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Anisotropic Triebel-Lizorkin Spaces with 
Doubling Measures 

By Marcin Bownik 

ABSTRACT. We introduce and study anisotropic Triebel-Lizorkin spaces associated with general expan- 

sive dilations and doubling measures on R n with the use of  wavelet transforms. This work generalizes the 

isotropic methods of  dyadic ~o-transforms of  Frazier and Jawerth to nonisotropic settings. 

We extend results involving boundedness of  wavelet transforms, almost diagonality, smooth atomic 

andmoleculardecompositionstothesettingofdoublingmeasures. Wealsodeveloplocalizatiantechniques 

in the endpoint case of  p = ~ ,  where the usual definition of  Triebel-Lizorkin spaces is replaced by its 

localized version. Finally, we establish nonsmooth atomic decompositions in the range of  0 < p < 1, 

which is analogous to the usual Hardy space atomic decompositions. 

1. Introduction and statements of main  results  

Many areas of analysis involve the study of specific function spaces. In harmonic analysis, 
the well-known scale of L p spaces is augmented by the Hardy spaces, the space BMO, and various 
forms of Lipschitz spaces. Despite inherent differences in the original definitions many of these 
spaces are closely related and can be studied from a unified perspective by the Littlewood-Paley 
theory. This gives rise to the study of Besov and Triebel-Lizorkin spaces which form a unifying 
class of function spaces containing many well-known classical function spaces such as Lebesgue 
spaces L e, Hardy spaces H e, and Hardy-Sobolev spaces. 

There were several efforts of extending classical function spaces arising in harmonic analysis 
from Euclidean spaces to other domains and nonisotropic settings. The usual isotropic dilations 
can be replaced by more complicated nonisotropic dilation structures as in the study of parabolic 
Hardy spaces of Calder6n and Torchinsky [10, 11] or Hardy spaces on homogeneous groups 
of Folland and Stein [17]. The nonisotropic variants of Triebel-Lizorkin and Besov spaces for 
diagonal dilations have been studied by Besov et al [1], Schmeisser and Triebel [32, 33, 34, 35, 36], 
and Farkas [14]. The other direction is the study of weighted function spaces associated with 
general Muckenhoupt Am weights. This direction of research for Besov and Triebel-Lizorkin 
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spaces was carried over by Bui, Paluszyfiskiet al [7, 8, 9] and Rychkov [30]. One should also note 
that a significant portion of the theory of function spaces can also be done on the large class of 
spaces of homogeneous type introduced by Coifman and Weiss [ 13]; for example, see [25, 26, 27]. 
However, this high level of generality imposes restrictions on possible values of the index p, i.e., 
p > 1 - 3 for some possibly small 8 > 0. 

Several aspects of the above mentioned developments can be extended to a larger class 
(than previously considered diagonal setting) of nonisotropic dilation structures associated with 
expansive dilations. In the context of Hardy spaces this goal was achieved by the author in [2], 
where it was demonstrated that significant portion of a real-variable isotropic H p theory extends 
to such anisotropic setting. Analogous extensions to anisotropic Triebel-Lizorkin spaces with 
A~ weights and anisotropic Besov spaces with doubling measures were done in [3, 5]. These 
studies show that the isotropic methods of dyadic ~0-transforms of Frazier and Jawerth [18, 20] 
can be extended to nonisotropic setting associated with general expansive dilations. Among other 
things proved in [3, 5], weighted anisotropic Triebel-Lizorkin and Besov spaces are characterized 
by their wavelet transform coefficients and smooth atomic and molecular decompositions of these 
spaces are established. 

It is commonly known that Triebel-Lizorkin spaces are much harder to work with than Besov 
spaces due to their particular structure. For these reasons weighted Triebel-Lizorkin spaces are 
often studied with A~ weights instead of more general doubling weights as in the case of Besov 
spaces. The goal of this work is to show that one can also build a coherent theory of weighted 
anisotropic Triebel-Lizorkin spaces associated with expansive dilations and doubling weights 
further generalizing the results of [5, 20]. More specifically, this article: 

�9 Extends results from [5, 20] involving boundedness of wavelet transforms, almost diago- 
nality, smooth atomic and molecular decompositions to the setting of doubling measures, 

�9 develops necessary localization techniques for the endpoint case p = oo, 

�9 establishes nonsmooth atomic decompositions (analogous to the Hardy space atomic 
decompositions) in the range 0 < p < 1. 

In addition, a subsequent work [4] continues this direction of research by showing duality and 
real and complex interpolation results for ~p'q spaces. In what follows, we summarize the results 
obtained in this article. 

In this work we study function spaces on l~ n associated with an expansive dilation A, that 
is an n x n real matrix all of whose eigenvalues ~ satisfy tZl > 1. The starting point is the 
Littlewood-Paley decomposition asserting that any tempered distribution f ~ S,(~n) can be 
decomposed as 

f=y~oj*f, where ~0j (X)= [deta{Jqg(AJx), 
jez  

with the convergences in S'  (modulo polynomials). Here, ~0 6 S ( ~  n) is a test function as in 
Lemma 2.13. Given a smoothness parameter ot 6 ~, an integrability exponent 0 < p < ~ ,  
and a summability exponent 0 < q < ~ ,  we introduce the anisotropic Triebel-Lizorkin space 
Fp'q (]1~ n , A, #) norm as 

Ilfll~,q = (I det AlJ~lf  �9 qgj[) q < co.  (1.1) 
" j E Z  LP(!~) 

Here, # is a doubling measure respecting the action of A. That is, 

#(BpA (X, 2r)) < CIz(BpA (x, r)) for all x ~ I~ n, r > 0 ,  
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where the balls BpA (X, r) are defined with respect to a quasi-norm PA associated with A. Later we 
show that this definition is independent of the choice of 9 satisfying natural support conditions (3.2) 
and (3.3). 

The corresponding discrete Triebel-Lizorkin sequence space ~p'q (A,/~) is defined as the 
collection of all complex-valued sequences s = {SQ}QeQ, which is indexed by the collection of 
dilated cubes 

Q = {A-J([0, 1] n + k ) :  j 6 Z, k 6 zn } ,  

such that 

( Q~Q \ 1/q 
I[Sll~p,q ~ - - -  (Ial-Ctlsal)(O) q) LP(I~) < (X). (1.2) 

Here, ~Q = [ Q 1-1/2XQ is the L2-normalized characteristic function of the dilated cube Q. 

Suppose that (9, ~k) is an admissible pair of dual frame wavelets as in Definition 2.12. The 
corresponding wavelet systems consisting of translates and dilates of ~0 and a# are customarily 
denoted by {~0Q : Q e Q} and {~Q : Q e Q}, resp. Following Frazier and Jawerth, we 
define the 9-transform, which maps the distribution f to the sequence of its wavelet coefficients 
S~of = {(f, qgQ)}Q~_Q. For any sequence s = {SQ}Qe ~ of complex numbers, we define formally 
the inverse ~0-transform, which maps s to a distribution T o s = Y~QeQ sQ 7ZQ. Then, the following 
generalization of the fundamental result of Frazier and Jawerth [5, 20] holds. 

T h e o r e m  1.1. Suppose that ~ e R,  0 < p, q < oo, and a tz is a doubling measure. The 
"eL,q 

9-transform Se : ~p'q -+ fp , and the inverse ~o-transform TO: ip 'q --~ ~p'q are bounded, and 

T O o Sr is the identity on Fp'q. 

One should emphasize that in the endpoint case of p = oo, the definitions (1.1) and (1.2) 
must be replaced by their localized versions (3.8) and (3.9), respectively, which were originally 
introduced in the dyadic case in [20]. This is far more than a cosmetic change. A substantial 
portion of this work deals with the case of p = oo, which requires special considerations. As a 
consequence of Theorem 1.1, we deduce that Fp'q spaces are complete quasi-normed spaces with 
equivalent norms independent of the choice of a test function ~0. 

Once Theorem 1.1 is established, we study operators on Fp'q by transferring them with the 
use of wavelet transforms to the corresponding sequence spaces fp'q. Since fp'q norms depend 
only on the magnitude of coefficients, consequently, the analysis on the sequence space level is 
much easier than in the original space ~?p'q. In particular, in Section 4 we study a very useful class 
of almost diagonal operators on fp'q, which was originally introduced by Frazier and Jawerth [20]. 

We show that the expected boundedness result holds also for fp'q spaces with doubling weights 
by generalizing a result in [5]. As an application, in Section 5 we extend smooth atomic and 
molecular decompositions results in [5, 20] to the setting of ~p'q spaces with doubling weights. 

In Section 6 we establish nonsmooth atomic decompositions of }rp, q spaces which are anal- 
ogous to the usual Hardy space atomic decompositions. The main advantage of such decomposi- 
tions is that coefficients are controlled by ~p norms, rather than harder to deal fp'q norms as in the 

case of smooth atomic decompositions. In the next section we identify unweighted FO'2(l~n, A) 
spaces with the anisotropic Hardy spaces H p for 0 < p < oo in the context of expansive dilations 
A. The last section contains the proofs of several lemmas required in the proof of Theorem 1.1. 
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2. Some background tools 

We start by recalling basic definitions and properties of  the Euclidean spaces associated with 
general expansive dilations. 

2.1. Quasi-norms for expansive dilations 

Definition 2.1. We say that a real n x n matrix is expansive if all of  its eigenvalues satisfy 
I~.1 > 1. A quasi-norm associated with an expansive matrix A is a Borel measurable mapping 
PA : ]~n ~ [0, 00) satisfying 

pA(X) > O, 

pA(AX) ---- I det AIpA(x) 

pA(X -b y) < H(pA(x) -F PA(Y)) 

for x ~ 0 ,  

for x ~ R n , 

for x, y E ~ n , 

(2.1) 

where H > 1 is a constant. 

In the standard dyadic case A = 2Id, a quasi-norm PA satisfies pA(2X) = 2npA(X) instead 
of  the usual scalar homogeneity. In particular, PA (x) = Ix I n is an example of  a quasi-norm for 
A = 2Id, where I �9 I represent the Euclidean norm in R n. One can show that all quasi-norms 
associated to a fixed dilation A are equivalent, see [2, Lemma 2.4]. Moreover, it is possible to 
choose a quasi-norm PA such that pa-balls  {x ~ ]R n : pA(X) < r} are convex. 

We also need to introduce some convenient notation. 

Definition 2.2. Suppose A is expansive matrix and tr (A) is its spectrum. I f  A is diagonalizable 
over C, let 

~._ : =  rain I~.1, ~+ : =  max  I~1. 
Z~tr(A) ~r 

Otherwise, let 3._ and ~.+ be any positive real numbers such that 1 < )~_ < minxea(A) 13,1 and 
max;.~a(a) I~.1 < ),+ < IdetAI.  Define 

In ~+ In )~_ 

(+ := In I det A - ~ I  ' ( -  "-- In [ det A-~I 

The parameters (_  and (+ measure the eccentricity of  a dilation A. In general, we have 
0 < (_ < 1In < (+ < 1. For example, in the standard dyadic case A = 2Id, we have (_  = 
(+ = 1/n. 

Definition 2.3. Let 13 be the collection of  all pA-balls 

Bpa(X,r) = {y E •n : pa(X -- y) < r}, X E ~, n, r > 0 .  

Let Q be the collection of  all dilated cubes 

Q =  { a = a J ( [ o ,  1]n + k )  : j ~ Z ,  k ~ Z  n} 

adapted to the action of a dilation A. Obviously, if  A = 2Id we obtain the usual collection of 
dyadic cubes. Let 

x 0 = AJk, Q = A J([0, 1] n + k) 6 Q, 
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be the "lower-left corner" of  Q. The scale of  a ball B = Bp~ (xo, r) �9 13 is defined as 

scale(B) = /log I det AI r]  . 

The scale of  a dilated cube Q = A J([0, 1] n + k) �9 Q is defined as scale(Q) = j .  Alternatively, 

scale(Q) = log I det a l I QI. 

By renormalizing PA, it is convenient to assume that [Bpa (x, 1)I : 1. Consequently, 

I BpA (X, [ det A] j) ] = I det a l j for any j �9 Z .  

Therefore, 

I detAI scale(B) < IBI < IdetAI scale(8)+l , 

and 

IQI<_IBI~IdetAIIQI fo rany  Q � 9  B�9  s c a l e ( Q ) = s c a l e ( B ) .  

Note that for any Q �9 Q, 

diampA (Q) := sup{pa(Yl -- Y2) : Yl, Y2 �9 Q} = IQI dialn,o a ([0, 1] n) = CIQI. (2.2) 

The following concept is very useful in the study of the localized norms of ~'ao~q spaces. 

Definition 2.4. The tent T(P) over P �9 Q is defined as 

T(P) = {Q �9 Q : IQ f3 PI > 0 and scale(Q) < sca le(P)} .  

2.2. Doubling measures for expansive dilations 

Definition 2.5. We say that a nonnegative Borel measure/z on R n is pA-doubling if there exists 
/3 =/3( /z)  > 0 such that 

tz(BpA(x, Ide tAI r ) )  < IdetAl~Iz(BpA(x, r)) for all x �9 I~ n, r > 0 .  (2.3) 

The smallest such/3 is called a doubling constant of  #.  

Remark 2.6. We remark that pA-doubling measure/~ does not have to be absolutely continuous 
with respect to the Lebesgue measure on R n. For an example of  a measure /z  on I~, which is 
doubling and singular with respect to Lebesgue measure see [6]. Moreover, it is not hard to show 
that the doubling constant fl is always >__ 1. 

We also remark that any weight w in Aoo (with respect to a quasi-distance PA) defines a 
pA-doubling measure/z  by dlx = w dx, see [5, Definition 2.2]. Hence, by working with doubling 
measures instead of Aoo weights we will generalize the results about Triebel-Lizorkin spaces 
in [5]. To achieve this we will work with a weighted Hardy-Littlewood maximal function. This 
step is necessary due to the collapse of  weighted norm inequalities, and in particular, weighted 
vector-valued Fefferman-Stein inequality outside Aoo class. 

For any Borel measurable function f define its Hardy-Littlewood maximal function mpA f 
with respect to pa-doubling measure/z  by 

1[ 
Mpaf(x )= sup ~ If(y)ldlz(y). 

x~BEB ld'( ) JB 
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It is easy to verify that we have the following fact. For rudimentary facts about spaces of 
homogeneous type we refer the reader to [13, 22, 25]. 

Proposition 2.7. (R n, PA, I z) is a space o f  homogeneous type, where PA is a quasi-norm 
associated with an expansive dilation A, and # is a pA-doubling measure on R n. 

As a consequence, the Fefferman-Stein vector-valued inequality holds in our setting. 

Theorem 2.8. Suppose that 1 < p < ~ ,  1 < q <_ cx~, and It is a pA-doubling measure. Then 
there exists a constant C such that 

(~i 'MpAfilq)l/q Lp(lz) <C (~i 'filq)l/q Lp(# ) 

holds for any ( f i ) i C L P (tz ). 

We will also need several results about doubling measures and families/3 and Q. For 
Q = A J([0, 1] n + k) ~ Q, define its center cQ = AJ(k  + (1/2 . . . . .  1/2)). 

Lemma 2.9. Given families o f  dilated balls/3 and dilated cubes Q, there exist C B, CQ > 0 
such that: 

(a) For any Q ~ Q we have 

B0 C Q c n l ,  where Bo = BpA(C Q, IQIIdetAI-Ct3), B1 = BpA(C Q, IQIIdetAICt3) , 

(b) for any B ~ 13, the collection 

QB = {Q 6 Q : Q N B # 0, scale(Q) = scale(B)} 

has at most  C Q elements. Furthermore, 

# ( Q )  < Ctz(B)  forall  Q ~ QB �9 

The proof of Lemma 2.9 is quite elementary, and hence, it is skipped. As a corollary of 
doubling of/z, (2.2), and Lemma 2.9 we have 

tz(Q) • tz(Bpa(C Q, IQI))) • ll~(npa(XQ, I a l ) ) )  for all a ~ Q .  (2.4) 

P ropos i t ion  2.10. Suppose that tz is pa-doubling measure. Then: 

(a) For every rl > 0 there exists a constant c > 0 such that 

j E Z, ko, kl E ]~n, Ik0 - k l l  < ~ ~ /d~(aJ([0, 1] n -1- k0)) ~ c~(aJ([O, 1] n -[-kl)) �9 

(b) For tixed xo ~ R n, let P j c Q be such that scale ( P j ) = j and xo ~ P j . Then 

lim l z (Pj)  = o0 .  
j---~ oo 

Proposition 2.10 is a simple consequence of the doubling property of/z. Indeed, by (2.4) we 
can replace each occurrence of/z (Q) by/z (Bpa (x Q, I QI)) with a gain of a multiplicative constant. 
Finally, we will need a slight variation of [3, Lemma 4.1]. 
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such that 

E 
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Suppose that tz is pA-doubling measure and ~ ~ ]R. Then, there exist L, C > 0 

/z(Q)~ < CI det A[ (2/~181+1)1jl 
(1 + pa(xQ)/max(1, IQI)) L - 

for all j ~ Z .  (2.5) 
QEQ, scale(Q)=j 

Proof. 
we have 

/z(Q) < C(1 q- pA(k - l))~tz(P). 

Indeed, (2.6) is a consequence of (2.4) and 

Iz(BpA(AJk, [ det AlJ)) < Iz(BpA(aJl, HI det alJ(1 + pA(k -- I))) 

< C(I  q- pa(k -- l))~Iz(Bpa(aJl, [ det a lJ ) )  , 

since/x is pa-doubling measure. Suppose that j > 0. By (2.6) we have for L >/~1~1 + 1, 

tz(Q)~ < Cu(AJ([o, 1]")) 8 ~ (1 + pa(k)) fllSl-L 5-" 
"---" (1 + pa(xQ)/lQI) L - QEQ, scale(Q)=j k ~ Z  n 

< CI det AlJ/~max(&~ 1]n) ~ �9 

Likewise, suppose that j < 0. Then for L > ~181 + 1, 

(1 + pa(k)) r 
Iz(Q)~ < Ctz(aJ( [0' l]n))~ E (1 + pA(k)[ detatJ) L E (1 -'[- p a ( x Q ) )  L - -  �9 

QEQ, scale(Q)=j k E Z  n 

We claim that for any P, Q 6 Q, P = A J([0, 1] n +k) ,  Q = A J([0, 1] n + l ) ,  k, l E Z n, 

< CIz(AJ([o, 1]n))~ldetAI-J~lSly~ (1 + pA(AJk)) #I~I-L 
k ~ Z  n 

< C] det AlJ(#min(LO)-~l'~l-1)#([O, 1]n) S . 

(2.6) 

In the last step we used that for e > O, there exists C = C(e) > O, such that 

(1 + pa(aJk)) -1-~ < CI det AI - j  for all j _< O. 
k E Z  n 

Combining the above estimates yields (2.5). [ ]  

2.3. Wavelet transforms for expansive dilations 

Definition 2.12. 
test functions in the Schwartz class S(R  n) satisfying 

supp~, supp~ C [- : r ,  Jr] n \ {0} 

y ~ ( ( A * ) J ~ ) ~ ( ( A * ) J ~ )  = 1 

j~Z 

We say that (~o, ap) is an admissible pair of dual frame wavelets if ~o, ~ are 

(2.7) 

for all ~ 6 I~ n \ {0}, (2.8) 

where A* is the adjoint (transpose) of A. Here, 

supp~ = {~ ~/I~ n : ~(~) # 0},  
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and the Fourier transform of f is 

f(~) = dRf, f(x)e-i(x'~) dx . 

For ~0 6 s(Rn), we define its wavelet system as 

q)Q(X) = I det alJ/2~o(aJx - k), Q = a - j  ([0, 1] n + k) 6 Q.  (2.9) 

It is not hard to show that the conditions (2.7), (2.8) imply that (~o, ~)  is a pair of dual frame 
wavelets in LE(Rn). This means that the wavelet systems {~OQ : Q e Q} and {~Q : Q e Q} are 
Bessel sequences, i.e., there exists a constant C > 0 such that 

E I(f'~~ E I(f'gta)12<fllfl122 forall fEL2( l~n) ,  (2.10) 
QeQ QsQ 

and we have the reconstruction formula 

f =  E(f,q)Q)apQ, forall f 6L2(IRn), (2.11) 
Q~Q 

where the above series converges unconditionally in L 2. 

The above formula has a counterpart in the form of the reproducing identity (2.15) valid for 
tempered distributions modulo polynomials S' /P.  For the basic properties of this space we refer 
to [28, Section 3.3] or [33, Section 5.1]. Here, we only recall that S'/79 can be identified with the 
space of all continuous functionals on the closed subspace So(N n) of the Schwartz class S(I~ n) 
given by 

S o ( N " ) = { ~ e s : f ~ ( x ) x ~ d x = O  for all multi-indices or}. (2.12) 

Lemmas 2.13 and 2.14 show that any distribution f ~ S'/79 admits the Littlewood-Paley 
decomposition and the wavelet reproducing formula adapted to an expansive dilation A. Both of 
these results are anisotropic modifications of their well-known dyadic analogues, see [ 18, 20, 21]. 
For the proof of these formulas we refer the reader to [5]. 

Lemma 2.13. Suppose that A is an expansive matr/x and ~o ~ S(~ n) is such that 

E~( (A*)J~)  = 1 forall ~ ~ R n \ {0}, (2.13) 
j~z 

and supp ~ is compact and bounded away from the origin. Then for any f ~ S' (~n), 

f = E ~ o j ,  f ,  (2.14) 
jez 

where ~oj (x) = [ det A [J ~o(AJ x), and the convergence is in $'/'P. 

Lemma 2.14. I f  q), ~ ~ S' (IR n) satisfy (2.7), (2.8), then 

f = E (f' ~OQ)apQ, forany 
QeQ 

f ~ S'/79 , (2.15) 
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where the convergence o f  the above series, as well as the equality, is in 8'/79. More precisely, 
there exists a sequence o f  polynomials {Pk}~~ C 79 and P e 79 such that 

f =  lim ( k~oo E (f, q)Q)~Q + Pk) + P , 
QeQ, IdetAI-k<_lQl<_ldetAI k 

with convergence in S'. 

3. Anisotropic  F;'q spaces with doubl ing  measures  and  the case p = oo 

In this section we extend the class of anisotropic Triebel-Lizorkin spaces studied in [5] to the 
setting of doubling measures and the endpoint case of p = c~. In the case of 0 < p < oo the usual 
definition is perfectly satisfactory. However, in the endpoint case we adopt a localized definition 
Of~p 'q spaces which was originally introduced in the dyadic case by Frazier and Jawerth [20]. We 
show that the resulting spaces are well defined quasi-Banach spaces and they can be characterized 
by the magnitude of wavelet coefficients. 

We start by recalling the usual definition of ~p'q spaces in the range 0 < p < oo. 

Defini t ion 3.1. 
define the anisotropic Triebel-Lizorkin space iff  p,q = ~p,q (Nn, A,/z)  as the collection of 

For a e N, 0 < p < c~, 0 < q _< oo, and a pA-doubling measure/z, we 

( j~Z \ l /q  II 
<(x) ,  II f II~p.q (I det AIJ~If * ~ojl) q)  LP(Iz) 

where ~Oj(X) : I det AlJ~o(AJ x) and ~o e S (N  n) satisfies (3.2), (3.3) 

suppr := {s e e R n : r ~ O} C [--Jr, Jr] n \ [0}, 

sup I~((A*)J~)[ > 0 for all ~ eNn  \ { 0 ] .  
jeZ 

(3.1) 

(3.2) 

(3.3) 

L -normalized characteristic function of the dilated cube Q. w h e r e t o  = [QI-1/2XQ isthe 2 

It is known that the naive definition of the space ~p'q using the norm (3.1) when p = oo 
is unsatisfactory. Indeed, Triebel [33, p. 46] remarks that when p = oo the norm (3.1) is 
dependent of the choice of the function ~o. Moreover, Frazier and Jawerth [20, Section 5] point 
out that one should expect to have [r~ 2 ~, BMO, which is not the case for the naive definition 

of Ir~ 2. To overcome this problem Frazier and Jawerth [20] had proposed a localized definition 
of the norm when p = oo by considering averages only over small scales. This approach works 
well for isotropic theory and the goal of this section is to show that it also works for general 
expansive dilations. 

I( )l/qL.(.) [[sll~p 'q : E 0 al-alsQlf(Q)q < oo,  
Q~Q 

(3.4) 

To emphasize the dependence on ~o we will use the notation ~p,q(~n, A,/z)(~0) for (3.1). Later 
we will show that this definition is independent of ~o. 

The discrete Triebel-Lizorkin sequence space ~p'q (A,/x) is defined as the collection of all 
complex-valued sequences s = {sQ]ae Q such that 



396 Marcin Bownik 

3.1. L o c a l i z e d  de f in i t i on  in  t he  ca se  p = cx~ 

Definition 3.2. For o t ~  ~ ,  0 < q < ~ ,  and a pA-doubling measure /z ,  we define the 
anisotropic Triebel-Lizorkin space ~'~q = ~'~q (]R n, A, Iz) as the collection of all f ~ S'/79 
such that, 

]]fll~.~q(Rn AIz)~ s u p ( ~ f p  oo )l/q< (3.5) , , P~Q\ t~r)  ~ (I det alJalf �9 ~oj(x)l) q dlz(x) c~, 
j=-scale(P) 

where ~0 e S(]~ n) satisfies (3.2) and (3.3). To emphasize the dependence on ~o we will use the 
notation ~ q  (R n , A,/x)  (~o) for (3.5). Later we will show that this definition is independent of  ~0. 

The sequence space, f~q = f~q (A, ~) is the collection of all complex-valued sequences 
S = {SQ}Q6Q such that 

]]sllf~q(a,U)=eup( l fp ~ (]Ql-~lSQlf(Q(x))qdtz(x))l/q<oo.(3.6) 
Q~Q, scale(Q)<scale(P) 

Naturally, if q = ~ ,  then (3.5) and (3.6) are interpreted as 

I lf l l~oo = sup I det AIJ~llf �9 ~0jll~ < ~ ,  
j~z  

Ilsll~o~ = sup IQl-~-l/21sol < ~ .  (3.7) 
Q~Q 

In other words, when p = q = cx~, the spaces ~ and ~ coincide with Besov spaces 13~ e~ 
and 1 ~  ~176 resp., and there is no need for localization. 

Remark 3.3. For the sake of  simplicity it is convenient to consider the spaces ~ q  and f~q ,  
where the averaging process takes places with respect to the Lebesgue measure instead of /x .  
More precisely, we consider the unweighted spaces lr and f~q defined by the norms 

(_~]fp oo )l/q 
I l f l l~q  = sup 1 ~ (I det AlJalf �9 ~Oj(X)I) q dx < o o ,  (3.8) 

PE Q j =-scale(P) 

]iS ][~'~q sup( 1 fe ~ (]Ql-CtlSQlf(Q(x))qdx) 1/q = < c~ .  (3.9) 
PEQ ]-~ QEQ, scale(Q)<scale(P) 

There is a much deeper reason why we may insist on the above unweighted definitions. This is 
because one can show that the norms (3.5) and (3.6) do not depend effectively on the choice of  
/x, as long as dlz = w dx for some w ~ Aoo, see [4, Corollary 3.5]. Consequently, not much 
generality is gained by the introduction of /~  in the case when p = c~. Since this is a very 
nontrivial fact we will stick to more general norms as in Definition 3.2 in this article. 

Remark 3.4. In the case when the family of  dilated cubes Q is nested, i.e., 

Q, P 6 Q a n d  I Q M P I > 0  ~ P c Q  or Q c P  

the tent T(P) = {Q E Q : Q c P} and the definition (3.9) overlaps with the usual dyadic 
definition of  ~o~ q by Frazier and Jawerth in [20]. In this case we simply have 

Ilsll~q=sup( 1 fp ) PEQ ~ Y~ (]al-CtlSQlf(Q(X)) q dlz(X) 1/q 
QcP 

(3.10) 
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In the case when the family of dilated balls Q is not nested, the norm (3.10) is obviously dominated 
by (3.6). However, it does not seem that the norms (3.6) and (3.10) are equivalent for a general 

dilation A, e.g., consider a = (~ 02). In order to circumvent this problem one could modify 

the definition of the collection of dilated cubes. Take any 8 > 0, and define 

2 =  { Q =  AJ([-3,  1 -]-t~]n): j EZ, k Ezn}. 

Then, it is not difficult to see that by replacing Q by Q, we get equivalent norms for discrete 
spaces fp'q for p < oo; the proof boils down to the vector-valued Fefferman-Stein inequality. 
Moreover, it is possible to show that the norms (3.6) and (3.10) are in fact equivalent after this 
replacement. We will skip the proof of this fact, since it is not used elsewhere in this article. 

R e m a r k  3.5. For q < 0o, we can perform integration in (3.6) to obtain 

Ilslli,~q = sup ~ (Ial-=-l/2lsQl)q lz(Q fq P) . 
p~Q /z(P) IQI-<IPI 

Then it is not difficult to see using Proposition 2.10 that we have the equivalence of norms 

( l  ) 
Ilsll#~q • peesup ~ ~ (Ial-u-1/2lSQl)qlz(Q) \ l / q  , (3.11) 

Qe"I- ( P) 

where T ( P )  is the tent over P. 

To confirm these observations we will prove the following lemma. 

L e m m a  3.6. Suppose tx is pA-doubling measure with a doubling constant ~. Then, there exists 
a constant C > 0 such that for any integer M >_ 0 and for any f ~ ~ q  

sup( ~ 1  [ 
p~Q \tz(P) Jp 

oo ) 1/q 
(IdetAlJC~lf *~oj(x)l)q dtz(x) < CldetAl~M/qllfll~q . (3.12) 

j =-scale( P )-- M 

Moreover, for any s ~ f~q 

fp  ) 1/q sup (____~1 ~ (iQl_~lSQlf(Q(x))q dtx(x) < CldetAlflM/qllsll~j , 
PeQ \ t z ( P )  Q~TM(P) 

where 

(3.13) 

7-M(P) = {Q ~ Q : scale(Q) < scale(P) + M}. 

Proof. The key to proving (3.12) and (3.13) is the observation that the collection of dilated 
balls Q in (3.5) and (3.6) can be replaced by the family of dilated balls B. In fact, a more general 
result holds. 

Suppose that {Fj(x) : j ~ Z} is a collection of Borel measurable functions on ~n with 
nonnegative values. Then we claim that we have the equivalence of the norms 

sup 
P~Q j=--scale(P) 

Fj(x)dtx(x)  • sup 
B~B j=-scale(B) 

Fj(x)  dtx(x) . (3.14) 
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Indeed, to prove the lower bound in (3.14) take any B ~ 13. By Lemma 2.9 we know that 

QB = {P e Q : P A B # 0, scale(P) = scale(B)} 

has at most CQ. Therefore, 

1 L 1 L ~(B) ~_, ej(x)d~(x) <_ C~C ~_, ~(P) ~_, F~(x)d~(x) 
j = -scale(B) P ~ QB j =-scale(P) 

since B C UPeQB P and/z(P)  < Ctz(B) for P ~ Qt3- Conversely, to prove the u$per bound 
in (3.14) take any P e Q and let 

Bo = npa(Xe, IPIIdetAI-CB), B1 = Bpa(XP, IPIIdetAI cB) ~ 13. 
Then, by Lemma 2.9 

i f ,  ~ 1 f~ o~ #-(p) ~ Fj(x) dtz(x) <_ I det al 2~c~ Iz(B1) ~ Fj (x) d#(x) 
j=-scale(P) 1 j=-scale(B1) 

since #(B1) < I det AI2#Cslz(Bo) < I det AI2#Cslx(P), which proves (3.14). 

Take any P ~ Q, and define the ball B2 = BpA(XP, I detAIn+CBIPI) ~ 13, where M > 0. 
Then, using (3.14) 

(x) 

~,(e) S, ~j(x)~.(x) <_ E 
j=-scale(V)-M tt(B1) 1 

Fj (x) dl~(X) 
j=-scale(Bl)-M 

(x) 1 I" 
/B2 E Fj (x) d#(x) (3.15) _< CI det At #M tt(B2----) 

j=-scale(B2) 

<Cldetal#M l f o ~ c  ~ _ ; u p - ~  ~j(x). . (x) ,  
j=-- (Q) 

where the constant C is independent of M. 

Hence, choosing Fj (x) = (I det A IJulf �9 (pj (x)I) q, (3.14) yields 

, l f l l~ .~q(RnA,~)•  B ~ )l/q B~t3 ~ E (IdetalJalf *~~ q dlz(x) . (3.16) 
j=--scale(B) 

Moreover, (3.15) yields (3.12). 

Likewise, choosing Fj (x) = (~-~.QeQ, scale(Q)=-j I Q I -a  Isa I:~Q (x)) q, (3.14) yields 

scale(P) 

i l s l l i ~ q ( a , ~ ) = s u p ( l f  p )l/q PEQ ~ E E (]al-ctlSQIf(Q(x))q dl~(x) 
j = - ~  QEQ, scale(Q)=j 

( l f p ~  )l/q = sup Fj(x) dtz(x) 
PeQ ~ j=-scale(P) 

)l/q 
• sup Fj(x) dlz(x) 

BqQ ~ j=-scale(B) 

(IQI-~ISQIXQ(X)) q dlz(x)) 1/q . 
Q~Q, scale(Q)<scale(B) 

_- up lf, 

(3.17) 
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Moreover, a direct calculation shows that (3.1 5) yields (3.13). 
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[] 

3.2. W a v e l e t  t r a n s f o r m s  fo r  Fp'q (][~n, A,/ . t )  

Our next goal is to establish boundedness of ~0-transforms for Triebel-Lizorkin spaces for 
the entire range of parameters o te  JR, 0 < p, q < cx~ including the special case of p = oo. As a 
consequence of this result we will deduce two other fundamental results: 

-The definition of ~p'q spaces is independent of the choice of a test function ~0; 

-the completeness of ~p'q spaces. 

Definit ion 3.7. Suppose that ~o, ~ �9 S (R  n) are such that supp~, supp~ are compact and 
bounded away from the origin. Recall that the ~o-transform Sr often called the analysis transform, 
is the map taking each f e S'/79 to the sequence S~of = {(S~of)Q}Q~Q defined by (S~of)Q = 
(f ,  ~0Q). Here, we follow the convention (f, ~0) = f ( ~ )  for f e S '  and ~0 e S. The inverse 99- 
transform, Tr often called the synthesis transform, is the map taking the sequence s = {sQ}ae Q 
to rcs  = ~ a e Q  SQ~Q. 

To see that Tr is well-defined for any s �9 ~ 'q ,  we will prove the following lemma. 

L e m m a  3.8. Suppose thata �9 JR, 0 < p, q < oo, tz is pA-doublingmeasure, and~ 6 So(]Rn), 
where So(~, n) is given by (2.12). Then for any s e ~ 'q (A, IX), T~,s = ~ O e Q  sfl~pQ converges 
in S'/79. Moreover, the synthesis transform T~, : ~ 'q (A, tz) ---> S ' /7  9 is continuous. 

Proof. Take any dp �9 $o(~n). We will use the following elementary estimate: For any L > 0 
there exist constants N, C > 0 such that 

( PA(XQ-XP)] -Lmin( IQI  IPI) L 
I(~Q'ePP)I<-CIICtlINII~IIN l + m ~ , l Q I ) /  \I---~'~Q-/] forall Q, P e Q .  (3.18) 

Here, the constant C depends only on L > 0 and IkbllN = SUpx~, suPl~,l_<N(1 -t- Ixl)NlO~qb(x)l 
is a norm in s(~n) .  The estimate (3.18) can be proved directly using decay, smoothness, and 
vanishing moments of ~, ~ �9 So (~n). Alternatively, (3.1 8) follows immediately from the almost 
diagonal estimates established in [5]. Indeed, modulo a multiplicative constant c > 0 the wavelet 
systems {~ta/c}ae Q and {~bQ/c}ae~2 form families of smooth analysis and synthesis molecules 
in the sense of Definition 5.1 of arbitrary smoothness, decay, and number of vanishing moments. 
Moreover, the constant c > 0 depends linearly on the norms II a# II N and I Iq~ I IN for some sufficiently 
large N. Consequently, by [5, Lemma 5.1] the matrix {(apa, qb')}Q,PeQ is almost diagonal on 

~:'q ' for of or' IR, 0 p', q' A inspection of almost every range parameters 6 < < OO. quick 
diagonal condition, see Definition 4.1, yields (3.1 8). 

Take any s e ~p'q (A,/z). By (3.4) we have for 0 < p < oo, 

< Ilsll~p.qlal~+U2ix(Q) -1/p forall Q e Q .  Isal 

Likewise, by (3.6) we have for p = c~, 

Isal < Ilsll~qlal ~+1/2 forall  Q e Q .  

Applying (3.18) for P = [0, 1] n yields 

pA(XQ) ~-L 
10Po,4,)I _< CIl~llg 1 + m ~ ,  FQI)/ min(Ial, IQI-1) L for Q e Q, 
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where the constant C is independent of q~ and Q. Combining the above estimates with Lemma 
2.11 yields 

E ISQIl(TtQ' 4~)1 
Q6Q 

tz(Q)-I/P 
<_ CII4~llNIIsll~,q Y ~  Y~  Ial ~+l/2min (Ial,  [a l -1)  L (1 + pa(xQ)/max(1, Ial))  z 

jEZ scale(Q)=j 

<_ CII4~llNIIsll~,q E IdetAIJ(~+l/2)+IJI(23/p+l)-IJlL < CIIcbl[gllsll~,q 
jez 

for sufficiently large L > 0. Hence, the series T~,s = EQEQ SQI~Q converges in St~79. That is, 
if we define T~,s by 

(Tq, s,q~)= E SQ(1]IQ,~) forall q~6S0(Rn) ,  
Q6Q 

then we have 

I(Tqss, ~b)l ~ Ctl~bllNIIsll~p,q for all ~b ~ So(Rn). 

This shows the continuity of Tr and completes the proof of the lemma. []  

Definition 3.9. Given a sequence s = {SQ } Q and r, Z > 0, define its majorant sequence Sr, x = 
{(S*r,x)a} a by 

(Sr*,)~)Q ~" ( E ]spIr/(1-I-IQI-lpA(XQ--XP))X) 1/r " 
P~Q, IPI=IQI 

Clearly, we always have ISQI ~ (S~,)~)Q for any Q ~ Q. 

In order to prove the boundedness of S~0 and Tr we need the following two lemmas which 
are generalizations of their dyadic analogues shown by Frazier and Jawerth [20]. Lemma 3.10 was 
already shown in [5] when p < c~ and dlz = w dx with w e Aoo. The proofs of Lemmas 3.10 
and 3.11 can be found in Section 8. 

L e m m a  3.10. Supposea ~ R,O < p ,q  < c~, andlz ispA-doublingmeasurewithaconstant 
/3. Then for any r > 0 and)~ >/3 max(l, r / q , r / p), there is a constant C > 0 such that 

* I1~ < CHsll 'q(A,Iz) Ilslltp,q<A,~) ~ [ISr, X 'q(A,#) -- ~pp fforgdl s = { s a } o .  

L e m m a  3.11. Suppose (p E S(~ n) is SUCh that supp ~ is compact and bounded away from 
the origin. For any f ~ S'/7 9 and y ~ N define the sequences sup(f)  = {supQ(f)}QeQ and 
i n f ( f )  = {infQ(f)}Q~Q by setting 

sup Q(f )  = IQI 1/2 sup I~J * f(Y)l 
y~Q 

Q(f) = I QI 1/2 sup | inf I(oj �9 f (Y) l  : scale(P) = scale(Q) - y, P fl Q ~ 0~,  inf 
t y~P I 

where j = -scale(Q) and Q ~ Q. 
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Suppose that ot~ ~ and 0 < p, q <_ e~. Then for sufficiently large y we have 

I l f l l i~p,q(~..A,u)(r ~ II sup(f)ll~p.q(A,~) • II in f ( f )  ll~,q(A,~) , 

with constants independent of  f . 

(3.19) 

We are now ready to prove the anisotropic version of the fundamental wavelet transform 
boundedness result of  Frazier and Jawerth [20]. In the case of  p < oo and dlz = w dx with 
w ~ A ~ ,  Theorem 3.12 was already shown in [5] and it remains to prove the case when # is 
a pa-general  doubling measure or p = c~. However, we will take a slightly different approach 
than in [5] to accommodate the special case of  p = oo. One should add that our argument works 
without any changes also when q = oo; this case was inadvertently claimed without the proof 
in [5]. In fact, a result such as Lemma 3.8 is needed there, since sequences with finite support are 
not dense in fp'q when p = oo or q = or 

Theorem 3.12.  Suppose that ot E I~, 0 < p, q < oo, and Iz is a pA-doubling measure. 
Assume that ~o, r ~ S(I~ n) are such that supp r ,  supp ~ are compact and bounded away from 
the origin. Then the operators S~ : Fp,q(~n, A, Iz)(~) ~ ~pp'q(a, I_t) and Tr : ~pp'q(a, I.t) ---> 
Fp,q(~n, A, tz)(~o) are bounded, ~(x) = ~o(-x). In addition, i f  ~o, r satisfy (2.7), (2.8) then 
Tr o S~o is the identity on Fap'q (~ n, A, tt)(qg) = ~pp,q (~n, A, Iz)(r 

Proof. To prove the boundedness of  Tr take any s = {SQ}Q E fp'q(A, lz). We will show 

that f = T~,s = }-~Q saeQ converges in Fp'q and we have the bound IIT~sll~.q < Cllsll~,q. 

By Lemma 3.8, the series f = E Q  s a ~ a  converges in S ' /P .  Therefore, the following estimate 
established in [5, Theorem 3.5] holds for any ~ > 1 

i=j+M 
S* lf*qgj(X)[ < C E E ( I,~')Q ~Q(X)' 

i=j-M scale(Q)=-/ 

where M is the smallest integer such that 

supp ~0~ tq supp ~fi = {~ for l i -- j I > M .  

Consequently, by choosing 3. > /~ max( l ,  1/q, i /p) ,  Lemma 3.10 yields the required bound in 
the case p < c~ by exactly the same argument as in [5, Theorem 3.5]. To deal with the case 
p = oo, take any P ~ Q. Applying (3.13) and Lemma 3.10 with 1~ > ~ max( l ,  1/q), yields 

/z(-P) E (1 det AlJalf  * qgj(x)[) q dtz(x) 
j=--scale(P) 

oo i=j+M lip ( )q  < C - - ~  E I d e t a l J a  E E (S;,X)Qf(Q(X) dlz(x) 
j------scale(P) i=j-M scale(Q)=-/ 

M oo 

<_c E E E 
I=- M j=-scale(P) scale( Q )=- j +l 

M 

= C  ~ I d e t a l l ~ - ~ f p  
l=-M QeQ, scale(Q)<scale(P)+l 

_< C]detalM(la[+f)Hs~,xH q~q ~ C!llS,,&cto J �9 q 

(] det AlJ~i(s~,x)Q [XQ(X)) q dlz(x ) 

(Ial- l(s ,Joly Q(x)) q dlz(x) 
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Taking the supremum over all P ~ Q shows IITr <_ C'llslli~q for all s 6 t'~q. 

The boundedness of S~0 follows immediately from Lemma 3.11. Indeed, suppose that f 
~pp'q(R n, A,/z)(q3) and Q = A-J([0, 1] n + k), j ~ Z, k 6 Z n. Then 

I(S~f)QI = I(f, ~oo)l = 1011/21 (r �9 f ) (xo )  I < sup Q ( f ) ,  

and it suffices to invoke (3.19). We remark here that the boundedness of S~ in the case p < oo 
can be shown more directly without the use of Lemma 3.11, see [5]. However, in the case p = oo 
this lemma is indispensable. 

Finally, if we assume additionally that ~0 and ~ satisfy (2.7) and (2.8), then by Lemma 2.14, 
TC: o S~o is the identity on ~p'q. More precisely, ~p,q(~n, A, tx)(O) ~ ~p'q(N n, A,/z)(~0) is a 
bounded inclusion. Hence, by reversing the roles of ~o and ff we have 

~p,q(]~n, A, tt)(r = ~p,q(~n, A, tt)(~p), 

which completes the proof of Theorem 3.12. [] 

3.3. Completeness of ~p'q (]I~ n, A, /z)  a n d  canonical  representatives in S '  

As a corollary of Theorem 3.12 we obtain that the definition of ~p'q spaces is independent 
of ~0 ~ S. The proof of Corollary 3.13 is identical as the proof of the same result in the range 
0 < p < cx~, see [5, Corollary 3.7]. 

Coro l la ry  3,13. Suppose that ce ~ I~, 0 < p, q < oo, and ~ is/)A-doubling measure. Then 
the space ~p'q is well-delined in the sense that, for any ~o 1 and q)2 satisfying (3.2) and (3.3), the/r 
associated quasi-norms in ~p'q (Nn, A, lz )(~oi), i = 1, 2, are equivalent, i.e., there exist constants 
C1, C2 > 0 such that 

Clllfll~p,q(Rn,A,.)(~ol ) <_ Ilfll~e,q(Rn,A,~)(~o2 ) <_ C211fll~p,q(Rn.Ajz)(~l). (3.20) 

Finally, Theorem 3.12 also yields the completeness of ~p'q (N n, A,/z) spaces. 

Corollary 3,14. Suppose that ot ~ g{, 0 < p, q < c~, and Iz is pA-doubling measure. The 
inclusion map i :  ~,ap, q = Fae, q (Nn, A, Iz ) ~ S '  / 'P is continuous. Moreover, ~e  'q equipped with 
II �9 I I~.q is a complete quasi-normed space. 

P r o o f  Suppose that ~0 and~ satisfy (2.7) and (2.8). By Lemma 3.8 the map T~t, : ~ p ' q  ~ St/~ D 
is continuous and by Theorem 3.12 the map S~o : ~p'q ---> ['~'q is also continuous. Hence, by 
Lemma 2.14, i = T o o S~ : ~p'q --> S'/79 is a continuous inclusion. 

Once the continuity of the inclusion map i is established, the completeness Of~p 'q (R n, A,/x) 
follows by a standard argument using Fatou's Lemma. []  

Note that the proof of Corollary 3.14 is much less involved than that of the corresponding 
result in [5]. This is because the current proof relies on Lemma 3.8 and it is a consequence of the 
main Theorem 3.12. In [5] the completeness of ~p'q spaces was established before and in fact it 
was used in the proof of Theorem 3.12. 

When studying smooth molecular decompositions we will need the following result borrowed 
from [5, 20], which resolves all sorts of issues caused by the fact the elements of ~p'q are 
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equivalence classes of tempered distributions S~/7 a. Proposition 3.15 guarantees the existence of 
canonical representatives of elements in ~p'q modulo polynomials of degree < L = / a / ( - J .  

Proposition 3.15. Suppose that ot ~ ~, 0 < p, q < o~, and ~ is a #A-doubling measure. 
Let f ~ Fap, q(~n, A, Iz). For any ~o 1 ~ S (R  n) such that supp~o 1 is compact and bounded 
away from the origin, and (2.13) holds, there exists a sequence of  polynomials 1 oo re; }k=1 with 
deg p1 < L = La/(-J such that 

gl := lim (91)j �9 f + 
k~oo J - -  

(3.21) 

exists in S~ Moreover, i f  g 2 is the corresponding limit in (3.21) for some other ~o 2 ~ S ( ~  n) such 
that supp 92 is compact and bounded away from the origin, and (2.13) holds, then 

gl  _ g2 E P and deg (gl  _ g2) < L .  (3.22) 

Proof. ThekeyestimateintheproofofProposit ion3.15isthatforanyj < 0andamulti-index 
y we have 

I,gY ((~ol)j, f)(x) I 
sup 

xERn (1 + Ixl) N 
< CI det AlJ(l•162 llf[ I~p.q(~n,A,~ ) . (3.23) 

In the case p < oo, (3.23) is shown exactly in the same way as [5, Proposition 3.8] using [3, 
Corollary 3.2], which is an improved version of [5, Corollary 3.1], valid in the setting of PA- 
doubling measures. However, in the case p = oo we need a minor modification of our argument. 
Using the same arguments as in [5] for any j < 0 and M e N we have 

sup 
[yI=M 

lla (( l)i * f)lloo ~ C]detAIJMr sup I1(0  1)i �9 f)lloo 
lyl=m 

< C[ det AI j(Mr sup I lflli~~176 
Iyl=M 

< CldetAlJfnc--~)l l f l l~oo < CldetAlJ fMr 

where in the last step we used [4, Corollary 3.7]. This shows that the crucial estimate (3.23) 
holds also for p = oo and the rest of the proof is identical as in [5, Proposition 3.8] and hence it 
is skipped. []  

As a corollary of Lemma 2.14 and Proposition 3.15, we have the following. 

Corollary 3.16. Let f ~ ~p'q (IR n, A, #). For any admissible pair of  dual frame wavelets 
(91, q:l), there exists a sequence of polynomials ttPl/C~k lk=l with deg p1 _< L = [ot/(_], such that 

gl := k-->oolim ( Z (f, (~01)a)0Pl)a + p 1 )  
Q~Q, IdetAl-k<lQl<ldetA] k 

(3.24) 

exists in 8'. Moreover, i f  g 2 is the corresponding limit in (3.24) for some other such pair (~02, ap2), 
then (3.22) holds. 
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4. Almost diagonal operators 

In this section we probe the boundedness of almost diagonal operators on f~'q (A,/z). Almost 
diagonal operators were introduced in the dyadic case by Frazier and Jawerth [20] with the aim 
of proving boundedness results for operators in ~ ' q  spaces�9 That is, one can always translate a 
problem of a boundedness of an operator on ~p'q to the equivalent problem in the corresponding 

wavelet domain f~'q by using Theorem 3.12. Since operators on sequence spaces are in general 
more tractable, this approach results in greater simplicity. 

We start by recalling the definition of almost diagonal operators in the setting of expansive 
dilations�9 Since we deal witti a more general situation than in [5] it is compulsory to adjust the 
definition of the decay parameter J which depends on the doubling constant o f / ,  instead of the 
regularity of a weight w E A~. 

Definition 4.1. Suppose ot ~ ~, 0 < p, q < oo, and/z is a pA-doubling measure. Let 
J = /3 max(l,  1/p, 1/q). We say that an operator A, with an associated matrix {aaP}a,peQ, 
where aQe = (AeP)Q, is an almost diagonal operator on ~pp'q(A, Iz), if there exists an e > 0 
such that, 

sup laQpI/KQp(E) < o<~ (4.1) 
Q,PeQ 

I/IQI'~e+I/21: pA(XQ-X. ~-'-" F(iQiV 
*CQe(,) = [f-p-~) ~1 + m--~(l~'~, I - ~ ) ]  min 

L \ I P I . ] '  \ V ~ . ]  J 

where 

Theorem 4.2. Suppose ot ~ ~, 0 < p < oo, 0 < q <_ ~ ,  and Iz is a pA-doubling measure. 
�9 " o t q  An almost diagonal operator A is bounded as a linear operator on fp' (A,/z). 

Proof. By a standard rescaling argument it suffices to prove Theorem 4.2 in the case ot = 0, 
see [5, Theorem 4.1 ]. 

First, we consider the case min(p, q) > 1, which implies that J = /3  in Definition 4.1. In 

addition we also assume that p < oo. Let .A be an almost diagonal operator on ~O,q with matrix 
{a Q p } Q, p satisfying condition (4.1). We write .A = .Ao + .A 1, with 

(.Aos)Q = 2 aQpse and (.AIS)Q = 2 
P~Q, IPI->IQI P~Q, IPI<IQI 

fors  = {se}p E ~O,q. For Q ~ Q, scale(Q) = j ,  andx ~ Q, we have 

aQpsp 

( I PI "~ -1/2+J+~ IspI 
I(A1s)QI < C ~ xae(E)ls?l ___ C ~ \TQ-/,/ (1 + [QI-lpA(Np XQ)) fl+E 

IPl<lal Iel<lal 

Isel 
= C 2  Idetal(i-j)(-1/2+~+') 2 (1 + [al- lpa(xp XQ)) fl+" 

i< j  scale(P)=/ -- 

<C2[deta[(J-i)(1/2-E)Mpa(i<j sc ale(~P) =i [SPXPI)(X) 

using Lemma 8.1 with a = r = 1 and )~ =/3  + E. Hence, we have 

( ( ))q [(A:)Q~QI q <_ C EldetAl(i-J)EMpA E IsP Pl �9 
scale(Q)=j i<j scale(P)=/ 
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Therefore, by Minkowski 's  inequality for e q spaces 

[[~tlSllf O,q ~ C ( j~EZ(i~<oldetAl iEMpA(scaleLj_iIsPxPI))q)  1/q LP(iz) 

<C (j~z(Mpa(scale~(p)=jlsp~pI))q) 1/q LP(tz) 

B y  Theorem 2.8 we conclude that 

II~Alsll,o,q < C ( ~ ISpxpIq) 1/q LP(IZ) = Cllsll,o,q . 

405 

To show the corresponding estimate for .Ao, we apply the same argument as for .,41 using the con- 
dition 

KQp(E) < c ( I Q I ~  I/2+~(1 q-IPl-lpA(Xp- XQ)) -l~-" . 
- \ I P I ]  

Therefore, both D.0 and .,41 are bounded on ~O,q and, hence, A is also bounded when p < o~. 

The case min(p,  q) _< 1 can be shown in two ways. One can estimate II.Asll~o,q directly 

using I_emma 8.1 for appropriate choices of  parameters a,  r, )~ as in the proof of  Lemma 3.10. 
Alternatively, the case r = min(p ,  q) _< 1 can be reduced to the case r > 1 as in [20, Theorem 3.3] 
and [5, Theorem 4.1]. For the sake of completeness we recall this argument. 

We observe that A --- {aoP}o,p is almost diagonal on ~O,q, i.e., (4.1) holds for some E > 0 
if and only if 

A'= {daPla,e = {[aQplr(lQl/lPI)l/2-r/2lQ,p 
~O,q/r e '  = is almost diagonal on "p/r ' i.e., (4.1) holds for and re.  Hence, we can pick 

an f < r so close to r that the almost diagonal condition (4.1) still holds with r = min(p ,  q) 
replaced by f. This means that p/f > 1, q/f > 1, and that the matrix 

{ ~[ Q,1/2-~/21 
.A= {gzQpIQ,p = [aQe ~-~1) Q,p 

satisfies the almost diagonal condition (4.1) on ~0,q/? for a smaller value of ~ than C = re,  since p/r 
a; = / 3  max( l ,  f/p, f/q) =/3 .  Indeed, we have 

_c(IQI~I/2(1 pa(xQ--fP) ~-~/r-~'minF(IQl~" ([PI~ ~/r+~'] 
Ifio l < \ i - E j  \ + m - - - ~ - a T I P I ) . /  L \ I P I ]  ' \IQI} 1" 

Given s ~ ~O,q, define t = {tQ}Q by t o = Iall/2-~/21sQl~. Then 

1/~ (Q~QZI,~I1/2-F/2Is i~ xq/F~ F/q 1/~ lit II#o)q/~ = IIstl~o,q �9 (4.2) 
= ~ ~ Q )CQ] ) LP/T(t z) 

The equality (4.2) also holds for p = o~z, where the localized definition (3.6) is used instead 
of (3.4). By the f-inequality, we have 

( p~ _ _\I/F ( )1/~ 
I(AS)QI < laQplrlspI r) = IQI /=-'/= I QPIIr =(IQI~/2-1/2(ftt)Q) 1/~ 

P 
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Hence, using (4.2) twice 

_< tl ii,0/,.IV,/q/r <_~ CHtll,o,ql = IIAsll~o.q C IIs ll ~o,q 
"p5 

since ,,4 is bounded on l~ IX), by Theorem 4.2 in the already shown case min(p, q) > 1. 

Finally, the case p = oo and q > 1 requires a special argument due to localized definition 
of f~'q spaces. A direct approach is quite complicated since it must involve local estimates as in 
the proof of Lemma 3.10 when p = oo. Instead, it is easier to apply the duality argument using 
the results established in [4]. By [4, Corollary 3.5], the spaces f~q (A,/~) do not depend on the 
choice of/z, at least when dtz = w dx for some w ~ A~. Hence, without much loss of generality 
we can restrict ourselves to the unweighted case. By [4, Corollary 4.5] we have the duality 

(fT'q') * ~ f~q, where 1/q + 1/q ~ = 1. Define the transpose of`4 by `4~ = { a - ~ } Q , p E  Q. Since 

`4 is almost diagonal on l'~q by the symmetry and J = 1, so is `4: on f7 'q'. By the already shown 
"0 # case `4~ is bounded on fl 'q �9 Hence, its adjoint operator (.4')* = .4 is bounded on (fT'q') * "a'q ~ I ~ .  

Note that the identification (.4~)* = .4 follows from the duality pairing given by the usual scalar 
product of sequences indexed by Q. This completes the proof of Theorem 4.2. [ ]  

5. Smooth atomic and molecular decompositions 

In this section we extend smooth atomic and molecular decompositions of Frazier and Jaw- 
erth [20] to the setting of expansive dilations and doubling measures. The corresponding results 
for A~  weights in the case p < ~ were shown in [5] and here we describe the necessary 
modifications which are needed for these arguments to work. 

We start by recalling the definitions of smooth molecules. 

Definition5.1. Supposect e ~ , 0  < p, q < ~ ,  and /z is a pA-doubling measure with doubling 
constant/~. Let J = fl max(l,  1/p, 1/q) and N = max( / (J  -- ot -- 1)/(_J,  -1 ) .  

We say that qJQ (x) is a smooth synthesis molecule for ~p'q (IR n, A, #) supported near Q e Q 
with scale(Q) = - j  and j e Z, if there exist M > J such that 

[Or[~PQ(A -j .)](x)[ < I detalJ/2 for lyl __< k~/(-d + 1, (5.1) 
( l q - p a ( x - a J x Q ) )  M 

I det A l J/2 
I~Pa(x)[ < (1 + pA(aJ(x -- XQ))) rnax(M'(M-a)r162 (5.2) 

fx• dx = IYI < �9 (5.3) 0 for N 

We say that ~PQ(X) is a smooth analysis molecule for  ~p 'q  (]1~ n , A,/z) supported near Q ~ Q 
with scale(Q) = - j  and j ~ Z, if there exists M > J such that 

I det A [J/2 
[O• -j . )](x)[ < for h'l --- N + 1, (5.4) 

( I + p A ( x - A J x Q ) )  M 

[det AI j/2 
(1 + pa(aJ(x - xQ))) max(MA+ar162 ' (5.5) I~a(x)l 

f x~'q~Q(X)dx = 0 for I~1_< La/C-J �9 (5.6) 
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We say that {~Q}QeQ is a family of smooth synthesis (analysis) molecules, if each ~Q is a 
smooth synthesis (analysis) molecule supported near Q. 

Remark  5.2. Note that the above definition of smooth molecules is identical with [5, Deft- 
nition 5.1]. The only exception is the method of determining the decay parameter J ,  and con- 
sequently, the vanishing moment parameter N. Recall from [5] that when w ~ Aoo, the decay 
parameter defined by J = max(l, ro/p, l /q) ,  where r0 = inf{r : w ~ Ar}, coincides with the 
decay parameter in the definition of almost diagonal operators in [5, Definition 4.1]. Therefore, 
in both situations the decay parameter J originates in the same way. 

The key ingredient in proving smooth molecular decompositions is the following lemma, 
which is a nonisotropic variant of [20, Corollary B.3]. 

L e m m a  5.3. Suppose that { ap Q } O and { tp O } Q are families of  smooth analysis and synthesis 
molecules fOr ~p 'q, respectively. Then the matrix {aQp }, given by aQp = (qdp, dp Q), is almost 
diagonal on ~'q. More precisely, there exist C > 0 and e > O, such that 

I(~P, ~Q)I ~ CKQp(6) forall Q, P ~ Q.  

In the setting of nonexpansive dilations and Aoo weights Lemma 5.3 was proved in [5]. 
In fact, a close inspection of this argument shows that given any J > 1, ot E R, and families 
of functions {qJQ} and {~Q} satisfying (5.1)-(5.6), the matrix {(~Pe, dpa)}Q,p satisfies almost 
diagonality estimate (4.1) for some E > 0. Therefore, Remark 5.2 shows that Lemma 5.3 holds 
in the current setting of Pa-doubling measures. 

As a consequence of Lemma 5.3 we obtain the following result. 

T h e o r e m  5.4 (Smooth Molecular Analysis and Synthesis). Suppose that A is an expansive 
matrix, ct ~ ]R, 0 < p, q < oo, and IX is a pA-doubling measure. Then there exists a constant 
C > O, such that: 

(i) I f  { ~P Q } Q is a family of  smooth synthesis molecules for ~p'q (~ n, A, Iz ), then 

I E seff2Q <- forall s ---- [SQ}Q E ~pp'q(A, 11,). CIIsll~.q 
QEQ 

(ii) / f{~O]Q is a family of  smooth analysis molecules, then 

II{(f, ~Q)}QII~,q < Cltfll~,q forall f ~ ~p,q(~n, A, Ix). 

The proof of Theorem 5.4 follows along the lines of the corresponding results in [5] with the 
use of Lemma 5.3. The biggest technical difficulty in the proof of the above theorem is to justify 
the meaningfulness of the pairing (f, 4pQ) since f e ~p'q is an equivalence class in S~/7 ~, and 
�9 Q may not even belong to S. However, the usual pairing procedure as in [5, Lemma 5.7] works. 

L e m m a  5.5. Suppose that f ~ ~p'q (]~n, A, Ix) and ~Q is a smooth analysis molecule for 
~p,q (]~n A, t%) supported near Q ~ Q. Then for any ~o, ~ ~ S(I~ n) satisfying (2.7) and (2.8), 
the series 

(f, ~Q) := E ( • j ,  ~ j .  f,  qbQ) = E (f '  ~0e)(aPe, 4~ o) (5.7) 
jeZ PeQ 
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converges absolutely and its value is independent of  the choice of  ~o and ~k satisfying (2.7) 
and (2.8). 

The proof of Lemma 5.5 is exactly the same as that of [5, Lemma 5.7] and uses Proposi- 
tion 3.15 and Corollary 3.16, and hence it is skipped. Finally, we assert that the elements of 
~-~p,q (~n, A,/z) admit smooth atomic decompositions. 

Definit ion 5.6. A function aQ(x) is said to be a smooth atom supported near a cube Q = 
A-J([0, 1] n + k) e Q if it satisfies 

supp aQ C A - j  ([-80, 1 + 80] n + k) ,  (5.8) 

where do > 0 is some fixed constant, and 

]O• -j')](x)l ~ IQ1-1/2 for I~1 ~ / ~ ,  (5.9) 

fR x Y a Q ( x ) d x  = 0 for I~'1 -- ~r, (5.10) 
n 

where N _> N is the same as in Definition 5.1 and/(" _> max( /a / (_J  + 1, 0). Recall that 

N ---- max(/ (J  - o t  - 1) /(_] ,  - 1 )  where J =/~max(1,  1/p, I /q) .  

We say that {aQ } QE Q is a family of smooth atoms, if each function aQ is a smooth atom supported 
n e a r  a .  

Theorem 5.7 (Smooth Atomic Decomposition). Suppose that A is an expansive matrix, 
a ~ R, 0 < p, q <_ oo, and # is a pA-doubling measure. For any f e Fp'q there exists a family 
o f  smooth atoms {aQ} and a sequence of  coefficients s = {SQ} e ~'q,  such that, 

f = ~ saaQ, and Ilsll~,q ~ Cllfll~.q , (5.11) 
a e Q  

where the above series converges unconditionally in ~p'q. Conversely, for any family of  smooth 
atoms {ao }, 

~ saaa ~p'q ~ Cllsll~,q . 
Q 

(5.12) 

The proof of Theorem 5.7 uses Theorems 3.12 and 5.4 and is a verbatim copy of the corre- 
sponding result in [5]. Hence, it is skipped. 

R e m a r k  5.8. At this point, it should be clear that the theory of anisotropic Triebel-Lizorkin 
spaces introduced in [5] extends to the setting of doubling measures. In particular, the results 
for inhomogeneous Triebel-Lizorkin spaces can be deduced from the corresponding results for 
homogeneous ~p'q spaces by the same arguments as in [5, 20]. Moreover, we conjecture that 
the results in the inhomogeneous case are valid under a weaker hypothesis of local doubling, i.e., 
(2.3) holds only for r < 1. Indeed, Rychkov [30] extended several results on inhomogeneous 
Triebel-Lizorkin and Besov spaces to the weighted (but isotropic) setting for the class of local 
Muckenhoupt weights A l~ Hence, it seems very plausible that similar results can be obtained . - p  �9 

in the nonisotropic setting. However, we will not pursue this direction here. 
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Remark  5,9. Despite certain gain of generality of this work compared to its predecessor [5], 
one should emphasize that the results obtained here and there have some fundamental differences. 
For example, the decay and vanishing moment parameters in the definition of smooth molecules 
depend on the doubling constant of a measure/z instead of the regularity of a weight w e A ~  
as in [5]. Consequently, the results of [5] have better quantitative characteristics than the ones 
obtained here as long as we stay in the realm of A ~  weights. This is a prize to be paid by studying 
Triebel-Lizorkin spaces with doubling measures instead of Aoo weights. 

6. Nonsmooth atomic decompositions of Fp'q spaces for 0 < p < 1 

The goal of this section is to establish a more traditional type of atomic decomposition of 
~ ' q  spaces than Theorem 5.7, where the coefficients in atomic decompositions are controlled by 

the gP norms rather than more cumbersome f~,'q norms. Obviously, there is a prize to pay for this. 
One must restrict the range to 0 < p < 1 and allow less regular atoms in our decompositions. 

We will follow a more direct approach to nonsmooth atomic decompositions as described 
by Grafakos [24] instead of a slightly roundabout approach via real interpolation by Frazier and 
Jawerth [20, Section 7]. Naturally, we will work on the sequence space level and hence we start 
by introducing the concept of atoms for ~ ' q  (A,/~) spaces. 

Definition 6.1. Suppose that o t e  l~, 0 < p < c~, 0 < q < oo, and/x is a pA-doubling 
measure. We say that a sequence r = {rQ}a is a pl-atom for fp'q(A, Iz), where p < p] < oo, if 
there exists {) ~ Q such that 

ro = 0 if scale(Q) > scale({)) or I a  n {)1 -- 0 ,  (6.1) 

Ila='q (r) llLpl(u) < Ix({)) ]/p]-I/p , (6.2) 

where 

(p~Q x1/q 

Ga,q(r) = (IPl-alrelf(e) q) . (6.3) 

Remark  6.2. In other words, (6.1) says that the support of an atom r must be located at the 
tent 7"({)) over Q. That is,rQ could be nonzero only on the cubes Q_ c Q which have nonzero 
intersection with Q, [Q N Q[ > 0, and lie at scales at most of scale(Q). 

For any p _< Pl < P2 < oo, every pc-atom r for fp'q is also a p]-atom modulo a multi- "otq 
plicative constant c independent of r, i.e., cr is a pl-atom for fp' . To see this, it suffices to use 
HOlder's inequality, and observe that the support of G ~'q (r) is contained in a dilated ball B with 
scale(B) controlled by scale({)) due to Lemma 2.9. Hence, we will work mostly with oo-atoms 
r, which satisfy 

]lGr _< iz({)) -1/p . (6.4) 

Note that we adopt a slightly more restrictive definition of cx~-atoms than the original approach 
of Frazier and Jawerth [20] by following [24, Section 6.6.c]. Indeed, (6.4) is replaced in [20] by 

[Irlli~q ~/z({)) -1/p . 

The following concept of order between cubes, introduced by the author in [2], plays an 
important role in our arguments. 
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Definition 6.3. We say that a cube Q ~ Q is stacked below the cube P e Q, and write Q ~ P, 
if there is a chain of cubes Q = Qo, Q1 . . . . .  Qs = P ~ Q such that 

scale(Qi)<scale(Qi+l) and I Q i N Q i + I I > O  forall i = 0  . . . . .  s - 1 .  

The relation ~ induces a partial order in Q. 

R e m a r k  6.4. Suppose that Q' is a subfamily of Q. Let max(Q') be the set of maximal elements 
in Qt with respect to the relation 4.  If a subfamily Qr does not contain arbitrary large cubes, i.e., 
supQ~Q, scale(Q) < ~ ,  then for any cube Q ~ Qr there is always a cube P ~ max(Q t) with 
Q ~ P. In general, a maximal cube P is not unique unless, for example, the dilation A = 2Id 
and we work with nicely nested dyadic cubes. 

We shall need a simple geometric lemma; for the proof see [2, p. 105]. 

Lemma 6.5. There is a universal constant r 1 ~ N such that whenever we have two cubes 
Q, P ~ Q with Q ~ P = AJo([0, 1] n + ko) then 

Q C U AJ~ [0' 1]n + k ) "  

Ik-kol<O 

The main technical result of this section is the following theorem which is a generalization 
of a result which can be found in [24, Theorem 6.6.5]. 

Theorem 6.6. Suppose ot~ ~,, 0 < p < ~ ,  0 < q < oo, and Iz is a pA-doubling measure. 
Then for any s e ~ 'q  (A, lz), there exists a sequence o f  scalars {~.j}, and ~-a toms {rj } f o r ~  'q 
such that 

s E3.jrj ,  and (~jl3.jIP) 1/p = _ CIIsll~.q, (6.5) 
J 

for some constant C independent ors. 

Proof.  Suppose s is an arbitrary element of ~p'q(A, Iz). As a preliminary step, we wish to 
replace s by its majorant sequence s* = st, x,* where r > 0 and )~ > fl max(l,  r/q,  r /p)  are the 
same as in Lemma 3.10. The advantage of s* over s is that the sequence s* is locally almost 
constant within each scale, and yet, it still belongs to ~ 'q  (A,/z). This allows us to remedy some 
serious difficulties arising from the fact the family of dilated cubes Q is generally not nested. 

For j e Z, define a f u n c t i o n  gj'q(s*) by 

( ~ q\l/q 
gj'q(s*) = E (IPl- ls;'lxp)) 

- eeQ, scale<e)>_j 

For the purposes of the proof, it is useful to insist that P ~ Q are of the form P = A j ([0, 1)n + k) 
and hence dilated cubes are disjoint (versus having common faces) within each scale. Note that 

c t , q  , for every x ~ ]R n, g~.'q (s*)(x) >_ g j+l (s )(x), and 

lim gT'q(s*)(x)=O, lim gT'q(s*)(x)=G~'q(s*)(x) .  (6.6) 
j - - ~ee  ~ - - j , - ~  ~ - - 
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Indeed, (6.6) is obvious when 0 < q < oo. When q = oo, one must use that Ga'q(s *) �9 LP(I.t) 
and the fact that 

lim Iz(aJ([O, 1ln))= lim I z (AJ([ -1 ,1 ln ) )=tz ( lRn)=oo ,  (6.7) 
j~oo  j--+~ 

which is a consequence of  Proposition 2.10. 

For k �9 Z, we define a family of  dilated cubes 

Qk { a  �9 Q :  sup ot,q , = gscale(Q)(S )(x) > 2k}.  
x6Q 

Clearly, Qk c Qk+b and by (6.6), 

~'2 k :=- {X �9 ]l;~n : Get'q(s*)(x) > 2 k} C U Q "  (6.8) 

Q~Qk 
Moreover, we claim that there is m �9 N, independent of  k, such that the converse inclusion holds 

U Q C ~'~k-m �9 (6.9) 
QEQk 

Indeed, take any Q �9 Qk and x = x(Q) �9 Q such that g~.'q(s*)(x) > 2 k, where j = scale(Q). 
Then for any P1, P2 �9 Q, scale(P1) = scale(P2) > j ,  andlP1VIQI, IP2nQI > 0, by Lemma 6.5 
we have 

( 4 , )  r = 

P~Q, IPI=IPll 

>- E 

Isp I r (1 -t- I PII-lPA (xp, -- xp)) -x 

Isplr (1 + HIP21--1pA(XpI --Xp2 ) + HIP21-1pA (XP2 -- Xp)) -x 
PEQ, IPI=IPzl 

Isp[r (1 -t- IP2I-l pA(XP2 -- Xp)) -~" : c(s*p2) r . >__ sup (n + UpA(k)) 
Ikl<r/ PEQ, IPI=IP21 

Here, c is the value of supremum above, and ~ is the same as in Lemma 6.5. Hence, 

Ga'q(y) > g~.'q(s*)(y) >__ cl/rgj'q(s*)(x) > cl/r2 k > 2 k-m for all y �9 Q ,  

where m �9 N is chosen so that 2 m > c -1/r, which proves (6.9). 

Observe that the definition of family Qk implies that 

( y ~  )l/q 
(IPl-~tS*pIf(e(x)) q < 2 k foral l  x �9 N n . (6.10) 

PeQ\Qk 

Indeed, take any x0 �9 •n and suppose that Ga'q(s*)(xo) > 2k; otherwise, the conclusion is 
trivial. By (6.6), let j0 �9 Z be the unique integer such that 

gjiq(s*)(Xo) > 2 k and g~iql(S*)(Xo) ~ 2 k . 

For any scale j �9 Z, let Pj be the unique dilated cube such that scale(Pj)  = j and xo �9 Pj. Note 
that Pj �9 Qk for every j ___ j0, and hence 

(j~EZ y~" (IeJ'--~ E (''[-ctlS*Pjl~pj(XO))q)l/q 
Pj~Q\Qk PjeQ\Qk 

a,q 2 k <--- g jo+ l  ( s* ) (x0)  ___ , 
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which shows (6.10). 

Let A4k = max(Qk \ Qk+l) be the family of maximal cubes in Qk \ Qk+l with respect to 
the partial order 4.  We claim that for any cube P ~ Qk \ Qk+l, there is Q ~ .A4k, such that 
P ~ Q. Indeed, take any Q ~ Qk \ Qk+l with P ~ Q. Fix x0 ~ P, and let QI e Q be such that 
x0 ~ Q~ and scale(Q f) = scale(Q). Then by Lemma 6.5, #(Q~) < ctz(Q), where c is the same 
constant as in Proposition 2.10(a). By (6.9), Q c f2k-m and consequently, 

tz(Q') < ctz(Q) < c2(m-k)PlIa~'q(s*~llP = c2(m-k)P IIs* I1~ p < oo .  -- -- , ] IILP(Iz) ,,ip'q(a,tl,) 

Therefore, by Proposition 2.10(b), scale(Q') must be bounded from above. Consequently, 

sup{scale(Q) : Q ~ Qk \ Qk+l, P ~ Q} < oo, 

which proves the claim. 

Let A4~ be the inflated version of A4/c defined by 

A4~ = {e  e Q : qQ e .A4k, scale(Q) = scale(P), Ik - k01 < 0 ,  

where P = aJ([0,  1) n + k ) ,  Q = AS(t0, 1) n + g 0 ) }  �9 

Let {ak,l}l~Lk be any enumeration of cubes in A4~. Lemma 6.5 guarantees that for any P 
Q/c \ Q/c+l there is Qk,l E .A,'[1k such that IP N Q/C,ll > 0. Thus, we can inductively define a 
partition of the family Q/c \ Q/c+l into subfamilies {Qk,l}l such that 

P E Qk,l ~ scale(P) < scale(Q/c,/) and IP tq QIc,ll > 0 .  (6.11) 

Hence, a subfamily Qk,l consists of a certain portion of cubes in Qk \ Qk+l which have nonzero 
intersection with Ok,l and scales lower than scale(Qk,l). Note that it might happen that some 
subfamilies Qk,l'S are empty due to the fact that either all cubes in Q/c \ Q/c+l lying below ak,l 
were assigned to a different subfamily or there were no such cubes in the first place. 

By (6.8) and (6.9), {Q/c \ Qk+l}/c~N is a partition of the entire family Q. Consequently, 
kl  { Qk,l }k~Z,l~Lk is also apartition of Q. This partition induces sequences s k,l = {s],' }pe Q by setting 

k,l { ; P P E Q k , I ,  
Se = otherwise. 

Obviously, 

By (6.10), 

k~Z l~k~= 

) 1/q 
G~'q(sk'l)(x) <_ y ~  ([PI-~is*p[fr q < 2 k+l forall x ~ ~ n .  (6.12) 

PeQk\Qk+l 

Finally, define atoms {rk'l}k,l as appropriate normalizations of {sk't}k,t, 

rpk'l = 2-k-llz(Qk,l)-l/Psk, l for P ~ Q 

To verify that each r k'l is an c~-atom for fp'q with respect to the cube Qk,l it suffices to use (6.11) 
and (6.12), 

II c ,q --  II --- bl'(Qk, ' )- I /p" 
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Clearly, 

S : E E ~.k,lsk'l, 
k~Z l~Lk 

Note that for each k c Z, 

E #(Ok,l) = 
lcLt 

where )~k,l = 2k+l lz(Qk,l) 1/p �9 

E iz(Q)<cK Z lz(Q)<cKtz( U Q) '  
E t Q .A/[ k QE.A"[k " QEQk\Qk+I 

where the constant c is the same as in Proposition 2.10(a), and K is the cardinality of Z n N B(0, 0)- 
Therefore, by (6.9), 

E E Ilk'liP ~-- Z 2(k+l)P E #(Qk,l) ~ cK E 2(k+l 'P" ("k-m)  
kEZ leLk keZ leLk keZ 

=cK2('n+2)P 1 Ep2tPlz({x : Gc~'q(s*)(x) > 2t+l}) 
P k~Z 

f5 C p~,p-ll-t({X: Ga'q(s*)(x) > ~,}) d~, 

_ c I I s ,  p , p - [l~,Oca,.) < C Ilsllppp,q(a,.), 

where the last step follows from Lemma 3.10. This shows (6.5) and completes the proof of 
Theorem 6.6. [ ]  

As a corollary, we obtain an atomic characterization of ~p'q-spaces which is a generalization 
of [20, Theorem 7.2]. 

Theorem 6.7. Suppose  0 < p < 1, p < q < co, ~ e N, and Iz is a pA-doub l ing  measure. 
Then for any p <_ Pl < oo, 

[[si[~p,q x inf { ( ~j I~.jtP) 1/p 
/ 

:s = E L j r j  andeach rj i s a p l - a t o m f o r  fP'ql " (6.13) 
J J 

Proof. By Remark 6.2, every cx~-atom r is also a Pl-atom (modulo a multiplicative constant). 
Hence, the lower bound for I lsll~.q follows immediately from Theorem 6.6. To prove the upper 

bound one must use 

IIs + tll-~,q _< Ilsll.~,q + Iltll~,q , 

which is a consequence of p-triangle inequality and Minkowski's inequality with exponent q/p. 
By Remark 6.2, every pl-atom r is also a p-atom (modulo a mulfiplicative constant) and hence, 
Ilrll~,q _< C. I f s  is as in (6.13), then 

Ilsll.~p,q : ~j < ZI)~j[Pllrjll~p.q < C E l ) ~ j l  p J [] 

Obviously, Theorem 6.7 is most interesting when Pl = o0, since it yields atomic decom- 
position into the most restrictive class of oo-atoms. Hence, we will restrict ourselves to this 
case. 
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Finally, we define nonsmooth atoms for ~p'q spaces as conglomerates of smooth atoms for ~ ' q  
with coefficients given by atoms for ~ 'q .  

Definit ion 6.8. Suppose that 0 < p < 1 and p < q < oo. We say that b is a nonsmooth atom 
for ~ ' q  i f b  = Y~a~Qroa Q, where r = {ra}a~Q is an oo-atom for f~'q for some fixed cube 

�9 Q, and each aQ is a smooth atom supported near a cube Q. 

Obviously, one can also define nonsmooth atoms for ~p'q with more general normalizations, 

where r = {rQ}a~ Q is a pl-atom for ~ 'q ,  instead of an oo-atom and Pl > P- As a consequence 
of (5.8) and (6.1), observe that there exists a universal constant R > 0 such that 

suppb C A-J  ( [ -R ,  R] n q-k) (6.14) 

for any atom b corresponding to Q = A-J([0, 1] n -t- k). By Theorem 5.7, every atom b for ~p'q 
satisfies I lbl I~,q < C for some universal constant C. 

Finally, we can prove nonsmooth atomic decomposition of ~p'q spaces. 

T h e o r e m  6.9. Suppose that 0 < p < 1, p < q < oo, ot �9 R, and/z is a pA-doubling measure. 
Then for any f �9 S '  /'P, 

Ilfll~/q • inf IXjl e : f = E l j b j  and each 
J 

bjis a nonsmooth atom for ~p'q } . (6.15) 

P r o o f  The lower bound of II f ll~,q is a direct consequence of smooth atomic decomposition 

for ~'~p'q-spaces and Theorem 6.7. Indeed, for any f �9 ~ ' q  find its decomposition f = E SQaQ 
into smooth atoms {aQ} and group them according to atomic decomposition of s = {SQ} �9 ~'q.  

To prove the upper bound one must use 

I ] f  "q- gll~p,q ~-~ IifiI "~p,q -]-IIgll'~p,q ' 

which is a consequence of p-triangle inequality and Minkowski's inequality with exponent q/p .  
Since every (nonsmooth) atom b for ~p'q satisfies Ilbll~.q < C, the upper bound of Ilfll~,q 

follows immediately. [ ]  

In the next section we explore the connections between atomic decompositions of Hardy 
spaces and Theorem 6.9. 

7. Identification with anisotropic Hardy spaces 

The goal of this section is to identify unweighted ~p'2(A, R n) spaces with the (real) Hardy 
spaces H~ for 0 < p < oo in the context of expansive dilations A. The corresponding isotropic 
result is well known and boils down to the square function characterization of Hardy spaces, e.g., 
[24, Theorem 6.4.15]. 

For various equivalent ways of introducing the usual isotropic Hardy spaces on R n we refer 
to [16, 31]. In the context of expansive dilations A, anisotropic Hardy space H ~ ( ~  n) were 
studied by the author [2]. There are several equivalent definitions of Hardy spaces using maximal 
functions or atomic decompositions. Theorem 7.1 establishes the square function characterization 
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stated informally as 

(E f �9 HP(]~ n) -', :, S ( f )  := koj * f l  2 �9 L p , 
jez 

where ~o �9 S satisfies (3.2) and (3.3). 

Theorem 7.1. Suppose that A is an expansive dilation and ~o �9 S ( R  n) satisfies 

supp r C [-zr, Jr] n \ {0} and = 1 torah ~ # 0 .  (7.1) 
j~z 

Then H ~ ( ~  n) = ~'0'2(~n, A) fo ra l lO  < p < oo. Moreprecisely, any f �9 FOp,2 C $ ' / P  is 
identified with its canonical representative 

f = E (f '  ~PQ){~ 

where the series converges in S '  and we have 

IlfllnaP • Ilfll~,2 forall f �9 S ' .  (7.2) 

Proof. The condition (7.1) assures that ~o is a tight frame wavelet associated with A with all 
vanishing moments. Hence, by [2, Lemma 6.3 and Theorem 6.7 in Ch. 2] for 0 < p _< 1 and [2, 
Lemma 6.10 and Theorem 6.13 in Ch. 2] for 1 < p < oo, the following diagram commutes and 
the maps Sr and T~o are bounded 

fO'2(A) 

s • •  (7.3) 

, 

Here, S~o and T~o are the usual analysis and synthesis transform. Moreover, for any s �9 f~ 
the series T~os = ~_,QeQ so~o Q converges unconditionally in Hap(~ n) and hence in S'. On the 
other hand, Theorem 3.12 shows that we a similar commutative diagram 

f~ 

s•• ~ (7.4) 

F0,2tl~n Id ~-,0p,2 (~n A) p ~ - .  ,A) , . 

A priori, Theorem 3.12 says that T~os �9 F0p,2 and hence it is an element of S ' / P .  Since the 
sequence space is the same in both cases, T~s can be identified with a specific element of Ha p and 
hence S'  by (7.3). Combining diagrams (7.3) and (7.4) shows (7.2). []  

As an immediate corollary of Theorems 3.12 and 7.1 we have the following. 
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Corollary 7.2. Suppose that 0 < p < oo and ~o E S satisfies (3.2) and (3.3). Then for any 
f ~ S ' ,  there exists a unique polynomial P ~ 7 9 such that 

/ \ 1/2 

jEZ LP 
(7.5) 

Note that the square function S ( f )  on right-hand side of  (7.5) does not "detect" polynomials, 
i.e., S ( f )  = S ( f  - P).  Hence, an appropriate representative in the equivalence class of  f in 
S ' / 7  9 must be chosen to yield a valid member  f - P of  the Hardy space HA p. 

Finally, we are ready to discuss Theorem 6.9 in the setting of Hardy spaces. Let b = ~ r a a a  

be any nonsmooth atom for Fo,2, 0 < p < 1, supported around cube Q. Then for any 1 < P0 < 
OO, 

IlbllL.0 • Ilbtl~.o~ _< Cllrll~O,oZ <_ CIQI 1/pl-1/p 

By (6.14) the support of  b is contained in enlarged copy of Q- Since the series b = Y~ rQaQ 

converges in ~,o,2 = Lp 1 norm, the vanishing moments of  aa ' s  are inherited by b, i.e., 

fR x Y b ( x ) d x  = 0 for lyl ~ N ,  
n 

where ~ '  _> N = max(L(J  - D / g - J ,  - 1 )  = L(1/p - 1)/~_J.  Hence, up to a multiplicative 
constant, a nonsmooth atom b for ~,o,2 is a (p,  p l ,  N)-a tom in the setting of anisotropic Hardy 
spaces, see [2, Definition 4.1]. Therefore, Theorem 6.9 yields the atomic decomposition of HA p 
spaces into L pl-atOms for 1 < Pl < ~ .  Furthermore, when Pl = cx~, Theorem 6.9 yields the 
atomic decomposition into "BMO-atoms" instead of more familiar L ~176 see [20, Section 7]. 

8. Proofs of auxiliary results 

8.1. Proof of Lemma 3.10 

To prove Lemma 3.10 we need two auxiliary lemmas. Lemma 8.1 is a generalization of [5, 
Lemma 6.2] for maximal functions associated with pA-doubling measures. Lemma 8.2 is a 
geometric result on the family of  dilated cubes Q. 

Lemma 8.1. 
s = {se}p and for each cube Q ~ Q with scale(Q) = j we have 

Suppose 0 < a <_ r < oo, )~ > ~r /a ,  and i, j ~ Z. Then for any sequence 

pA(XQ--Xp)~)~ 1/r 
( ~ Is , ,  r / ( l +  m - ~ ( I F ~ , [ - ~ ) ] , l  

scale(P)=/ 

\ ,~ 1/a 
< C l d e t a l ( J - i ) + ~ / a ( M p a (  E [SPlaxp) (x)) 

scale(P)=/ 

(8.1) 

for all x 6 Q ,  

where the constant C depends only on )~ - ~r  /a.  In particular, i f  i = j ,  then 

( ( )a),,a 
E (Sr*,,)~lQi Q S C M~A E ISQIXQ 

scale(Q)=j scale(Q)=j 

(8.2) 
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with the same constant C. 

P r o o f  Fix Q e Q with scale(Q) = j .  Consider the first case when i > j .  Define 

A0 = {P e Q : scale(P)  = i 

Ak = {P E Q : scale(P)  = i 

Then 

and PA(XQ --xe)/IPI < 1}, 

and IdetAI k-1 < pA(XQ -xp)/ lPI <_ IdetAI k} k > l .  

where 

U e C h := BpA (XQ, 2HI det A{k+i) . 
PEAk 

Since/z is pA-doubling 

/_t(/~) _< CI det Al~klz(P) for any P e Ak, k __> 0 .  

Hence, by the definition of  the maximal operator, we have 

r/a 

ISelr <Cldetal-kX+~kr/a(a--~f~e~a dlz 
(1 q- pA(XQ -- xp)/lPI) x - PEAk k 

_< C, det AI -k(k-flr/a) (MpA ( ~ Isp'axp) \r/a 
"scale(P)=/ 

for any x e Q c B. Summing over k > 0, yields (8.1). 

In the second case i < j ,  we redefine Ak's by 

Ao = (P  ~ Q : scale(P)  = i and PA(XQ --Xp)/I)O} ~ 1}, 

Ak = {P ~ Q : scale(P)  = i and IdetAI k - !  < pA(XQ -xp)/IQ} < IdetAI k} k > l .  

Then, as before 

r/a 

Y~ (1 + pA(XQ -- xe)/lQI) x < CI detA[ -kz+~(k+j-i)r/a Z Isplaxe 
PEAk PEAk 

< Cldetal(J-i)~r/a-k(~-~r/a)(MpA(scale~(P)=ilsp[axp)(x)) r/a 

for any x e Q c / ~ .  Here, we used that 

U P C /~ := BpA(XQ,2HIdetAI k+j) 
PEAk 

417 

~s~l r 
< CldetAI -kx ~ Ispl "< CldetAl-kz( ~ Ispla) 

E (1 a t- PA(XQ -- xP)/IPI) ~" - PEAk PEAk PEAk 

= C i d e t A i _ k x ( f o ~ , l s p l a  )r/a - Z._,  - - X e  dlz , 

PEAk #(P) 
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and 

Iz(B) < CldetAi#(k+j-i)Iz(P) fo rany  P e A k ,  k >__O. 

Summing over k > 0, yields (8.1). 

To see (8.2), multiply both sides of  (8.1) by ~Q, and sum over all Q e Q with scale(Q) = j ,  

scale(Q)=j 

( ( ~ _ ~  )a)l/a 
(Sr*~.)QXQ < C E MpA Is~,l~e xo 

scale( Q )= j scale( P )= j 

= C a I S p I 2 e  , 

seal =j  

since {Q e Q : scale(Q) = j} is a partition o f •  n. [ ]  

L e m m a  8.2. Suppose that P = AJ0([0, 1] n -1- ko) e Q, where Jo e Z, ko e Z n. Whenever 
Q, 0 e Q satisfy 

j = scale(Q) = scale(Q) < scale(P) = jo (8.3) 

and 

Q n P # O ,  

then we have 

O M ( P + A J ~  ~ O  forsome k e Z  n, p A ( k ) > K ,  (8.4) 

IQl-lpA(xO - xo)  >__ 
[det A lJ~ pA (k ) 

2H 

Moreover, the constant K > 0 is independent o f  the choice of  P, Q, and Q. 

(8.5) 

AJ-J~ 1]n + kl) N ([O, 1]n + ko) 5 0 ,  AJ-J~ 1]n + kE) f-I ([O, 1]n + ko + k) ~ 0 

we have 

AJ-J~ - ko e Uo - Uo, AJ-J~ - ko - k e Uo - Uo �9 

Hence, A j- j~ (kl - k2) + k e U. Thus, 

pA(AJ-J~ - k2)) > ( 1 / H ) p A ( k )  - -  sup PA(Y) = ( 1 / H ) p A ( k )  - K / ( 2 H )  > pA(k) 
yEV 2H 

since pA(k) > K. This shows (8.5), since IQI-l pA(xa - xo)  = pA(kl -- k2). [] 

P r o o f  o f  L e m m a  3.10. The case p < oo is a consequence of  Lemma 8.1. Indeed, take 
any r > 0 and 3. > fl max(l ,  r/q,  r /p) .  If  r < min(q, p),  then we set a = r. Otherwise, if 
r > min(q, p),  then take a such that flr/X < a < min(r, q, p). It is possible to choose such an 
a, since 3- > /5  max(I ,  r/q,  r /p)  implies [3r/~ < rain(r, q, p). In both cases we have that 

O < a < r <oo,  3. > ~r/a,  q/a  > 1, p /a  > 1. 

Proof.  Let K = 2 H  SUpy~u Pa(Y), where U = 2(Uo - Uo) and Uo = U/_<o A/([ 0, 1]n) �9 

Since Uo, and hence U, are compact we have K < o~. Take any Q = A J([0, 1] n W kl) and 
0 = A j ([0, 1] n + k2), j < jo and kl, k2 e Z n, satisfying (8.3) and (8.4). Since 
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Therefore, (8.2) in Lemma 8.1 yields 

IIsr:). II~pp'q(a,lz) - C ( ~'~ (MpA ( ~ ~a,~q/a~a/q 1/a < ) ) 
j~Z I QI=I det A[-J L p/a (Iz) 

Since q/a > 1 and p/a > 1, by the Fefferman-Stein vector-valued maximal inequality we can 
r e m o v e  Mpa from the above estimate (by increasing a constant C) to obtain 

Ilsr*,x II~,q<A,~) --- Cl [ s l [~ 'q (a , l x )  �9 

Next, we consider the case p = cx~. Without any loss we can also assume that 0 < q < cx~, 
since the proof of the case p = q = cx~ is immediate. 

Take any r > 0 and 3. > flmax(1,r/q). Fix a dilated cube P = AJ0([0, 1] n +k0)  e Qand  
let/5 be the union of neighboring dilated cubes to P, i.e., 

/5= ~ (P + aJ~ 
kEZ n, pA(k)<K 

where K is the same as in I .emma 8.2. Define sequences t = {fQ}QeQ and u = {UQ}QE Q by 

1 ~  Q c / 5 ,  IQI<-IPI, tQ = UQ = S O - tQ . 
otherwise, 

Then we have 

, r , r (Ur, x) Q for all Q �9 Q = (,.,x)Q + (Sr,)~)Q , r 

and hence there is a constant c (dependent on q and r) such that 

�9 q (Sr:3.)Q<C((tr,)~)Q'q-(u~.)qQ) 1/q for all Q e Q .  

Consequently, the estimate of ~ q - n o r m  of Sr*X will follow from the corresponding bounds on tr*,x 
and ur, x*. By the already proved Lemma 3.10 and p = q < cx~ we have 

1 fp 1 fp ~_~(Q _ot(t;k)Q~Q(X)) q dlz(x) 
/z('P) IQl___lel~ (IQ[-~(t~,x)Q~Q(X)) q dtx(x) < Ix(P----) QeQ 

-- * q ..-S-.7~m~l q C [ 1 [itr, X [[~q,q -< = JR ~ ([QI-CtISQIXQ(x))q dtz(x) I~(e) Ct~L. )[[t[[-q'q I~(P) n 
Qc/5, IQI<IPI c/, 

<-~ Y~ ~,,s , y~ (IQl-~ dl1~(x) <~ Cll$[lq~ q" 
P'c/5, [P'I=IPI IQI_<IP'I 

To estimate ur, x we must invoke Lemma 8.2. Namely, if for Q, Q e Q, IQI = Ia l  ~ IPI, 

Q fq P ~ 1~ and Q ~ / 5 ,  then (8.5) holds. Hence, 

1 
.(p) f? d.(x) 

IQl_<[PI 
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E 
Jo 1 

/ z (P ) .  ~ 
j = - o o  scale(Q)=j 

Iz(Q N P) 
(I Ql-a-1/2}u(21) q 

(1 -t-IQI-lpA(XQ IO.l=lo.I - xo 
J0 (2H)X 

< ~ ~ ~ (idetalJo-jpA(k)) x (lOl- -l/2[uol) q 
j=--O0 k~Z n scale(O)=j 

PA (k)>K Of 3(p+AJOk)~O 

Jo 
< (2H) x ~ ~ I det AI (~-x)(j~ L I 

j=-oo kez" pA(k)X (P q- AJok) 
PA(k)>K 

_< C l l u l l ~  _< Cllsllq~q �9 

O)(l Ol- -l/2lu o l) q] 
scale(Q)=j 

O N(P+AJO k)TAO 

Here, we used that Iz(P + AJ~ < CI det A[~(Jo-J)Iz(Q), the expression in the bracket is 
dominated by I lu[l~q by (3.11), and the fact that the series outside the bracket is finite. Combining 

the above estimates yields I Isr*,X Ili,~q < C llsllt~q, which completes the proof of Lemma 3.10. [] 

8.2. Proof  of  Lemma 3.11 

To prove Lemma 3.11 we need the following adaptation of Peetre's mean value inequality, 
see [20, Lemma A.4]. 

L e m m a  8.3. Let K be a compact subset of  ~n and r, ~ > O. Suppose that f E S' and 
supp f C K. For v e N, define sequences {aQ}QeQ and {bQ}QeQ by 

aQ = sup If(Y)[ bQ = sup{~nf If(Y)[ : scale(P) ---- scale(Q) - y, P n Q # 0}. (8.6) 
y~Q 

Then for sufficiently large V we have 

b* (ar*~)Q ~ ( r ,x)Q forall Q ~ Q, scale(Q) = 0 (8.7) 

with constants independent o f f  and Q. 

Proof. Assume that Q = [0, 1] n + k0, where k0 6 Z n. Initially, we will show that (8.7) holds 
for f E S with supp f C K. Take any P 6 Q with scale(P) = 0. By the mean value theorem 

ap < bp + diam (a -y ([0, 1]n)) sup {Vf(y)I < be + c(X-)-Vdp,  (8.8) 
y6P 

where dp = SUpyep IVf(y)l. In the last step we used that A is expansive, i.e., for y > 0, 

IA-Yx] < cO._)-• x E R n . 

Pick g e S such that supp ~ is compact and ~ (~) = 1 for ~ e K. Note that f = f �9 g and for 
arbitrary M > 0, [Vg(z)[ < C(1 + pA(Z)) -M, where C = C(M) > 0. Hence, i f r  > 1, then by 
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HOlder's inequality 1/r + 1/r ~ = 1, 

f 
dp <_ s u p /  I f (Y ) l lVg(x -  y)ldy 

xEP J~n 

( f R  ) l / r (  f ) l / r '  < C sup If(y)lr(1 -'}- pa(X -- y))-r(M-1)  dy (1 -~- pa(X -- y))-r' dy 
x~P n \ d~n 

< C (  ~ (aL ) r (1 - t -pA(Xp- -XL) ) - r (M-1 ) )  1/r . 

L~Q, scale(L)=O 

In the last step we split integration over cubes L --- I q- [0, 1] n, l E Z n, and we used the inequality 

pA(Xp -- XL) < H2(  2diampa ([O' l]n) + xEp,infyEL pA(X -- y))  . 

Hence, taking M > 2 + 3. yields 

Q 

< C ~ (aL)r(1 -q- pA(Xp -- XL))-r(M-1)(1 -1- PA(XQ -- Xp)) - z  
scal =0 scale(L)=O 

< C (aL)r(1 --[- pa(xQ -- XL)) -'~ ~ (1 -1- pa(Xp -- XL)) -r(M-1)+~" 
sc =0 scale(P)=O 

<_ . 

Here, we used the estimates 

Z ( 1  -a t- pa(k))  - l - 8  < 0~, 

keZ 

and 

8 > 0 ,  

H(1 + pA(Xp -- XL))(1 + pA(XQ -- xp) )  > (1 + pA(XQ -- XL)) �9 

Since f ~ $,  (ar* ,~) Q < (x~. Therefore, by taking sufficiently large V we have (ar,~.) Q < C (br, x ) Q' 
where the constant C is independent of f and Q. This shows (8.7) for f ~ S,  since the converse 
estimate (br*,x)Q < (a~,z)Q is trivial. 

To remove the assumption that f ~ S,  we apply a standard regularization argument. Let 
h e S satisfy supp/~ C B(0, 1), /~(~) > 0, and h(0) = 1. By the Fourier inversion formula, 
Ih(x)l < 1 for all x e ~n. For 0 < 8 < 1, let f~ (x) = f(x)h(Sx). Then supp 3~ C K + B(0, 1), 
f8 ~ S, Ifa(x)l _< I f (x) l  for all x, and f~(x) ---> f (x )  uniformly on compact sets as 8 ---> 0. 
Applying (8.7) to f~ and letting 8 ~ 0, we obtain (8.7) for a general f ~ S p. [ ]  

21/rltb * ~ +c(3._)-r'(d*,~)Q) <21/rHb * ~ a* < + cC (3._ Q )  Q _  ~1 r,~.lQ , -- I\ r,~.]Q 

Likewise, if 0 < r < 1, then it suffices to use r-triangle inequality to obtain the same estimate 
(d*r,~) O < C(a*r,Z) a. Thus, by (8.8), 
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Recall that in Lemma 3.11 we require that ~0 ~ S ( R  n) is such that supp~b is compact and 
bounded away from the origin. For any f ~ S~/79 and y ~ N we also recall that the sequence 
in f ( f )  = {infa(f)}o~Q is given by 

inf Q( f )  = 1011/2 sup{ inf ICJ * f (Y)I  :scale(P) = scale(Q) - F, e A Q ~ 0},  
y~P 

where j = -scale(Q) and Q ~ Q. Under these assumptions we have the following lemma. 

L e n u n a S . 4 .  Suppose that t~ e lR and O < p, q < oo. Then for any F > O we have 

II inf(f)ll~,q(A,~) < Cllfll~p.q(R.,a,g)(~) , 

where C is independent o f f  ~ S '  /P .  

Proof .  For fixed F > 0 define the sequence s = {se} by 

se = Iel 1/2 inf [r * f (y ) [  for P E Q, scale(P) = - i  . 
yEP 

Clearly, we have 

[Ql-1/2 inf Q( f )  = sup {lel-1/2lse[ : P N Q ~ 0, scale(P) = scale(Q) - y } .  

Fix j ~ Z and Q ~ Q with scale(Q) = - j .  Suppose that P1, P2 ~ Q are such that 

s ca l e (P1) - - - - - sca l e (P2)=- j -F ,  Yl ~ e l f ) Q ~ 0 ,  y 2 ~ P 2 N Q ~ 0 .  (8.9) 

Then by (2.2) 

pA(XP1 -- xP2) < H2(pA(Xp1 -- Yl) "q- PA(Yl -- Y2) q- PA(Y2 -- XP2)) < CIQ[ . 

Then for any 0 < r < oo and Z > 1, 

)X/rIs* Sp 1 <_ (1 + pA(Xel - xPz)/IP1 ~ r, xJe~ <- Cldetal•  �9 

Combining this with (8.9) yields 

inf Q(f)~Q < CldetAI • y ~  (Sr*,j~)pX P . 

scale(Q)=-j P~Q, scale(P)=-j-y 

Choosing r > 0 and ), >/3 max(I, r/q,  r /p )  as in Lemma 3.10 we have 

II inf(f)ll~,q < C[ det A[ r(x/r-~)ll~[[~,q --- CI det al• 

<C[detalY(Mr-cO ( i~ez(]detal iCl l~i-~ '*f l )q)  l/q LP(Ix) 

= C[ det AlrX/rllfll~p,q(R,,a,u)((o ) o 

Note that the last estimate works also in the case p = oo with ~p'q and ~p'q norms replaced by 
their localized analogues ~ q  and ~ q .  [ ]  

Lemma 3.11 is now a simple consequence of Lemmas 8.3 and 8.4. 
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Proof  o f  Lemma 3.11. The estimate 

Ilfll~,q(Rn,a,~)(r < II sup(f)ll~p,q(A,~) 

is easily verified from the definitions. 

Fix any Q0 ~ Q with scale(Q0) = - j ,  j ~ Z. Define g(x) = (~j �9 f ) (A-Jx ) .  Note that 
supp~ C K := supp ft. Define sequences {aQ} and {bQ} by (8.6) with f replaced by g. A direct 
calculation shows that 

aaJ Q - - - I Q l - 1 / 2 s u p Q ( f ) ,  baJ Q = IQl-1/2inf Q(f),  Q E Q. 

Hence, by Lemma 8.3 applied to the cube A j Qo, 

( sup(f )*,x)Q0 1/2 �9 = [Q01 < claoll/2(b~,x)aJQo (ar, x)aJQo = c(inf(f)~,X)Qo . 

Since Q0 E Q is arbitrary, by choosing r > 0 and 3. > 1 as in Lemma 3.10 we have 

II sup(f)]l~,q(a,~) <_ cll inf(f)ll~,q(a,. ) �9 

Combining the above with Lemma 8.4 completes the proof of Lemma 3.11. []  
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