
The Journal of Geometric Analysis 

Volume 13, Number  3, 2003 

A Class of Sums of Squares with a Given 
Poisson-Treves Stratification 

By Antonio Bove and David Tartakoff 

ABSTRACT. We study a class of sum of squares exhibiting the same Poisson-Treves stratification as the 

Oleinik-Radkevi? operator. We find three types of operators having distinct microlocal structures. For one 

of these we prove a Gevrey hypoellipticity theorem analogous to our recent result for the corresponding 

Oleinik-Radkevig operator. 

I .  Introduction 

The problem of analytic hypoellipticity for second-order operators which are sums of squares 
of vector fields with analytic coefficients has been widely studied and has been around since the 
article of L. H6rmander [19] on C ~ hypoellipticity for this type of operator. In particular, 
D.S. Tartakoff [23, 24], for second order, and E Treves [26] for general order, gave general 
analytic hypoellipticity theorems for the case when the characteristic manifold is symplectic 
and the operator degenerates on it to an exact order. In the case of non exact and higher-order 
degeneracy, O. Oleinik [21] and O. Oleinik and R. Radkevi6 [22] (see also Christ [8]) showed that 
in general one cannot have analytic hypoellipticity (see also the article [3] by the present authors 
for a precise and optimal partial regularity result in the case of the operator studied by Oleinik 
and Radkevi~), but only certain degrees of Gevrey hypoellipticity. 

Into this scenario there appeared in 1999 the well-known article by E Treves [28] introducing 
the notion of Poisson stratification for a set of vector fields satisfying H6rmander's Lie algebra 
condition and having analytic coefficients. Basically, crudely simplifying Treves' setting, the 
conjecture states that an operator which is a sum of squares of vector fields is analytic hypoelliptic 
if and only if every layer in its Poisson stratification is symplectic. To our knowledge the conjecture 
has been neither proved nor disproved up to now. 

In this article, the first of a series, we study an 6perator which is the sum of the squares of three 
vector fields with analytic coefficients in three variables. For such an operator we assume that 
its Poisson-Treves stratification is given in such a way that its H6rmander numbers are the same 
as those of the Oleinik-Radkevi6 model operator. Here by H6rmander numbers we mean both 
the number and the relative codimensions of the stratification's layers. Our purpose is to classify 
such kind of operators and obtain their Gevrey (or possibly analytic) hypoellipticity threshold. 

In the present article we classify the operators having the required properties and, for one of 
the classes, we obtain the same Gevrey hypoellipticity threshold as that of the Oleinik-Radkevi~ 
model operator. We are unable to deduce these (optimal) results for every class of operators 
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sharing the Poisson-Treves stratification with the Oleinik-Radkevi~ model, but we shall come 
back to this subject in a forthcoming article [5]. 

Before stating our assumptions precisely, we want to make a couple of  remarks. 

l .  Our vector fields are linearly independent outside of  the characteristic manifold. This es- 
sentially implies that the characteristic manifold is cylindrical with respect to a two-dimensional 
subspace of  the fibers of  the cotangent bundle, or in other words, it is the zero set of one covariable 
and one function of  the variables in the base. This restriction eliminates cases where two of the 
vector fields can become colinear outside of  the characteristic set. On the other hand, many results 
are known for the case of  the sums of  two squares. 

2. The Oleinik-Radkevi~ model operator has a codimension 2 symplectic characteristic man- 
ifold. In three dimensions one might consider also cases where the characteristic manifold is 
symplectic and of  dimension 4 or has symplectic layers of  codimension 2 and symplectic layers 
of codimension 4. Even for the sums of  two squares, though, this situation faces difficulties of 
the same kind as those appearing in Christ's example [9]. 

In the first part of  this article we deduce some standard forms (cf. Theorem 6.1) below) that 
can be useful in proving a priori estimates. Then we proceed to prove a Gevrey hypoellipticity 
threshold for one of  these standard forms (cf. Theorem 9.5) 

Essentially, the operators verifying our assumptions fall into three classes depending on 
how the vector fields vanish on the characteristic set. For the first case, called Case 1, we 
make a finer analysis of the extent to which the vector fields under consideration are linearly 
independent outside of  the characteristic manifold. This is accomplished by looking at each of 
the "characteristic" vector fields and computing it on the null bicharacteristic curve of  the only 
non-characteristic vector field. 

This operation does not affect the covariables (i.e., affects only the coefficients of  the base), 
since the null bicharacteristic curve is a curve in the base variables. Then one focuses on the zero 
set of  the resulting vector fields. Computing the symbol of  one of the vector fields on the zero set 
of the other allows us to define a sort of degeneracy rate which turns out to be useful in the a priori 
estimates. The last section of this article is concerned with the case when the above-mentioned 
degeneracy rate is zero. Then we obtain the same (optimal) result as for the Oleinik-Radkevi~ 
model. 

If  the degeneracy rate is larger than zero, the estimates are deduced in a very different way 
and yield a different result. This is the subject of  a forthcoming article. 

The second and third classes (called Case 2a and Case 2b below) will also be studied in a 
subsequent article. 

2. Assumptions 

We now specify the assumptions. Our operators have the general form 

3 

P(x, D) = ~ X~(x, D) , 
j = l  

1 a where x 6 ]1~ 3 and D j  ~- T axe' J = 1, 2, 3. Here Xj denotes a vector field with real analytic 

coefficients defined in a neighborhood of  the origin in the x variable. 
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The following assumptions try to mimic the fact that P has the same Poisson-Treves stratifi- 
~ 2 - -  2(p--1)~2-- 2(q-1)~2 cation as the operator v 1 + x I 1"/2 -ff Xl /33, where p and q are integers and 1 _< p _< q. 

(A1) 

(A2) 

(A3) 

(A4) 

The operator P satisfies the H6rmander Lie algebra condition and hence is C ~176 hypoel- 
liptic. As a consequence not all the vector fields are characteristic (i.e., have vanishing 
coefficients) on the characteristic manifold. Hence we may suppose without loss of  
generality that 

X1 (x, D) = D! 

We may always assume that the point (0; e3) is a characteristic point for P (using a trans- 
lation and a rotation if necessary). We assume then that near (0; e3), the characteristic 
set of P is an analytic symplectic submanifold of  T*~  3 \ 0 of  codimension two which 
we denote by Z1. We explicitly note that this is a microlocai assumption, 

Let f2 = U x F a conic neighborhood of  the point (0, e3). And let Zrl : U x F --~ U be 
the projection onto the space variables. We assume that the vector fields 

X j I u\~q Xl 

are linearly independent; the above notation means that restricting the coefficients of the 
fields X j  to the space projection of  Z1 yields linearly independent vectors in JR 3 

Note that, because of  (A2), the coefficients of  the vector fields depend non trivially 
on the x variable. This assumption has strong implications on the structure of  Z1 and, 
to avoid technical details at this point, we refer to Section 3. 

Denote by 

I:2 = {(x, ~) ~ T'1~3 \ 0  I (x,~) c X~,{Xi, Xj}(x,~) = 0 ,  i , j  ~ {1,2,3}} , 

and, in general, let I = (il . . . . .  ik), i j  E {1, 2, 3}, for  j = 1 . . . .  k. Writing I I I =  k, 
we denote by XI the iterated Poisson bracket 

X I : {Xil ,  {Xi 2 . . . . .  {Xik_ 1, Xi  k} . . . } }  

of the vector fields X j,  j = 1, 2, 3; set 

= {(x,~) E T*IR3 \ 0  I (x ,~)  ~ Eh-1,  X l ( x , ~ )  Eh ~---- 0 

for every index I such that III = h ] o 

Let p < q be two positive integers. Then we make the following assumptions: 

(i) E1 N ~ . . . . .  E p - i  f3 s 

(ii) Zp n ~2 is a non-empty analytic submanifold of  E1 M fa of  codimension one. 

(iii) Ep A ~ = •p+l A ~ . . . . .  Eq_ 1 f"l ~'2. 

(iv) P.q N fa is empty in T*It~ 3 \ 0 (i.e., ~]q n ~'2 is contained in the zero section of the 
cotangent bundle over f2.) 

3. Standard forms: The equations of ]E 1 

Due to the above assumptions we may suppose that the vector fields have the following 
form: 

Xl(x,~) = ~l 

X2(x,  ~) = a21(x)~! +aaz(x)~2 + aa3(x)~3 (3.1) 

X 3 ( x ,  ~) = a31(X)~l q- a32(x)~2 + a33(x)~3 �9 
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Hence ~1 = 0 is one of the two equations defining E1; letting 

a ( x )  = F azz(x)  a23(x)]  
[a32(x) a33(x)J ' 

(the ajk being analytic), the other equation is given by 

A(x)~' = 0 ,  (3.2) 

where ~' = (~2, ~3). 

We claim that this can only be the second defining condition of E1 if A(x) -- 0 on E1 
(locally). For suppose (xo, ~) ,  ~ # 0, is such that 

a(xo)~ = 0 (3.3) 

and assume that to the contrary, for x near x0 on El,  

A(x) # [ 0 01 (which we will write as A(x) # 0) .  

This implies that at x0 the rank of A is equal to 1 since 0 # ~ ~ ker A(xo). It follows that, in a 
conic neighborhood of (x0; 0, ~ ) ,  the characteristic manifold E1 is defined by 

]~1 = {(X, ~) I~l = 0, det A(x) = 0, ~' ~ kerA(x)} , 

because we may always assume that rank A(x) >_ 1 near x0. 

Since A(xo) # O, the latter two equations in the definition of E1 are certainly independent 
(the second of them has non-zero ~'-gradient, while the first of them must have a non-zero x- 
gradient). As a consequence one of them must be identically satisfied in order to accomplish 
the codimension 2 condition. Since rank A(xo) = 1, the condition ~' c ker A(x) cannot be 
identically satisfied. Hence the only possibility is that 

det A (x) -- 0 

in a full neighborhood of x0. However, this fact would imply that there exist points (x, ~), ~1 = 0, 
(x, ~) ~ El,  such that the vector fields X1, X2, X3 are not linearly independent. 

Consequently the only possible case left is that A is the zero matrix: 

A(x) = 0 ,  (3.4) 

if (x, ~) 6 El. This means that 

E1 -~- {(x, ~) [ ~1 ~-- 0, A(x) = 0}. (3.5) 

Hence the matrix condition A(x) = 0 must be (locally) equivalent to ~o(x) = 0, where ~0 is a real 
analytic scalar function and such that dx~o(x) # O. 

By Assumption (A2), {~l, ~0(x)} # 0 at El.  Hence by the implicit function theorem the 
equation ~0(x) = 0 is equivalent to the equation 

Xl - -  g (x') = 0 ,  (3.6) 

where g is a suitable real analytic function, x I = (x2, x3), and g is defined locally. We conclude 
then that 

E 1 ---- {(X, ~) [~1 ~- 0, Xl -- g (x') = 0] , (3.7) 
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and that 

a ( x )  = (Xl - g (x'))  r (3.8) 

for a suitable 2 x 2 matr ix/ i  with real analytic entries [lij  , i, j E {2, 3}. 

Next we perform a change of variables (and hence a canonical transformation) which is 
linear in ~, so that vector fields are mapped to vector fields in the new coordinates, allowing us to 
make the function g identically zero. 

Define: 

Yt = Xl + g Z  ) 

Y2 = x2 

Y3 = X3 

The three vector fields become: 

Xl (y, rl) 

X2(y ,  O) 

/71 ---- ~1 

~2 = ~ 2 - ~ 1 ~  

T/3 = ~3 --~1~33 " 

= r/l 

= (a21 (Yl -- g (Y') , Y') q- yla22 (Yl -- g (yt)  , y,)  ag(y')ay2 

+yla23 (Yl --  g (S t ) ,  y , )  '--ff~Y3 . ] 

+Yl [522 (Yl - g (Y'), Y')02 + a23 (Yl - g (Y'), Y')03] 

X3(y ,  7/) = (a31 (Yl - g (Y') , Y') + yla32 (Yl - g (Y')  , y/)  Og(y')oy2 

q-yla33 (Yl -- g (yt)  , y,)  ~ ] 

-t-yl [a32 (Yl -- g (Y'), Y') t/2 n t- a33 (Yl -- g (Y'), Y') 03] �9 

The above fields can be rewritten, with obvious notation, in the following way: 

Xl(X,  ~) = ~1 

X2(x, ~) = a21(X)~l -~-Xl [a22(x)~2 + a23(x)~3] 

X3(x ,  ~) = a31(X)~l + xl [a32(x)~2 +a33(x)~3] 

with suitable real analytic functions aij defined in a neighborhood of the origin. 

(3.9) 

(3.10) 

4. S t a n d a r d  f o r m s :  the  e q u a t i o n s  o f  ]E2, �9 �9 �9 Y~p-1 
f 

Let us now turn to Assumption (A4) concerning E2. We have 

0 
{Xl(x, ~), Xj(x, ~)} = oXl Xj(x, ~), 

for j = 2, 3 and the latter quantity is equal to 

Oajl (x....~) ~1 q- [aj2(x)~2 + aj3(x)~3]  q- O(IXl t ) ,  
OXl 

for j = 2, 3, and 

{X2, X3}(x, ~) = {a21~l q- Xl [a22(x)~2 -k- a23(x)~3], a31~l -t- Xl [a22(x)~2 q- a23(x)~3]} , 
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which gives 

{X2, X3}(x, ~) = a21 (x){XI, X2}(x, ~) - a31 (x){XI, X3}(x, ~) -I- O(Ixll  + [~1 [), (4.1) 

where O(Ixll  + I~11) stands for a vector field with principal symbol vanishing on El.  Hence we 
obtain E2 = }]1 ("1 {(x, ~)l {Xl, X j }  = 0}, j : 2, 3. 

Let us again denote by A(x) the 2 • 2 matrix 

Fa22(x) 
A(x) = La32(x ) 

then Assumption (A4) means that 

if and only if Xl = 0. This implies that 

a23 (x)]  . 
a33(x)J ' 

A(x)~' = 0 (4.2) 

A (x) = xl A (x) (4.3) 

for a suitable 2 x 2 matrix ,4 with analytic entries. 

Iterating the above argument we can conclude that the vector fields can be written in the 
form 

X1 (x, ~) = E1 

X2(x, ~) = a21(X)~l + x p - I  [a22(x)~2 + a23(x)~3] (4.4) 

X3(x, ~) = a31(X)~l + x f  -1 [a32(x)~2 +a33(x)~3] �9 

We summarize what has been proved up to this point in the following. 

Proposition 4.1. Suppose that (A I)-(A3) and (A4) (i) hold. Then the vector fields X1, X2, 
X3 can be written, in a suitable system of local coordinates, in the form (4.4). 

5. The equation defining Zp with respect to Z1 

Let us denote by ~0(x', ~') a real analytic function defined on a (conic) neighborhood of 
(0, e3) in E 1 and such that d(x,,~,)~o(0, e3) ~ 0 and the equation ~o(x', ~r) = 0 is equivalent to 
A(0, x ')~ r = 0. 

or 

We have either 

0 O - • ,  ( 0 , ~  e3) ~ 0 (Case I) (5.1) 

0 • 7 ,  (0, e3) ~ 0 " (Case I I ) .  (5.2) 

5.1. Case I 

For the case of non-zero ~ gradient, assume that it is the ~2 derivative of  ~o that is non-zero at 
(0, e3) (we will see below that the case of  a non-zero ~3 derivative cannot occur). Then we may 
write 

q9 (x', ~') = ( ~ 2 -  X (x ' ,~3))e(x ' ,~ ' )  , (5.3) 
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where e and X are analytic and e(0, e3) ~ 0 and thus 

t p ( x ' , ~ ' ) = 0 - ~  ' . , ~ 2 - X ( x ' , ~ 3 ) = 0 - ~  ; - A ( x ' ) ~ ' = 0 .  

397 

We claim that X (x', ~)  has the simpler form )~ (x~)~3, and to see this let t denote a non-zero 
real number; if A(x~)~ ~ = 0 then obviously A(x~)t~ ' = 0. Thus (x% ~') E E2 ~- (x% t~ ~) 
E2, so that t~2 - X(X', t~3) = 0. Since ~2 = X(x',  ~3), we have X(X', t~3) = tX(x', ~3) for 
every non-zero real number t. But now ~3 7 ~ 0 in a conic neighborhood of  (0, e3), so that 
X (x', ~3) = ~3 X (x% 1) = ~3)~ (x~), for a suitable analytic function )~ of the space variable only, 
and so finally we obtain 

A (x ')  ~' = 0 ,'. ~, ~2 - X (x ' )  ~3 = 0 ,  (5.4) 

where we have written )f again for the function )~. 

The above formula has been derived in the case that it is the ~2 derivative of  ~0 that is non-zero 
at (0, e3). Now suppose that the ~3 derivative of  ~0 is non-zero at (0, e3) instead. Then arguing as 
above we find that the equation ~0(x ~, ~') = 0 is equivalent to ~3 - X (x% ~2) = 0. As before, let t 
be a non-zero real number; now, since if (x% ~ )  belongs to Ep then also (x', t~ ~) belongs to Ep, 
keeping in mind that, by assumption, the point (0, e3) belongs to Ep, we find that t = X(0, 0) 
for any t ~ II~ \ 0, which is absurd. 

We thus have proved that if (5.1) is true then the equation defining l~p relative to Z l is given 
by (5.4). 

5.2. Case II 

We now turn to the case where ~o~ (0, e3) = 0 but 

0 ~  (0, e3) 7 ~ 0 

and we assume here that 

(Case II) (5.5) 

The case ~0x3 (0, e3) ~: 0 (Case IIx3) has some obvious but non-trivial differences that we shall 
stress later. 

Arguing along the same lines as above we obtain that there is a function X (x3, ~t) such 
that the equation q)(x', ~') = 0 is equivalent to x2 - X (x3, ~i) = 0. Here X is analytic and 
defined on a conic neighborhood of (0, e3) in Rx3 x (JR~, \ 0). Again we may assume that on 
that neighborhood ~3 is not zero. Moreover, if t denotes a non-zero real number we obtain that 
X (X3, t~ t) = X (X3, ~t), SO that 

A ( x ' ) ~ ' = 0 , ' .  ." x 2 - X  x3, = 0 ,  (5.7) 

where we have denoted by X (x3, or) the function X (x3, a,  1). 

We point out that the function X in (5.7) is an analytic function defined in a neighborhood 
of the origin in IRx3 x 1Rr 

- - ( 0 ,  e3) 7 ~ 0 (Case IIx2) �9 (5.6) 
3x2 
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From (5.7) we obtain that there is a positive integer k such that 

a ( x ' ) ~ ' =  x 2 - x  x3,~3, / / /  B ( x ' , ~ ' )  , (5.8) 

where B(x t, ~r) denotes an analytic 2-vector defined and non-zero in a conic neighborhood of 
(0, e3). The existence of  such an integer k is a consequence of our analyticity assumption. 

Our aim is to draw some consequences from the linearity of the left-hand side of Equation 
(5.8) with respect to ~'. 

Assume first that k > 1 in (5.8). Then taking the t-gradient, we get 

A (x') = O x 2 - X  x3, -~3,1 ] 
1' 

which implies that X (x3, ~2/~3) actually depends only on x3. Thus B(x', ~') is linear with respect 
to ~', so that we obtain 

a (x') ~' = (x2 - X (x3)) k ,~ (x') ~ ' ,  (5.9) 

where ,4(x ~) denotes another 2 x 2 matrix with real analytic entries. 

Let us now assume that k = 1. Equation (5.8) becomes 

a (x') ~' = ~o (x', ~') B (x', ~ ' ) ,  (5.10) 

where B is a vector-valued symbol of order 0. Recall that we are assuming that 

0~o 0~o 
~o(0, e3) = 0, - - ( 0 ,  e3) = 0, and (0, e3) ~ 0 .  

OU Ox2 

Since the vanishing in (5.10) is of the first order, we have that B(0, e3) ~ 0; in particular we may 
assume that 

B(0, e3) ---- (b2(0, e3), b3(0, e3)) 

and 

b3(0, e3) ~ : 0 .  (5.11) 

This is no restriction since we can always interchange the second and the third vector fields. 
Taking the ~t-gradient of  (5.10) and computing everything at (0, e3), we easily see that A(0) = 0. 
Hence ~ 

A (x') = x2A(2)(x') + x3A(3)(x') ,  

where the A (j) are real analytic 2 x 2 matrices, j = 2, 3. From this equation we obtain 

oB (x', A (x') = O x 2  Ox2~176 
which, when computed at (0, e3), yields 

0A(0) [0]  = 0 x 2  Ox20~~ (O, e3)B(O, e3). 

(5.12) 
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Let us now consider the second component of the above equation: we have, from (5.11), 

/ (2) + x  a (3) ( x t ) ) ~ 3 ]  0 (3) (x'))  ~2 + ~ x 2 a .  (x') 3 33 , Ox2 [ (  x2a~2, ( x ' ) +  x3a32 5 0  
xt~O ~t=e3 

from which we deduce that 

(2) ( 
a33,0) # 0 (5.13) 

The second line of the equation A(x ' )~  ~ = 0 then reads: 

. _ ( 3 )  x2u32[ _(2, (x') + x3032(3)(x'))~2+(x2a~2)(x')+~t3a33 (x')) ~3 = 0 . (5.14) 

Because of (5.13) this is the equation of an analytic submanifold of codimension one containing 
the point (0, e3) and, since b3 (0, e3) ~ 0, (5.10) implies that (5.14) is equivalent to ~o(x', ~') = 0. 

Thus we are allowed to change notation and write 

= ~x2a32 (x') + x3u32 (x') ~2 + ~x2u33 (x') + x3a33 (x') ~3, (5.15) 

where 

(2) (0 , a33, ) ~: 0 (5.16) 

(recall that we are in Case IIx2 where ~ox2 # 0 at (0, e3)). 

The following lemma will help distinguish between two very different types of families of 
vector fields. They are both in Case II and will be denoted Case IIa and Case IIb, which of course 
will be further subscripted according to whether ~ox2 r 0 or ~ox3 ~: 0. 

L e m m a  5.1. Let  ~ and Iz be real analytic functions defined in a neighborhood o f  the origin 
and consider the vector field 

0 O 
~" = ~ (x') ~ + "  (x/) ax3 

Assume  that the symbol o f  Y, ~.(x')~2 +/z(x')~3, vanishes where ~o vanishes, ~o being defined in 
Equation (5.15). Then two cases may  occur: 

P r o o f  

(a) The set ~o-l (O) is cylindrical in the ~'-fibers. Then go(x', ~') = O i f  and only f f  g(x ' )  = O, 
for a suitable analytic function g defined in a neighborhood o f  the origin and having a 
non-zero x'-gradient. In this case 

f 

r ( x ' , ~ ' ) = g ( x ' ) ~ ( x ' , ~ ' )  , 

for a suitable vector field Y. 

(b) The set ~o-1(0) is not cylindrical in the ~1-fibers. Then there exists an analytic function 
o f  x ~, h(x ') ,  defined near O, such that 

r ( x ' , ~ ' ) = h ( x ' ) ~ ( x ' , ~ ' )  . 

Let us write the function ~p in (5.15) as 

~ (x', ~ ' )=  ~ (x') ~2 + ~ (x') ~3, 
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where, by (5.16), 0/3(0)/0X2 ~ O. The vanishing of the symbol of Y where ~0 vanishes can be 
expressed by the following equation 

)~ (x ' )~2 + # (x')~3 = a (x' ,  ~') (c~ (x ')~2 + 13 (x ')~3) , 

where a is a suitable analytic symbol of  order 0--actual ly  homogeneous of degree zero--defined 
near the point (0, e3). 

Dividing by ~3, which is non-zero near e3, and writing ~r = ~2/~3, we have 

~(x ' )~+.(x ' )  I~l<-C, 
a (x',  r 1) = ot (x0 ~r + / 3  ( x 0 '  

for a suitable positive constant C. Thus 

a(x',O, 1)_ Iz(x') 
/3 ( x ' )  ' 

which is also analytic with respect to the variable x '  near the origin. Since /3(0) = 0 and 
0/3(0)/0x2 ~= O, we have that /3-1(0)  is a regular analytic curve in R 2 near the origin. Hence 
there exists an analytic function y (x') defined near 0 such that 

. (x') = )/(x')/3 (x ' ) ,  

and thus 

a (x', or, 1) = 
z (x') ~ + • (x')/3 (~') 

a (x') cr + / 3  (x') 

Now we have 

0 z a + •  /3(x-a)/) 
- -  a n d  

00" OtO" q - /3  (otcr -~-/3)2 

/ O \ + )//3 ot h 
\O-ffffJ{ lh+l Ot(r -[-/3 -- (--1)h(h q- i)!/30~ - c~)/) (~ +/3)h+2 " 

Setting a = 0 in the first line and taking into account the analyticity of  the left hand side, we 
obtain that 

(x') = ~ (x') y (x') + ~ (x')/3 (x ' ) ,  

for a suitable analytic function 6 defined near the origin. On the other hand, for cr = 0, the second 
line gives 

h 

~ - /  a (x', tr, 1) =(--1)h(h+l)!8(x')\/3(xO, ] 

Now two cases may occur: 

Assume that/3 is a factor of  or, i.e., that a ( x ' )  = r/(x')/3(x') k, for a suitable positive 
integer k and a suitable analytic function ,7. In this case ~o(x', ~') = (0/3~-1~2 +~3)/3 (x'),  
with/3(0) = 0, 0/3(0)/0x2 ~ 0 and 01/3~-1~2 + ~3)lx,=O ~'=e3 ~ 0. We conclude that 
~o -1 (0) = / 3 - 1  (0), or that ~0 -1 (0) is the zero set of  a function of x '  only. Moreover, in 
this case we have that ~. = (0/3 ~-1 + ~)fl, so that 

ix'/[(,  ix'/  ix') '-' + ,  ix'l)   
which is the conclusion in part (a) of  the statement of  the lemma. 
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The function fl is not a factor of  a ,  i.e., the quotient ot/fl is not analytic near 0. Then 
necessarily we must have that ~ = 0 if/3 = 0. But then it is easy to see that there exists 
a positive integer h such that 8/flh is not analytic near the origin, unless ~ = 0 in a 
neighborhood of the origin. Thus 

~ ( x ' ) = ~ ( x : ) y ( x ' ) ,  

at least in a possibly smaller neighborhood of  the origin. The above equation implies 
that 

z (x') + .  (x:) = • (x') (x') + (x ' ) ) ,  
which is the desired conclusion for part (b) of  the lemma. [ ]  

Summing up we can state the following. 

P r o p o s i t i o n  5.2. Assume  that the quantity A (0, xr)~: vanishes exactly on an analytic subman- 
ifold Ep o f  codimension one &side E~. Let  us denote by ~o(x ~, ~ )  = 0 a (microlocal) equation 
o f  ~ p near the point (0, e3) E ~ p. Then the following cases may  occur: 

D if 

- - ( 0 ,  e3) 7 ~ O, 

then necessarily 0~v/8~2(0, e3) # 0 and the equation ~o(x ~, ~') = 0 is equivalent to 

~2 = 0 ,  (5.17) 

provided a suitable change o f  coordinates is performed near the x/-origin. 
In particular we deduce that in this case rank A(0) = 1 so that, on Ep we also have 
rank A(x  ~) = 1 near the origin. 

II) Assume that 

- - ( 0 ,  e3) = 0 ,  

and 

Ox ~ 

Then the following cases may  occur: 

(a) 

(b) 

- - ( 0 ,  e3) # O. 

The equation o f  ~p  relatively to E1 does not depend on ~:, i.e., ~p is cylindrical 
with respect to the ~:-fibers. Then we m a y  change coordinates near the origin in 
such a way that, in El ,  Ep is defined by the equation 

x j  = 0 ,  (5.18) 

where j a {2, 3 }. 

Denote by ~o ( x:, ~ t) = 0 the equation Of E p in Z1. Then i f  Oq) / O x 2 ( O, e3) # 0 in 
a suitable system o f  coordinates near the" origin q) is equivalent to 

Y (x', ~') - )~ (x ')  ~2 + x2~3 = 0 .  (5.19) 

Here ~. denotes a reM analytic function such that )~(O) = O. 

On the other hand, assume that 0~o/0x2(0, e3) = 0 and that 8~o/8x3(0, e3) # 0. 
Then the equation q) = 0 is equivalent to 

r (x:, ~') -- ~ (x') ~2 + ,  (x:) ~3 + x : 3  = 0 ,  (5.20) 

where )~(0) = O, lz(O) = O, dx,#(O) = O. 
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Proof. To prove the above statement we need only remark that in Case I any equation of the 
form ~2 - X (x')~3 = 0 may be written as ~2 = 0, performing a change of coordinates that leaves 
xl unchanged. 

As for Case IIa it suffices to notice that ]~p is given, by what has been shown previously, 
by the equation ~(x') = 0 with dx,~(O) ~ O. Thus we can always change coordinates in the 
(x2, x3)-plane in such a way that/~(x ~) = 0 becomes x2 = 0 if 0/~/0x2(0) r 0, or x3 = 0 
otherwise. 

Let us consider the Case IIb. If  0~o/8x2(0, e3) 7 ~ 0, we have 

/ ( 2 )  (3) (Xt)) ~3 tp (Xt, ~t) =- ~X2ak2/ (2) (X') -k x3- a(3) (xt)) ~2 -Jr- (x') + x3ak3 

where k = 2 or k = 3 depending on which component of the 2-vector B in (5.10) is elliptic at 
(2) (0 (2) t (0, e3); moreover, ak3 .  ) ~- 0. Then we conclude that the equation x2ak3 (x)  + x3a~33)(x ') = 0 

is equivalent to x2 -- X (x3) = 0, for a suitable analytic function X defined near the origin. Let us 
perform the following change of variables in the (x2, x3)-plane: 

Y2 = x2 -- X(X3) / r/2 = ~2 

/ oqx (x2) •2 
Y3 = x3 r/3 = ~ 3 + ~ .  

Then in the new coordinates, modulo a non-vanishing factor, we have 

~o (x', ~') = e (x')  (~ (x ')  ~2 + x2~3) , 

which gives (5.19). 

Assume now that 8~o/8x2(0, e3) = 0 and that 8~o/0x3(0, e3) ~ 0. In the above expression 
(3) (2) (0 of  ~0 we then have ak3 (0) 7~ 0 and ak3 ,  ) = 0, otherwise we would be in the same situation as 

above. 

Thus 

(x', = (x') + x3 3], (x') (x') + .  

with )~(0) = 0 and/z(x ' )  = O(Ix'[ 2) which yields Equation (5.20). This completes the proof of  
the proposition. [ ]  

R e m a r k .  The seemingly pedantic distinct~0n between the x2 and x3 variable in the proof above 
will be useful in subsequent work, where we shall be concerned with the Gevrey (analytic) 
hypoellipticity properties of  our operators. Microtocal a priori estimates are the basic tool for us 
and we shall see that, f rom a microlocal point of  view, the Gevrey hypoellipticity thresholds for 
cases (5.19) and (5.20), near the same point (0, e3), are very different. Naturally, near different 
base points, both Cases IIa and IIb may occur for the same operator, yielding different microlocal 
hypoellipticity results and the expected local result. 

Using Proposition 5.2 we can write the vector fields in a simpler way. 

Proposition 5.3. The vector fields X1, X2 and X3 satisfying hypotheses (A1)-(A4) can be 
written in the following way: 
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Case l: 

Xl(x,~) = ~1 

X2(x, ~) = a2~(x)~ + ~-~ [~ (x') ~ 
+ Xl {t~22(X)~2 -'1"- t~23(X)~3}] 

x~(x, ~ ) = a~1(~)~1 + xf  -1 [4 (x') ~ (~') ~ 
-'b Xl {a32(X)~2 q- fi33(x)~3}] , 

for suitable functions a(x'), with or(O) # O, and )~(x'). 

Case IIa: 

(5.21) 

x1 (x, ~) 

X2(x, ~) 

X3(x, ~) 

where j is equal to 2 or 3. 

Case IIb: 

= a21(X)~l-q-xf-l[xj(ct22(0,  x')~2 +a23(0 ,  xt)~3) 

q- Xl {a22(x)~2 q- a23(x)~3}] 

= a31(X)~l + x p-1 [ x j  (t]32(0, x')~2 q-- t~33(0, x')~3) 

q- Xl {t~32(x)~2 -]- a33(x)~3}] , 

(5.22) 

Xl (x ,~ )  = ~1 

X2(x,~) = a2l(X)~l + x  p-]  [ce(x')Y (x' ,~ ')  

+ Xl {t~22 (X)~2 -I- a23 (X)~3 }] 

+ Xl {h32 (x)~2 + h33 (x)~3 }] , 

(5.23) 

where ot is a non-vanishing analytic function defined in a neighborhood of  the origin, fl is analytic 
and Y (x r, ~') is a vector field of  the form (5.19) or (5.20). 

Proof. Case I is straightforward, due to Proposition 5.2. The same proposition also implies 
Case IIa. Case IIb follows from Proposition 5.2 and Lemma 5.1 (b). [ ]  

Remark. We point out that, since E 1 ~--" {X1 ~--- 0, ~1 = 0}, the forms (5.21)-(5.23) for our vector 
fields actually have some further properties, which will turn out to be important for the regularity 
estimates. Basically these properties state that the fields are linearly independent outside of the 
characteristic manifold and that the number of layers of the Poisson stratification is finite. We 
postpone a precise statement of this fact until the final step in order not to burden the exposition 
too much. 

The next step consists in using Assumption (A3) and the remaining part of (A4) to make the 
form of the vector fields more precise. 
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6. Finer forms for the vector fields 

6.1. Case I 

By Proposition 5.3 we are dealing with the fields: 

Xl(x, ~) = ~1 

I-x2(x'~))] -- I-a~'(/)l /r-'{[~, '~(x')(x'),,(x') 0"1,,,~' + - / 
LX3(x, ka31(x)j ~1 + xlA(X)~' l , 

with obvious notation. We can see at once that the only brackets that matter are 

adJ(Xl)Xk, k = 2 , 3 ,  j = p , p + l  . . . . .  q - 2 .  

The above quantity vanishes on Ep = {Xl = ~1 = 0, ~2 = 0}, so that, taking j = p, we conclude 
that [0]=0 (x') ~3 

which implies that 

fi23(X) Xl=0 = a33(x) Xl=0 = 0. 

Thus we may write the fields as 

Xl(x, ~) = ~1 

] xrl La31(x)J ~1 + I[~. ~(x')+xlg122(x) [Xa(x, = (x')o~(x')+xla32(x) 

ra23(x)l } 
+Xl Lh33(x)j ~3 , 

for suitable analytic coefficients ai3, i = 1, 2. 

Proceeding analogously and using the remaining brackets, we conclude that 

Xl (x, ~) = ~1 

rx2(x, ~))] [a21 (x)] ~_ xP-1 00] ~ , La31(x)j<,+ {I- o,(x')+x,a=(x) 
LX3(x ,  = L;~(x')~, (x') + Xla32(x) 

+x,~-" [<~x)l } 
Lfi33(x)j r , (6.1) 

for suitable analytic functions a(x t) ~: 0 (as always in Case I---cf. (5.21)), ai3, i = 1, 2, and 
~.(x'). 

Furthermore the ellipticity of the Poisson l~rackets of length q tells us that 

�9 4 ( O , / t ) [  O] 5 0 .  (6.2) 

On the other hand, the fields X2, X3 in (6.1) are linearly independent for Xl # 0 if and only if 

x q-p d e t [  @(X')-l-Xl~t22(X) fi23(X)] 

(x')~ (x') +.1a23(x) a33(x)j # o,  
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i.e., 

i fxl  5~ 0, or 

Xl 
-,1. (x') a23 (x) + h33 (x) + det A (x) :/: 0 

(x') 

( I~ ' (  xtl )] I l l  Xl ~ ) det | + - ~ a ( x )  (= O, 

if Xl # 0. Another way of stating the above condition is 

( [ ; ]  [01] ) -~.x ' )  ,A(x) + u - ~ d e t A ( x )  7~0, 

i fxl  7 ~ 0. 

(6.3) 

(6.4) 

6.2. Case IIa 

We begin by considering the fields in (5.22) and again use Assumption (A4) and (A3). 
Thanks to the remarks made above, we can see that, taking p derivatives with respect to xl, we 
have 

�9 ~(x)~' = 0 if xl = Xj = 0, j = 2, 3 ,  

i.e., 
/~(X) = Xl,~I (X) + Xj,~2(X) . (6.5) 

Hence X2 and X3 can be written: 

[X2(x, ~)] Fa21 (x)] x f - l { x j ~ ( x t ) ~ t  
X3(x, ~) = La31(x)J ~1 + 

La31(x)jya21(x)] Xf -1 / = x2~(x)~t} = ~1 q- [x jA(x )~  ' d- 

the meaning of the symbols being obvious. 

Iterating this argument we reach the following form for the vector fields: 

X l ( x , ~ )  = ~1 

X2(x,~) = a21(x)~l § x p-1 [xj (a22(X)b~2 + a23(x)~3) 

+ x q-p (h22(x)~2 + h23(x)~3)] (6.6) 

X3(x, ~) = a31(X)~l +x f  -1 [xj (a32(x)~2 Jr-a33(x)~3) 
/ -  

-.[- X7 -p  (a32(x)se2 -I- a33(x)be3)] , 

j ~ {2, 3}. 

Proceeding as in Case I we see that the ellipticity of the last Poisson layer means that 

det A(x) xl=0, xj=O # 0.  (6.7) 

On the other hand, Assumption (A3) together with (6.7) means that 

det(x jA(x)+ x;-PA(x)) ~kO, (6.8) 

if Xl # 0. 
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6.3. Case l ib  

Let us consider the fields in (5.23) and use Assumptions (A3) and (A4). Taking the p-th 
derivative with respect to xl we obtain that 

, 4 (x )~ '=0  if x l = 0  and Y ( x ' , ~ / ) = 0 .  

By Lemma 5.1 (b), this implies that there is an analytic 2-vector, h (1) (x'), defined near the origin, 
such that 

(x') l (0, X') ~' ---- h (1) (x t) Y (x t, ~'), h (l) (x') -- L3/h(1) (Xt)J ' 

so that 

and hence 

A(x)~' = h(') (x') Y (x', ~') + ~,~(~)(~)~' 

X2(x, se)] Fa21 (x)l 
X3(x,~) -- [_a31(x) 1 ~1 

+x~-'l([~(x')l+xah(')(x'))Y( 
--[-X2.~ (1) (X )~t } . 

Iterating this argument we obtain that 

Xl(x ,  ~) = 

X2(x,~)]  = 
X3(X, ~) 

a21 (x) 1 
a31 (X)J ~1 

+ x p-I {h(x)Y (x ' ,~')+ x~-P,4(x)~'}, 

(6.9) 

while the linear independence of the vector fields outside of E1 yields 

det (h(x) | Y (x') + xq-P A(x)) ~ O, (6.11) 

if Xl ~ 0. Here Y(x ~) denotes the 2-vector whose components are the coefficients of the vector 
field Y. 

We summarize the above argument in the following. 

where h(x) is a 2-vector function, h(x) = (hz(x), h3(x)), such that h2(0) ~: 0, and ,~ is a 2 • 2 
matrix with real analytic entries defined near the origin. 

Assumption (A4) then implies that .4 (x)~ t cannot be zero if Xl = 0, ~1 = 0 and Y (x t, ~i) _ 0; 
but, since Y(0, ~I) - 0 for every ~ e R 2, we easily get that 

det A(0) ~ 0,  (6.10) 



A Class of Sums of Squares with a Given Poisson-Treves Stratification 407 

Theorem 6.1. Let X1, X2, X3 satisfy Assumptions (AI)-(A4).  Then there is a suitable system 
of  coordinates defined in a neighborhood of  the point (0, e3), such that the field can be written in 
one o f  the following ways: 

Case I) 

X1(x,~) = ~1 

X2(x,~) = a21(X)~l-+-xf-l[(ff(xt)-bxla22(x))~2 (6.12) 

"~ Xq-P s (X)~3] 

X3(x,  ~) ~-- a31(X)~l -k- xf -1 [ ()~ (xt) ot (x t) -}- xla32(x))~2 

q- Xq-P~133(X)~3] , 

for suitable analytic functions~ij, i, j = 2, 3, )~(x~), and~(x ~) ~ O. Moreover, we have 

[ a23 (0, X')l 
a33 (0, x')J ~=0' (6.13) 

Case IIa) 

Case lib) 

and 

i f  X1 ~= O. 

Xl --). (X') a23(x) -[- a33(x) -[- ~ det A(x) ~: 0, (6.14) 

Xl  (x, ~) = ~1 

X2(x,  ~) = a21 (X)~l + xf -1 [xj (a22(x)~2 -}- a23(x)~3) 

-k x q-p  (a22(x)~2 q- a23(x)~3)] (6.]5) 

X3(x,  ~) = a31(X)~l q- xf -1 [xj (a32(x)~2 -[- a33(x)~3) 

where j ~ {2, 3}, fiij, aij are analytic functions, i, j = 2, 3, such that 

det A(X)]xl= ~ #0 ,  detA(X)lxl=xj=O # 0 .  (6.16) 

Moreo vet, 

i fx l  # O. 

det (x j f l (x)  +.xq-P f~(x)) ~ 0 , (6.17) 

Xl(x, ~) 

X2(x, ~) 

X3(x, ~) 

= a21(X)~l + xf -1 [h2(x)(or (xt) ~2 q- fl (x') ~3) 

+ x~ -p (a22(x)~2 + ,h3(x)~3)] 

= a31(X)~l + xf -1 [h3(x)(~ (x') ~2 + ~ (x') ~3) 

q- X q-p (a32(x)~2 -{- a33(x)~3)] 

(6.18) 
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where we may assume that h2(0) y~ 0, hj and ~lij are suitable analytic functions, and 
the lJeld ot(xl)~2 +/3(x')~3 has the form in (5.19) or (5.20). Moreover, 

det ,4(0) r 0 (6.19) 

and 

i f  xl r O. 

) (x')J 
(6.20) 

7.  E x a m p l e s  

We collect in this section a few examples of  the fields obtained in Theorem 6.1. The Case I 
examples all have the following stratification: 

~]1 -~- {X1 = ~1 ~-- O} 

~2 = ~1 

E p  = {Xl = ~1 = 0, ~2 = 0} 

~ p + l  = ~ p  

~q = {0}, 

where {0} denotes the zero section of the cotangent bundle. 

7 . 1 .  C a s e  I 

Let ot ~ 1, )~ = O, @1 = a31 = 0 and 

Then we have the fields 

~1, "xP-I [~2"4-Xq-P~3], 

I] 

Let ~ ~ 1, ~. = 0, a21 = a31 = 0 and 

Then we have the fields 

~1, x P - I ~ 2 ,  x q - l ~ 3  , 

which is the Oleinik-Radkevi6 operator. 

x q - l ~ 3  " 
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Let ot - -  1, )~ = 0, a21 = a31 = 0 and 

[o 
A ~-- - p - I  x~ 

Then we have the fields 

~l, x;-' [~ + ~q-.~], x q - ~  

409 

Concerning the conditions of  Theorem 6.1 we see that the vector  (a23, fi33) is equal to (1, 1) in 
the first case, (0, 1) in the second case and to (1, 0) in the third case. Moreover, (6.14) reads as 
1 + Xl - 0 ~ 0 in the first and second cases, Xl det ,4 = - x  q-p ~ 0 if  xl ~ 0 in the third case. 

7.2.  C a s e  I I a  

For the Case IIa, the stratification is as for Case I except that Ep is now given by: 

Ep = {Xl ~ 1  = 0 ,  X2 = 0} .  

Let us take j = 2, a21 = a3, = 0 and ,~ = Id. Then from the condition det (x2 Id + x  q-p. , i )  7s 0 

if  Xl ~= 0 we easily deduce that the matrix ,4 must have non-zero strictly complex eigenvalues. 
Set 

Then our conditions are satisfied and we obtain the fields 

Xl + 

7.3.  C a s e  I I b  

Here the non-symplectic layer Zp is given near (0, ~3) by: 

~ p  = X2~2 -+- X2~3 = 0 .  

Let ~0(x', ~') = ot(x')~2 + r = )~(x')~2 + x2~3, with ~. ~ 0, )~(0) = 0, as e.g., in (5.19); we 
may assume that ~.(x~)/x2 is not an analytic function near the origin. 

Moreover, let a21 = a31 = 0, h2 --  1 and h3 = 0. Then we have the fields 

~1, x~ -~ [ ~  + x~3 + xq-~ (~2~ + ~3~3)], x q-~ {~3~2 + ~ 3 1  

Conditions (6.19) and (6.20) become det A # 0 and ~-a33 -- h32x2 + x q-p det ,4 # 0 if  xl # 0. 

If  q - p is e.g., even we may choose )~ = x 2, &33 = sign det .4, f3z = 0 to write a particular case 
of  the above fields. 
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8. The behavior of the bicharacteristic curves and a finer classification 

In this section we present a classification of  the various instances of  the "sums of squares 
operators" in which we get in Case I. 

Consider (6.12); X1 actually denotes the only non characteristic vector field. Let us consider 
the null bicharacteristic curves of  X1, y(,,~)(t) = (Y, ~) + t(el, 0), where ~1 = 0. If  -71 = 0, 

then g(~,g) (t) = F(~,,~,) (t) = (0, -7', O, ~') + t (el,  0) is actually a null bicharacteristic curve of  Xl 

issued from a point (0, -7', 0, ~') of  El .  Assume t 7~ 0 and compute X2 and X3 on such a curve. 
We obtain 

X2 (t)) = r  [(~ (-7') + r (~,-7')) ~2 

+ tq-pa23 (t, ~') ~3] 
= tP-l[(~.(-Tt) Ot(-7')-k-t{t32(t,-7'))~2 

+ tq-Pa33 ( t , -7 ' )  ~'3] �9 

(8.1) 

Assume that the point (0, -7', 0, ~') is in a neighborhood of (0, e3). Then 53 # 0 and also ~ (-7') # 0 
by Theorem 6.1. On the other hand, nothing is known a priori about the function )~. We point 
out explicitly that we chose X2 as the field having a non-zero O/Ox2 coefficient near (0, e3), thus 
breaking the Xz-X3 symmetry. This is evidently no restriction of generality, provided we bear in 
mind that analogous statements hold if we interchange the roles of  X2 and X3. 

When t # 0 we may consider the characteristic set of  X2(y(2,,~,)(t)); we obtain that 
Xz(y(~, ~,)(t)) = 0 if and only if 

~23 (t, -7') - 
~2 = - - t q - P  Ot (-Tt 7 ~- t~22 (t, -7') ~3 . 

Let us now compute X3 (F(~, g,)(t)) ; we get 
' X2 (y(s (t))=0 

t 
a(-7') tq-1[-l(-7')g123(t,-7')+gt33(t,-7')+ot(-7,)detfl(t,-7')]~3 (8.2) 

ot (.7') + ta22 (t, -7') 

where the quantity in square brackets is that playing a role in Equation (6.14) and is non-zero 
provided t # 0. We also point out that the coefficient ot (-7') (c~ (-7') + ta22 (t, -7'))- 1 is also non-zero 
a t t  = 0 .  

The above discussion motivates the following. 

Definition 8.1. We say that the fields X1, X2, X3 of (6.12) are in Case I0 or of  type I0 if 

-z (0)a23(0 ,  0) + a33(0, o) #= o .  (8.3) 

This means that, as t --+ 0 

x3 (y~,,~,)(t)) x2(~,~,~,)(,))=0 ~ tq- ' ,  

uniformly with respect to -7', ~3 # 0. 

Assume now that (8.3) no longer holds and let 

t tr , --)v(0)fiz3(t, 0) -b t]33(t, 0) + ~ det .4(t, 0) (8.4) 
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as t -+ 0. Then we say that the fields X1, X2, X3 of (6.12) are in case Ir or of type Ir, r > O. 
This implies that 

X3 (y(s x2(y(~Q,)(t,)=o~t q-l+r , 

for t -+ 0 and 2 t in a small neighborhood of the origin. 

The first and second examples in Section 7.1 for Case I operators are of type I0, while the 
third example is of type lq_p. 

We will find this property to be relevant for the Gevrey hypoellipticity threshold of the 
corresponding sums of squares operators. 

9. Gevrey regularity for sums of squares of vector fields of type I0 

In this section our purpose is to deduce microlocal Gevrey estimates for operators of type 10. 
For the sake of simplicity we slightly modify our notation in (6.12). Thus let us consider three 
vector fields of the form 

XI(X, D) = D 1 

X2(x,D) = a21(X)Ol + x f - l  f2(x)O2 + xq-ig2(x)O3 (9.1) 

X3(x, O) = a31(X)Ol + x f - l  f3(x)O2 + xq-lg3(x)O3 , 

where f j  and g j,  j = 2, 3, are real analytic functions defined in a neighborhood of the origin and 
such that (6.13) becomes 

f2 (0, x') # 0 (9.2) 

I3 (o, x') = (x') I2 (o, x') 

g2(0)] 
g3(O)] # 0 .  (9.3) 

- f ~ - f 2 ( O , x ' )  

Xl det xl 
f3-- f3 (0,x') 

xl 

g2(x)] # 0  

g3(x)J 

and 

Moreover, (6.14) becomes 

--X (x') g2(x) + g3(x) + 
f2 (0, x') 

2 is of type I0 means that if Xl # 0. Now the assumption that our operator ~ = 1  Xj  

--X(0)g2(0)+g3(0) 7~0. 

The latter implies (9.4), while (9.4) makes sense due to(9.3). 

(9.4) 

(9.5) 

Lemma 9.1. Let c~, ~ and 9/be real analytic functions delined in a neighborhood of  the origin 
in R 3. Then we can lind real analytic functions a, b and c such that 

ot(x)D1 + f l (x)xP-l  D2 + y (x )xq- l  D3 = a(x)X1 + b(x)X2 + c(x)X3 . 

Proof. This very useful lemma is a simple consequence of the assumptions, and says that the 
span of the vector fields {D1, xp-ID2, Xq-lD3} is that same as that of the vector fields {Xj}. 
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Using elementary row and column operations on the matrix on the right-hand side of (9.1) the 
lemma states the invertibility of the matrix 

f2 (X) g2 (X)] (9.6) 
f3 (x )  g3(x)J  

which, in view of (9.2) is equivalent to the invertibility of  the matrix 

L1 g2(x)  ] . 

But this is just (9.5) (all locally). 

Lemma 9.2. 

where 

Equivalently, 

For j = 1, 2, 3, and m an integer, 

[ 3 ] r X J  ' pmq  = ~ Yjh~(g)"Aht'J3nm-s , 
s h=l 

e+lal 0 ctz(s ~ Cjh (e + I~1)! rjh 

w h e r e , ( ~  --t~jh. 

l)3"m A"j ~ ~ (s "" r-~m--s = -- ~ Yjh AhU3 ' 
s h=l 

P r o o f  This is just an iteration of the previous lemma. 

(9.7) 

[ ]  

(9.8) 

(9.9) 

(9.10) 

It is a well-known fact that the operator 

3 
P(x ,  D) = Z X j ( x ,  D) 2 

j=l  

- dist U c 

k+l 

r k for k < 3 r .  

Let denote by ~o a cut off function identically equal to one in a neighborhood of the origin 
in ~3. Due to the special form of our coordinates and the fact that the characteristic manifold is 
simplectic, we may assume that ~o is independent of  the variable xl: in fact we may always take tp 
as a product of three such cut off functions each depending on a single coordinate, x j ,  and every 
xl-derivative landing on ~p(xl) would leave a cut off  supported in a region where xl is bounded 
away from zero, hence in a region where the operator is (uniformly, microlocally) elliptic. Thus we 
take ~0(x) = ~o(x'). Here ~0 is assumed to be a function of Ehrenpreis-H6rmander type (see e.g., 
[ 15, 20]), i.e., denoting by U our neighborhood of the origin, then ~0j has the following property: 

for any U compactly contained in U, and for any fixed r ~ N, we choose qgj = qgj, r E C~Z(U), 

~o ---- 1 on U and such that, with a universal constant (i.e., depending only on the dimension of 
the Euclidean space in which we work) Co such that 

[]  
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is C~-hypoelliptic and satisfies an a priori estimate of  the form 

3 
IlSjull2--} - I]ull2/q < C ( l ( e u ,  u)l ~f-]lull2) , 

j=l 
(9.11) 

where u is a rapidly decreasing smooth function, II �9 IIs denotes the usual Sobolev norm of order 
s and II �9 II = I1 �9 II0 is the L 2 norm. 

We want to obtain a bound for an expression of  the form 

II sir (x3 O;u rl, (9.12) 

where, since we are in a microlocal neighborhood of  the point (0, e3), D3 is an elliptic operator. 
It is well known that obtaining a bound for (9.12) of  the type IIXj ~o(x') D~u II _ C r + l r ! s  allows 
us to deduce that P is Gevrey (micro-)hypoelliptic of  order s. 

Remark 9.3. We would like to mention here that in the case of the second example of Sec- 
tion 7.1, i.e., the Oleinik-Radkevie operator, the authors in [3] proved that one has G q/p hypoel- 
lipticity and that this bound is optimal. 

Instead of  bounding the quantity in (9.12), for technical reasons we want to bound the more 
general quantity: 

Xjx~~ + x~~ l/q (9.13) 

where a, b and c are positive integers with a < q but b and c bounded only by r. Using (9.11), 
we see that (9.13) is bounded by 

(px~o(b)D~_Cu ' x~o(b)D~_C u } + x~o(b)D~_C u 2 ,  (9.14) 

modulo a positive constant in front of everything appearing in the above formula. We need to 
move P in (9.14) to the right (onto u); the term with the L 2 norm will be easier to handle. Writing 
P E X  2 and then IX 2, V] X[X, V] + [X, V]X with V x~o (b) Dr-c, we find = = = --3 

3 
+ Z (X, [Xj, x r ~o 'b' D; -c] u, xr~p(b)D;-Cu) (9.15) 

j=l 
/ "  

3 
xr#,,,; 

j=l 

The first of the above right-hand side terms is good, since we assume Pu to be analytic, even 0. 

The second and third terms on the right hand side in (9.15) have many common features, 
which we may treat with the help of  Lemma 9.2. 

For j= 1, we have 

[X1, x~ ~o (b) D~ -c ] = ax~- l qo (b) D~ -c , (9.16) 
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and so 

[Xl, x~o(b)D~ -c] Xl = Xlax~-lqg(b)D~ -c -- a(a -- 1)x~-2~o(b)D~ -c (9.17) 

For j = 2, 3, 

[X j, x~ ~o (b) D~ -c] = f (x)xP-lx~ q9 (b+l) D~3 -c (9.18) 
r-c 3 

+x~o(b) E ( r - - c ) E - ( e ) . .  ,-,r-c-e ~. Yjh Ah/J3 ' 
s h=l 

with f analytic, and thus using Lemma 9.2 again, (j  = 2, 3) 

[Xj,x~q9 (b) D~ -~] Xj = f (x)xf - lx~o (b+l)D~-cXj 
r - - c  3 

+ X~qg(b) Z ( r - - c )  ~'~h t3r-c-eY 
s s h=lZ )Xh~3 "~J 

r-c 3 
= f(x)xP-Xx~qg(b+l)E(r--c)x--'~-(e)"g. 2.-a Yjh AhlJ3r~r--c-s 

s h=l 
r-c 3 r-c-s 3 

-q-x~fp(b) E (r--c)g. Z Y ( ~  )Xh Z ( r - - c - - s  ~(e, )v  r,r-c-e-el Yjk Ak t-J3 
e=l h=l s ~1 k=lZ 

(9.19) 

Going back to (9.15), the first term we have seen is harmless as it contains Pu. In the second, 
we integrate by parts and use a weighted Schwarz inequality. Since X~ is equal to -Xj  modulo 
a zero order term, the second term on the right in (9.15), using (9.16) and (9.18), becomes 

3 

3 2 2 

k=l 
2 

+ Ce f(x)xP-lx~o(b+l)D~-Cu 

r-c 2 

l<h<3 e=l 
2<j<3 

(9.20) 

This expression we leave for the moment and treat the issues which arise in the double commutator 
needed for the last term in (9.15), those which have already been expanded in (9.17) and (9.19). 

We may continue with (9.17) in (9.15): 

( [Xl ,  x~ ~o (b) Dr3 -c] Xlu, x~ ~o (b) O~-Cu) 

---- (Xlax~ -1 ~0 (b) n~ -c u, x~q9 (b) D~ -clt) 

- (a(a  - l ) x U  -cu, D;-C u} . 

(9.21) 
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We shall also continue with (9.19) in (9.15): for j = 2, 3 

) = Z r --  C / ,e/ .G<e ) ~p-l~.a.~(b+l)y, . r - c - g  xfgo(b)D;-Cu \J~'~Jgjh ~'1 ~1 V" ~-n~ 3 "~, 
g=0 

h=1,2,3 

r c (  3 ) r-c (e,e~) xf++) F-, ~ ' ( ~ ) X h p ( ~ ' ) X k D ; - C - e - e l u ' x r ~ ~  " 

h,k=l 
+ Z  

g+gl= l  

(9.22) 

Here we have used the 'multinomial'  notation for brevity: 

~ ( ; ) ( ~  
~,  • N •  - r - •  • 

Before collecting our individual terms we throw in a kind of  'symmetrization' of  the first 
term on the left, for errors will often appear in this form. In so doing, we will encounter one more 
commutator, which is covered under the fourth and fifth terms on the right, hence contributing 
nothing new. We also drop the subscripts on the vector fields now. From (9.13), (9.14), and (9.15), 
(9.20), (9.21), (9.22) we have, for any positive e, 

Xx~<p(b)D~-Cu + X~<p(b)D~-Cu 1/q + x~<P(b)XD~ -cu 

< xT~<~)o;-cp, + xf++)D;-C. 

+ e Xx~o(b)D~-Cu + C~ ax~-lq)(b)D~-Cu 

+ c, f(x)x~-~x~++l)D;-Cu 

x +'rc( r -  c ~ ~) X D~_C_e u +c~ Z Y~ e 
2 < j < 3  e= l  

+ (Xax~_l~@o;_Cu, x~(b)o;_Cu ) 1/2 

+ (a(a--1)xZ-:q)<b)Dr3-Cu, x~o<b)D;:Cu)1/2 

r - - c  

"~ ~ (F ; C )  (f(x)~,xP_lx.laqg(b+l)xo;_C_,u,x~qg(b)o~_Cu ) 1/2 

j=2,3  

r - - C  

+I2 (r--c) /~a_(b)-(e)...-.(el)v,~r-c-e-e, x~o(b)D~-Cu)1/2 
e+s e,  e l  \~1 ~o yj. Ayj. At13 U, 

j=2,3  

=11+[2+13+14+15+16+17+18"+-I9.  

(9.23) 

9.1. T h e  t e r m  11 

This term is harmless since Pu is real analytic, even zero, in the support of  all q). 
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9.2. The term/2 

This term will be bounded by a small multiple of (9.13) if we take the support of all the 
localizing functions small, and hence may be absorbed. 

9.3. The term/3 

This term is already a small multiple of (9.13), hence absorbable for e small. 

9.4. The term 14 

This term, Ce IlaxC~-lqg(b) D~-Cu [I, exhibits an overall gain (in the norm) of 1/q, but pays for 
it with a decrease in the power of Xl. We will consider this term further below. 

9.5. The term Is 

This term, bounded at once by 

xP- l xa  ~(b+l) i3r-c, C f Ce 1 1 v" L" 3 ~ , 

suffers a new derivative on ~o but gains the factor x p- l ,  

9.6. The term 16 

This term, easily bounded by 

de sup (C• e x~p(b)XDr3-C-eu 
l<e<r-c 

in view of the estimates (9.9), where Cy depends only on the coefficients of the Xj  and their first 
few derivatives. This term will be further treated under 18 below, where also the term with s = 0 
appears, though with a small constant in front. 

9.7. The term 17 

This term, 

(a(a - 1)X~-2qg(b) D;-C u, x~p(b) Dr3-Cu ) 1 / 2 ,  

is bounded exactly as is 14 above once one power of a is moved to the left and the Schwarz 
inequality applied. 

9.8. The term 18 

This term, 

re( t E r c [ f (x)~ , (OxP_lxa ,~(b+l)vnr_c_ C x~o(b)D;_Cu 1/2 
s ~ \ j .  1 1 '/~ "" ~'3 '% 

j=2,3 

permits us to move xP-l~o (b+l) to the right and ~o (b) to the left, apply the Schwarz inequality and 
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both f and ~.e) out of  the norm. The result is bring 

E xaq)(b)XD~-Cu +~up(C• e xa~Jb)XD~-C-gu +Ce x~+P-I~Jb+I)D~-Cu . (9.24) 

The last of these is exactly like 15 above, while the supremum, has been met in 16 above. The first 
term, which we note carries the small constant e, will be absorbed on the left hand side of  (9.13) 
once the X is commuted to the left. 

9.9. The term 19 

This term, 

--r-c (r~,s \/xa"~(b)G(OXG(tl)XDr-c-t-elbllW rj. rj. 3 , x~fp(b)D~_Cu ) 1/2 

e+e~=l 
j=2,3 

carries with it some of  the features of all of  the above terms. We want to move X to the right, use 

the weighted Schwarz inequality, and estimate the derivatives ~}!) just as we have done before. 

But two things may happen: in first commuting X to the left another derivative may fall on ~ff) 
(doing no harm--the estimates on these derivatives are flexible enough to handlle one or two 
more derivatives by changing the constant a bit, uniformly in r). But the coefficient x~tp (b) may 
also be differentiated by X. No matter--this has happened often before, and either r receives 

one more derivative gains a coefficient o f x  p - l ,  as in 15, orx~ becomes x~ -1 as in 14. 

Putting these results together, the error terms, apart from those which may be absorbed on 
the left, we have arrived at the following. 

L e m m a  9.4. For any a, b, c, and r we have the estimate 

Xx~tp(b)D~-Cu + x~tp(b)o~-Cu 1/q + x~tp(b)xo~-Cu 

<~ x~cp(b)o~-Ceu + sup (Cyr) e x~cp(b)xor3-C-eu 
l < e < r - c  

+ x~-l~(b~D~-Cu + x~+P-l~(~+l)D~-Cu = J1 + J2 + J3 + J4 .  

(9.25) 

And these terms are of four distinct types: the first involves Pu and is harmless; the second 
exhibits a gain of g powers of  D3 at the expense of  g powers of  r; iteration will lead to (Cr) r 
Crr !, which by itself would lead to analytic growth. 

For the final two terms, J3 and J4, we argue.as follows: 

1) In treating terms where a power of  x has been differentiated, we invoke subellipticity, 
writing 

x~-ltp(b)D~-Cu : xa-lfp(b)Dr-c-1/qu -1- E 
1 3 II 1/q 

and estimate E using the standard calculus of  pseudo-differential operators--giving rise 
to a sum of terms, in which a typical term has k more derivatives on r and k fewer 
powers of  D3, modulo an error with no derivatives on u. This trade-off, D3's being 
transferred from u to r is the sort that would lead to analyticity. At any rate, the 
principal contribution is similar to the second term on the left of  Lemma 9.4 with a 
decreased by one and c increased by l /q.  
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2) We observe that when a = 0 (at the outset, for instance) this kind of  term does not 
arise; thus J4 will be the first term to arise, starting from [IqgD~ull : IlqgD~ull 

JJxP-lfp(l) o3-1/q uJJl/q. 

3) Alternatively, when, as in 2) just above, one does add p - 1 powers of  xl ,  and a full 
derivative to ~o, one may reach a total of  q - 1 x 's ,  in which case one invokes Lemma 9.1, 
and writes xq- lD3 = ~ b j X j  and does not employ the l / q -  ' shunt '  in the first item 
just above. I f  the powers of  x do not permit this, we use the subellipticity again. 

4) All  together, then, we observe that after s steps of  type 1) and k steps of  type 3), starting 
from a = b = c = 0, we will have, as 'worst '  errors, 

r_e k+s-I 
ck+sr k x~(P-1)-Sgo(k)D3 q u , 

where after the last step we have not taken D~/q and moved it to be part of the norm; 
for this time, assuming that we have approximately q - 1 powers of  Xl, we will  use 
Lemma 9.1 to 'create '  an X. 

Whenever possible (when the powers of  xl  grow to q - 1), we do not take advantage of 
the subelliptic 1/q gain but combine x q-1 with D3 to produce an X instead. This may happen t 
times. The result is that after s + k + t iterations we have an expression 

k+s-t t 
r e ~o(k)xk(p-1)-s-t(q-1)D r - e - ~ -  U (9.26) 

1 3 " 

Now I~p(k) l _< C~+lr k, so that (9.26) is bounded by 

ck+lre+k k(p-1)-s-t(q-1),-,r-e-Lt~ =L-t L2(supp g ~ ) x 1 u 3 u . (9.27) 

Since we are looking for powers of  xl as close to zero as possible (where we started) to gauge 
the effect of returning to the starting point, it is natural to take 

k (p  - 1) - s 
t - -  

q - 1  

or its integer part. This choice of t reduces the quantity in (9.27) to 

ck+lr  e+k D:-(e+keq)u . (9.28) 

Upon iteration we get , 

cy].j kj cr  rY~j ej-}-Y~j kj D~-~J ej-~q ~ j  kJu , (9.29) 

where 
P r-EeJ-qE J ~ 

J J 

Let us write K = Z j  kj and L = Z j  ~j .  Then 

K + L  K + L  q 
K + L = r - -  y - -  < r - ,  

r L + P K  - p 
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since q > p. This ends the proof of the following. 

T h e o r e m  9.5. The operator 
3 

p ( x ,  : 

j = l  

where the X j are given in (9.1), is Gevrey hypoelliptic o f  order ~p, i.e., 

Pu  = f E C ~~ implies that microlocally u E G s, 
q 

S_>> - -  
P 

Remarks .  The results given are microlocal. To provide a proof in all detail would entail 
introducing cut-off functions which are local in space x and also in the frequency variables ~. 
This can be done, and has been carried out in all detail in [24] and [25] in the analytic case 
and in [4] in the Gevrey category. One introduces localizing functions with the local behavior 
used here and conic localization in the frequency variables, all cut-off near the origin in the dual 
variables (with analytic error) in the manner detailed in [25]. We omit details here, as they would 
largely repeat [25] and risk rendering the exposition unreadable. 

In the case of the Oleinik-Radkevich model we know from [3] that these results are optimal 
and that in particular the result is analytic hypoelliptic if and only if p = q. We also strongly 
believe, but have not yet been able to prove, that every 'threshold' obtained in this article is also 
sharp. 
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