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ABSTRACT. In this article the jump problem for monogenic functions (Clifford holomorphicity) on the 

boundary of  a Jordan domain in Euclidean spaces is investigated. We shall establish some criteria that 

imply the uniqueness of  the solution in terms of  a natural analogue of  removable singularities in the plane to 

Rn + l (n >_ 2). Sufficient conditions to extend monogenically continuous Clifford algebra valued functions 

across a hypersurface are proved. 

1. Introduction 

Let y be a closed Jordan curve in C which bounds a bounded domain A+ and its complement 
A_ = C \ (A+ U y). The jump problem on y involves seeking a function ~b(z) holomorphic in 

\ y from the boundary condition 

fb+(t) - fb-(t) = f ( t ) ,  t ~ y; r = O. (1.1) 

Here ~b+(t) and ~b-(t) represent the continuous limit values of r at a point t as this point is 
approached from A + and from A_, respectively, and f (t) is a continuous function (jump function) 
specified on y. This formulation of the jump problem is termed continuous, i.e., the solutions 
including their boundary values on F are continuous. 

The question of looking at a natural multidimensional analogue of such a boundary value 
problem is closely connected with the problem of generalizing holomorphic functions theory in 
the plane to higher-dimension. 

This article deals with a higher dimensional analogue of the jump problem (1.1) stated within 
the Clifford analysis setting. 

It is well known that Clifford analysis has become, in recent years, a powerful mathemat- 
ical tool for the treatment of boundary value problems in domains over Euclidean spaces of 
higher dimension. 

With the help of the Clifford analytic methods the literature has achieved essential results 
in solving some type of principal boundary value problems, which have a lot of applications in 
mathematical physics and engineering. 
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Our main interest lies in the study of the existence of the solution of the problem, but 
also we analyze sufficient conditions to guarantee the uniqueness of the solution under certain 
hypotheses. To this end we first derive a Dolzhenko type theorem for a class of monogenic 
functions in Euclidean spaces, i.e., within the framework of Clifford Analysis. The result thus 
obtained implies several versions of a higher dimensional Painlev6 Theorem. 

In [14] Dolzhenko gave a geometrical characterization of sets of removable singularities 
for classes of holomorphic functions in the plane, in particular, for functions belonging to the 
H61derclass. Dolzhenko's theorem includes the century-old Painlev6 theorem which characterizes 
geometrically removable sets for continuous functions in C. 

2. Preliminaries 

The real Clifford algebra associated with Rn endowed with the Euclidean metric is the 
minimal enlargement of Rn to a real linear associative algebra R0,n with identity such that x 2 = 
- I x l  2, for any x ~ ]~n. 

It thus follows that if {ej } j = l '  is  the standard basis of]~ n, then we must have that ei e j  + e j  ei = 

- 2 8 i j .  Every element a e ~,0,n is of the form a = ~-,ac_N aAeA, N = {1 . . . . .  n}, aA ~ JR, 

where eo = e0 = 1, el j} = e j ,  and ea : e~l " "  e~k for A = {/~1 . . . . .  ilk} where/~j e {1 . . . . .  n} 
and ~1 < "-" < ilk. The conjugation is defined by ~ := ~-,A aA~A, where 

eA : =  ( - -1 )ke i k  " " e i 2 e i l ,  if eA = e i le i  2 . . . e i  k �9 

~(k) 
Put ~O,n ---- sPanR(eA : IA[ -- k). Then clearly ~(k) is a subspace of]~o n (the k-vectors in this 
class) and 

rt 
~(k) 

R0,n = ~ ~aq,n . 
k=0 

The projection operator of ]R0,n on ~O,n is denoted by [ ]k and R and ]R n will be identified with 

R(o) and ~ ( 1 )  respectively. 0,n l~0,n- 

In what follows an element x = (xo, x l  . . . . .  Xn) ~ Rn+l will be identified with 

n 
1~(0) ~(1) 

x = x o - l - ~ _ x j e j  ~- ~O,n I~'lt~'O,n �9 
j = l  

(0) (1) 
Elements of ]R0, n ~ R0, n are often called paravectors. Notice that for x ~ ]I~ n+l , we thus have that 

x x  = x x  = Ixl 2. 

By means of the conjugation, R0,n may be endowed with the natural Euclidean norm la 12 = [aa-]0. 
An algebra norm is defined by taking lal g = 2 n lal 2. 

We consider functions u defined in some subset ~2 of IR n+l with values in lR0,n. These 
functions may be written as 

u ( x )  = ~ u A ( x ) e A ,  

A 

where UA are R-valued functions. 
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We say that u belongs to some classical class of functions on [2 if each of its components 
UA belongs to that class. 

In [12] (see also [13]) a theory of monogenic functions with values in Clifford algebras is 
considered which generalizes in a natural way the theory of holomorphic functions of one complex 
variable to the (n + 1)-dimensional Euclidean space. Monogenic functions are null solutions of 
the generalized Cauchy-Riemann operator in ~n+l:  

n 

0x := ~-~ ej~xj �9 
j=0 

It is a first order elliptic operator whose left and right fundamental solution is given by 

1 Y ~n+l 
e ( x ) - - - - - -  x ~  \ { 0 } ,  

On+ 1 Ixl "+1'  

where trn+l is the area of the unit sphere in R n+ 1. If  f2 is open in l~ n+ 1 and u ~ C 1 (fl), then u is said 
to be left (resp. right) monogenic in f2 if 0x u = 0 (resp. u 0x = 0) in ~2. Furthermore, for a non- 
open set E C l~ n+ 1 we call u monogenic in E if it is monogenic in some open neighborhood of E. 

Notice that the fundamental solution e(x) is both left and right monogenic in R n+l \ {0}. 
Other basic examples of monogenic functions are obtained by means of the Cliffordian Cauchy 
transform. Assume that f2 = f2+ is a bounded domain in l~ n+l with a sufficiently smooth 
boundary F := 0f2+. Then for each continuous function u in 1-', its Cliffordian Cauchy transform 
Cru is formally defined by 

(Cru)(x) := f e(y - x)x(y)u(y)dT-[n(y), x r F ,  

F 

and its singular version, the singular Cauchy transform Sr  (also called the Hilbert transform) on 
F is given by 

2 f e(y - x)x(y)(u(y)  - u(x)) dT"tn(y) + u(x) ,  x ~ F .  (Sru)(x) 
F 

Hereby x(y) is the outward pointing unit normal to V at y ~ F defined according to Federer [17] 
and the integral in S r  is taken in the sense of the principal value. 

A measure function is an increasing continuous function h(r), r > O, such that h(0) = 0. 
The Hausdorff measure of the set E C R n+l is given by 

} ~h(E)  := lira in f /~-"h(d iam Bk): E C U Bk, diamBk < ~ , 
8--->0 [ k=l k=l 

and the inner Hausdorff measure by 

(E) ---- sup{7"Lh (K)},  

where the supremum is taken over all closed sets K C E. 

On rS For h (r) = ~-g (s > 0), where On represents the volume of the unit ball in R n, we write 7-/s 

(_~_s) instead of 7-th ~(-~-h). Note that ~n+l  coincides with the Lebesgue measure s in R n+l. 
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Let us recall the definition of Hausdorff dimension. 

Definition 2.1. 
defined by 

Let K be a bounded set in ~n+l. The Hausdorff dimension a l l (K)  of K is 

a n ( K )  := inf {s > 0 : 7~S(K) < o~} . 

If  an n-dimensional set K C ]R n+l has Hausdorff dimension aH (K) > n, then it is called a fractal 
set in the sense of Mandelbrot. 

For more details concerning the Hausdorff measure and dimension we refer the reader to [ 15, 
16, 26]. 

The following obvious properties of the Hausdorff dimension will be useful later: For s < 
a n  (K), 7/s (K) = ~ while 7/s (K) = 0 when s > a n  (K). 

3. Upper Minkowski dimension 

Let K be a compact set of ~n+l and suppose R0 denotes a grid consisting of (n + 1)- 
dimensional cubes with sides of length 1 and vertices with integer coordinates. The grid Rk is 
obtained from R0 by division of each of the cubes in R0 into 2 (n+l)k different cubes with side 
length 2 -k. Denote by mk(K) the number of cubes of the grid Rk which intersect K. Then 
the value 

a (K)  := l i m k _ ~  l~ ink(K) 
k 

is the upper Minkowski dimension of the set K. The quantity a (K)  is also known as the fractal 
dimension, box dimension, cell dimension, etc. 

Throughout the article we denote by F a compact topological surface which is the boundary 
of a Jordan domain f2 + in ]~n+l (see [20, 21]) and by f2- the complement of f2 § U F. The 
boundary of f2 + is not required to satisfy the condition 7C(F)  < ~ ,  when it is the case, this will 
be indicated. 

Definition 3.1. A surface F is called an n-rectifiable surface if 7-/n(F) < ~ and it is the 
Lipschitz image of some bounded set of ]R n. 

The following lemma is probably well known, but for the reader's convenience we shall 
consider its inclusion in our article. 

L e m m a  3.2. The upper Minkowski dimension of a surface F has the following properties: 

(i) n _< aH(r ' )  _< a (F)  < n + 1. 

(ii) / f F  is an n-rectifiable surface then all(l-') = a (F)  = n. 

Proof. The first assertion follows from the fact mk (F)2 -(n+t)k < m0(F) and from the defini- 
tion of the Hausdorff dimension. 

Now let F = p(G), where G is a bounded set oflR n and p is a Lipschitz function, i.e., there 
exists c > 0 such that [p (x) - p (y) [ < c[x - y [ for all x, y ~ ~n (c is called Lipschitz coefficient). 

Let Q be an n-dimensional cube such that G C Q, let d be the diameter of Q and put 
8k := 2-k/c, where c is the Lipschitz coefficient of p. Then Q can be divided into (Ld/~kJ + 1) # 
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n-dimensional cubes a J  of diameter not greater than 3k. Here [xJ stands for the largest integer 
less than or equal to x. Therefore p (QJ (-I G) intersects not more than 2 n+ 1 cubes of the grid Rk, 
whence 

mk(F) < 2n+l([d/Skl  + 1) n < C 2  nk , 

where the constant C only depends on 1-'. This completes the proof. [ ]  

Notice that property (ii) shows that the upper Minkowski dimension and Hausdorffdimension 
can be equal, although this is not always valid. 

4. Boundary values of the Cauchy transform on HOlder spaces 

If  E is a bounded subset of R n+l, and u is a bounded ~0,n-valued function defined on E we 
define the modulus of continuity of the function u as the nonnegative function w(u,  t),  t > O, 

by setting 

w ( u , t ) =  sup { [ u ( x ) - u ( y ) [ :  x, y 6 E } .  
Ix-yl<t 

Let v be a real number with 0 < v < 1. We call a function u defined on E C sn+ l  H61der 
continuous with exponent v in E (Lipschitz continuous for v = 1) if 

o~(u, t) 
sup - -  < c~z, 

O<t<_~ tv 

where 8 is the diameter of E. Moreover, the set of H61der continuous functions on E is denoted 
by C~ (0 < v _< 1). With the norm 

w(u, t) 
Ilul[~ :=  llull~ + sup - - ,  

0<t<8 tv 

where Ilu II~ is the sup norm, the space C ~ (E) becomes a real Banach space. 

Zygmund class, or quasismooth class, has long been used in one complex variable functions 
theory and on a natural analogue in higher dimension (several real variables) a great amount of 
work has been done. 

Let us now present a Zygmund class version in the Clifford analysis context, which could 
therefore be used in our framework, see Section 5. 

An ~0,n-valued continuous function u belongs to the Zygmund class if is bounded and there 
exists a positive constant C such that 

lu(x + y) - 2u(x) + u(x  - Y)I < C lYl, 

for all x, y 6 R n+l. 

The boundedness of u and the above condition imply the continuity of u. 

As Clifford analysis generalizes complex analysis to Euclidean spaces, we may expect that 
in this higher-dimensional function theory, the Zygmund class is related to the theory of sets of 
removable singularities just as in the case of the complex plane. The first two authors already 
indicated this analogy in three-dimensional spaces within the framework of quaternionic analysis 
(see [5]). 
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In what follows, F is an AD-regular surface, i.e., there exists a constant C > 0 such that for 
a l l x � 9  < d i a m F  

C - l r  n < ~ " ( F  M B(x, r)) < C r n , 

where B(x, r) denotes the open ball with center x and radius r. 

It is worth noting that Sr  extends to a bounded linear operator on C ~ (F), satisfying Sr  2 = 
Z, where Z is the identity operator and that S r  appears naturally when studying the boundary 
behavior of the Cauchy transform Cr of a function u �9 C~ 0 < v < 1. 

The central formula establishing the relation between the boundary value of CF and S r  is the 
so-called Plemelj-Sokhotski formula. The following theorem is concerned with this main result 
and we refer the reader to [ 1, 2] for the proof. In [3, 4, 11 ] are much related work on this topic. 

T h e o r e m  4.1. Le tF  be such thatHn(F) < ~ .  I fu  �9 C~ < v < 1, we have that 

(i) Cru �9 C~ + U F) withCru(oo) = O. 

(ii) Cru is left monogenic in R "+1 \ F 

(iii) (Plemelj-Sokhotski Formula). For all z �9 F, 

1 
(Cr• := lira (Cru)(x) = ~((Sru)(z)  

f2• gx--~ z 
+ u(z)). 

Theorem 4.2. L e t F  be such that 7-/"(F) < c~ and le tu  �9 CI(~ +) f] C(~'2+). Then the 
Borel-Pompeiu formula holds: 

f r  f ~  [u(x) '  x �9 ~2+ e(y -- x)K(y)u(y) dTt n (y) - + e(y - X)Oyu(y) dl~ n+l (y) = [0,  x 6 ~ -  . 

In terms of the Theodorescu transform Te+ where (see [19]) 

:= - [ e(y - x )u (y )d fn+l (y ) ,  x �9 ~R n+l , (Tn+u)(x) 
de + 

the Borel-Pompeiu formula also reads: 

lu (x ) ,  x �9 f~+ 
(Cru)(x) + (Tn+OxU)(X) = [0,  x �9 f ~ - .  

5. Removable singularities for monogenic func t ions  

The aim of this section is to describe shortly in the framework of the Clifford analysis an 
approach of the following problem. 

Let f2 be a domain in •n+l and let F be a subset of f2. Given a class of functions on f2 \ F, 
the problem is to prescribe conditions on this class of functions and on the set F under which 
these functions can be extended monogenically across F. 

In the case of domains in ]R 2, removable singularities for holomorphic functions related to 
continuous complex-valued functions is stated as follows: 

Let A be an open connected subset of the complex plane C. Let f : A > C be a 
continuous function which is holomorphic in A \ K, where K C A. Then Dohhenko's theorem 
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(see [14]) tells us that if K has zero inner Hausdorff measure with respect to the measure function 
h(r) = rto(f, r), where to(f, r)  is the usual modulus of continuity of a function f ,  then f is 
holomorphic throughout A. Moreover, Dolzhenko also obtained the following result (see [ 14]): 
K is a removable set of singularities for holomorphic functions satisfying a HiSlder condition of 
order v if and only i f ~ l + v ( K )  = 0 (0 < v < 1). In [27] Nguyen proved that this result is also 
true for the case v = 1. 

One can find important applications of a generalization of this result in the case of higher 
dimension to guarantee the uniqueness of the solution to the jump problem for monogenic func- 
tions. 

T h e o r e m  5.1 (Dolzhenko type theorem). Let u be a continuous function with modulus of  
continuity to(u, r) in the domain ~2 and monogenic in ~2 \ F, where F C fL lf~__h(F) = 0 for 
h(r) = rnto(u, r), then u is monogenic throughout ~2. 

Proof. Let K be the set of points belonging to the domain ~2 where the function u is not 
monogenic. Then obviously K is closed, K C F, and 7-lh(K) = O. 

We can assume that u(x) is a nonconstant function and that to(u, r) >_ cr, where c is a 
positive constant that does not depend on r. Then r n+l <_ ch(r) and/2n+l(K) = 0, whence it 
follows that K is no where dense in f2. 

Let B be a fixed open ball which together with its boundary OB lies in fL Let us take a 
sufficiently small number e > 0 in such a way that B \ K2~ # 0, where K2E = {x e R n+l : 
dist(x, K) < 2E}. 

Let r / >  0. Since ~h  (K) = 0, there is a cover {B1, B2 . . . .  } of K M B by open balls Bk with 
center ak and radius rk < E/2 such that 

oo En 

)-~r;to(u, rk) < ~ O. 
k = l  

Since K fq B is compact, a finite number B1 . . . . .  Bm of the Bk also cover K N B and 

m ~n 

L r k ' w ( u ' r k )  < 2 -~  7.  
k = l  

We may assume at the outset that the set of balls {B1, B2 . . . .  } has been enumerated in decreasing 
order of their radii and that none of them is covered by the union of the others. 

k - 1  Let ~21 = B fq B1, flk = B fq (Bk \ U j=l Bj) (2 < k < m). Every set [2k decomposes into 
a finite number of nonintersecting simply connected domains ~2k,i, i = 1 . . . . .  Sk with boundary 
Fk,i. Moreover, 

8k 

nn(Fk,i) <_ nn(OBk) = an+lr~r , 
i = l  

where 0 Bk denotes the boundary of the ball Bk. 

Let 

H(x) = u(x) - f e(y - x ) r ( y ) u ( y ) d ~ n ( y ) ,  x E B .  
i I  

OB 
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Since u(x)  is monogenic in B \ K and Uk,i f2k.i C K~ (K, = {x E IR n+l : dist(x, K) < E}), 
then for x e B \ K2E, by virtue of the Cliffordian Cauchy formula, we obtain 

f H (x ) = - e(y  -- x )K(y)u(y)  dT-[n (y) . 

k = l  i=1  Fk,i 

Therefore 

2 n / 2 ~ , f  1 IH(x)I _< - -  
trn+l k=l i=lFk i lY xl n lu(y)  --u(ak)ldT-[n(Y) 

2n/2 m Sk 
< rk) < 
- -  O ' n + l ~ : n  k = l  i=1 

In view of the arbitrary choice of 0, we have H ( x )  -- 0 fo rx  e B \ K2E, and as we also chose E 
to be arbitrary, we obtain H ( x )  =- 0 in B \ K. 

Taking into account that B \ K is dense in B, and that the function H (x) is continuous in B, we 
obtain the equality H ( x )  -- O, forx e B. Hence, u is monogenic in B and the theorem is proved. 

[] 

Combined with Liouville's theorem, see [12], Theorem 5.1 enables us to prove the follow- 
ing corollary. 

C o r o l l a r y  5.2. Let  F C ]~n+l be a bounded closed set. Then, given a nonnegative and 
nondecreasing k -va lued  function og(r) for r >__ 0 such that ~-~h (F)  ~ 0 for the measure function 

h(r)  = rnw(r) ,  then the class o f  functions monogenic in ]~n+l \ F and continuous in ] ~ n + l  for 
which w(u, r) <_ 09@) consists o f  constants only. 

We now establish other consequences of Theorem 5.1. 

Corollary 5.3 (Painlevd Theorem). Let  the set F C ~2 C ]~n+l be such that ~_[n ( F )  < OG. I f  
the function u is monogenic in f2 \ F and continuous in f2, then u is monogenic in f2. 

Proof .  Let h(r)  = rnw(u,  r). Then we have 

inf h(diamBk) < o)(u, 8) inf (diamBk) n , 
k = l  " k = l  " 

where the infimum is taken over all countable g-coverings {Bk} of F. 

Since ~n(F)  < oo and og(u, 8) ~ 0 as ~ ---> 0, then by letting 8 tend to zero in the 
above inequality, we may conclude that 7~h (F) = 0, which in view of Theorem 5.1 implies the 
desired result. [ ]  

Corollary 5.4. Let 7-/n+v(F) = 0 (0 < v < 1). Then a function u ~ C~ which is 
monogenic in f2 \ F is monogenic in f2. 

Proof .  The proof follows by making use of the elementary fact that for any function u 
C~ we have that ~h (F)  < cT-[n+V(F), with h(r) = rnog(u, r) and c is a positive constant. 

[] 
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R e m a r k .  As an immediate consequence of the definition of the Hausdorff dimension it follows 
that if OtH(F) < n + v (0 < v _< 1), then the condition of our corollary is satisfied. 

The limiting case v = 1 is exceptionally interesting and is treated in [27] within the framework 
of Complex Analysis. Here, we can see, that in the complex case, where n = 1, the condition 
/~2(F) = 0 is sufficient for the removability of a compact set F for continuous holomorphic func- 
tions satisfying a Lipschitz condition. This implication is well known (see, e.g., [18], Chapter 3, 
Section 2). And in fact, Corollary 5.4 can be seen as a generalization of the Garnett result to the 
higher-dimensional Euclidean spaces setting. 

We do not know whether or not the converse to the Corollary 5.4, for 0 < v < 1, is true 
in general. If  the answer is affirmative a complete generalization would thus be obtained of the 
result proved by Dolzhenko (see [14], Theorem 3). 

Corollary 5.5. Let  the set F C ~ C ~n+l has zero inner Hausdorff  measure with respect to 
the measure function h i (r )  = r n+l log 1/r .  I f  u is o f  the Zygmund  class in f2 and is monogenic 
in f2 \ F, then u is monogenic in f2. 

Proof .  By an analogous argument as in the classical complex case for a function u satisfying 
the Zygmund condition, one has co(u, r) < C r log 1/r. Therefore, ~h (F)  = 0 for the measure 
function h(r)  = rnog(u, r). Theorem 5.1 then implies the desired result. [ ]  

6. Jump problem for monogenic functions 

In this section heavy use of the Theorem 5.1 will be made in order to obtain sufficient 
conditions for the uniqueness of the solution for the so-called jump problem for monogenic 
functions in Euclidean spaces. The jump problem for monogenic functions consists in finding a 
function ~,  monogenic in N n+l \ F, such that �9 satisfies 

�9 + ( x ) -  ~ - ( x )  = g(x) ,  x ~ F; ~ - ( o o )  = 0 .  (6.1) 

Hereby g is a given continuous function on F, and ~+(x )  and ~ - ( x )  represent the limit values 
of the desired function �9 at a point x E F as this point is approached from inside [2 + and ~2-, 
respectively. We also shall write ~•  by abuse of notation, for the respective restrictions of 

to ~2 +. 

The role of the Cauchy transform Cr in solving this problem is well known for smooth 
surfaces (see e.g., [8, 28, 29]). A more general context was considered by the authors in [ 1, 2, 9, 10]. 

If F is an AD-regular surface and u ~ C~ then the Cauchy transform Cru gives a 
solution of the jump problem (6.1) and by PainlevCs Theorem, it is unique (see e.g., [2]). 

If  F is such that 7-/n (F) = o~, then, although the Canchy transform loses its meaning, the 
jump problem remains meaningful. 

In the case n = 1, in [22, 23], Kats presented a new method for solving the jump problem, 
which does not use contour integration and can thus be used on nonrectifiable and fractal curves. 
Moreover, Harrison and Norton [20, 21 ] defined integration along nonsmooth boundaries in N n +1, 
for n > 1. Similar integral methods for n = 1 were developed independently in [24, 25]. 

In the articles [6, 7], such method was adapted immediately within Quaternionic Analysis. 
Seemingly, a possible generalization for Euclidean space of higher dimensions with Clifford 
Analysis could also be envisaged. 

In order to develop further investigation on the existence of solutions to problem (6.1) for 
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domains bounded by nonsmooth surfaces, such as 7-(n(l -') : c~, we start with some auxiliary 
definitions and remarks. 

Let ,V be the characteristic function of the set f~4. For g ~ C (1-'), put g W (x) := ?((x)(C0g) 
(x), where s is the Whitney extension operator (see [30]). 

I fg  ~ C~ then gW ~ cO,v([2+) and the function gW is differentiable in f2 + with 

[axgW(x)l < c (dist(x, F)) v-~ . (6.2) 

L e n u n a 6 . 1 .  Supposecl(F) < n + l and let g e C~ (O < v < l). Then OxgW e Lp([2 +) 
forp < (n + 1 - a (F) ) / (1  - v). 

Proof. Before starting the proof, let us recall the notion of Whitney partition. Introduce the lay- 
ers 

~'2k:={xENn+l: 2~/h- '~  2 -k < dist(x, F) < 4 ~ - ~ 2 - k }  , 

and consider the collection of cubes Vk of the grid Rk intersecting the layer f2k. After removing 
from the set V r :----- Uk___0 Vk those cubes which are contained in larger cubes of W the Whitney 
partition V is obtained. 

Denote by vk the number of cubes of the grid Rk appearing in V. Then vk < mk(f2k). Let 
Q be a cube of Rk intersecting f2k. Then there exits a cube Q~ of the same grid intersecting F 
such that Q lies inside the ball with radius 11/2 n~/'h--+~ 2 -k, the center of which coincides with 
the center of Qr. Hence, vk < mk(~k) < (2/(11/4)n + 5J + 3)n+lmk(F). 

Let u ~ ~ (~(F), n + 1). Then m~(F) < c 2 kv' for some positive constant c. To prove the 
lemma it is sufficient to establish the convergence of the series 

~ v  fQ laxgW (x )lP ds (x) . 

From (6.2) and taking into account that for all Q 6 V 

dist(x, F) < 5 diam Q, x e Q ,  

we get 

f IaxgW(x)[ p dLn+l(x)<c 2Pk(1-v) f d ~ n + l ( x ) : c  2 k(p(1-v)-(n+l)), Q E Vk. 
JQ JQ 

Hence, 

O0 

Q6V k=O 

< C ~ 2 k(p(1-v)-(n+l)+v') . 

k=0 

For p < (n + 1 - u')/(1 - v) this series converges. In view of the arbitrary choice of v t the 
lemma is proved. [ ]  

1 n+l Definition 6.2. The function ~0 e C (Ii~ \ 1-') is called a quasi-solution of the jump problem 
if the limit values of q% exist and satisfy (6.1). 



Jump Problem and Removable Singularities for Monogenic Functions 11 

Theorem 6.3. The jump problem is solvable i f  and only i f  there exists a quasi-solution Do 
such thatOxDO E Lp(~ +) forsome p > n + 1. 

Proof.  The if part of the theorem is obvious. Let now D0 be a quasi-solution satisfying 
the above requirement. We shall show that the following function is a solution of the jump 
problem (6.1): 

D(x)  : =  Do(x)  - ( T a + O ~ D o ) ( x ) .  

Taking into account the properties of Tf~+ we get Ox D = 0. Furthermore, the operator T~+ maps 
functions of the class Lp([2+), p > n + 1, into continuous functions in R n+l vanishing at oo. 
Hence, it follows that D satisfies (6.1). [ ]  

By applying Theorem 6.3 and Lemma 6.1 we get the following. 

Theorem 6.4. Letot(F) < n + 1, andle tg  ~ C~ I f  1 > v > a(F) / (n  + 1), then (6.1) 
is solvable and one o f  its solutions can be obtained from the formula 

D(x)  = g W ( x )  - ( r ~ §  . (6.3) 

R e m a r k .  On basis of the above results, we can describe the picture of uniqueness of the jump 
problem (6.1). 

Note that the difference qJ = D 1 - D2 of two solutions of the jump problem (6.1)is monogenic 

in R n+l \ F and continuous in R n+l . If  it is possible to deduce monogenicity of ~P(x) for x e F, 
then the condition D{(oo) = D2(oo) = 0 implies ~P ----- 0. Thus, uniqueness of the solution 
of (6.1) follows from the removability of the surface F for the class of functions monogenic in 
a neighborhood of F and continuous on F. In particular, a solution of (6.1) is unique if F is an 
n-rectifiable surface. 

T h e o r e m  6.5. Let F be an n-rectifiable surface and let g e C~ Then for 1 > v > 
n / (n + 1) the jump problem (6.1) has a unique solution given by ( Cr g ) ( x ). 

Proof.  By virtue of Painlevt's Theorem the proof follows directly by using Theorem 4.2, 
Theorem 6.4, and Lemma 3.2. [ ]  

Under the conditions of Theorem 6.5, when F is an n-rectifiable surface, the solution of (6.1) 
is unique. Otherwise, to ensure uniqueness in the general statement we need to introduce an 
additional requirement: The function D, monogenic in IR n+l \ l", must satisfy a HSlder condition 
with exponent/z (0 < /z _< 1) on each of the sets f2 +, i.e., the functions D + should belong 
to C~ Solutions of the jump problem (6.1) with this additional condition are said to be 
solutions of class C0,tz. 

By the remark of Corollary 5.4, the solution of the jump problem in the class C0,tz will be 
unique if/z > ~H (F) -- n. At the same time, if ~0 e Lp (~+) ,  p > n + 1, has a compact support, 

n + l  
then Tf2+~o satisfies a HOlder condition with exponent 1 - - - .  Therefore 

P 

gW(x) -- (T~2+OxgW)(x) �9 Co,/z , 

for/z < ((n + 1)v - a (F ) ) / ( (n  + 1) - or(F)). Thus, the following theorem is proved. 
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T h e o r e m  6.6. Letot(F) < n + 1, letg ~ C~ 1 > v > a (F ) / (n  + 1) and let otn(F)- 
n < / z  < ((n + 1)v - a (F) ) / ( (n  + 1) - or(F)). Then the function (6.3) is the unique solution of 
the jump problem which belongs to the class C0,~. 
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