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In Polytopes, Small Balls about Some 
Vertex Minimize Perimeter 

By F r a n k  M o r g a n  

ABSTRACT. In (the surface of) a convex polytope pn in ~n+l, for small prescribed volume, geodesic 
balls about some vertex minimize perimeter. 

1. Introduction 

Even in smooth Riemannian manifolds, there are relatively few examples of explicitly known 
regions which minimize perimeter for prescribed volume (see [ 16, 13.2], [ 12]). One general result 
is that for small volume, a perimeter-minimizing region is a nearly round ball where the scalar 
curvature is large ([14], [19, Theorem 2.2], or in 3D [23, Theorem 18], with [4]). 

For singular ambients, one result in general dimensions is that in smooth cones of positive 
Ricci curvature, geodesic balls about the apex are perimeter minimizing [20, Corollary 3.9]. 
Examples of Cotton et al. [8, 3] include the surface of the cube in ~3, with perimeter-minimizing 
regions as pictured in Figure 1. In particular, for small prescribed area, geodesic balls about a 
vertex minimize perimeter. The analogous result in higher dimensions has remained open (see [20, 
Remark 2.3]). Our Theorem 3.8 proves that: 

In a polytope pn in ]~n+l, f o r  small prescribed volume, geodesic balls about 

some vertex minimize perimeter. 

(Note that by "polytope" we refer to the boundary of the compact, convex solid body.) For n > 3, 
pn has singularities of positive dimension, and the perimeter-minimizing spheres pass through 
these singularities. 

1.1. The proof 

The proof has the following elements. Let C be the tangent cone at a vertex, with link a 
spherical polytope Qn-I  in S n. 
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(1) By the Levy-Gromov isoperimetric inequality, the isoperimetric profile for Q is bounded 
below by the isoperimetric profile for S n-1. This step requires smoothing (Lemma 2.1) 
and approximation. 

(2) By an isoperimetric comparison Theorem 3.2 for products and cones (Ros after Barthe 
and Maurey), balls about the apex of C are perimeter minimizing (Theorem 3.3). 

(3) For perimeter-minimizing surfaces in pn with prescribed volumes approaching zero, 
strong control of mean curvature after Almgren [1] (Lemma 3.5) is obtained by con- 
sidering a limit of renormalizations to unit volume. A volume concentration argument 
shows that the limit is nonzero. 

(4) It follows from (3) that the sum of the diameters of components of perimeter-minimizing 
regions is small (Lemma 3.6). The proof involves a generalization of lower mass bounds 
for minimizers of elliptic integrands to allow volume constraints. As a result we may 
assume that components lie in a neighborhood of the vertices. 

(5) By (2), we may assume that they consist of balls about vertices. A single ball is best. 

FIGURE 1 Perimeter-minimizing regions in the surface of the cube [3, Figure 1]. 

1.2. Solid polytopes 

Our results also hold in the less singular category of solid polytopes (see Section 3.11). 

2. Smoothing 

The following lemma will be used in the proof of Theorem 3.3. 

L e m m a  2.1 (Smoothing Lemma). Given a (convex) polytope Qn-1 in ~n, there are smooth 
convex hypersurfaces Qe which converge smoothly to Q off the singular set with volumes con- 
verging to that of  Q. 

Proof. The corresponding result in ]R n is standard and easy (see, e.g., [7, Note 1.3]). Indeed, 
fix an origin in R n inside Q, take the convex function F which is the fraction of the distance from 
the origin to Q along a straight line, let F, be a smoothing of F by symmetric convolution, and 
let QE = {FE = 1}. For convolution, start with a nice smooth symmetric function 9 supported in 
(0, 1) with integral 1 and let ~0~(x) = tp(x/e)/e. 

In S n, we may assume that Q lies in the northem hemisphere H, where distance from the 
north pole is a convex function. Take the convex function F on H which is the fraction of the 
distance from the north pole to Q along a geodesic. Choose ( _< e such that on a ( neighborhood 
of {F = 1 - e], 1 - 2e _< F < 1 - e. Let Fe be the convolution of F with ~0~, which is convex. 
Let Qe = {F~ = 1 - 2e}. [ ]  
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3. Isoperimetrie regions 

3.1. Definitions 

The cone C over a subset M of the unit sphere in Euclidean space is defined as 

C = {tx : x E M,  t > 0 } .  

For a general smooth Riemannian manifold M, the cone (minus the negligible apex) may be 
defined as the warped product (0, c~) x f  M with f ( t )  = t, i.e., as (0, cx~) • M with the metric 

ds 2 = dt  2 4- t 2 dm 2 . 

A density on a Riemannian manifold is a positive function used to weight volume and 
perimeter (see [17]). Although, we will use only constant densities, Theorem 3.2 holds for 
variable smooth densities. For the more general context of "mm spaces" (metric spaces with 
measures), see Gromov [11]. 

The isoperimetricprofile I ( M ) ( V )  of a space M gives the minimum (or infimum) perimeter 
required to enclose volume V. 

The following useful theorem of Ros says that isoperimetric comparison of a manifold 
M2 with the sphere is preserved under product with another manifold M1. It follows earlier 
comparisons with Gauss space by Barthe and Maurey. The idea is Schwarz symmetrization: 
Compare a region in a product M1 • M2 with the region in M1 • S n obtained by replacing vertical 
slices (contained in M2) with (n - 1)-balls in S n. 

Theorem 3.2. (Isoperimetric Comparison Theorem for Warped Products [23, Theorem 3.7]). 
Le t  M1, M2 be smooth Riematmian manifolds with densities, with I M21 = IS n I. Consider smooth 

warped products M1 • f Sn, M1 • f M2. f f  l (M2) >_ I (Sn), then I (M1 x f M 2 )  > I (M1 x f sn) .  
In particular, i f  for  some region R C M1 the product R x S n is minimizing,  so is R x M2, uniquely 

i f  I (M2) > I(S n) except  at the endpoints. 

R e m a r k .  Although, Ros does not consider warped products, the proof is the same (and the 
uniqueness statement follows immediately from the proof). 

Theorem 3.2 provides an immediate proof of a theorem of Morgan and Ritor6. Our gener- 
alization in part B requires our Smoothing Lemma 2.1. 

Theorem 3.3. 
(A) [20, Corollary 3.9]. Forn > 3, let  C be a cone over a smooth, closed, connected Riemannian 
manifold M n-  1 o f  Ricci  curvature at least n - 2. Then geodesic bails about the apex are pedmeter  

minimiz ing for given volume, uniquely unless C = R n. 

(B) Likewise,  for n > 2, let  C be the cone over any (convex) spherical geodesic polytope 

Qn-1 c S n . Then geodesic balls about the apex are perimeter minimizing. 

R e m a r k .  A similar, trivial result is that in R n modulo a finite group F of isometries leav- 
ing a point p fixed, geodesic balls about p are perimeter minimizing, equivalent to the obvious 
statement that among F-invariant objects in ~n, geodesic balls about p are perimeter minimiz- 
ing. This observation applies to any perimeter-minimizing geodesic ball about a point p in any 
Riemannian manifold. 
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P r o � 9  o f  Theorem 3.3. Renormalize M with constant density to make IMI = Isn-ll. By the 
curvature hypothesis, the Levy-Gromov isoperimetric inequality ([10, 2.2], or [23, Section 2.5]) 
says that the isoperimetric profiles satisfy 

I (M)  > I (Sn-1) .  (3.1) 

Note that C is the warped product (0, oo) x f  M with f ( t )  = t, and that (0, cx~) x f  S n-t  is just 
lI~ n. Hence, by Theorem 3.2, since balls about the origin are perimeter minimizing in N n, balls 
about the apex are perimeter minimizing in C. ff there is another minimizer, then equality holds 
nontrivially in Equation (3.1), and M = S n- l ,  i.e., C = R n. 

Likewise, given any (convex) spherical geodesic polytope Qn-1 C ~3 n with n _> 3, given a 
volume V, use Lemma 2.1 to obtain a smoothing Qe with sectional curvature at least 1 and hence 
Ricci curvature at least n - 2 (and normalized by a constant density to have the same volume as 
Sn-1). Then as before 

I (Ce) > I (N n) . (3.2) 

Hence, 
I (C) (V)  > lim sup I (C~) (V) > liminf I (CE) (V) > I (R n) (V) ,  

and balls around the apex are perimeter minimizing. 

For the easier case n = 2, when all cones are isometric to circular cones, geodesic balls about 
the apex are well known to be uniquely perimeter minimizing. See [12, Section 8]; alternatively, 
apply Theorem 3.2 after noting that since I QI < IS 1 I, after renormalization I (Q)  > I(S1). [ ]  

The following Lemma 3.4 is useful in obtaining uniform estimates in the proof of the main 
Theorem 3.8. 

L e m m a  3.4. Fix a simplex A in R n. For each integer N >_ 2, slice A by N equally spaced 
hyperplanes parallel to each face, the first containing the face, the last through the opposite vertex. 
Among the many pieces of  A which arise under such slicing for all such N, at most n shapes 
occur (up to translation and homothety). 

R e m a r k .  In ~;~2, slicing a triangle yields two shapes: The triangle and its central inversion 
(an upside-down triangle). In ]R 3, slicing a tetrahedron yields three shapes: The tetrahedron, its 
inversion, and an octahedron (fully truncated tetrahedron). 

P r o o f  o f  L e m m a  3.4. 
normals al q- . . .  + an+l = O, normalized so that 

ai �9 aj = -- 1, except that ai �9 ai = n .  

Such a regular simplex A is given by 

A = { -1  < ai �9 x < 0 ,  except 

Our slicing yields pieces of the form 

{ ~ k i - 1  except k n + l - 1  -- < a i o x < - - - - - ~ ,  N < a n + l O X <  

or by scaling and replacing kn+l by -kn+l + 1, more generally 

Sk -= {-k i  < ai o x < - k i  + l : ki 6Z} . 

By a linear transformation, we may assume that A is regular, with unit 

O<an+l � 9  < 1} . 

(3.3) 

kn+l : 1 < ki < N I  
N _ _  ~ , I 

(3.4) 
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By Equation (3.3), translating Sk by al just adds ( - n ,  1, 1 . . . . .  1) to k, and similarly for each ai. 
Hence, translations generate {Y-~ ki = 0}, and the shape of Sk is characterized by ~ ki. By 
summing Equation (3.4) over i, we see that for nonempty Sk, 

O< E k  i < n + l ,  

yielding at most n different shapes, as asserted. [] 

L e m m a  3.5. Locally, let S~ be a weakly convergent sequence o f  m D isoperimetric hypersur- 
faces without boundary, with a nonzero limit. Then there are constants C1, d > 0 such that for 
ot large, in any d-ball B, S~ minimizes area plus C1]VI in comparison with other surfaces in B 
with the same boundary enclosing net volume V with Sa. 

R e m a r k s  a n d  defini t ions.  This lemma holds in the general context of rectifiable currents [16], 
with weak convergence in the fiat norm or as measures. Isoperimetric surfaces satisfy an equilib- 
rium condition of"weakly constant mean curvature" H, which means that for any smooth family 
of diffeomorphisms for which the initial rate of change of enclosed volume d V/dtlo is nonzero, 
the derivative of area A with respect to volume satisfies 

dA = m H .  

The conclusion of the lenuna is a kind of uniform mean curvature bound. The limit ambient may 
have singularities, as long as it is a smooth manifold at some point of S. 

P r o o f  o f  L e m m a  3.5. Choose 81 > 0 small enough so that there are two smooth all-balls 
about points of the limit S such that any third 81-ball B is disjoint from one of them, say B0. 
Let ~t  be a smooth family of diffeomorphisms supported in the interior of B0 such that for 
S, dV/dt[o = 1; let A0 = dA/dt[o. Choose to > 0 so small that for all - t 0  _< t _< to, 
.9 <_ d V /d t  < 1.1 and [dA/dt[ <_ [A01 + 1. Consequently, we may assume that for all S~, for all 
-.9to _< V _< .9to, such diffeomorphisms of S,~ alter enclosed volume with S~ by V and increase 
at most [V[ ([Ao[ + 1)/ .9 = CI V. Choose d < 81 such that a d-ball has volume less than .9to. 

Now let T be any surface which differs from S~ only in a d-ball B. Obtain T f by altering T 
in B0 so that it bounds net volume 0 with Sa, such that its area satisfies 

IT ' [  < ITI + C E l V I  . 

Since S,~ is isoperimetric, 
IS~l _< ITll _ ITI + C21VI, 

as desired. [ ]  

The following lemma is a modification of a standard "monotonicity" argument (see [16, 
Ch. 9]). 

L e m m a  3,6. Let C be an nD (convex) polytopal cone & ~n+l. Given C1 > O, there is an 
a > 0 such that the following holds. Let S be an (n - 1)-dimensional surface (rectifiable current) 
in a closed ball B o f  radius 1 about one o f  its points, with boundary contained in O B. Suppose 
that S minimizes area plus C1] V] in comparison with other surfaces in B with the same boundary 
enclosing net volume V with S. Then the area orS  is at least a. 

Proof.  Choose a vector in the interior of the cone. Projection f onto the orthogonal hyperplane 
H is a bijection of C with H, which for some C2 > 0, shrinks distance, area, and volume by a 
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factor of at most C2. In particular, there is a 6 > 0 such that the projection of a unit ball about a 
point in C contains a &ball about the projection of the point. 

Given S and a point in S, let T and p denote their images under f .  For r _< 3, let Tr = 
T n B(p ,  r), let Sr denote the preimage of Tr, and let g(r) denote the area of Tr. For almost all 
r, the boundary of Tr has area at most g'(r) (see [16, Chapter 9]). By the isoperimetric theorem 
for the ball, this same boundary bounds a surface T r of area 

Ir'l -< otgt (r) (n-1)/(n-2) , 

for some isoperimetric constant ot depending only on dimension; together with Tr, T t bounds a 
region of mass at most 

/~0 [g(r)  q- otg'(r) (n 1)/(n 2)] n/(n-1) <_ flg(r)n/(n-1) _[_ flgt (r)n/(n-2) 

for some isoperimetric constant 130 and constant/~. The preimage S' = f - 1  (T p) has area 

Is'l -< c= [r'l _< C20tgt(r)(n--1)/(n-2); 

together with St, S r bounds a region of mass at most C2flg(r) n/(n-1) + C2flg~(r) n/(n-2). By the 
minimizing property of S, 

ISrl < [S'] -4- C1C2flg(r) n/(n-1) + C1C2flg'(r) n/(n-2) 

<_ C20tgt(r) (n-1)/(n-2) -k- C1C2flg(r) n/(n-1) -4- C1C2flg~ (r) n/(n-2) . 

Since g(r) < Iarl, for some C3 > 0, 

g ( r ) ( 1 - C 3 g ( r )  1/(n-l ,)  <_ C3[g' (r)  (n-l)/(n-2) -k-g'(r)n/(n-2)] . 

We may assume that the coefficient o fg ( r )  for any r < 1/2C2 < 1 is at least 1/2, since otherwise 
we have a lower bound as desired for g(r). Let 

A = { 0 < r  < l : g ' ( r ) <  1} . 

We may assume that IAI > 1/2, since otherwise we immediately obtain a lower bounded as 
desired for g(r).  On A, 

g(r) < C4gt(r) (n-1)/(n-2) . 

Since g is monotonically increasing, integration yields g (r) >_ C5 r n-  1 again yielding the desired 
lower bound for g(1/2C1) and hence for ISI. [ ]  

Corollary 3.7. Given a polytope pn in ]~n+l and C1,8 > O, there is an a > 0 such that the 
following holds. Let  S be an (n - 1)-dimensional surface in P which in any $-ball B miniraizes 
area plus CllVI in comparison with other surfaces in B with the same boundary enclosing net 
volume V with S. I f  the unit bali B(p ,  1) about a point p in S lies in the cone at a vertex o f  P, 
then the area o f  S fq B(p ,  1) is at leasta. 

P r o o f  By scaling we may assume that 8 = 1. Lemma 3.6 applies to the cone over each vertex 
of P. Let a be the minimum of the corresponding aPs. [ ]  

Gnepp, Ng, and Yoder [8, 3] proved that in the surface of a cube or regular tetrahedron, 
for small prescribed area, balls around a vertex are perimeter minimizing. The same interesting 



In Polytopes, Small Balls about Some Vertex Minimize Perimeter 103 

question in higher dimensions has remained open (see [20, Remark 2.3]). The following theorem 
answers the question affirmatively. (Recall that by "polytope" we refer to the boundary of the 
compact, convex solid body.) 

Theorem 3.8. For n > 1, let pn be a polytope in ]~n+l. For small prescribed volume V, 
geodesic balls about some vertex are perimeter minimizing. 

R e m a r k .  Except for polyhedra in R 3 (n = 2), our proof does not provide uniqueness, because 
of the use of smoothing and approximation. Of course uniqueness fails for polygons (n = 1). 

Proof.  Let R be a perimeter-minimizing region in P of small volume V. We will need some 
concentration of volume. Partition P into simplices and slice each simplex into small polytopes 
Ki by N equally spaced hyperplanes parallel to each face. By Lemma 3.4, there are only finitely 
many shapes for the Ki (independent of N, up to homothety) and for some positive constant/~ 
(independent of N) we may choose N such that 

~ V  ~ lgil <_ V . 

We claim that there is a constant ~ > 0 depending only on P such that some K satisfies 

IR fq KI > ~V.  (3.5) 

To prove this claim, first note that the least area A for small volume V satisfies A < C V  (n-1)/n . 

We may assume that ~ < 1/2 and IR M Kil < IKil/2. Because there are only finitely many 
shapes for the Ki, by the relative isoperimetric inequality [16, 12.3 (1)], there is a single constant 
y such that 

~'lg n Kil 
IOR M Ki[ >_ y [R (q Ki[ (n-1)/n > 

max IR O Kj[ 1/n " 

Summing over i yields 

Hence, some K satisfies 

A > • 1/" 
max I R M g j l  1In ~ y v / a  > ) / v 1 / n / c  . 

IR n KI _ 8V 

with 8 = y n / c n ,  proving the claim (3.5). 

To complete the proof of the theorem, let R~ be a sequence of perimeter-minimizing regions 
with Va small and approaching 0. For each Ra use the claim to choose K~ with/~ Va < I K~ I < 
Va and 

IRa f3 ga l  >_ SV~ >_ $ Ig~l �9 

Rescale up to 1 = Vu > [KaI > ~ with Ka centered at the origin. By compactness [16, 9.1], we 
may assume that the Ra converge to a perimeter-minimizing region R with 1 > IRI >/~8 > 0 
lying in the tangent cone at a vertex or the most complicated type of point that stays within a 
bounded distance of the origin. By Lemma 3.5, there are constants C1, 31 > 0 such that for u 
large, in any $l-ball B, Sa = 8Ru minimizes area plus CllVl. By Corollary 3.7, the sum of 
the diameters of components of Su and hence of the Ra is bounded. Since the polytope is being 
scaled up, by translation of components, we may assume that R,~ is contained in the union of 
disjoint balls about the vertices. By Theorem 3.3 (B), we may assume that Ru consists of balls 
about vertices v. Since for such a ball, A = cv V t with t = (n - 2)/(n - 1) < 1, by the concavity 
of V t, a single ball is best. [ ]  
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R e m a r k  3.9. A more general but more technical version of the concentration argument at the 
beginning of the proof of Theorem 3.8 uses bi-Lipschitz equivalence with R n as in the proof 
of Lemma 3.6. The small polytopes Ki may then be replaced by cubes in ]~n. This approach 
obviates the need for our cute Lemma 3.4. 

R e m a r k  3.10 (Nonconvex polytopes). Theorem 3.8 fails for general "nonconvex poly- 
topes." For example, consider two tall skinny pyramids in R 3, attached at the apices. By 
Theorem 3.8, for small volume, in each pyramid separately a ball about the apex is perime- 
ter minimizing. Hence, in their union, those same sets are perimeter minimizing. But balls about 
the common apex are unions of such sets and have more perimeter. 

For n = 2, Theorem 3.8 holds for nonconvex polyhedra locally homeomorphic to ~2, for 
which the tangent cones are all isometric to circular cones. The only additional ingredient for the 
proof is that in a cone with cone angle greater than 2zr, Euclidean discs (away from the apex) are 
perimeter minimizing. This fact follows, for example, from Theorem 3.2. 

For n > 3, Theorem 3.8 fails even for nonconvex polytopes homeomorphic to the 3-sphere. 
For example, let K 2 be the surface of a unit cube in ~3 = {x ~ R 4 : x4 = 1 }, surmounted by a tall 
skinny tetrahedron with apex p. Note that in the cone 0 x K 2 over K 2, for small volume, a ball 
about a point q in 0 x {p} has less perimeter than a ball about 0, the apex of the cone, because of 
the small solid angle. To get the counterexample polytope p3, truncate the cone at {x4 = 1} and 
surmount it on the surface of a big hypercube in ]I~ 4. A ball about q still has less perimeter than a 
ball about any vertex of p3, essentially because the exterior of K in l~ 3 has no small solid angles. 

R e m a r k  3.11 (Solidpolytopes).  The results of this article apply to the nicer category of solid 
polytopes pn C ]R n, which have no interior singularities. Theorem 3.3 with uniqueness and proof 
go over without smoothing to solid spherical polytopes Qn-1 c S n- l ,  a result apparently first 
proved (without uniqueness) by Lions and Pacella ( [ 15, Theorem. 1.1], see also [ 18, Remark after 
Theorem 10.6]). Likewise, Theorem 3.8 with uniqueness and proof go over to solid polytopes 
pn C ]~n. 

Theorem 3.2 also has the following general consequence. 

Theorem 3.12. Let M n be a compact C 1 submanifold o f ~  n+ l (with or without boundary), or 
polytope (convex or not, solid or boundary, but compact), or any compact Lipschitz neighborhood 
retract. Then in the cone over a small homothetic copy of  M, balls about the apex are isoperimetric. 

P r o o f  The isoperimetric profile for M satisfies 

I (M)(V)  >_ cV  (n-1)/n 

for 0 <_ V <_ tM[/2 ([6, 4.4.2 (2)]; see [16, 12.3]). Hence, the isoperimetric profile for a small 
homothetic copy M' of M, renormalized with constant density to make ]M'] = ISn], satisfies 

I (M' )  > I (S n) , (3.6) 

with equality only at the endpoints. Hence, by Theorem 3.2, in the cone over M', balls about the 
apex are uniquely perimeter minimizing. [ ]  

R e m a r k .  Similar results were already known for products M x ~ [5, 2.11] and apparently 
M x R n [9]. Such results follow from Theorem 3.2 for M x R and M • S 1 by comparison with 
results on S n x ]~ [21] and S n x ~1 [22]. 
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V. Bayle pointed out to me that Berard et al. [2, Theorem 2] give explicit sufficient conditions 
on the scaling down of M for Equation (3.6) and hence Theorem 3.12 to hold, in terms of the 
Ricci curvature, the diameter, and the dimension of M. 

Conjecture 3,13 (M. Hutchings [13, Conjecture 3]). Let M, N be compact Riemannian 
manifolds. Then for fixed volume fraction, in the product of  a small homothetic copy of  M with 
N, an isoperimetric region is the product of  M with an isoperimetric region in N. 
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