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Intrinsic Regular Hypersurfaces in
Heisenberg Groups

By Luigi Ambrosio, Francesco Serra Cassano, and Davide Vittone

ABSTRACT.  We study the H-regular surfaces, a class of intrinsic regular hypersurfaces in the setting
of the Heisenberg group H" = C" x R = R endowed with a left-invariant metric doo equivalent
to its Carnot-Carathéodory (CC) metric. Here hypersurface simply means topological codimension 1
surface and by the words “intrinsic” and “regular” we mean, respectively notions involving the group
structure of H" and its differential structure as CC manifold. In particular, we characterize these surfaces
as intrinsic regular graphs inside H" by studying the intrinsic regularity of the parameterizations and
giving an area-type formula for their intrinsic surface measure.

1. Introduction

In this article we study the H-regular surfaces, a class of intrinsic regular hypersurfaces in
the setting of the Heisenberg group H” = C" x R = R?"*! endowed with a left-invariant metric
doo equivalent to its Carnot-Carathéodory (CC) metric. In particular, we (locally) characterize
them as intrinsic regular graphs inside H" (see Theorems 1.2 and 1.3 below). Here hypersurface
simply means topological codimension 1 surface and by the word “intrinsic” and “regular” we
will mean of notions, respectively, involving the group structure of H" and its differential structure
as CC manifold in a sense we will precise below.

This notion of regular hypersurface has been introduced in the setting of Carnot groups, of
which H” is the simplest example, in order to study the classical problem of Geometric Measure
Theory (GMT) of defining regular surfaces and different reasonable measures on them. Moreover,
this problem has been also carried out in the setting of Carnot groups and more generally in a
metric space by many authors (see [50], [51], [10], [36], [38], [33], [14], [26], [32], [13], [3], [4],
[27], [52], [48], [28], [40], [29], [42] and [6]). On the other hand, the notion of intrinsic graph
has been recently introduced and studied in [30] in the setting of a Carnot group even if it was
already implicitly exploited in {27].
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Throughout this article, we shall denote the points of H” by P = [z, t] = [x +iy, t],z € C",
x,yeR", teR If P =]z,t], Q = [¢, 7] € H" and r > 0, following the notations of [57],
where the reader can find an exhaustive introduction to the Heisenberg group, we define the group
operation

P-Q:=[z+¢t+7+23m(2l)] (1.1
and the family of nonisotropic dilations
8(P) = [rz,r%t], for r>0. (1.2)
Moreover, H” can be endowed with the homogeneous norm
IPlloo := max {[z], |¢]"/?} (1.3)
and the distance d, we shall deal with is defined as

deo(P, Q) := | P7'- Q] . (1.4)

Itis well known that H" is a Lie group of topological dimension 2n+1, whereas the Hausdorff
dimension of (H", d,) is Q := 2n + 2 (see Proposition 2.1).

(", ds) provides the simplest example of a metric space that is not Euclidean, evenlocally,
but is still endowed with a sufficiently rich compatible underlying structure, due to the existence of
intrinsic families of left translations and dilations, respectively induced from the group law (1.1)
and dilations (1.2). Indeed, the geometry of H" is noneuclidean at every scale, since it was proved
by S. Semmes [56] that there are no bilitschitz maps from H" to any Euclidean space. Our interest
can be viewed in the framework of the general project meant to develop GMT in the setting of
metric spaces. Such a project, already embryonally contained in Federer’s book [22], has been
explicitly formulated and carried on in the last few years by De Giorgi [18, 19, 17], Preiss and
Tisér [54], Kirchheim {36], David and Semmes [14], Ambrosio and Kirchheim [3, 4], Lorent [39]
and Mattila [45]. It is well known that H" is a Carnot group of Step 2. Indeed, its Lie algebra b,
is (lincarly) generated by

0 a d d a
Xj_axj+2yjat, Yj_ayj 2x,at. for j=1,...,n; T_at, (1.5)
and the only nontrivial commutator relations are

[X;,Y;]=—4T, for j=1,...,n.

Throughout this article, we shall identify vector ficlds and associated first-order differential
operators; thus, the vector fields X1, ..., X,, ¥i,..., Y, generate a vector bundle on H", the
so-called horizontal vector bundle HH" according to the notation of Gromov (see [33] and [38]),
that is a vector subbundle of TH”, the tangent vector bundle of H". Since each fiber of HH" can
be canonically identified with a vector subspace of R%*+!, each section ¢ of HH" can be identified
with a map ¢ : H" — R?"+!_ At each point P € H the horizontal fiber is indicated as HH', and
each fiber can be endowed with the scalar product (-, -) p and the associated norm | - | p that make

the vector fields X4, ..., X, Y1, ..., Y, orthonormal. Hence, we shall also identify a section of
HH" with its canonical coordinates with respect to this moving frame. In this way, a section ¢ will
be identified with the function ¢ = (¢1, ..., ¢2,) : H* - R¥ suchthatp = Y (@i Xi + @i Vi)

Analogously, if f is a real function defined in an open subset @ C Hi, its H -gradient is the section
of HH” defined by Vi f := (Xuf,..., Xnf, Y1 f, ..., Yo f). Asitis common in Riemannian
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geometry, when dealing with two sections ¢ and ¢’ whose argument is not explicitly written,
we shall drop the index P in the scalar product writing (¢, ¢’} for {p(P), ¢'(P))p. The same
convention shall be adopted for the norm.

To introduce our results, let us start by recalling some related notions already existing in the
literature.

The two key points we want to stress now are the notions of intrinsic regular hypersurface
and graph in H". A general and more complete discussion of these topics in Carnot groups can
be found in [30].

Let us recall the notion of regular surface is related to a notion of rectifiability in a metric
spaces which goes back to Federer (see [22] 3.2.14) and that has been used by Ambrosio and
Kirchheim (see [3, 4]) in the framework of a theory of currents in metric spaces (as for the
rectifiability in metric spaces see, for instance, [36, 54] and also the monograph {44] and the
references therein). According to this notion, a “good” surface in a metric space should be the
image of an open subset of an Euclidean space via a Lipschitz map. Unfortunately, such a notion
does not fit the geometry of the Heisenberg group, that indeed would be, according with this
definition, purely unrectifiable (see [3]). On the other hand, in the Euclidean setting R”, a C!-
hypersurface can be equivalently viewed as the (local) set of zeros of a function f : R* — R
with nonvanishing gradient. Such a notion was easily transposed in [27] to the Heisenberg group,
since there is an intrinsic notion of Cllql—functions introduced by Folland and Stein (see [24]):
We can say that a continuous real function f on H" belongs to CHI{(]HI") if Vg f (in the sense
of distributions) is a continuous vector-valued function. Thus, an H -regular surface S will be
locally defined as the set of points P € H such that f(P) = 0, provided that Vx f # Oon S (see
Definition 2.13). A few comments are now in place to point out similar geometric properties (in
the measure theoretical sense) of the H -regular surfaces and classical (Euclidean) regular surfaces
and to mention some of their applications.

First of all, we point out that the class of H -regular surfaces is deeply different from the
class of Euclidean regular surfaces, in the sense that there are H -regular surfaces in H! = R3
that are (Euclidean) fractal sets (see [37]), and conversely there are continuously differentiable
2-submanifolds in R3 that are not H-regular hypersurfaces (see [27], Remark 6.2 and Example 2).
We notice that Euclidean continuously differentiable 2-manifolds are H -regular surfaces provided
they do not contain characteristic points, i.e., points P such that the Euclidean tangent space at P
coincides with the horizontal fiber HH,, at P. Frobenius theorem yields that, for a general smooth
manifold, the set of characteristic points has empty interior; in fact there are few characteristic
points [13, 5, 42].

The important point supporting the choice of the notion is the fact that this definition yields
an Implicit Function Theorem, proved in [27] for the Heisenberg group and in [28] for a general
Carnot group (see also [11]), so that a H -regular surface locally is a X;-graph (or a Y;-graph)
(i =1,...,n), namely (see Definition 2.19) there is a continuous parameterization of S

Q0 C(Vi,p) > (§,dx) (o @:0C Vign,|-1) = (5, doo)) (1.6)
P(A) = A ((Ae) (or ®(A) :=A- (@(A)eitn)) (1.7

where ¢ : w — R is continuous, V; := {{x, y,2) € H" : x; = 0} (or Vi, := {(x,y,8) e H" :
yi =0}),® C Vj,{ej : j = 1,...,2n + 1} denotes the standard basis in R***! = H" and we
consider p = | - | the Euclidean distance on V; = R%" (j = 1,...,2n), (see Theorem 2.16). In
general, such a parameterization is not continuously differentiable or even Lipschitz continuous.
Indeed, it was proved in [37] that generally its best Holder continuous regularity turns out to be
of order 1/2 with respect to the distances given in (1.6). Nevertheless, from this parameterization
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we infer that S is a topological submanifold of dimension 2n. Besides, by using again the Implicit
Function Theorem and the Blow-Up Theorem (see Theorem 2.17), an area type formula for the

(Q — 1)-dimensional spherical Hausdorff measure So%_l induced in (H", do,) and the existence
of the tangent group in the sense of GMT for H -regular surfaces were established (see also [27]
and [28)).

Based on this, also the notion of H-rectifiability was introduced: AsetS C H" issaid (@ —1)-
dimensional H-rectifiable if there exists a sequence of H-regular surfaces (S;); in H* such that
SO%_I(S \ UienSi) = 0. This intrinsic notion of rectifiability has been proven particularly useful
to obtain in [27] an analog of De Giorgi’s structure theorem for sets of intrinsic finite perimeter in
the setting of Heisenberg group, and later in the setting of a general Carnot group of Step 2 [29].
The notions of Euclidean and H -rectifiability have been compared in [7]; generalizations of this
notion of rectifiability have been studied by V. Magnani in [42] for general Carnot groups (see
also [41] for a general account of GMT in Carnot groups).

One of the main aim of this article is to find out necessary and sufficient (manageable)
assumptionson ¢ : @ C V; — R (j = 1,...,2n), besides the continuity, assuring that the
intrinsic graph

§ = Gy, = () (1.8)
is H-regular if ® : @ — H" is the map defined in (1.7). Namely which other (minimal)

assumptions, more than the continuity of ¢, need in order Gf{ ¢ tumns out to be H-regular.

We will see that these additional assumptions will be characterized in terms of an intrinsic
differential structure on the subgroup V; = R?" (j = 1,...,2n) induced by the graph distance
defined on V; in a classical way. More precisely, without loss of generality we can assume j = 1.
Then there is a natural identification between V; and R?" given by the diffeomorphism

R — v CH (1.9)
defined whenn =1 as

t(n,t) =(0,n,7), (1.10)
while forn > 2 and (n, v, 7) € R = R, x R?"~2 x R, ¢ is defined as

t{(Mv, 1) =0, v2, ...,V N, Vpt2, oo, U2, T), (1.11)

where v = (v2, ..., Uy, Un12, ..., U2p). Thus, since V) is a subgroup of H" closed with respect
to the dilations in (1.2), R?" can be endowed through this identification by a structure of homo-
geneous group in the sense of Folland and Stein (see [24]), i.e., we can define a group law in
RZn

AxB:=1'0(A) - «(B) A.BeR™ (1.12)
and a family of intrinsic dilations &} : R — R (A > 0)
8(A) == 18 (e(Aa)) e R™ (1.13)

such that (R?", x, 83) turns out to be a homogeneous group.

Then (R?*, #, 83) can be endowed of a natural intrinsic linear structure and, inspired by
Pansu’s ideas (see [51] and also [27] Section 5 and [41] Section 3.1), we can naturally define a
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»-linear functional L : R?* — R as a homomorphism which is also positively homogeneous of
degree 1 with respect to the dilations in (1.13).

Thus, fixed ¢ : @ C R?* — R, we can construct a map Py @ x w —> [0, +00) defined as
2
po(A, B) = |0/ —n| + |t — T + 2(¢(A) + 6 (BN (0 — )| (1.14)

whenn=1,A=(y,7),B=(n.7) € wand

ps(A, BY = (11, V') ~ (1, V)| gt |7 = T +2(P(A) BN (0 — 1) + o (', v)['* (L.15)

whenrn >2, A= ,v,7),B=(n,v,1) € wand

n

o(v,v) = 22 (Vps j0j = ViVnrt )

j=2
ifv=_(va,..., 00, Upaa, ..., 005), 0 = /A v,/lvjrz, SV ) E R27-2,
If there is ¢; > O such that
[¢p(A) — @(B)| < c1ps(A, B) (1.16)

for all A, B € w, then the quantity pp in (1.14) and (1.15) is a quasimetric on w (see Proposi-
tion 3.1). We will call py “graph distance” since in this case it is equivalent to the metric d
restricted to the graph S in (1.8), i.e., there exists ¢o > 0 such that

Ci,o(b(A, B) < doo(®(A), ®(B)) < c2p4(A,B) YA, Bew. (1.17)
2

Now we can state our notion of W¢-differentiability.

Definition 1.1. Letw C R?" be an open set and let ¢ : @ — R be a fixed continuous function.
Let Ay € w and ¥ : @ — R be given. We say that y is W?-differentiable at Ay if there is a
-linear functional L : R?* — R such that

_ _ -1
i [ (A) — ¥ (Ao) — L(Ay" » A)] —o
A=A Py (A, Ap)

(1.18)

We say that v is uniformly W?-differentiable at Aq if there is a *-linear functional L :
R?" — R such that, if we put

[ (4) = y(A) — L(A™! » A')]
My, Ag, L, r):=  su (1.19)
¢ 0 A#a’ P¢(A7A/)
A,A’€B(Ag.r)

where B(Ag, r) denotes the Euclidean (open) ball centered at Ag with radius r in R?", then
lim, o My (¥, A, L,r) =0.

It is straightforward that the uniform W¢-differentiability implies the W -differentiability.
Moreover, it is a good definition since if ¥ is W?-differentiable at Ay € w, then there is an unique
-linear functional L : R*" — R verifying (1.18) and we will denote L := dwe W (Ap) and we
will call it the W?-differential of  at Ag. .
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Let 7 : R? — R?"~! the projection, respectively defined as 7 : R? = R, x R, — R,,
7((, 7)) ;= nwhenn = land 7 : R = R, x R2 x R, - R = R, x Rz."_g
w((n, v, 1)) := (n, v) when n > 2. Let us denote by (-, -} the standard scalar product on R n=1
ie., (n. 1) :=nn whenn = 1and ((n,v), (', V)) := nn + 22"_2 il vjv’ whenn > 2.
Then we can simply characterize the x-linear functionals on (R, «, 8}). Indeed, for every x-linear
function L : R?" — R there is an unique wy, € R?"=1 such that L(A) = (wy,, 7(A)) for every
A € R?" (see Proposition 2.15). In particular, if ¢ : 0 — Riis W¢-differentiable at Ag then we
will denote Wy (Ap) the unique vectorin R2-1 for whichdye ¥ (Ag)(A) = (WP (Ag), m(A))
for every A € R?".

The tangent space of V| is linearly generated by the vector fields which are the restrictions of
X7, =  Xn, Y1, .00, Y, T to V1, and sO we can define the vector fields X2 X,,, Y1, ey Y
and T on R given by X] = )*X and Y = (" )*Y], T = (L‘l)*T, where (¢~ 1y, is
the usual push forward of vector fields after the diffeomorphism =1, In coordinates, they can be
written as

~ ]
YI(U,T)=8—‘
N Al (1.20)
T, 1) = —
@, 1) Py
ifn =1, and as
d 0
Xj(n,v T) = +2v}+na for j=2,...,n
71(n,v,r)=a—
1 (1.21)
Yj(’l,v,r)zavj+n—2v]a— for j=2,...,n
T = —
(n,v,7) 3

ifn>2. Forn+1 < j < 2n we will also use the notation X ji= ?j_,,; notice that the vector
fields X ;, Y;, T are »-left invariant.

Let ¢ : @ — R be a given continuous function and n > 1; we will denote with we .=
(W; e an) the family of (2rn — 1) first-order differential operators defined by

~ 0 ) . .
XJ:E;+2uj+nE if 2<j<n
~ ~ 0 d

Wlo={1 ¥ —4¢T = — —4¢p— if j=n+1

J , on gr
Yj_nz-aTj—zvj_.na if n+2§]§2na

while when n = 1 we put W = W .= ¥, — 49T = dn —4¢:L.

We will prove that if ¢ € C!(w) then C!(w) functions are uniformly W¢-differentiable too.
More precisely, if ¢, ¥ € C!(w), then v is uniformly W¢-differentiable at A for every A € w
and

Wiy =Xp)  ifjEn+1;

¢ _ oy
W, v(A) = o (A) —4¢(A) Py 4).
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In particular, let us notice the (nonlinear) differential operator
Clw) 3¢ > B =W’ ¢ (1.22)
is a Burgers’ type operator which can be also represented in distributional form as

3¢ _ 34

B =
¢ an at

(see also Remark 5.2).

Now we are in order to state the main results of this article. The former is the characterization
of H-regular intrinsic graph G]%_H, ¢ [defined as in (1.8)] in terms of the uniform W?-differentiability
of $ : w € R? — R (see Theorem 4.1). Moreover, also an area type formula for G:{ﬁ ¢ with
respect to the (Q — 1)-spherical Hausdorff measure So%—l is proved [see (4.2)]. We will collect
them in Theorem 1.2 below.

The latter is the characterization of the uniformly W¢-differentiability of ¢ : @ C R¥" — R

in terms of existence of the derivatives W}b¢ (j =2,...,2n)inwinasuitable sense (Theorem 1.3
below).

Theorem 1.2. Letw C R?* be an open set and let ¢ : w — R be a continuous function. Let
® : w - H" be the function defined by ®(A) := 1(A) - ¢p(A)eq and let S := ®(w). Then the
following conditions are equivalent:

(i) S is an H-regular surface and v§1)(P) < 0 for all P € S, where we denote with

vs(P) = WP (P), ..., v¥(P)) the horizontal normal to S at a point P € S;

(1) ¢ is uniformly W -differentiable at any A € o, and the vector function W%¢ : v —
R~ js continuous.

Moreover, for all P € S we have

1 we
B 2’ 2
\/1+|W¢¢| \/1+[W¢¢|

vs(P) = (@ 1(p), (1.23)

and

5£'1(S)=c(n)f\/l + [Weg|? dc (1.24)

w

where £*" denotes the Lebesgue measure on R?" and c(n) is a suitable constant depending on n
only.

Theorem 1.3. Letw C R?" be an open set and let ¢ : @ — R be a continuous function. Then
the following conditions are equivalent:

(i) ¢ is uniformly W®-differentiable at A for each A € w;
(ii) there exist w € C®(w, R*"~1) such that

w= (iqu, ...,i,,(b,‘B(P, 72¢, cees ?n‘l’)



194 Luigi Ambrosio, Francesco Serra Cassano, and Davide Vittone

in distributional sense in , and a family {¢¢}e>0 C C!(w) such that, for any open set
o' @ w, we have

¢ — ¢ and W ¢, — w uniformly on o' . (1.25)

Moreover, w = W% on w and

lim sup
r—>0t

{|¢(A> ~ ¢(B)|

1 :A,Bew',0<|A—B|<r==O (1.26)
1A - B}

for each open set @’ € w.

The proof of Theorem 1.2 relies on a Mean Value Theorem for functions in Cilﬂ(]H[”)
(see Lemma 4.2), the Implicit Function Theorem, and Whitney Extension Theorem (see The-
orem 2.18). In particular, by means of Whitney Extension Theorem and the definition of intrinsic
graph (1.8), we can transfer the notion of CZI{ intrinsic differentiablity from H" in the one of
uniform W¢-differentiability on the subgroup V; = R?" and vice versa.

Theorems 1.2 and 1.3 give some partial answers to the problem of the good parameterization
of H-regular surfaces proposed in [27]: To find out a model metric space such that each H-regular
surface can be locally viewed as its image through a bi-lipschitz continuous map (see also [55, 56]
for similar problems in a more general setting and [52, 12] for Carnot groups). Indeed, from
Theorem 1.2 we infer that, if § = G]HI ¢ = = ®(w) is H-regular, then ¢ : (w, pg) — R is locally
Lipischitz continuous, i.e., (1.16) locally holds as well as (1.17). On the other hand, (1.17)
means the parameterization & in (1.6) is locally bi-lipschitz continuous provided p = Py (see
Corollary 4.3). Moreover, by Theorem 1.3 it can be proved it is no longer true that ¢ : (w, p) — R
is locally Lipischitz continuous when p denotes the so-called parabolic metric on R? = R, xR,
i.e the metric p = py in (1.14) with ¢ = 0 (see Corollary5.10). Anyway it is still an interesting
open problem to understand whether, for instance, for a given H-regular § = GIHI ¢ there exist a
metric p on V1, independent of S, and a suitable locally bi-lipschitz continuous parameterization
@ C (V1,p) = (S.dw) .

Let us stress that (1.24) and (1.23) are the exact counterparts of the analogous formulas
for the inward normal and the area of (Euclidean) regular (n — 1)- graphs in R”, provided the
replacement of W®¢ with the classical gradient V¢ of the parameterization ¢.

The proof of Theorem 1.3 relies on the construction of an exponential map for vector fields

W¢( J =2,...,2n) (see Lemma 5.6) and on a priori uniform Hélder continuous estimates for
C!(w) solutions ¢ of the first-order nonlinear PDE’s system

W;b(p:wj Jj=2,....2n

with given w; € C O(w) (see Theorem 5.9). Let us notice that the construction of an exponential

map for the vector field W:{’ 1 1s not trivial since its coefficients are only Holder continuous and
then it requires an ad hoc argument.

Theorem 1.3 allows also the construction of explicit simple examples of uniform W¢%-
differentiable functions ¢ : w C R? — R which are not Euclidean C l-regular. For instance, in
the case of the first Heisenberg group H! the following corollary holds (see Corollary 5.11).

Corollary 1.4. Letw:=(a,b) x (c,d) CR* = R, x R; andlet ¢ : @ — R be a continuous
function which depends only on 1, i.e., ¢ = ¢(1) : (c,d) — R. Suppose thatd)2 1 (c,d) > R
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is of class C!. Then ¢ is uniformly W* -differentiable at A for every A € w and

W?(A) = (Bo)(A) = —2(¢%) (A) .

In particular, from Corollary 1.4, Theorems 1.3 and 1.2 it follows that, if ¢ : R — R,
¢(7) ;= |7]* with 1/2 < « < 1, then the intrinsic graph § = G]Ll,«p is a H-regular surface in
H' but no longer an Euclidean regular graph in any neighborhood of the origin (see Example 3.9
in [30]).

Let us point out that, by Theorem 1.2 and the example given in [37] of an H-regular surface
in H! = R3 not 2-Euclidean rectifiable, it follows that uniformly W -differentiable functions can
be much more irregular from the Euclidean point of view than the previous one.

Eventually, let us give a short abstract of the article. In Section 2 we introduce our notations
and we recall more or less known results; in Section 3 we study the graph distance and the notion
of W-differentiability in R?*; in Sections 4 and 5 we essentially prove the results, respectively
collected in Theorems 1.2 and 1.3.

2. Notations and preliminary results

Besides the group operation in H" and the dilations defined in the introduction, it is also
useful to consider the group translations tp : H" — H" defined as

QP wp(Q):=FP-Q

for any fixed P € H". We denote as P~! := [—z, —t] the inverse of P and as O the origin of
R?"+!. We shall endow H" with the homogeneous norm || P||s := max{|z|, |¢|'/?} and with the
distance, associated to the norm,

doc(P, Q) :=|P7'- Q] . @.n
We explicitly observe the following.

Proposition 2.1.  The function d, defined by (2.1) is a distance in H"* and the usual properties
related with translations and dilations hold, i.e.,¥ P, Q, Q' € H" andVr > 0

doo(17 0. 1P Q') = doo(Q. Q') and  do(8,0.8: Q) =7 dw(Q. Q). 22
In addition, for any bounded subset 2 of " there exist positive constants ci(§2), c2(82) such that

cl(Q)|P — Qlgant < doo(P, Q) < c2(VIP — Qlife,, 2.3)

for P, Q € Q. In particular, the topologies defined by d, and by the Euclidean distance coincide
onH".

Remark 2.2. We stress that, because the topologies defined by do and by the Euclidean distance
coincide, the topological dimension of H" is 2n + 1. On the contrary, the Hausdorff dimension
of (H", dx) is Q =2n +2.

From now on, U (P, r) will be the open ball with center P and radius r with respect to the
distance d»c. We notice that U (P, r) is an Euclidean Lipschitz domain in R2n+1

There is a natural measure di on H” which s given by the Lebesgue measure d L7 = dzde
on C" x R. The measure dh is left (and right) invariant and it is the Haar measure of the group.
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If E ¢ H" then |E| is its Lebesgue measure and w; will denote the k-dimensional Lebesgue
measure of the unit Euclidean ball in R¥.

Definition 2.3 (see [22]).  We shall denote by H™ the m-dimensional Hausdorff measure
obtained from the Euclidean distance in R?"+! ~ H", and by H? the m-dimensional Haus-
dorff measure obtained from the distance do, in H”. Analogously, S™ and S7 will denote the
corresponding spherical measures.

Translation invariance and homogeneity under dilations of Hausdorff measures follow as
usual from (2.2), more precisely, we have the following.

Proposition 2.4. LetQ CH", P € H” and m,r € [0, o). Then
Hg(TpQ) =H (2 and HE(4,(Q) = FmHZ () .

To simplify the notations it will be sometimes useful to adopt the convention X; := Y;_,
forn+1 < j < 2n, where X; and ¥; (j = 1, ..., n) are the generators of the Lie algebra b,
defined in (1.5).

For sake of completeness, let us recall here the definition of the Carnot-Carathéodory metric
associated with X1, ..., X, Y1,..., ¥p. In fact, this definition has been developed in a much
larger setting (see, e.g., [23, 49]).

Definition 2.5. 'We say that an absolutely continuous curve y : [0, T] — H” is a subunit curve
with respectto Xy, ..., X,, Y1, ..., Y, if there exist real measurable functions a;(s), ..., a2, (s),
s € [0, T] such that }_; ajZ <1and

y(s) = Z aj($)Xj(y(s)) + Z ajrn(8)Y;(y(s)), forae se€[0,T].

j=1 j=l1
If P;, P, € H", their Carnot-Carathéodory distance d¢c( Py, P) is
dc(Py, Py) =inf {T > 0:3y : [0, T] - H" subunit, y(0) = Py, y(T) = P} .

Notice that the above set of curves joining P; and P; is not empty, by Chow’s Theorem, since
the rank of the Lie algebra generated by X, ..., X,;, Y1, ..., ¥, is maximal, and hence d¢ is a
distance on H". We shalil denote by Uc (P, r) the open balls for dc.

The following result is well known: See, for instance, [8, 59].

Proposition 2.6. The Carnot-Carathéodory distance dc is (globally) equivalent to the distance
d defined in (2.1).

If Q is an open subset of H” and k > 0 is a nonnegative integer, the symbols C¥(2), C*°()
indicate the usual (Euclidean) spaces of real valued continuously differentiable functions. We
denote by C*(Q, HH") the set of all C¥-sections of HH" where the C* regularity is under-
stood as regularity between smooth manifolds. The notions of C’C‘(Q, HH™), C*(§2, HH"), and
C2°(2, HH") are defined analogously.

Definition 2.7. Let [z, ], Py € H" be given. We set

w2, 1) =Y xjX;(Po) + Y y;¥i(Po) .

j=1 Jj=1
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The map Py — mp,([z, t]) is a smooth section of HH".

The similarity among some statements in H” with others in R?**! is clear using intrinsic
notions of gradient for functions f : H" — R and of divergence for sections of HH".

Definition 2.8. 1f Qisanopensubsetof H”, f € CL(Q)andp=(¢, ..., ¢2,) € C1(Q, HH"),
define

Vaf =X f,.. ., Xu L, f .., ) 2.4)
and
n
divieg =Y X;0; + Yiguij - 2.5)
j=1
Alternatively, Vg f can be defined as the section of HH"
n
Vaf =Y (X;HX;+ (¥ )Y,
j=1

whose canonical coordinates are (X1 f, ..., X, f, Y1 f,..., Y, f) (observe that this is consistent
with the identification we mentioned of sections and their coordinates).

Finally, we write
Vaf = af ... Xn Vi fo o Yuf).

We shall denote by le-z(Q) the set of continuous real functions f in §2 such that Vg f is of
class C*~! in . Moreover, we shall denote by C’ﬁ(Q, HH") the set of all sections ¢ of HH"
whose canonical coordinates ¢; belong to C’];:(Q) forj=1,...,2n.

Remark 2.9. We stress that the inclusion C1(Q) C CE:(Q) is strict; see, for example, [27],
Remark 5.9.

In H" there is a natural definition of bounded variation functions and of finite perimeter sets
(see [25, 32, 9)]).

Definition 2.10. We say that f : @ — R is of bounded H-variation in an open set Q C H",
(f € BVR(RQ)), if f € LY(Q) and if

/ d\Vufl:= sup[/ fdivge dh ¢ € Ci(Q,H]HI”). l[p(P)|p < 1} < 4o00. (2.6)
Q Q

Analogously the space BV joc(£2) is defined in the usual way.
Definition 2.11. We say that E C H" is a locally finite H-perimeter set (or a H-Caccioppoli
set) if 1z € BV 10c(H"), where we indicate as 1g the characteristic function of the set E. In

this case, the measure |V 1g| will be called H-perimeter of E and will be denoted by |3 E .

For H-Caccioppoli sets the following divergence-type theorem holds (see [27]).
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Theorem 2.12. There exists a |0 E |p-measurable section v of HH" such that
—/ divig ¢ dh = / (vg, 9) d|BE|g Vo € C°(Q; HH") ;
E H”
lwe(P)lp =1 for |0E|y —ae. PecH".

Here, the measurability of vy is meant in the sense that its coordinates vi, . .., v2, are |0E|q-
measurable functions.

The function vg can be interpreted |3 E|-almost everywhere as a generalized inward “hor-
izontal” normal to the set E.

Definition 2.13. We shall say that § C H" is a H-regular hypersurface if for every P € §
there exist an open ball U (P, r) and a function f € C]%H(U (P, r)) such that

SNUP,r)={Q e U(P,r): f(Q) =0} )
Vaf(P)#0. (i1)

We will denote with vg(P) the horizontal normal to § at a point P € S, i.e., the unit vector

Vi f(P)

(P) = —
T

and with TéS (P) the tangent group to S at P, i.e., the proper subgroup of H" defined by
TES(P) :={Q : (Va(f o tp)(0), m0(2)) )o = 0} .
Finally, we use the notation Ty S(P) for the tangent plane to § at P, i.e., the lateral P - T]é S(P).

As pointed out in the introduction, Euclidean regular hypersurfaces and of H-regular hyper-
surfaces are different classcs.

Let us introduce some useful subspaces of b, (here X j means that in an enumeration we
omit X ;):

o :=span {Xy,..., X2} ;

vj:=span {X1,....X;....Xon, T} (1<) <2n);
oj:=span{X1,....X;..., X2} (1<j<2n);
[; := span {X} (1<j<2n);
3 = span {T'}

and let 7, To;, Wo s Ti;, My be the projections of h, onto 0, v}, 0}, [}, and 3, respectively. Define
the following subsets of H":
O :=exp(0) = {P eH" : prye = 0} :
Vj:=exp(v;)={P eH": p; =0};
0j =exp(0,)=0NV;={PeH": pj = pay1 =0};
Lj:=exp(lj) ={P eH": p; =0Vi # j};
Z:=exp(3) ={PecH" :pj=-=py=0},
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and let g, my;, 7o, 7;, and 7wz be the maps defined by expom, o exp_1 . EXpoTy; 0 exp_1

and so on; we will refer to them as orthogonal projections of H” on O, V;, O;, L, and Z.

The following properties of these projections are straightforward.

Proposition 2.14. Forany P, Q € H" we have

70, (P) =mp ony, (P) =7y, oo (P)
7o, (P - Q) =mg, (mo,(P) - 70,(Q))
wz(P- Q) =7nz(P) -7z(Q) - nz{mo(P) - mo(Q))
Iz (Plloc < IPlloc VM € {0, 01, V), Ly, Z} .

Let us observe that Z is the center of the group, and that only Z, L ;, and V; are subgroups;
Oj is a subgroup only if n = 1 (because in this case it coincides with L;), while O is ncver a
subgroup. We agree to indicate with ce; the point exp(a X ;) € L;; then for each P € H” there
is a unique way to write P in the form Py, - Pp,; for points Py, e Vj, P, € Lj: Itis sufficient
totake Pr; = pjej and Py, = P- P! € V.

Recalling the definitions of : and of the product law + on R?" given in the introduction [see
(1.10), (1.11), and (1.12)], we will use t}, to indicate the left translation by A in R2", Explicitly,
ifn>1land A= (n v 1), B=(®n, v, 1) c R we have

AxB=(n+7,v+V. 1+ +0(v.v)) 27
where
n
o (v, V') :2Z(v,,+jv} -vjv,/lﬂ-) (2.8)
=2
ifv=(v2,..., U0 Ung2, ... 02), V' = (¥, ..., 0p, Uy - ..v5,). Insteadif n = 1 and A =
(n, 1), B = (1, ') € R? we simply have
AxB=(n+7n.t+7). 2.9

Notice that in both cases the induced group structure is the one arising from direct product R x R
ifn =1,and R x H*~'if n > 1, via the identification R = R,, x (R2*"2 x R;) = R x H" "I

As we did in the introduction, we can define via ¢ a family of intrinsic dilations &} (A > 0)
on R?", which can be written explicitly as

81, v, 1) = (An, Av,A%t) for n>2
83(n, 1) = (An, A%1) for n=1.

As we already said, we define a x-linear functional L : R?* — R as a homomorphism which is
also positively homogeneous of degree 1 with respect to the dilations, i.e., L o §; = AL. The
following proposition comes from Proposition 5.4 in [27]:

Proposition 2.15. Let L : R — R be a -linear functional; then there is a unique vector
wy, € R™~1 guch that L(A) = (A, wy), where we intend that

2n
(A, w) =nwp,e + Z vjwrj if n>2,wp =(wry,...,wLy) and A = (n,v, 1)

j=2, j#n+l
(A, wr) =nwrs if n=1lw=wryandA=(n,71).
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Conversely, through the previous formulas we can associate to each w € R?*~1 a unique x-lincar
functional L ,.

Observe that the choice of the enumeration of the components of w has been made in order
to be coherent with the one made for the components of v and with the fact that 7 is the (n + 1)-th
coordinate of t(A).

Finally, let us recall the following results, which will be crucial in our article: Their proofs
can be found in [27].

Theorem 2.16 (Implicit Function Theorem).  Let Q2 be an open set in H", 0 € Q, and let
f € CY() be such that X, f(0) > 0, f(0) =0. Let

E:={z,t]eQ: f(z,t]) < 0}
§:={lz,t] € Q: f([z,t]) =0};

then there exist 8, h > 0 such that, if we put [ := [—§, §] x [, 6]2"_2 x [—82,82] C R2",
J:={seye Ly:s€[—h,hl}andU :=(I) - J, we have that

E has finite H-perimeter in U ;
IENU=8SNU;
ve(P) = —Vu f(P)/|IVf(P)lp = vs(P) forall Pe SNU.

Moreover, there exists a unique continuous function ¢ : I — [—h, h] such that S N U=
&), where @ isthemap ] 5 A — ((A) - ¢(A)e; € H", and the H-perimeter has the integral
representation

IVafl

JE I =
[OElmU) X\ f

(P(A)) dLP(A) . (2.10)

Theorem 2.17. Let Q be an open set in H" and let E € H" be such that SdENQ = SN Q
where S C H”" is an H-regular surface. If Py € S andr > 0 put

Epuy:=81(P;' E)={PecH" :8,(P;' - P)c E}.
Then there is a c(n) > 0 such that

|0 Eln(U(Po, 1))

T =TSP NUO, D) =c(n);

® lin})laEPO.rIH(U(O, 1))=1ir%
(i) 19E|gLQ =cm)SLIL (SN Q).

Theorem 2.18 (Whitney Extension Theorem). Let F C H" be a closed set, and Iet f : F —
R, k : F — HH" be two continuous functions. We set

Q) = f(P) = (k(P), mp(P~'- Q)),

R(Q, P) := AP0 ,

and, if K C F is a compact set,
ok () :=sup{{R(Q, P)|: P,Q € K, 0 <d(P, Q) < 8}.

Ifpg (8) —> 0 asé — O forevery compact set K C F, then there existf (H* —» R, f € Cﬁ(lHI")
such thatﬁp =f andVHﬁp =k.
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Taking the Implicit Function theorem into account we can give the following notion of
intrinsic graph in H”.

Definition 2.19. A set S C H" is an X-graph if there is a function ¢ : @ C R?" — R such
that S = {t(A) - ¢ (A)e; : A € w}.

More generally, after fixing an identification ¢; : R?” — Vi, for j = 2,...,2n we can
define X ;-graphs as those subsets S of H" for which there exists a function ¢ : @ C R > R
such that § = {¢;(A) - ¢(A)e; : A € w}.

A general definition of intrinsic graph in H", which applies also to surfaces with topological
codimension bigger than 1, is given in [30]. In particular, this notion is stable with respect to left
translations of the group; more precisely, from Proposition 3.11 in [30] we infer the following.

Proposition 2.20. Let S ¢ H" be an X j-graph, i.e., S = {®(A) :=j(A) - p(A)e; : A € w}.
Let P = (p1,...pon+1) e H', P = ij . PLJ- with PLj = pje; € Lj and ij € V;. Then
the translated set tp S still is an X j-graph; more precisely, if we define op : R?" — R?" py
op(A) .= l;l(P “1j(A) - PL”jl), we have

S = {®'(A) :=1;(A) - ¢'(Aej : A},
where ' = op(w) and ¢’ : & — R is defined by

¢'(A) = pj +¢(op 1(4) .

In addition we have ' = tp o ® 0 0p-1.

Remark 2.21. In Theorem 2.16, and more generally in the rest of the article, we made a precise
choice, i.e., to consider only regular hypersurfaces that are zero sets of functions f € C11~: such
that X f > 0. This fact, somehow, makes X a “privileged” direction: For example, observe
that such surfaces results X1-graphs, i.e., functions on Vj, and that we translate points of V| by an
element with all the coordinates null except the first one. One can prove that this is not restrictive;
the key tool in this sense are the so-called “horizontal rotations,” see [43], Section 2.1.

We end the section with an improvement of Theorem 2.16.

Proposition 2.22. Under the same assumptions of Theorem 2.16, let X I3 Y ; be the vector
fields defined in (1.20) and (1.21), and Iet B¢ be the distribution %g - 2% on I, where ¢ and
I are given by Theorem 2.16. Then ifn > 1 we haveforj =2,...,n

Xif rf
X f X1 f

where the equalities must be understood in distributional sense on I. Moreover, the H-perimeter
has the integral representation

o d, %¢=—ﬁ ) 2.11)

E'(f):— o
! Xif

°o®, Yip=

1BElm@U) =c(m)SL™'L(SNU) =/I\/1H%¢)2+z';=2 [1X;6)+T6]"]ac> . (@12

Ifn = 1 we have simply

BElzU) = c(DSL'L(SNU) = /\/1 + [B¢|? dndr .
1
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Proof. We will give the proof only for the case n > 2; the generalization to n = 1 should not
present difficulties.

Arguing as in Step 1 of the proof of Theorem 2.16 (Theorem 6.5 in [27]) we can suppose
that there exists a family of functions f, : i/ — R such that f, € C' (), X f. > O onl{ and

Xife—>X;f, Yife=>Y;fe uniformlyon U (j=1,...,n).

Now, following Step 4 of the same proof, we obtain the existence (for €y small enough and
h as in Theorem 2.16) of functions ¢, : I — [—h, h], 0 < € < ¢ such that
Je((A) - ¢ (A)e)) =0 forall Ael
¢e — ¢ uniformlyon I for € - 0.

It is not difficult to prove that ¢, € C!(/); indeed, following once again the proof of the
Implicit Function Theorem, the fact that f, € C! implies that also
g  [-hhlxI—>R
(Sv r’v v, T) > fé(t(n’ v7 T) ° Eel)
is also C'. As ¢, is obtained by means of the classical Implicit Function Theorem (so that

8c(Pe(n, v, T), n, v, T) = 0), we get that ¢ is C! too. This implies (it is sufficient to differentiate
the equality f. (¢(n, v, T) - ¢ (, v, T)ey) = 0) that

3(]56 Yl fe +4¢e Tfe
— Ay =———"———" (D (A
377( ) X7, (Pe(A))
3
dpe . axle
90, (A) = — X\ /. (P (A))
9
e av; fe
A)— 2 (A
3Uj+n( ) leé( (A))
e Tfe
o (A) = X7 (P (A))

forallA = (n,v,7) € [ and all Jj =2,...,n;obviously, ®. is the map A —> ((A) - P (A)e;.

Thenfor j =2,...,n we get

fod X'fe
Xipe = —=—L P
j¢6 lee o We
s Y‘fe
Yipe = -2 o
j¢e X1 . o P
9 a2 B ] Y
B = 20 o000 M4 00 N g,
an ot an ot X1 fe

from which (2.11) follows.
The integral representation (2.12) follows from the area type formula (2.10), together with
2.11).

Remark 2.23.  Starting from Theorem 2.22, it is not difficult to prove the following fact: Let
2 be an open subset of H", and let f € C]'H[(Q) be such that X f > Oon S := { f = 0}. Suppose
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that S is intrinsically parameterized by ¢ : @ C R?” — R (ie., § := ®(w), where as usual
b (A) :=1(A) - ¢(A)ey) and let E := {f < 0}. Then for each Borel set F C Q we have

DE|g(F) = c()SE(F N S) = f\/1+(%¢)2+2';=2 [(X,0)+(¥;¢) ] 2.13)
o~ 1(F)

1BE|p(F) = c(DSZHFNS) = / 1 J 1+ (Bo)? dL? (2.14)
OH(F)

ifn > 2, and

ifn=1.

Remark 2.24. The operator 9B is known in the literature as Burger’s operator: See, for example,
[21], Section 3.4.

3. Graph distance and W*-differentiability

Let w be an open, connected, and bounded subset of R = R, x R%”'"z x R, ifn > 1, of
R? = Ry xRiifn=1.Ifn=>2andA=(n,v,7) € R* and r > 0 are given, we define

I.(A) := [(n’, v, r/) e R¥ - |(n’, v/) — (7, v)| <r |t’ — r| < r] ,
while if » = 1 and A = (5, T) we put

I,(A) = [(n'. Y eR |y —n| <r,

r’—r|<r}.

Let ¢ : @ — R be a given function; we will indicate with W¢ the family of first-order
operators (W¢, ... Wg; ,) (the reasons of the enumeration from 2 will be clear later) defined for
n > 2 by

~ 9 ] . ;
ij—avj +2Uj+ng if 25] =n
o ~ ~ a J ...
Wi=3 Y —4¢T = — —4¢— if j=n+1 3.
J 3 an gr
j_nz—avj —2l)j_na if n+2§]§2n,

while for n = 1 we put W¢ = W2¢ =Y, —4¢T = % —4¢pL.

From now on ¢ : @ — R will be a fixed continuous function, and ® will indicate the function
w3 A ((A) - p(A)e; € H"; explicitly

S, v, ) =@ v, T),v2, .., U, 0, Vpi2y e, U2, TH200(n, 0, 7)) if R >2
O, 1) = (@M 1) 0, T+ 209, 7)) if n=1.
For A, B € w we define the graph distance

po(A, B) := |70, (®(A)~" - 2(B))| , + |72(®(A) " 2(B)) (3.2)

oo

which is equivalent to ||7er((I>(A)_1 - O(B)lloo- Explicitly, forn > 2 and A = (n, v, 1),
B = (n', v, /) we have

ps(A, B) = |(', V') — (0, v)| + |t/ — T +2((B) + (AN (7 — n) + o (v, v)|"?
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where o (v/, v) has been defined in (2.8); if n = 1 and A = (,7), B’ = (', t') we have
(A, B) = ' = 1l + 17" — T + 2(¢(B) + ¢(A) (1 — m)|'/2.

With this definition we are able to prove the following.

Proposition 3.1. If there is an L > 0 such that
|¢(A) —¢(B)| < L pyp(A, B) (3.3)
forall A, B € 1, then the quantity py in (3.2) is a quasimetric on I, id est

(i) pp(A,B)=0& A=B;
(i) pp(A, B) = py(B, A);
(iii) there exists q > 1 such that ps(A, B) < g [ py(A, C) + ps(C, B) ]

forallA,B,C e I.

Proof. The assertions in (i) and (ii) are straightforward, while for (iii) we have
py(A, B) 2d (P (A), P(B))
2[doc(P(A), @(C)) + doo(P(C), @(B)) ]
2L (A) = ¢(O) + pp(A, C) + |¢(C) — ¢(B)| + pp(C, B) ]
2(L + D[ pg(A, C) + py(C. B)] . -

IAIA A IA

Let us observe that if ¢ satisfies the condition (3.3), then it is locally 1/2-Holder continuous
in the Euclidean sense, i.e., for all compact set K C w there exist an L' = L’(K) > 0 such that

|¢(B) — ¢(A)| < L'|B — A}'/? (3.4)
forall A, B € K. First, let us observe that for any P € H*, @ € R
I72(P - a@e)lloo < 172(P)loo + ~2la| /2|y, (P12

1/2
Iz (@er - PYlloo < 172 (P)lloo + v2la] 2y, (PN .

Now let M := supg |¢|, A := sup, g |A| and, as before, ¢ := ¢ (A), ¢’ := ¢$(B); then
lp(B) —d(A)| /L = py(B, A) (3.5)
= |lmo,(—¢er - (AT - u(B) - der)| o, + |7z (= der - (AT u(BY - pe) |
< B —Al+ |1z((A)7" - uB) - ¢er)|| o, + V2M |7y, ((A) " - «(B) - glen) |1
< (2VA +V2M)(B - Al'"? + |nz(1(4) T uB))| , + V2M |7y, (D) u(B)) |1
< (2VA +2V2M + C(K))|B — A|'/
where in the last passage we used (2.3) (this is the reason of the constant C(K)).

Now we have all the tools to state our notion of W¢-differentiability as given in Definition 1.1;
let us remark that, if v is uniformly W¢-differentiable at A, then it is also W¢-differentiable at
A, as (1.18) is satisfied with the same L as in (1.19).

Remark 3.2. If  is W¥-differentiable at A, then it is continuous at A. Indeed, if I € R2"~!

is such that (1.18) holds and wy, is as in Proposition 2.15, then for any B € w

V(B) = ¥(A) — (wr, A" « B)
pe(A, B)

¥ (B) — ¥ (A) = - pg(A, B) +{w, A" « B)
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and we deduce the continuity of ¥ at A from the W?-differentiability at A together with the fact
that pg (A, B) is bounded near A.

Remark 3.3. We stress the fact that if ¥ : @ — R is uniformly W?-differentiable at A € w,
then v is Lipschitz continuous (between the spaces (w, pg) and (R, deyc1)) in a neighborhood of
A; in fact there exist C, r > 0 such that

|y(B) — ¥(A) — L(A™! » B)| <c
ps(A, B) -

for all B € I,(A), whence

[¥(B) — ¥(A)] < |(we, A~" * B)| + Cpg (A, B) < (lwr| + C)py(A, B) .

We will indicate the x-linear functional L such that (1.18) holds with dys¥(A); we will
call the vector w;, the W®-differential of ¢ at A, and we will indicate it with W%/ (A), writing
[W¢1/J(A)] jforwp;, j=2,..., 2n. These definitions are well posed because of the following.

Lemma 3.4. Leto, v : w — R be such that  is W -differentiable at A € w, and let L be a
=-linear functional such that (1.18) holds; then L is unique.

Proof. We have to prove that, if w := wy, w' ;= wy/ € R?"~! are given by Proposition 2.15,
then w = w’. We will give the proof only for the case n > 2, as it can be easily adapted for
n = 1. Therefore let A = (n, v, ): It is easy to prove that

(w _ w/’ (n/ -7, v — v))
m
B=(n'.v'.T)>A pp(A, B)

=0. (3.6)

Let
A

(v, 7) cw:ps(A, (0.0, 7)) = |(0" —n. 0" — )]}

{(', v, t)ew nZ(GD’l ®) =0}

(v ) el =1 -2(¢'+ )0 —n) —o (v, v)}

where, here and in the following, we write @', ®, ¢’ and ¢ instead of ® (1, v', t'), ®(n, v, 7),
o (', v, "), and ¢ (n, v, T), respectively. Let 82 > O be such that I := I, (A) C w; we want to
prove that there exists a8; > 0 with the property that forall (', v") with |(n'—n, v/ —v)| < 8; there
isat’ € [t—&2, t+8]suchthatt’ = 1 —2(¢' +¢)(0f —n)—0o (V', v),i.e., (7', v, ') € A. Being
¢ continuous we can suppose that |¢| < M on I; then, foreach (', v') with |(n' —n, v' = v)| < &1,
the functions vy vy (t') =7 — 2(¢ (1, V', ') + ¢ (n, v, 1)) (' — 1) — o (v', v) map the closed
interval [t — 87, T + 8] into itself provided 8, is sufficiently small. In fact

() = 5l = P&+ 80 = n) +2 s (070); = v )]

= |26 + ) — 1) + 2y (0 = vnes) —vmas (= v))| G
< 2M$; + 2|v|é;

soitis sufficient to choose §; such that QM +2|v|)8; < 8. Therefore the fixed point theorem guar-
antees that y(,y vy has afixed point T’ (', v") if | (i —n, v —v)| < 81,sothat (', V', T'(1/, V') € A,
ie., pp((', V', T'(', V), (n, v, 7)) = |(' —n, v —v)|; moreover, it is not difficult to prove that
o'(n, V) — tif (', v') — (n, v) [it’s sufficient to use the very same estimate as in (3.7)]. Now,
for each j = 2, ...2n, we can easily construct a sequence Al = (" v, t") € A such that
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o AM > A
« nt=an ol = Vi#jandpg(A" A) =k —v; >0 ifj#£n+ L
. thvandp¢(Ah,A):n”—n>0 fj=n+1

By (3.6) we obtain
w—w,(f—e v v
O:=Iim( U p ))ij—w}
h— o0 p¢(A , A)
forall j =2,...2n, whence w = w'. ]

Remark 3.5. Let A € wand P := ®(A) = ((A) - p(A)e;. With the same notations of
Proposition 2.20, set 6 p-1(B) 1= Pty - Pr)) and &' := op-1(w). Let a® denote the
element (0, ..., 0, @) € R?* and define

¢ : o — R
B=(n,v,1") > ¢(op(B)) — ¢(A) = p(Ax Bx (—4¢(A)(n' — 1))O) — ¢(A);

then ®'(o) = 7p-1(P(w)), where as usual ¢'(B) = ((B) - ¢(B)e;.

It is not difficult to show that a function ¥ € C%w) is W?-differentiable (resp. uni-
formly W¢-differentiable) at B € w if and only if ¥ o op € C%') is W¥ -differentiable
(resp. uniformly W% -differentiable) at o, 1(B) € w': The key observation is that py(B, B') =
g/ (G p-1(B), 0 p-1(B))).

The following proposition shows that uniformly W¢-differentiable functions have continu-
ous W-differentials.

Proposition 3.6. Let¢, v : w — R be two continuous functions; suppose that there exists
an A € w such that  in ugiform]y W¢ -differentiable at A and that Is W differentiable in an
open neighborhood U of A. Then W® : U — R?*~1 js continuous at A.

Proof.  As usual, we give the proof only for n > 2.

Suppose that the thesis is not true; then there exist a § > 0 and a sequence {A7} € U such
that A7 — A and

WOy (a) = Woy (@) = 35

__ By the uniform W?_differentiability of ¥ at A we can find an open rectangle / centered at
A such that

B) — ¢ (A) — (W? f—n,v —
- W@ —y@ - (W@ (o —nv o] g
A,Bel Py (B, A)
A={n,v,70)#B=('v'".1")

There is no loss of generality if we suppose that AJ = (n/, v/, ©4) € I for all j; then, using
the W?-differentiability of ¥ at A/ and reasoning as in Lemma 3.4, we can find a sequence of
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points B/ = (7, v/, v7) € I such that
[V (B7) — y(47) — (WY (4)), (0 — n/, v — v/}
ps(BI, AT)
ps (B, A7) = |(n7 — /v — )] (3.10)

the (2n — 1)-vectors (n"/ —n/, v"/ — v/} and (WO (A7) — WPy (A)) are
linearly dependent .

<é; (3.9

(3.11)

Observe that (3.10) and (3.11) imply that [(W?y (A7) — WPy (A), (7 — 0/, vV — v))| =
WPy (A)) — Wy (A)|pp(BI, A7) > 38p4(B/, A7). Then, also using (3.9), we get

v (BY) — v (47) - (WY (4), (n7 —n/, v7 o))

Py (B, A)
WU ) = WU @), (17 = w0 = )]
- ps(BJ, AY)
1B ()~ Wy (). (7 = = o)

pg(B7, AT)
N 38pg(B/, AY) —'—8,0.‘;,(3/', A7) > 28
- ps(B7, A7) -

which contradicts (3.8). ]

It is not clear whether the converse is true, i.e., if W?-differentiability in an open neighbor-
hood and continuity of the W?-differential imply uniform W¢-differentiability. Observe that this
is true when we consider the classical notion of differentiability.

Recalling how we defined the family W¢ of the 2#-1 first-order operators W}b, the following
proposition explains why we call the vector wy, [with L as in (1.18)] the W®-differential of v:
The fact is that the j-th component of this vector is (at least for regular maps) the derivative of
in the Wf—direction (with the usual identification between vector fields and first-order operators).

Proposition 3.7. Let¢,  : @ — R be continuous functions such that yr is W® -differentiable
atapoint A = (n,v,7) € w (tespectively A = (n,7) ifn = 1). Forj = 2,...,2n let
v/ 1 [-8,8] — w be a Cl-integral curve of the vector field W;.z’ with y/ (0) = A and such that
the map

[=8,81 25— ¢(y'(s5)) eR

is of class C'. Then we have

lim (v () — v(y’/ ()

s—0 N

=[WPy )], . (3.12)

Proof.  Again we accomplish the proof only for n > 2.
Let us fix the following notation: If yj(s) = (n(s), v(s), t(s)) we set
yij(s) =vi(s) for 2<i<2n,i#n+1
ZRIOERI0

V() == T(s) .
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For j # n + 1 the thesis is obvious: Indeed, we must have y/(s) = A * exp(sij) ie.,
t(y7{s)) = t(A) - exp(s X ;), and so
g (4,77 (9)) = |70, (— ¢(Aer - exps X)) - (y! (9))er)],
+ |7z (= ¢ (Aer - exp(sX)) - (v (9))er) ], = Is]
which gives immediately (3.12) as a consequence of the W-differentiability and of the fact that
v/ (s) = vifori ¢ {j,2n + 1} and y{ (s) = v + 5.
For j = n + 1 we have
yitie) =v if i#gn+1,2n+1
yrrl ) =n+s (3.13)
pit sy = T — 4[5 ¢(y" () dr
and so

pe(y" (), y"1(0))

=|s| + {~4 /0 ‘ o(y™ () dr +2[0(y"T () + #(A)]s

172

1 s
= |s] (1 +— —4/0 o(y" T () dr +2[e(y" ) + 6 (A)]s

Is|

1/2> (3.19)

=: |s] (1 + L|A(s)|‘/2> .

Is|
We want to prove that |A(s)] < C s2 for a certain C > 0; indeed, we have that the map s +—

yznn“:Lll (s) is of class C? (because of (3.13) and the hypothesis that s — d (")) is C!) and
then

AGs) = —4 fo o(y" T D) dr +2[¢(y" () + $(A)]s

= -4 /0 [0 () = p W] dr +2[8(r"* ) - #)]s G.13)

= 0(s2) .

Then by (3.14) we get p¢(y"+1(s), A)=<1+ JE)[sl and so

| (v (©) — v (y"THO) - [Woy(4)],, s |
+
Is|
< (14 Y0) [ (y"9) = ¥ (A) — Leyy (A1) |
- g (¥™H1(s), A) '

By letting s — 0 and using the W?-differentiability of ¥ at A we get the thesis (3.12). LJ

The following result shows that the class of ¢, ¥ such that ¥ is W?-differentiable (in fact,
uniformly W?-differentiable) is not empty, and gives an explicit formula for W%
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Theorem 3.8. Let¢, v € Cl(w); then i is uniformly W -differentiable at A for all A € w

and
oy

3_’ yZ‘/f, et ?’”ﬁ) (A)
T

~ ~ oy
Wd’][/(A) = <X21[/, ey Xn'l//, 5};‘ - 4¢
for all A € w. In particular, W¢1j/ cw — R~ is continuous.

Proof. Letusfix A= 7,0,7T) €cw(A=(7T)ifn=1)and set

~ ~ K] 0 ~ ~
w(A) := (sz, e X 8—’2’ - 4"5‘3%’ Yy, ..., Ynt,c’/) (A) e R

if n > 2, while forn = 1 we set

d a

wi) = X a) - dp) L a).
on ot

Following Definition 1.1, and (1.19) in particular, we have to prove that

lin}) My(y, A, w(A), r)=0. (3.16)

Therefore let B, B’ € w be sufficiently close to A (in a way we are going to specify), and
forn > 2let X, W be the C! vector fields given by

_ 2n 5 _ 3 3
X = j=2§;ﬂ+1 v, —v))X;,  W:= priah
Define
B* := exp(X)(B)
= Bx(0,(vh—v2,....0 — Un, Uy — Un42, ..., Uy, — U2n), 0)
= (nv,t—0o(v,v))
B" := exp((n —n)W)(B*)=(n',v/,7") (foracertaint”);

observe that B* and B” are well defined if B, B’ € I5,(A) for a sufficiently small 8. Forn = 1,
X is not defined and we set B* = B and B” := exp((f’ — n)W)(B) = (v, t/).

As ¥ is of class C! we have ‘
¥ (B') — v (B) = [y(B') — ¢(B")] + [¢(B") — ¥(B")] + [w(B") ~v(B)]
= [0(E) - w("))+ [ ) exp () () ds

+/01 sz: (v; —vj)i(’j‘/f(EXP(SY)(B))

j#nl (3.17)

=[w(B) —¥(B")] + ‘22 () =) Xj0(4)
j=2.j#n+1
+ (0 = )Wy A +o(|(n —n.v' = )))
= [¥(B') - ¢(B")] +{w(A), (n' —n,v' —v)}+0(os(B'. B)) .
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For n = 1 the same calculation leads to
¥(B') - ¢(B) =[¥(B) — v(B")] + w(A)(n' ~n) +o(os(B', B)) .

Therefore it is sufficient to prove that ¥ (B") — ¥ (B”) = o(ps(B’, B)). We have

v (8) ~ v (8")] o~
p¢(B’, B) < wy (do) - m (3.18)
where
Al - A//
wy (8) = sup { W/|(A’) Afl(l/z )| A £ A e Ia(A)} , (3.19)

and where we know that wy (§) — 0 as § | 0 because of the fact that ¢ is C!. So we have to
prove that |t/ — t”|1/2/p,(B’, B) is bounded in a proper neighborhood of A. Let’s observe that

/

U —t+0(V,v) +4/0n ¢(exp (sW)(B*)) ds
<|t'—t+2(¢(B) +¢B)(n —n) + (v, V)]

i 2f ?(exp (sW)(B*)) ds — (¢(B') +6(B) (o' - n)‘

!

e

(3.20)
< pp(B', B)* +2|¢(B') — 6(B")||n' = n| +2|#(B) — &(B*)||n' —n|

+2p fo " s(exp (5T (B) ds [6(B") + 6(B*)]( — ,,)‘

=: ps(B', B)’ + Ri(B', B) + Ry(B', B) + R3(B', B) .

For the case n = 1 we arrive to (3.20) with the same line (it is sufficient to follow the same steps
“erasing” the term o (v', v)).

Now we want to prove that there exist Cy, C» > 0 such that
R3(B', B) < Ci|n' — n|* (3.21)
R2(B', B) < C2p4(B', B) (3.22)
forall B’, B € I, (A), and that for all € > O there is a §¢ €]0, 8] such that, for § €]0, 8.[,
Ri(B,B) < |n —n) +e|t/ =7/ (3.23)

for all B’, B € Is(A). These estimates are sufficient to conclude: In fact, choosing € := 1/2 and
using (3.20), (3.21), (3.23), and (3.22), we get

v =" < pg(B'. B + Cuilw = n* + [ —n" + |2 = 7"|/2+ Capy(B', B)’
whence
’t/_l_//|1/2 < C3,0¢(B, B')

which is the thesis.
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For s € [—48p, 9] we can define

g(s) = 2/0 ¢(exp (rW)(B*))dr — [¢(exp (sW)(B*)) + ¢(B*)]s ; (3.24)
as in (3.15) one can prove that there is a C1 > 0 such that

lg(s)| < C1s> forall s € [—8, 8l , (3.25)
so that (3.21) follows withs = n’ — 7.
Define wy as in (3.19) (with ¢ instead of ), then

R((B, B)

IA

2Cl)¢(8)|t/_r// 1/2lr]l_ nl
ln/ _ nlz -|-a)¢(5)2|1'/ _ ‘L’”| )

A

Since ¢ is C!, wy(8) — O for 8 | 0, and so for all € > O there is a §. > O such that for all
8 €]0, 8.} we have w¢(6)2 < ¢, whence (3.23) follows.

Finally, observe that (3.22) follows from R(B, B’) = 0 if n = 1, and from

R:(B.B) = |1 —n||¢(B) - ¢(B")]
2n
= | =n Z (v = vj)(wj 4 o(1))
J=2. jn+]
< 2C0 ||y = v| < Co|(n = n.v' = v)|* < C2ps(B', B)?
ifn > 2. -

4. H-regular graphs and W¢-differentiability

In this section we are going to characterize the H-regular graphs in terms of the uniform
W¢-differentiability of their parametrizations. The main theorem of the section is the following.

Theorem 4.1. Let ¢ : w — R be a continuous function and let @ : w — H" be the function
defined by

D(A) = 1(A) - p(A)ey .

Let S := ®(w). Then the following conditions are equivalent:

(i) S is an H-regular surface and vél)(P) < 0 forall P € S, where vg(P) = (vgl)(P), e
vg,z") (P)) denotes the horizontal normal to § at a point P € S;
(ii) ¢ is uniformly W -differentiable at any A € w.

Moreover, for all P € S we have
B 1 W
JU+weol 1+ |weg|

S271(S) = c(n) [ V1+|Woa)? dc?a) . 4.2)

vs(P) =

2) (@~1(P)) e R x R*! 4.1)

and
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Proof. We will give the proof only for n > 2, since the generalization to n = 1 is immediate.

Let us begin with the proof of the implication (i)=>(ii). Let P = ®(A) € S, where A =
(n, v, T) € w; then there exist an ro > 0 and a function f € C%_H(U(P, ro)) such that

SNU(P,ro) ={Q e U(P,rp) : f(Q) =0}
Ve f(Q) = (X1f(D),.... Xpn f(Q), Y1 f(Q)..... Ya f(Q)) #O0forall Qe U(P,ro).

As vs(0) = —VE f(Q)/IVu f(Q)|, by hypothesis we have that
X1£(Q) > 0forall Q € SNU(P,ry) . (4.3)
Moreover, without loss of generality we can suppose that
A=(,v,71)=(0,0,0)and P = (0,0,0)=0. 4.4

Indeed, if this is not the case, let us consider S’ := tp-1(S) = ®'(v'), where we use the same
notations of Remark 3.5. We have that $'NU (0, rg) is an H-regular surface because it is the zero set
of the function f' : H" 3 Q > f(P-Q) € R, and by leftinvariance X; f'(Q) = X1 f(P-Q) > 0
forall Q € U (0, rp). Finally, (again by Remark 3.5), ¢’ (which is equal to ¢ oo p up to an additive
constant) is uniformly W¢ -differentiable if and only if ¢ is uniformly W¢-differentiable.

By the unicity of the parametrization provided by the Implicit Function Theorem we can
assume that there is a § > 0 such that I; = I5(0, 0, 0) € w and

f(®(B))=0forall Bel. 4.5)

With the assumptions in (4.4), by the continuity of ® for each r €]0, ro/4[ thereisa0 < §, < r
such that

®(1;(0,0,0) CUQ©,r). (4.6)
Let us recall the following

Lemma 4.2. Let f € C]%H(U (P,r)). Then there exists a C = C(P, ro) such that, for each
Q € U((P,ry/2), r €10,r9/4[ and Q' € U(Q, r) we have
1£(Q) = £(@ = (Vuf(@), 7(Q7' Q)]
< Cdoo(Q, Q) IVaf () — VES (D) lLo(U(0.2d5(0,07)) -

The proof of this fact can be found in [47], Theorem 2.3.3.
Therefore, for each B = (n, v, 1), B' = (', V', ') € I5,(0), with §, sufficiently small, we
get, by applying Lemma 4.2 to our f with P =0, Q = ®(B), Q' = ®(B’), that
(Vaf (®(B), 7 (®(B)"'©(B)))
= |f(®(B)) — f(®(B)) +(Vaf(®(B)), n(2(B) ' o(B)) )|
< C1 R(6;) dso(®(B’), (B))
< G RG) [, (2B @ (B)) |, + |70, (2B ()]
+ |rz(eB ' o(B)] ]
< C2R() [ |¢(B') — ¢(B)| + py(B. B') ]

4.7)

o0
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where C| is given by Lemma 4.2 and

R(8) :=sup {

Va £ () = V£ (P)| ppraaeir iy | P P! € ®Us0.00]

By the uniform continuity of Vs f : U(0, r9/2) —> HH" we have

lin& R(6r)=0. 4.8)

Setting Ve f := (X2 f, ... Xa £, Yi fo ..., Yu ), (4.7) and (4.3) imply

, (V(®(BY), (1 —n.v —v))
B')—¢(B
‘4’( A X1 f(®(B))

(Vi f(@(B)), 7 (®(B)"'®(B")))] (4.9)
X1 f(®(B))

-1
<[,int X17] C2RG)[I9(B) = 9(B)| + ps(B. B)]

for any B, B’ € I5,. By (4.8) we can suppose

C 1
———2_—RG) <5
infp,r) X1.f 2

for a certain 7 €]0, ro/4[, and so
(Ve(®(B)), (1 —n,v' —v))
X1 f(®(B))

(VE(@(B), (v —n,v' —v))
X1 f(®(B))

< [|6(B) - ¢(B)| + ps(B, B)]/2+ C3|(n' — n, v = v)]

|¢(B) —¢(B)| < !¢<B’> - ¢(B) +

for each B, B’ € Ij,. Therefore there exists a constant C4 > 0 such that
|6(B') — ¢(B)| < Capy(B, B') . (4.10)
Putting together (4.9) and (4.10) we get that there is a Cs > 0 for which

(Vi(®(B)), (1 = n,v' —v))
X1 F(®(B))

‘¢(B/) ~ $(B) + ‘ < CsR(5,)p4(B, B') @.11)

and so

, Wwf® .,
}¢(B)_¢(B)+<X1f(0>’ (' =mv _”)>
ps(B. B')

VES(@()  VEfO)
X1f(@()  Xif0)

< C5R(6,) + sup
15, (0)
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for each B, B’ € Igr (0) with r < 7. Thanks to (4.8) and the fact that f is of class C]}_: we get that
lim, o Ly (¢, 0 YufO ;) =0, i.e., ¢ is uniformly W*-differentiable at 0 and

* X f0)
Va f
W Yl 4.12
¢(0) = X, f() (4.12)
More generally, we can say that
Wo(0 (P) = — LA
p(@~'(P)) Xf (P)

from which (4.1) follows because

_Vuf(P) _ (ZXif(P). X1 f(PYWOg(2™(P)))
1 we
= |- -, ¢ - (@ '(P).
\/1+|W¢¢| \/1+|W¢¢|

vs(P)

So the implication (i)=>(ii) is completely proved.

Now we have to prove the converse, i.e., (i))=(i). LetA = (5, v, 7) € wand P = ®(A) € S.
We have to findanrg > Oanda f € Ci{i(U(P, rp)) such that

SNUP,rg) ={Q € U0, ) : f(Q) =0} (4.13)
X1 f(Q)>0forall Q € U(P,rg). 4.14)

Let 6; be such that I5, (A) € w; as ® : w — § is an homeomorphism we can suppose that
SNU = o(I5,(A))

for a certain open neighborhood i/ € H" of P. Let C := SNU and g : C — R defined by
g(z, 1) := 0. Define

k : C— HH'=R>
1) — (1, =W?(d7'(z,0)) .

We start by proving, thanks to Whitney’s extension Theorem 2.18, that there isan f € CIZ H", R)
such that

f=g=0 onC (4.15)
Vif(@ ) =k@z 1) = (1, -W?¢(®"'(z,n)) forall(z,n)eC.  (4.16)

Consider a compact subset K of C; for Q, O’ € K and § > 0 let

R(Q, Q) = 8(2) ~ 8@ — (k@) 10(07'0) )y (kD). 7o(27'0)),
) = doc(Q’ Q’) - doo(Q, Q/)

pk () :=sup{|R(Q, Q)] : 0. Q' € K,0 < dwo(Q, Q') < 8} .
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In order to apply Whitney’s Theorem (which will provide the desired f) we have only to prove
that

lim px (8) = 0. @.17)
510

Let us suppose that the converse is true, id est there is an €y > 0 such that for all # € N
there are ", Q% € K, Q" = ®(B"), Q¥ = &(B"), B" = (", v, "), BY = (n¥ v, o)
for which

0 <dwo(Q", Q") < 1/h (4.18)

l¢h/ _ ¢h _ ( W¢¢(Bh), (nhl _ nh’ vh/ _ Uh) M
ps(B", BY)

where as usual we indicated with ¢”, ¢ the quantities ¢ (B*) and ¢ (B"), respectively. In (4.19)

we used the fact that doc (@ (B), ®(B’)) > ps(B, B'); this estimate, together with (4.18), implies
that ps(B", B)) < 1/h and so

e < |R(Q", Q")] < 4.19)

|(?" —n" " = M) < 1/ (4.20)
'Th/ _ Th + 2(¢h/ +¢h)(nh/ _ nh) +O'(Uh/, vh)l < 1/]12 . (421)

If we set M := supg |¢| and a := supg {(n, v)| we get

'Th/—l'h’ < 1/h2+2[¢h/+¢h”nh/—7]h|+2|O'(U/h,vh)‘ (*)
< /B2 +aM|n" — ot + 2|0 — vt () (4.22)
< C/h

where C = 1 + 4M 4+ 20 > 0 depende only on K. In (x¥) we used that ¢ (v", v#) =
2 Z/ 2[”n+/ v vh'(vn+J nﬂ)] while (4.20) justifies (xx). But since K is Compact

thereisa B = (n v ,r "y € I5,(A) D K such that
lim B" = Jim B" =B.

h—>o0 h— 0
In particular, B”, B" € I¢;4(B), and by (4.19) and the continuity of the W?-differential we get

that for any h
0 < €g < My(#, B, W?¢(B), C/h)

which contradicts the fact that ¢ is uniformly W¢-differentiable at B I5,(A). This is sufficient
to apply Whitney’ Extension Theorem, and so we get the existence of an f € CIILH(H", R) for
which (4.15) and (4.16) hold.

The proof of the implication (ii)=>(i) will be complete if we prove the validity of (4.13)
and (4.14) for a certain rg. Let 8’ := {Q € H" : f(Q) =0, Vi f(Q) # 0}; as we have already
shown, we can suppose that P =0and A = 0. As0 € SNU C §’ we have

f© =0 and Vgf(0) =(1,-W?¢(0)

and by the Implicit Function Theorem there are an open neighborhood U’ of 0 and a continuous
function ¢’ : I (0) such that

o : Iy©0) - SnU
B r— «(B) - ¢'(B)e)
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is an homeomorphism. Therefore ®'~1(S’ N{’) is an open subset of Iy (0) which contains 0,
and so there exists a 8” €]0, 8[ for which I5»(0) C ®'~1(S’ N U’); by the uniqueness of the
parametrization we get that & = & on I3 (0).

Now, let U4 and U/"” be open neighborhoods of 0 in H" such that
SNU' = &(I(0) = &' Iy (0) = §' NU" (4.23)
and let ro > O be such that U(0,rg) < U” NU”. Then by (4.23) we get U0, r9) N S =
U (0, rg) N §’, from which (4.13) and (4.14) follow.

Finally, the area type formula (4.2) follows from Corollary 2.23 after finding a giobal f (that
is given only locally), which can be done by a standard argument involving a partition of the unity.
This completes the proof of the theorem. L]

Corollary 4.3. With the same notations of Theorem 4.1, suppose that S := ®(w) is H-regular;
then ¢ : (w, py) — R is locally Lipschitz continuous.

Proof.  The thesis follows from Theorem 4.1 and Remark 3.3.

Now we want to establish some Holder continuity properties for uniformly W¢-differentiable
functions on w and therefore for parametrizations of H-regular graphs; in particular we want to
improve the Holder continuity obtained in (3.4). More precisely, we have the following.

Proposition 4.4. Let¢ :  — R be uniformly W -differentiable at A € w. Then there is an
ro > 0 such that I,(A) € w and

B
hm sup{&%z)—' B, B € 1,(A),0 < |B—B| <r]=0.

Proof. Again we treat only the case n > 2,
If B=(n,v,7)and B’ = (', v/, t/) let us set
[$(B") — ¢ (B) = (WPp(A), (' —n, v/ —v
R(8) := sup
po(B. B)
by the uniform W¢—differentiability of ¢ at A we now that lims g R(6) = 0. In particular, there
is an ry > 0 such that ¢ is Lipschitz continuous between the (quasi) metric spaces (I,,(A), pg)

and R (equipped with the standard Euclidean distance), i.e., (3.3) holds. Then by (3.4) [see the
passages that lead to (3.5)] there is a C; > 0 such that

)>:B'7EB€15(A)];

p¢(B/, B) < CllB/_ B‘l/z

forall B',B¢ L, (A) . 4.24)
Butif B # B € I,{(A), 0 < r < ry, we have

[¢(B) —¢B)| _ [#(B) —¢(B) = (W?p(A), (n' —n.v' —v)}|  py(B', B)

B -8 po(B'. B) B/ — B|"
+ |W?¢(A) M
| ' l Bll/z
< CiIR() + C|W?(A)|r'? — 0 for r 0.



Intrinsic Regular Hypersurfaces in Heisenberg Groups 217

This completes the proof. O]
From Proposition 4.4 and a standard compactness argument we get the following:

Corollary 4.5. Let¢ : w — R be a continuous function, and let ® : w — H" be defined as
usual: ®(A) = 1(A) - ¢(A)ey. Let S := P(w), and suppose that S is an H-regular surface with
vél)(P) < 0 forall P € S; then for each o' @ I we have

lp(A) — ¢ (B)]

A B :A,Bea)/,0<|A~B|<r}:O.

lim sy
rl0 P {

Finally, we stress an interesting approximation property for the parametrizations of H-regular
graphs.

Proposition4.6. Let¢ :  — R beacontinuous function which is uniformly W -differentiable
atany A € w; then for any A € w there is aé = §(A) > 0, with Is(A) € w, and a family
{$e}es0 C CL(Is(A), R) such that

e = ¢ and WP, - Wp  uniformly on I;(A) .

Proof.  Arguing as in the proof of Theorem 4.1 we can suppose that A = 0, (0) = 0 and
SNUQO,r)y={PeU@,r): f(P)=0}

for proper r > O and f € C]bIU (0, r) such that f o & = 0 on I5(A), with § sufficiently small.
Moreover, arguing as in the proof of the Implicit Function Theorem 2.16 (see [27]), we can

suppose that, for a certain 0 < r’ < r (and considering possibly a smaller §), there are two
families { f:}es0 C CHU(0, ")) and {¢c }es0 C C'(I5(A)) such that

fe— fand Vuf. - Vuf uniformly on U (0, r’)
Vafe Ve f . S
— ¢pand — od, > ——— o0 d = W¢¢ uniformly on I5(A)
b X %7 T Y

where ®(A) := ((A) - ¢ (A)e; is such that fe o &, = 0; indeed, the set S, := {P € U(0,r') :
fe(P) = 0} O ®.(I5(A)) is an (Euclidean) Cl-surface, and then its parametrization ¢, is
uniformly Wy, -differentiable and

from which the thesis follows. L]

5. Characterization of the uniform W¢-differentiability and some applications

The main result we are going to prove in this section is the following.

Theorem 5.1. Let¢ : w — R be a continuous function. Then the following conditions are
equivalent:

(i) ¢ is uniformly W? -differentiable at A for each A € w;
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(ii) there exist aw € C%(w, R¥"~1) such that, in distributional sense,

w=(X20,.... X206, B¢, Y20,...,Vn¢) if n22
w = B if n=1

and there is a family {¢¢ }e >0 C C!(w) such that, for any open ' € w, we have

¢e — ¢ and W% ¢ — w uniformly on o' . G

Moreover, w = W?%¢ on w and

{I¢(A)—¢(B)I _

lim sup A_ B2 .A,Bew’,0<|A—B[<r]=0 (5.2)

r—0T

foreachw' € w.

Remark 5.2. Letn = 1 and w = 0 then the functions ¢ : @ — R satisfying condition (ii) of
Theorem 5.1 are entropy solutions of Burgers’ scalar conservation law in classical sense. Indeed,
by performing the change of variables R? = R, x R, — R? = Ry x Ry, (x, 1) — (¢, —4x),
Burgers’ operator B can be represented in classical way with respect to the variables (x, ¢) as

du  13u?

Bu=—+ =
“ 8t+23x

if u = u(x, 1) € C'(w*) and w* C R? is a fixed open set (see [21], Chapter III, Section 3). In
this case, condition (ii) of Theorem 5.1 reads as the existence of a function « : @* — R and of a
family {4z}, C C'(w*) such that

ue — u and Bu, — 0 uniformly on o’ (5.3)

for any open o' € w*. Let us assume now o* = (a, b) x (=4, §) and let g(x) := u(x,0) if
x € (a, b). Then we claim u is an entropy solution of the initial-value problem

du 18u?

—_— 4 = =0 i .b 0,6

a7 T2 %x i (a.5)x (0,8)
u=g on (a,b)x{t=0}.

More precisely, by definition (see {21], Chapter XI, Section 11.4.3), we have to prove that

u € C°([0,8), Li,.(a, b)) N LT (0*); (5.4)
u(- 1) —> gin L} (a,b)as t - 0F; (5.5)
3
/ l:e(u)—v ¥ d(u)a—”} dxdt >0 (5.6)
w* at dax

for each v € C Cl (@*), v > 0 and for cach entropy/entropy flux pair (e, d), i.e., two smooth
functions e, d : R — R such that e is convex and ¢’ (u)u = d’(u) Yu € R. Then (5.4) and (5.5)
follow at once because u € C%(w*). As u, € C'(w*)

d(e(ue))  0(d(ue)) , ) X
Y + Py = wee (Ue) N w (5.7)

in pointwise sense with we = Bu, and, by (5.3), we — O uniformly in ' for any open o’ € w*.
Thercfore multiplying both sides of (5.7) for a given v € C! (w*), integrating by parts and taking
the limit as € — 07 we get (5.6) too (actually with an equality, so with no entropy production).
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Remark 5.3. Letn > 2 and let assume that ¢ : w — R satisfies condition (ii) of Theorem 5.1
with w = 0in an open connected set @ C R?", then ¢ is constant in w. Indeed, for a fixed Ag € w
let B = B(Ao, r0) C w an Euclidean ball centered at Ay with radius ry > 0, and, for a fixed
neR let By :={(v,7) € R%”‘z xRy :(n,v,7) € BY, ¢p(v, 1) := 9, v, 1) if (v, 7) € By.
Since ¢ is continuous in w, By is an open connected set in R2"~2 x R, = H"~! and

Xipy=Yi¢,=0in B, (j=2,....n),
in distributional sense we get
¢, v, 1) =9 VY(.v,71)€B. (5.8)

In fact a Poincaré inequality holds in (H"~!, dc) with respect to the horizontal gradient Vg :=
(X2,...,Xn. Y2, ..., ¥p) (see, for instance, [34], Proposition 11.17) and then there exists a
constant ¢ > 0 such

/ I¢n _¢7],U(_‘|d£2n_1 <cr / IVH¢n|d£2n—l
Uc(P,r) Uc(P,r)

forevery P € H*~!, r > O such that U (P, r) :={Q e H""! : (P, Q) <r}C Byand

1
T L2-Y(Ue(P, 1) Uc(P.r)

On the other hand, by (5.8) we infer

¢77,UC ¢71 d£2n—1 .

%qb:%:Oin B
on

in distributional sense. Thus, ¢ is constant in B = B(Ao, ry) for all Ag € w for suitable rg > 0.
As ¢ is continuous in w and w is connected we can conclude that ¢ actually is constant in the
whole w.

In order to prove Theorem 5.1 we will need some further notation and preliminary results.

Let¢ : w — Rbe acontinuous function, and suppose thatforall A € wthereare < 8, < §;
such that, for each j € {2, ..., 2n} there exists a map

yi =8, 8] x I;(A) = I (A) cw
(s, BY —> v/ ()

such that yJB € CH([—8,, 821, R?") for each B € I5,(A) and, with the usual identification between
vector fields and differential operators,

, )?,-oij if j#n+1

- B B ‘

(E.D) J J J d—vn —4(¢oy”+1)$ if j=n+1
v (0) = B;

(E.2) there is a suitable continuous function w; : @ — R (depending only on ¢) such that, for
eachs € [=62, 821, d(y/ () — (¥ (O) = [§ w;(y/ () dr.

We will call the {y;} a family of exponential maps of W at A; we will write exp A (8 W;’)(B) =
B
Vi (s).
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Remark 5.4. Notice that if the exponential maps of W? at A exist, then the map
[—82,821 5 5 —> ¢(expy (sW}b)(B))
is of class C! foreach j € {2,...,2n} and each B € I5,(A).

Remark 5.5. Observe that, because of the left invariance of the fields X j» for j # n one must
have

exp, (sWP)(B) = Bx17!(expsX;) = B+t (sej) . (5.9

Moreover, if there are the exponential maps of W¢ at A [in particular, there are w; as in (E.2)],
then forany A = (A2, ..., Ay, Apy2, - -, Aop) € R27=2 there exists also an exponential map for
the field ) A; W‘.p, i.e., there are two continuous maps y;, : [—82, 82] x I5,(A) — I5,(A) €E @
(with, possibly, a §; > O smaller than the one in (E.1), depending on A) and w : @ — R such
that

Yals, BY =Y AWl (yi(s, B))
720, B) = B

Ay
B(ra(s, B)) — 6( (0, B) = /0 wi(y (r, BY) dr .
In fact, it is sufficient to take y (s, B) := B * (0, sA, 0) and w; 1= ) Ajw;.

The following lemma provides sufficient conditions to guarantee the existence of exponential
maps of W9,

Lemma 5.6. Let¢ : o — R be continuous, and suppose that

(i) there exists w € C%(w) such that, in distributional sense,

w=(wy,...,wa) = (X2, ..., Xn0, BS, X126, ..., X220) if n>2
w = B if n=1

(ii) there is a family of functions {¢¢}e=0 C C!(w, R) such that for each o' € w we have
b — ¢, W¥p. - w  uniformly on o' .

Then for each A € w there are 0 < §; < 8y such that, for each j = 2, ..., 2n, there exists
epr(sW?)(B) € I5,(A) € w for all (s, B) € [, 82] x I5,(A); moreover,

d
w;(B) = ad’(epr (SW;))(B))L;:O

for each B € I5,(A).

Proof. Again we can suppose r > 2, as for n = 1 the proof can easily be derived.

There is no problem if j # n + 1; in fact by (5.9) it is sufficient to set

exp, (st'.p)(B) := Bxexp(sX;)
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which is defined on [—é7, 82] x Is,(A) for a sufficiently small §; with values in I5,(40) € o.

Then (E.1) is fulfilled by construction and (E.2) comes from the hypothesis that w; = X ;¢ in
distributional sense.

For j =n + 1 and € > 0 consider the Cauchy problem

- 9 9 ¢
Ye(s. B) = i 4e (Ve (s, 3))3—t =W, 11 (Ve(s, B))

¥e(0.B) = B

which has a solution ye : [—82(€), 82(€)] X I5,ey(A) — Is,(A). By Peano’s estimate on the
existence time for solutions of ordinary differential equations we obtain that §,(¢) can be taken
greater than C/||¢c|| L% (15, (A)) (where the constant C depends only on §;), and so we get a
82 > 0 such that 8,(¢) > 8, for all . Now, on the compact [—62, 62] X Is,(A) the functions

ye are uniformly continuous, and by Ascoli-Arzeld’s Theorem we get a sequence {€5};, such that
e, —> Oas i — oo and ¥, — v uniformly on [—§3, §3] x I5,(A). Remembering that

T 9 a
Yen (s, B) = B +/0 [5 — 4¢e, (Ve (5, B))a—T] ds

e, Vey (5, A)) — Pe, (v, (0, B)) = fo W G (vey (5., BY) ds

and for j — oo we get (all the involved convergences are uniform)

y(s,B) =B +/ [i —4¢(y (s, B))i] ds
o Lan at

d(y(s, B)) —¢(y(0, B)) = /0‘ wp+1(y (s, B))ds
i.e., (E.1) and (E.2). T

As in Euclidean spaces the gradient of a function is the vector composed by the derivatives
along the exponentials of the vectors of the canonical basis, we will prove, in the following

theorem, that the W% -differential is the vector made by the derivatives along the exponentials of
w9,

Theorem 5.7. Let¢ : w — R be a continuous function such that, for a certain A € w, the
following conditions are fulfilled:

(i) thereare 0 < 8 < 8 such that, foreach j = 2, ..., 2n there exist a family of exponen-
tial maps

expy (sW?) : [=82, 82] x T, (A) — Ty, (A) .

(ii)) foreachw € w

|¢(B') - ¢(B)]

lim sup 02

:B,Bew,0<|B -B|<r;=0;
r—0t lB/_Bl

Then ¢ is uniformly W® -differentiable at A and

d
[(Weo) ()], = —dlexpa (WF)(A)), o -
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Proof. Forn>2letA= (3,v,7),B=v1),B =@, v, 1) € o whileforn =1
A=@7),B=01),B =.1t) € w, and let w = (wy, ..., wy,) be as in (E.2). We have
to prove that

(Slin'(n) My(®, A, w(A),8) =0 (5.10)

where My is defined as in (1.19).

The proof is exactly the same as in Theorem 3.8: At first, for n > 1, we define the vector

field X := Z?"zz‘#nﬂ(v} — vj)W;’ = 3’;2‘1'#”_’_1(11;- ~ v;)X;, and then we set
B* := exp, (X)(B)
= B#»(0,(vy—v2, ..., 0, — Un, V) p — Ung2,..., V3, — V20), 0)

= (nv,t-0o(V.v)).

If n = 1, X has no meaning and we simply define B* := B.

Now the big obstacle is that in general we cannot integrate along the vector field erb 1 1€

we cannot define B” := eXp((n' - 7))((—% — 4¢53;))(B*); however, this problem can be solved

using the existence of exponential maps, more precisely, by posing

" ’ ] * ('7/7 v/’ TN) if n>2 . 1
B" :=exp, (0 — )W, ,)(B*) = o, ‘ (for a certain ") .
(n,7") if n=1

Therefore, we can rewrite (3.17) as

l

¢(B') — &(B) [#(B') —¢(B")] +[#(B") ~ #(B*)] + [¢(B*) — 6(B)]

= [#(8) - ¢(8")]+ fo was (expg (sWyy1) (B7)) ds

1 2n
+ A Yo () = vp)wiexpy (sX)(B) ()
j=2

JEn+1
2n
= [s(B)=o(B)]+ > (f—vj)w;(4)
J=2.j#n+1

+ (1" = n)was1 (A +o(|(n' = n, v = v)])
= [¢(B) = ¢(B")] +{w(A), (' —n,v' ~v))+0(ps (B, B))

if n > 2, and as
¢(B) — ¢(B) = [¢(B') — (B")] + w(A) (v — 1) + o(py(B', B))

if n = 1. In the passage signed with (x) we have used the continuity of the w; at A.

Reasoning as in (3.18) and (3.19), the keypoint is again to prove that |t’ —t”|1/2/ p4 (B, B")
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is bounded in a neighborhood of A, and rewriting (3.20) we obtain

n'-n
o= e o 0) 4 [ (e (W) (B7) ds
[}

< |t =1+2(¢(B) +¢B)(n —n) + o (v, v

n'—n
42 2/0 $(exps (sW7\,)(B¥)) ds — (&(B) + ¢(B)) (' — ")‘ (5.11)

< po(B, B +219(B) ~ ()|l ~ 1| + 2168 ~ 6(5°) I ]
22 [ b(ema (WEL) () ds = [o(E") + 0(8)]0' =)

=: ps(B', B)> + Ri(B', B) + R2(B', B) + R3(B', B)
for n > 2; for n = 1 simply do not consider the term o (v', v). Therefore we have once again
to prove (3.21), (3.22), (3.23); this can be done following exactly the same line as in the proof

of Theorem 3.8 and using (E.1) and (E.2): The only thing one must pay attention to is to write
expa(- W2 ) instead of exp(- W) in (3.24). [

Now the proof of Theorem 5.1 is in order.
Proof of Theorem 5.1.  'We will accomplish the proof only for n > 2, because as usual the
generalization to n = 1 is immediate. Let us begin with the proof of the implication (i)=(ii).

The statement in (5.2) follows from Theorem 4.1 and Corollary 4.5. By Proposition 4.6 we
get that for each B € w thereis a §(B) > 0 (such that I5(g)(B) € ) and a family of C! functions
{¢e.B : 15(8)(B) = R}g<e<1 such that

e, — ¢ and Wy, b g — W¢¢ uniformly on I5¢py(B) . (5.12)

As F := {I5py(B) : B € w} is an open covering of @ we can associate a partition of the
unity {6; : i € N} which is subordinate to it, i.e.,

0; € C(w).0<6; < lonwforall i (5.13)
{spt 0; };en form a locally finite covering of w, and foralli ¢ N (5.14)
there is an [; := Ispg)) (B(i)) € F such that spt §; C I; ’
oc
dti=lonw. (5.15)
i=1
Let ¢c i := ¢c By : R?" — R, where from now on, if necessary, we use the convention

of extending functions by letting them vanish outside their domain. Let ¢ := Y jo, 6ie,i ; by
construction ¢ € C!(w) and

0 (36, e
Z(E@,,w ) (V')

377 i=1 3?]
b _ < ( 96 dpe.i

= o ; ; d > 2
o, Z<3Uj¢e,z+ v, (n>2)

i=1

3¢ Z” 26; 3¢.i
- = - i i : Y .
Jat 4 (8r¢€"+6' ot ) (Vm)

Il
—_
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In particular,
o0

W o, = Z (be.i WP0; + 9,'W¢‘¢€,,') on w.

i=1

We have to show that (5.1) holds for any fixed o' € w; by (5.14) there is only a finite number
of index iy, ..., i suchthatw'NsptG;, #OVh=1,...,k,ando’ C UI;,=1 spt 6;,. Then

k k
¢ =) Bydei, and =) 6,6 on o (5.16)
h=1 h=1
k —
Wope =Y (beis W 6i, + 6, W) on o . (5.17)
h=1

Equations (5.16) and (5.17), together with (5.12), give
e > & (5.18)

k
Wope > > (pW] + 6, W) = w (5.19)
h=1

uniformly on ', where we put

96, 36,

VVlf = (§29i;,, PN i,,Gih, ——4¢——, )729,',,, ey ?,,9,',’) .

W at
Observing that ZZ:l ¢Wi": = 0 we get that w = W?¢ € CO(w, R?"~!) and

w= ()?2¢, ey inqb, %(}5, 724), vy ?nd’)
in distributional sense.

The reverse implication (ii)=>(i) follows from Lemma 5.6 and Theorem 5.7. The hypothe-
sis (i) of Theorem 5.7 [i.e., the assertion in (5.2)] is satisfied because of the following Theorem 5.9:
The key observation is that, thanks to the uniform convergence of ¢, and W% ¢, we can estimate
lPe li Lo ey and | W9 . | L2 () uniformly in € for any »” € w. Moreover, the uniform conver-
gence of W% ¢, allows us to choose a modulus of continuity for W% ¢, which is independent
of €. Therefore there is a function « : |0, +00[— R, which does not depend on €, such that
lim, o (r) = 0 and

up |6 (B') — ¢ (B)|

58" :B’,Bea/,0<|B’—B]5r] <a(r)

which implies (5.2). []

Theorem 5.8. Let I C R> be a rectangle and let ¢ € C'(I) be such that WP¢ =
(wy, ..., wa) € COULRY Y je,

)N(jq):wj, )7j¢=wj+n forall j=2,...,n
a¢p ap

— —dp— = .
o ¢3‘L’ Wp+1
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Then for all rectangle I’ € I there exists a function « :]0, +00[— [0, +o0o[, which depends only
on 1", |||l L=y (where 1" is any open rectangle such that I’ € 1" € I), on ||W®¢| Lo ;) and
on the modulus of continuity of wy41 on 1”, such thatlim,_,q o(r) = 0 and

Proof.  As usual, we can suppose n > 2; the proof can be easily adapted to the case n = 1.

Let’sbeginby setting K := supy¢;» |Al, M := ||@|| Loy, N = || W¢¢|lLoo(1n);letﬂbethe
modulus of continuity of w1 on I”, i.e., anincreasing function ]0, +oo[> r — B(r) € [0, 4-o0[
such that |wp1(A) — wp41(B)| < B(|A — B|) forall A, B € 1" and lim,_,¢ B(r) = 0. We
divide the proof in several steps.

Step 1. Let us fix another rectangle J € R?" such that I’ € J € I”, and let us introduce the
following notation: For A = (5, v, 7) € J we define y4 as the curve solution of the Cauchy
problem

a(t) = 1—4 (t))—a-
ya@t) = o o (ya P
va(n) =A.

By standard considerations on ordinary differential equations, we have y4 € Cl(n—en+
€],1”) for a certain ¢ > 0 which does not depend on A; moreover, we can choose ¢ so that
ya(ln—€,n+e]) c Jforall A € I'. Let ya(t) = (n + £, v, T4(2)); then

d? d

——5 740 (1) = =4 (Y4, (D)] = —4wn41(ya, (1)) . (5.21)
dt dt

Step 2. Set3(r) := max{r1/4, ﬁ(Erl/“)l/z}, where E > 0 is a constant which will be specified
later; we start by proving that o’ (r) < 8(r) + 2N 128(r) + Nrl/2 for r “sufficiently small” (in a
way we are going to specify, but depending on K, M, N and § only), where

lp(A) —¢(B)| |

o' (r) :=sup[ A_BP .A:(n,v,t),B:(n’,v,r’)61/,0<|A—B]_<_r} .

Suppose on the contrary that there exist A = (n, v, t), B = (7, v, ') € I’ such that |A — B|
is “sufficiently small” and

|¢(A) — ¢(B)]

B > 8 +2NV2s + Nr1/2 |

where from now on we will write & instead of §(JA — B|). We observe explicitly that by definition
of 6(r) we have 8’ := 8(|t — 7%]) < § and so

ﬁ(|r — r’| + 8M|r — t’11/2/6) ,B(lr - T/| + 8M|I - 1'/|1/2/5,)
82 = )
B(le — | +8M|r - [ (5.22)
< 57
< 1

provided E > 0 is such that |t — 7’| + 8M|t — |4 < E|lr - /|4,
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LetC :=(n,v, 7)€ I';as [A— C|Y? = |t — /|2 and |C - B|'/? = |5 — n'|'/? we have

6(A) ~ $(B)|
§+2N'25 + Nrl/2 <
|ﬂ—n/'1/2+|t—rlll/2
A) — ¢(C C)-¢(B
_ o4 ¢1(/2)| 16(C) ¢1</2>' = Ri+Ry. (5.23)
lr—r’, [Tl_ﬂll

Therefore, up to subsequences, we can suppose that we have always Ry > § or Ry > +2N/25
Nri2.

Step 3. We want to prove that the first case cannot occur; in fact, we will prove that

64 —8(O)] _

|t — T'|1/2 B

for A, B € J (not for I’ only!). We can suppose that 7 > 7’ (for the other case it is sufficient to
exchange the roles of A and C). Consider y4 and y¢; thanksto (5.21) we have, fort € [n—¢, n+e€]

t N
Tat) —tc@) =t -7 +/ l:r'A(n) —tc(n) +/ [taCr) — 'r'c(r)]dr} ds
n n

<r=r4 = D[sW=6©)] 4 [ [ [wnarra0)-uwnnrtreen]ards
nJn

<t—1'—4( — )[p(A) - O]+ —m?B(|t — | +8M]t — 7)),

where in the last inequality we used the fact that

lya() —yc()l lya(m) = yemI +1r —nl (ltalloo + lEclioo)

|t —t'| +8M|t — 1 .

=
=

If¢p(A) —¢(C) >0putt :=n+(t —7)/2/8in (5.24), and t := 5 — (r — 1/)!/2/5 otherwise;
if |t — 1’| is “sufficiently small” y4(¢) and yc(t) € I” are well defined (it is sufficient to take
e > (t =14 > (t —)2/8 = |t — n|) and from (5.22), (5.24) and R; > & we get (in both
cases)
ta) —tc@) <t—T—4(r =)+ (r - t’)ﬂ(]t —t'|+8M|r - r’[l/z/zS)/S2
(5.25)
==2(r-7) < 0.

This leads to a contradiction: In fact 74 and 7¢ are solutions of the same Cauchy problem
T(s) = —4¢(s, v, 7(5))

with initial data 7() = 7 and 7/, respectively. The contradiction is given by the fact that two
such solutions cannot meet, while t4(n) — tc(n) > 0 and t4(z) — t¢(f) < O for h sufficiently
large.

Step 4. Now let’s examine the second case R, > 2N1/28 + Nr!/2; we can suppose that ' < n
(otherwise it is sufficient to exchange the roles of B and C). Consider yg; again, for n — 1’
“sufficiently small” D := yg(n) = (n, v, t”) € J is well defined, and

l¢(B) — ¢(D)| = <N|n—7|; (5.26)

n
[ wnn s a

n
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moreover,

n
|t”—r’|=’4/ P(ye®)dt| <4N|n—1'|. (5.27)
r’/

Then for |’ — 5| “sufficiently small” (and precisely when N|n — n/|'/? < |n — /|4 < §)
we obtain

19(C) —d(D)| = |¢(C) —¢(B)| — |9(B) — ¢(D)
> [2N'25 4+ Nri2 = Njp—w|"* ] |n —n'|"? (5.28)
> 2N1/26|7]—n/‘1/2 > 5|‘L’”—T"1/2

so that we are in the first case again (with the couple C, D € J instead of A, C) which we have
seen is not possibie.

This proves that lim, .9 &’(r) = 0, and that we are able to control &’ with only K, M, N and
B. Observe that what we said up to now, properly translated in the notation we use whenn =1,
gives directly the thesis for the case n = 1.

Step 5. For the general case, let A = (n,v,7), B= (', v/, t) € I, and set
A¥ = Ax (0, v — v,O) = (n, vt +a(v, U/)) .

We can see A* also as exp(Z?'Lz’j#n+1 (v} - vj)W;.l’)(A) and so

2n 1
s —e(4%) = | X /0 (0~ v) WP (exp (1 Toajnsn (V) = vi) WP ) () dt
j;é:-zH
< N|V—v|<N|A-B|.

As |, V)| = 2 X plvns V) = v)) = vj (v, — vns ]| < 2K|A ~ B we get

|A*_B| = |n/—77|+|t’—‘t|+|o-(v‘v/)'
< (K +2)|A- B
and so
B —sBI o) —6(47)] | [o(47) ~ o)
[A— B2 = |A — B|1/2 A_ B2
= NlA—B|1/2+(2K+2)M

|ax — B|'/?

IA

NIA - BIV? + 2K +2)/(|A* — B|'?)
< NJA- B2+ 2K +2)a'(I[(K +2)|A - BII'?).

Step 6. The proof is accomplished for r “sufficiently small” only; however, this is sufficient to
conclude. L

By a standard compactness argument we get the following.



228 Luigi Ambrosio, Francesco Serra Cassano, and Davide Vittone
Theorem 5.9. Let¢ € C!(w) such that W8 = (wa, ..., wa,) € COw, R 1), je.,

§~¢=wj, I7j¢=wj+,, forall j=2,...,n

Then for all ' € w there exists a function « :]0, +oo[-> [0, +oo[, which depends only on
o', |l Loy (Where @” is any open set such that @' € o" € ®), |W?@||oc(y and on the
modulus of continuity of wy+1 on ", such thatlim, o «(r) = 0 and

[I¢(A) —¢(B)|

A — B2 :A,Bew’,0<|A—B|§r}§a(r). (5.29)

Let us conclude this section with two applications of Theorem 5.1 .

A first application is a negative answer to the problem of a good parameterization of H-
regular hypersurfaces. Indeed, a natural question arising is the (local) Lipschitz continuity of
¢ : w C (R, p) — R when p denotes the restriction distance of do to Vi = R?*. More
precisely, when p = pp being pp the so-called parabolic distance on R¥" = R, x R%"‘z x R
(R; x R; if n = 1), i.e., the distance defined by

op(0,0. 9, (10, 7)) = () = (0| + ¢/ = 72
p’P((U»T)’ (nlvr/))z In/_n|+|‘r/—r|1/2 lf n= ] .

Corollary 5.10.  There exist H-regular surfaces S = ®(w) C H! for which there is no constant
L > O such that

lo(n'. 7)) =, 0| <L(In—7n'| + |t - r"l/z) forall (n,7),(n',7) €w
for suitable continuous functions ¢ : w — R when ® : w — H! is the function

P(A) :=1(A) - p(A)er .

Proof. By contradiction. Without loss of generality we can assume that @ = (a,b) X
(c, d), then for each t € (c, d) the function ¢ (-, T) is Llpschxtz continuous in (a, b). Therefore,
for all T € (c, d) there exists the distributionial derivative 22 ( 1) € L*®(a,b) in (a, b) and

||g—£(-, )o@y < Lforall T € (c,d). In particular, thcre ex1sts the distributional derivative
% € L*°(w) in w too. By Theorem 5.1 we know that
3o _09?

_ Y _ Y 0
%d)—an 2a e C'(w)

in distributional sense, thus 23¢ € L? (). Then ¢? €Lipioc(w).

We claim that S := ®(w) is Euclidean 2-rectifiable. Indeed, there is no loss of generality in
supposing that actually ¢ eLip(w), i.c., [¢2(A) — ¢%(B)| < M|B — A| for some M > 0 and all
A, B € w. Then for h € N set

wf ={Acw:¢(A) > 1/h)
w, ={Acw:p(A) < —1/h}
w ={A €w:p(A)=0)
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and observe that, when A, B € a),;r orA, B €w,,we have

21¢(A) — ¢(B)|/h < |p(A) — p(B)| - |9(A) + ¢(B)|
= |¢*(A) — ¢*(B)| < M|B — 4],

Le., ¢ wF is Lipschitz continuous; extending it to ¢;lt : @ — R and defining @,::E in the usual way,
we get that <I>(whi) C CDIT {(w) is Euclidean 2-rectifiable. Observing that ® (wg) C V), we get that
also
P () C D(wo) U o(wf) U 2(ef)
h h

is Euclidean 2-rectifiable. On the other hand, there are H-regular surfaces S = ®(w) C H! Wthh
are not Euclidean 2-rectifiable (see [37], Theorem 3.1) and then a contradiction. i

A second interesting corollary of Theorem 5.1 provides a simple way to exhibit H-regular
surfaces in H! not Euclidean regular.

Corollary 5.11. Let¢ : o C R*> — R be a continuous function which depends only on t,
ie.,¢ = ¢(t) : I — R fora certain open (and possibly unbounded) interval I C R, and suppose
that $* : 1 — Ry is of class C'. Then ¢ is uniformly W9 -differentiable at A for every A €
and

Wep(A) = —2(¢?) (A) .

In particular, W ¢ is continuous and ¢ parameterizes an H-regular surface in H'.

Proof. Thanks to Theorem 5.1, it is sufficient to find a family {¢,}¢ such that (5.1) holds. The
family we are going to consider is of the form ¢ = ¢ (1) ;= (¢* + 53)1/ . g, where 6, and g
are to be found; the key idea is to construct ge such that g — sign ¢ and g_ is “controlled,” in a
way we are going to specify; then our thesis becomes

¢ — ¢ and (q&f)/ — (¢>2)/ uniformly on J (5.30)
foreach J € I.

We recall the following general fact: Let D, E two closed subsets of I suchthatd(D, E) :=
inf{la —b| : a € D,b € E} = C > 0; then there exists a g € C*(I,[—1, 1]) such that
gn=1gr=-land g |l <4/C.

Now let us set

o) =000

a(r) := sup |r —r|1/2

Tel, 0<]r—r|<r},

and suppose that @(r) — 0asr — 0T: Then if we set 8, := a(€)e'/? )2 we have lime ¢ 8¢ = 0.

Foreach e let D, := {t : ¢(1) > 6} N J and E¢ := {t : ¢(7) < —b¢} N J; by construction
d(D., E.) > € and so there exists a g € C*(I,[—1,1]) with gc = 1on D, gc = —1 on E,
and [|gllloc < 4/€ = a(e)2/83. As we said earlier, set ¢ := (¢ + 862)1/2g6; it is casy to prove
that ¢ — ¢ uniformly on J and

2§ (@2) = (@) ey = 4lsegi(d® +8) 1oy + 2082 = D) | 1)

4| gese (¢° +92) ||L°0(J\(D5LJE()) +4] (¢2)/||L°C(J\(DEUE€))

1A

a(e)

8—— 52 52"‘4"( )/"Lw(m[lqbls&})_)o
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for € > 07; in the last passage we used the implication ¢(r) = 0 = (¢2)’(t) = 0, and so
(@2 | Leeanipi<s.)y) — O because of the continuity of (¢2)".

Let us remark that ¢ actually depends on J; however, if we consider a sequence {J"},;en
of closed intervals such that J* < J"*! and J” 1 |a, B[, we get sequences {¢7}, for each n, so
that we can conclude with a diagonal argument.

Finally, we have to prove that «(r) — 0 as ¥ — 0. Suppose that the converse is true; then
there exist o > 0 and ay, by, € J such that

[¢(an) — ¢(bu)| > 2alan — by|'/? and |ap — by| = 0. (5.31)

We can suppose that ¢(ay) and ¢ (by) have the same sign (i.e., ¢(an)¢ (by) > 0); in fact, if this
is not the case, by the continuity of ¢ there is a ¢, €lay, by such that ¢(cy) = 0, and we can
suppose that ¢ € J (because there is no loss of generality supposing that J is an interval). As

[$(an) — ¢l _ |$lan) —plew)l | Iolen) — ¢ba)l

20 <
lap — brlV/2 = Jap — cul1/? lch — by|1/?

there exists a dy, € {an, by} such that |¢(ch) — ¢(dp)| > olcn — dp|1/?. Therefore {possibly
considering ¢y, and dj, instead of aj, and by ) we can assume that a;, and by, satisfy (5.31) (possibly
with o instead of 20') and that ¢ () and ¢ (by) have the same sign.

As J is compact, we can suppose (up to subsequences) that there is a 7 € J such that
an — 7 and by, — T. It is not possible that ¢(T) # 0: In fact, ¢ is of class C! in the open set
{T : ¢(r) # 0) (it is easy to show that here ¢’ = (¢?)’/2¢) that would imply the boundedness
of the quantities |p(ar) — ¢(bn)i/|lan — bnl for h sufficiently large, which is in contradiction
with (5.31). Therefore ¢(F) = 0 and so one must have (¢%)'(T) = 0. As ¢(ay) and ¢(b,) have
the same sign, we have |¢ (ap) — ¢(by)| < |¢(ap) + ¢(by)| and so

5 (1¢<ah)~¢(bh>|)2
o < —_—

lan — bp|'/?

<|¢<ah> - ¢<bh>|) <|¢<ah) +¢<bh)|)
lan — bp|1/? lan — bu|1/?

¢ (an)® — B _ |
@ b (¢7) ()

for a certain 7, contained in the interval between ay, and by,. Therefore 7, — T and so (¢>2)’(?) >0
by the continuity of (¢?)’, which is a contradiction. ]
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