rC(0) > 0 and rA(t)  -- r c ( t )  < 0 for h sufficiently 
large. 

S t e p  4. Now let 's examine the second case R2 > 2N1/23 4- NrU2; we can suppose that ~7' < O 
(otherwise it is sufficient to exchange the roles of  B and C). Consider Ys; again, for 0 - 7/t 
"sufficiently small" D :=  FB(r/) = (r/, v, r ' )  ~ J is well defined, and 

fo ~ dt [q~(B) - ~b(D)] = , Wn+l(yB(t)) < N i t / -  q ' [ ;  (5.26) 
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moreover, 

4 f~ ~ dt I r " -  r'] = , qb(yB(t)) < 4NI/7 --/7'1 (5.27) 

Then for I/71 -/71 "sufficiently small" (and precisely when NI/7 - / 7 I l l / 2  _< [/7 --  /7II1/4 5 8) 

we obtain 

14,(c) - qS(D)l ~ I,P(c) - q~(9)l - Iq~(B) - 4~(D)I 

> [ 2N1/28 + Nrl/2 - NIo - 0'11/2 ]lo - r (5.28) 

_> 2Nl/2~1/7_/7,11/2 >_ ~1<-~'11/2 

so that we are in the first case again (with the couple C, D 6 J instead of A, C) which we have 
seen is not possible. 

This proves that l imr~0 ~1(r) ----- 0, and that we are able to control ~/with only K, M, N and 
ft. Observe that what we said up to now, properly translated in the notation we use when n = 1, 
gives directly the thesis for the case n = I. 

S t ep  5. For the general case, let A = (/7, v, r ) ,  B = (/7I, vl, r  E I,  and set 

A* : = A . ( O , v ' - v , O ) = ( / 7 ,  v',r +a(v ,v / ) ) .  

2n t We can see A* also as e x p ( Y ] 4 = z , j C n +  1 (vj - v j ) W f ) ( A )  and so 

2n e l (v , j  (exp (t  (A))dt  
I r 1 6 2  < ~ Jo -vj)W~dp Y'~.~n2,j#n+ 1 ( v ) - v j ) W ~ )  

j ~ + l  

< N l v ' -  o I <_ NIA - B[. 

As I,~(v, ~')1 = J2 ZT=~t~.+J(o)  - oJ) - vj(~',,+~ - ~,,+~)11 -< e x l a  - 91 we get 

IA* - 91 _< I r  ol + I r  ~1 § I~(o, v')l 
< (2K + 2 ) [ A -  B[ 

and so 

Ir - r  
IA - 911/2 

I r  r  Ir  - 4,(B)I < + 
- I A  - BI 1/e I A -  BI 1/e 

I~ (a*) -  4,(9)1 < N I A - B I 1 / 2 + ( 2 K + 2 )  
- ] a * -  911/2  

< uIa  - B[ 1/2 + (2K + 2 ) a ' ( [ a *  - B] 1/2) 

< NIA - BI 1/2 + (2K + 2)a / ( [ (K + 2) la  - BI]I /2) .  

S t ep  6. The proof is accomplished for r "sufficiently small" only; however, this is sufficient to 
conclude. L] 

By a standard compactness argument we get the following. 
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L e t  ~ ~ C](og) such that Wr = (/.02 . . . . .  U)2n) ~ C~ I~2"-]), i.e., 

{ "2j, = ~,r = ~+. 
04) _ 44~ = W,+l  �9 
O0 or  

for  all j = 2 . . . . .  n 

Then for all M ~ o9 there exists a funct ion ot :]0, + ~ [ - +  [0, +cx~[, which depends only  on 

co', 114~llt~(oJ,) (where og~r is any open set such that J ~ o9" ~ co), IIW~4~llL~(,o,, ) and on the 
modulus  o f  cont inui ty  Of wn+l on j r ,  such that l i m r ~ o  a ( r )  = 0 and 

{ Iq~(A) - ~b(B)l , } 
sup ~ - - - ~ l q ~  : Z ,  B ~ og , 0 < lZ  - Bl <_ r <_ u ( r )  . (5.29) 

Let us conclude this section with two applications of  Theorem 5.1.  

A first application is a negative answer to the problem of a good parameterization of H- 
regular hypersurfaces. Indeed, a natural question arising is the (local) Lipschitz continuity of 

: o9 C (~2n ,  p) ~ ~ when p denotes the restriction distance of doo to V1 ~ ]1~ 2n. More 
precisely, when p -- pTv being PT~ the so-called parabol ic  distance on ]1~ 2n -~- ]l~r/ • --v]l~2n-2 • ~ r  
(I~n x ]Rr i f n  = 1), i.e., the distance defined by 

v, (. ' ,  ,,', = I (,7', , /)  - (,7, ")I + I " -  "I '/= 
(0'. = 10 ' -  01 + vl 1/2 if n = 1. 

Corollary5.10. Thereex is t  H-regularsur facesS  : dp(og) C H 1 f o r w h i c h t h e r e i s n o c o n s t a n t  

L > 0 such that 

for  suitable continuous funct ions (p : o9 ~ ~ when �9 : o9 ~ H 1 is the function 

qb(A) :-- t (A )  . ~b(A)el . 

P r o o f .  By contradiction. Without loss of generality we can assume that o9 = (a, b) x 
(c, d), then for each r c (c, d) the function cp(., r )  is Lipschitz continuous in (a, b). Therefore, 

a~ 
for all r c (c, d) there exists the distributionial derivative ~--~(., r )  ~ L ~ ( a ,  b) in (a, b) and 

I1~ ( ' ,  r)llL~(a,b) _< L for all r ~ (c, d). In particular, there exists the distributional derivative 
aS 0~ E L~(og) in oJ too. By Theorem 5.1 we know that 

~ b  0q~ 20~b 2 
_ _ _  ~ C~ 

Or/ Or 

in distributional sense, thus 2 ~  2 6 L~(og) .  Then ~b 2 6Liploc(og). 

We claim that S := qb (co) is Euclidean 2-rectifiable. Indeed, there is no loss of  generality in 
supposing that actually q~2 6Lip(og), i.e., kb2(A) - ~bZ(B)[ _< M [ B  - A] for some M > 0 and all 
A, B E co. Then for h E N set 

+ {AEO9 ogh := : (p(A) > 1 /h}  

ogh := {A ~ co" ~b(A) < - l / h }  

wo := {A E co : ~b(A) = 0} 
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+ co h, have and observe that, when A, B 6 w h or A, B c we 

21r - r  < Ir - r  Ir  + r  

= I~b2(A)  - q 5 2 ( B ) l  < M I B  - A I ,  

i.e., r is Lipschitz continuous; extending it to Ch :a= : w --+ ]R and defining dp~ in the usual way, 

we get that dp(wff) C opt(w) is Euclidean 2-rectifiable. Observing that dP(wo) C V1, we get that 
also 

u U u U ) 
h h 

is Euclidean 2-rectifiable. On the other hand, there are H-regular surfaces S = qb(w) C H 1 which 
are not Euclidean 2-rectifiable (see [371, Theorem 3.1) and then a contradiction. 

A second interesting corollary of Theorem 5.1 provides a simple way to exhibit N-regular 
surfaces in H l not Euclidean regular. 

C o r o l l a r y  5.11. Let  ~) : 09 C ]l~ 2 --+ ]~ be a continuous function which depends only on r, 
i.e., r = r ( T ) : I -*  ~ for a certain open (and possibly unbounded) interval I C R, and suppose 
that r : I --~ R+ is o f  class C l . Then r is uniformly Wr at A for every A c w 

and 

w e e ( A )  = -2(~b2) ' (A).  

In particular, Wr162  is continuous and r parameterizes an H-regular surface in H 1 . 

Proo f .  Thanks to Theorem 5.1, it is sufficient to find a family {r }e such that (5.1) holds. The 
family we are going to consider is of the form Ce = CE (r) :=  (r + 82) 1/2. de, where 8e and ge 
are to be found; the key idea is to construct g~ such that ge --+ sign r and gl e is "controlled," in a 
way we are going to specify; then our thesis becomes 

Ce --+ r and (r  (r uniformly on J (5.30) 

for each J ~ I.  

We recall the following general fact: Let D, E two closed subsets of  I such that d(D,  E)  :=  
i n f { l a - b l  : a 6 D , b  ~ E} > C > 0; then there exists a g  6 Co*(l, [ - 1 , 1 ] )  such that 

diD ~ 1, die = --1 and IIg'[l~ < 4 / C .  

Now let us set 

~ ( r ) : = s u p  i ~ - - - r [ i ~  r ' , r  ~ J, 0 <  I - r l  < r  , 

and suppose that o~(r) ~ 0 as r ~ 0+: Then if we set 8e :=  ~(e)e 1/2/2 we have lime--,0 8E = 0. 
For each E let De :=  {r �9 r  _> Be} A J and EE :=  {r : r  < --BE} A J ;  by construction 
d(DE, Ee) > �9 and so there exists age  c C~ [ - 1 ,  1]) with ge = 1 on De, ge = - 1  on E~ 
and IIg~E I[~c < 4 / � 9  = 0t(�9 As we said earlier, set ~be : =  (~b 2 § $2)1/2ge; it is easy to prove 
that Ce -+ r uniformly on J and 

�9 ' < 4 ~ 2 +  2ll(r ' - ( r  IIL,~r - Ilg, g,(r  ff)llL r 2 -  1)(r 
2 
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for E + 0+; in the last passage we used the implication ~b(r) = 0 ~ (q~2)'(r) = O, and so 
II (4fl)' II L~ (Jn{l~t_<a,/) ~ 0 because of the continuity of  (4fl)'. 

Let us remark that q~E actually depends on J ;  however, if we consider a sequence {Jn}naN 
of closed intervals such that j n  C jn+l  and j n  1" ]a, fl[, we get sequences {~bn}, for each n, so 
that we can conclude with a diagonal argument. 

Finally, we have to prove that or(r) --~ 0 as r ~ 0. Suppose that the converse is true; then 
there exist a > 0 and ah, bh E J such that 

[qb(ah) --~b(bh)[ > 2cr[ah --bh[ 1/2 and [ah --bhl  ~ O. (5.31) 

We can suppose that (p(ah) and (b(bh) have the same sign (i.e., (b(ah)(b(bh) ~ 0);  in fact, if this 
is not the case, by the continuity of  4~ there is a Ch E]ah, bh[ such that (b(Ch) = O, and we can 
suppose that Ch C J (because there is no loss of  generality supposing that J is an interval). As 

Iq~(ah) -- q~(bh)l Iq~(ah) -- 6)(Ch)l I~)(Ch) -- q~(bh)[ 
2a < < + 

lah -- bhl 1/2 -- lab -- Chl 1/2 ICh -- bhl 1/2 

there exists a dh ~ {ah, bh} such that [r -- q~(dh)l > alCh - dh[ 1/2. Therefore (possibly 
considering Ch and dh instead of ah and bh) we can assume that ah and bh satisfy (5.31) (possibly 
with a instead of  2a)  and that ~b (ah) and 4' (bh) have the same sign. 

As J is compact, we can suppose (up to subsequences) that there is a Y E J such that 
ah ~ Y and bh ~ Y. It is not possible that ~b(Y) # 0: In fact, ~b is of class C l in the open set 
{r : q~(r) ~ O} (it is easy to show that here 4~' = (~b2)'/240 that would imply the boundedness 
of  the quantities k b (ah) -- ~b (bh)l/lah -- bhl for h sufficiently large, which is in contradiction 
with (5.31). Therefore ~b(Y) = 0 and so one must have (q~2y(y) = 0. As O(ah) and ~b(bh) have 
the same sign, we have I~b(ah) -- (b(bh)l < I~b(ah) + ~b(bh)l and so 

t7 2 < ( Ic~(ah)-~(bh)l~21-~hh-b-b~ fl 

([qb(ah)--~9(bh)[)  ( 'cP(ah)-bq~(bh)[~ 
< lah -- bh[ 1/2 ~h  -~-bh-~- ] 

= Iq~( ah)2 --  q~(bh)2] = ( ~ b 2 f ( r h )  

lah - bhl 

for a certain rh contained in the interval between ah and bh. Therefore rh ~ Y and so (~b2)'(Y) _> a 
by the continuity of (~2),, which is a contradiction. [ ]  
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