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ABSTRACT. As a generalization of  Calabi's conjecture for Kiihler-Ricci forms, which was solved by Yau in 

1977, we discuss the existence of  Kgihler-Ricci soliton typed equation on a compact Kiihler manifold (M, g) 
with positive first Chern CI (M) > 0 as well as the uniqueness. For a given positively definite (1,1)-form 

f2 E CI (M) of  M and a holomorphic vector field X on M, we prove that there is a Kahler form to in the 

Kiihler class [tog ] solving the Kiihler-Ricci soliton typed equation if  and only if, i) X is belonged to a reductive 

subalgebra of  holomorphic vector fields and the imaginary part of  X generates a compact one-parameter 

transformations subgroup of  M; and ii) L X f2 is a real-valued (1,1)-form. Moreover, the solution to is unique 
in the class [tog]. 

1. Introduction 

Let (M, g) be an n-dimensional K~ihler manifold with its K~ihler form wg = ~ ~_, gi -]dz  i A 

d'~ j .  Then it is well known that any (1,1)-form ~ representing the first Chern class C1 (M) is the 
Ricci form of some Kahler form o9 in the K~ihler class [ogg]. This result is usually called the Calabi's 
conjecture for K~ihler-Ricci forms, which was solved by Yau in his celebrated work in 1977 [16]. 
Namely, 09 satisfies 

Ric(og) - [2 = 0 ,  (1.1) 

where Ric(og) denotes the Ricci form of 09. Moreover, such o9 is unique in the class [ogg]. 

The case C1 (M) > 0 is more subtle in many related topics in complex geometry, such as the 
existence of K~ihler-Einstein metriCS [ 14]. Many difficulties come from a nontrivial continuous group 
of holomorphic transformations, in particular, generated by a holomorphic vector field on M(if it 
exists). This may introduce some degenracies [6], [5]. On the other hand, by the Hodge theorem, 
there is a smooth complex-valued function Ox of M for any K~ihler form o9 such that 

L xo9 = ~/'-L--13-30x , 
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where Lx  denotes the Lie derivative along X. As a generalization of Equation (1.1), we may ask if 
there is a K~ihler form to such that 

Ric(to) - f2 = Lxto .  (1.2) 

Equation (1.2) is here called K~ihler-Ricci soliton typed [9], [14]. 

Another motivation to study Equation (1.2) is that the K~ihler-Ricci soliton is a solution of 
Equation (1.2) when the (1,1)-form f2 is equal to to. The notation ofRicci solitons was first introduced 
by Hamilton in his work on Ricci flow in 1993 [9]. A Ricci soliton can be considered as a good 
replacement, when a manifold does not admit an Einstein metric. In fact, Equation (1.2) was studied 
in connection with K~ihler-Einstein metrics with positive scalar curvature by Tian in his paper [14]. 
Some examples of K~ihler-Ricci solitons on certain compact K~ihler manifolds were found by Koiso 
and Cao in [10] and [3] and [4], respectively. 

In this paper, we shall discuss the existence of Equation (1.2) as well as the uniqueness. Let 
Aut(M) be a connected component containing the identity of holomorphism transformations group 
of M and o(M) its Lie algebra consisting of all holomorphic vector fields on M. Then it is well 
known that there is a semidirect decomposition of Aut(M) (cf. [8]), 

Aut(M) = A'ut(M) tx Ru , 

where A'ut(M) C Aut(M) is a reductive subgroup on M which is a complexification of a maximal 
compact subgroup K on M, and Ru is the unipotent radical of Aut(M). In particular, the Lie 
subalgebra//(M) C r/(M) of A'ut(M) is reductive. More precisely,//(M) is the complexification of 
real compact Lie algebra of K. 

Our main theorem can be stated as follows. 

M a i n  T h e o r e m .  Let ( M , tog) be a compact Kiihler manifold with positive first Chern Ca ( M ) > 
O. Let f2 ~ C l ( M ) be a positively definite ( l , l )-form o f  M and X a holomorphic vector field on M . 
Then there is a Kiihler form to in the Kiihler class [tog] solving Equation (1.2)// 'and only i f  

i) X belongs to a reductive algebra il(M) o f  reductive Lie subgroup/(ut(M) of  Aut(M) and the 
imaginary part o f  X generates a compact one-parameter transformations subgroup o f  Aut( M ). 

ii) L x f2 is a real-valued (1,1)-form o f  M. Moreover, the solution to of  Equation (1.2) is unique 
in the class [tog ]. 

As an application of the Main Theorem, we can prove that the K~ihler-Ricci soliton on a compact 
K~ihler manifold with C1 (M) > 0 is unique modula the holomorphic transformations group Aut(M) 
of M in our subsequent paper [ 15]. In case of a Kiihler-Einstein metric, the uniqueness problem was 
solved by Bando and Mabuchi in 1985 [2]. 

In order to prove the Main Theorem, we reduce Equation (1.2) to solving certain Monge- 
Amp6re equations and use the continuity method as in [16], [2], and [12] to prove the existence and 
uniqueness. The present Monge-Amp6re equations are more complicated than one in [16] and all a 
priori estimates including C~ C2-estimate, and C3-estimate need to be done again. 

Since the Calabi's conjecture is true for any f2 e C1 (M), one may believe that the assumption 
of positively definite on f2 e Ca (M) can be removed. 

The author would like to thank prof. G. Tian for leading him into this topic. Without his 
help, the work could not be finished. The author also expresses his thanks for the referee's helpful 
suggestions. 
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2. Necessity conditions 

In this section, we shall verify the necessity conditions stated in the Main Theorem. Let M be an 
n-dimensional compact Kahler manifold with positive first Chern class C1 (M) > 0. Let fl e C1 (M) 
be a positively definite (1,1)-form of M and X a holomorphic vector field on M. We assume that the 
K~ihler metric h with its K~ihler form Wh = ~ ~ h i jdz i A d'z j satisfies the following Kahler-Ricci 
soliton typed equation, 

RiC(Wh) -- ~ = LXWh (2.1) 

where Lx  denotes Lie derivative along X and the Ricci curvature has the following expression in 
local coordinates, 

R,7 ---- - 0 i 0 7 l o g  det (hk7) 

Ric (Wh) = ~/-~-lRiTdzi A d'z j . 
(2.2) 

From Equation (2.1), we see that the (1, 1)-form L X Wh is real-valued, which implies the imag- 
inary part of X generates a one-parameter isometric subgroup associated with Wh. In particular, this 
one-parameter transformations subgroup is compact. Let Aut(M) be a connected component con- 
taining the identity of holomorphism transformations group of M. Then there is a maximal compact 
subgroup K of Aut(M) containing the above one-parameter isometric subgroup such that Aut(M) 
has the following semidirect decomposition [8], 

Aut(M) = Aut(M) c~ Ru , 

where A'ut(M) C Aut(M) is the reductive subgroup on M which is the complexification of maximal 
compact subgroup K, and Ru is the unipotent radical of Aut(M). Let r/(M) be the linear space of 
holomorph!c vector fields of M. Then rl(M) is the Lie algebra of Aut(M) and the Lie subalgebra 
/I(M) of Aut(M) is reductive. More precisely, //(M) is the complexification of real compact Lie 
subalgebra of K. In particular, X e /RM).  

Proposition 2.1. Let X be a holomophic vector field on M and f2 a positively definite (1, l )-form 
of  M as above. Assume that there is a Kiihler form Wh solving Equation (2.1). Then X belongs to 
the reductive Lie subalgebra il(M ) C 0 (M) and Lx  ~2 is a real-valued (1,1)-form o f  M. 

Proof. It remains to prove that L x ~ is a real-valued (1,1)-form of M. Since the interior product 
ix(w) is a closed (0,1)-form, then by the Hodge theorem and the fact that Lxwh is real-valued 
(1,1)-form, there is a smooth real-valued function 0 of M such that 

LXWh = d i x  (Wh) = ~ - - 1 0 8 0 .  (2.3) 

On the other hand, we can choose a local coordinate system so that W h = ~ O0~b = ~t- '~)i~dzi/~ 

dz J for some potential function r Then 

L x w h  = 4 - S i L  x (a~r = 4 - ~ ( X ( r  

Hence by (2.3), it follows 

Ax(o) = / x 0 ,  (2.4) 

where A denotes the Lapalacian operator associated with Kiihler metric h. 
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Since 

L xRic (Wh) = -~ 'cZi0g  (X (log det(hkT)) ) 

= ( : x '  (h++),) 
= --~//-----iOg (hklx i (~k,)i) 

= --,v/-~Og(hkT(xiqbi)k2--hk7XikdPi,) 

= - , / - 2 - i - l o ~ ( / x ( x ( e ~ ) ) ,  

where (h kT) is the inverse of matrix (hk7), then inserting (2.4) into (2.5), we get 

LxRic (Wh) = --4'ZlOg( Ao) �9 

On the other hand, we have 

LX (Lxo)h) = 4'-:-iLx (ago) = 4:-fag(x(o))  

:_ ~rl--fOg (hkTOTOk) 

= ~ / ~ - l a g  ( l l0112)  . 

Hence, combining (2.6) and (2.7), we prove 

Lxf2 = LxPdc ( t O h )  - -  Lx (Wh) 

= (,,o + Itoll ), 

which is a real-valued (1,1)-form. 

(2.5) 

(2.6) 

(2.7) 

[] 

3. Reduction to certain complex Monge-Amp~re equations 

Keep the notation in Section 2. We assume in this section that a holomorphic vector field X on 
M is belonged to a reductive subalgebra//(M) of r/(M) such that the imaginary part of X generates a 
compact one-parameter transformations subgroup on M, and Lx 92 is a real-valued (1,1)-form of M. 
Let K be the maximal subgroup of Aut(M) generated by ~(M). Then one can choose a K-invariant 
K~ihler metric g of M with its K~hler form Wg = ~ ~_~ gijdz i A d-z j . In particular, Lxogg is a 
real-valued (1,1) form of M. Hence, by the Hodge theorem, there is a smooth real-valued function 
Ox of M such that 

Lxwg = d i x  (Wg) =4r-~-laOOx. (3.)) 

Since Ricci curvature form Ric(wg) of Wg represents C1 (M), there is a unique smooth real- 
valued function f of M such that 

m c  (,Og) - a = , / : - f o ~ f  

L, e:~o~ = L, ~o~, 
(3.2) 
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n = cog A A COg. Moreover, from the proof of Proposition 2.1, we see LxRic(COg) is a where COg . . .  
real-valued (1,1)-form of M. Hence, by the assumption of 92, 

v'-EiZ.x (OFf) = #-EiO'i(X ( f ) )  

is a real-valued (1,1)-form of M. This shows X ( f )  is a real-valued function. 

Let CO = COg + ~/-L--i-IOOc) be a solution of  the Kiihler-Ricci soliton typed equation, i.e., co~ 
satisfies 

Ric (COr - ~ = Lxcor . (3.3) 

Then by combining (3.1) through (3.3), it is easy to see that Equation (3.3) is equivalent to the 
following complex Monge-Amp6re equation: 

det (gi] + c)i]) = det (gi j I  exp { f  - (Ox + X (c))) + c} 
(g,J'+ c),7) >'~ " "  (3.4) 

for some constant c. 

From Equation (3.4) we see that X (c)) is real-valued function of  M. For this reason, we introduce 
the two functions spaces as follows: 

M x  = ]C) ~ C~176 
I 

and 

Wx = {C) ~ c ~ ( m ) l  

Clearly, ~/Ix c 142x. 

cor = tog + 4"Z-18-8c) is a K~ihler form 

and X (C)) is a real-valued function } . 

X(c)) is a real-valued function} . 

For any c) ~ .Mx,  we define a family of  functionals, 

f0'L I,(c)) = (bret(Ox+X(r ix dr , (3.5) 

where Cr is a path in .Mx from 0 to c) and ~ = 3~r C)~" I t(c))  are modifications of one functional 
used in [1] and [12]. 

I t(c))  are all independent of  path. So It is a family of  functionals on M x .  In Lemma 3.1. 
particular. 

Proof .  
to prove It(c)) = 0. Let c)~.~ = (1 - 8)c)r = c)'. Then 

lt(O) = 

lo'L It(c)) = Oet(Ox+rX(r162 A dr  , (3.6) 

Assume that C)r is a path in .Mx  so that C)0 = ~l = 40 = 0. Then the lemma is equivalent 

(3.7) 

fo'So'Lr~ , - e (Ox+X(r ix d r  A d 8 .  
+ d-Eh L or o~ t o r / J  
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By using integral by part, the first part of second equality becomes 

/o /o r 1 .W-z-i, JM ^ o (Ox + x (~') + 

x et(~162162 A dr A d3 

L l f o l f M ( O O d p  ' -~Odp' -~O(b' OOdd'~et(Ox+X(Cy)).n_lAdrAd ` _ v ' -2-T ^ + ^ 
\ Or 0,~ O,~ Or ] %'  

io, io, Lroo,( ) OOx(OO l - e (Ox+X(r A d z  A d ~  
= - d : i ,  L \ 7_1 

ioiof. " 
1 1 F O ~ t X ( O ~ t  ~ OetX(ar 

= - , , U - z b  L o,  \ o<~ / - o,~ \ o,  ,#J + 

Inserting (3.8) into (3.7), we prove It fib) = O. [] 

In order to prove the existence of a solution of Equation (3.4), we use the continuity method like 
the one in [ 16] and [ 12] and consider the following normalized equations with parameter t �9 [0, 1 ]: 

{ det (gi] + dpiT) = det(gi~)exp{ f - t  (Ox + X((b))+ lt(~b)} 
(gi j  -}- ~'7) > 0.  (3.9) 

Since Ox is a smooth real-valued function of M, X(~t) are all real-valued smooth functions if q~t 
are smooth solutions of Equation (3.9) at t. Moreover, by differentiating log of Equation (3.9), w~, 
satisfies the following Ricce equations: 

Ric (wr - f2 = ~-2Xa3t (ox + x @,)) = tLx~or . (3.10) 

4. Openness 

Let F be a functional on .h4x x [0, 1] defined by 

F(0 ,  , ) -  log det (gel +dpiT)- logdet (g i~  ) - f +t (Ox + X(dp))-  lt(dp). (4.1) 

Since by Lernma 3. l the linearized functional of It (~) at ~ is 

I ' (~)  = fM ~et(~176 

the Fr6chet derivative L(~,t) of F at (r t) with respect to the first factor is given by 

= + , x ( + )  - ~et(Ox+X(O))ofr L(o,t)~ (4.2) 

where A' denotes the Lapalacian operator associated with Kiihler form co 0. 

L e m m a  4.1. Let dp �9 A4x and ff �9 Wx .  Then L((~,t)a~t �9 "Wx and F(O, t) �9 Wx.  

Proof. For each p �9 M, choose a local coordinate system (xl . . . . .  Xn) sothattor ~--- ~/'-~o.)iA-~ i 
and @i](P) = t~ij~iT(P)" Then 

LX (o2r = ~ (Ox + X ((~))i7 OAt A -~i ~. ~"~XTiogi A -~i . 
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In particular, Xi7 are all real-valued. Thus 

X (A t~ t )  : X-~llti~ k = X-~l~k~i 

= (X~r -- X~i~ki = (X(~))f i --  XiTr 7 (4.3) 

is real-valued. It follows A'lp e Wx. On the other hand, X(X(ap))  = -XTXT~i7 and X(ap) are both 

real-valued, then X(X(ap)) = X(X(~/)) is real-valued and consequently X(X(~) )  ~ )4;x. Thus 
L(~ , t )~  E )/VX. 

Let ~bs = s$.  Then we have 

( ) ,  (d.~s ( l ~ 1 7 6  

- d ( X ( l o g d e t ( g i T + s q ~ i T ) - l o g d e t ( g i T ) ) )  (4.4) 
ds 

and 

As similar as the proof of  (4.3), it is easy to see X(A~ ~b) are all real-valued. So 

X (log det (giT + ~iT) - log det (giT) ) 

is real-valued. On the other hand, X(Ox + X(~)) = XTX 7 is real-valued. It follows X ( F ( ~ ,  t)) is 
real-valued and consequently F ( ~ ,  t) ~ Wx.  [ ]  

Let Hk+2(M) = Ck+2(M) N Wx. We define a family of inner products <, > on Hk+2(M) by 

< f '  g > =  fM fget(~162176 

for any f ,  g ~ Hk+2(M), where o9r ~ .A4x. Then one can extend Hk+2(M) to a family of  Hilbert 
L2-spaces Hk2+2 (M) with the family of products <,  >. 

L e m m a  4.2. i). Let (b ~ .A4 x. Then L(r are all self-adjoint with respect to the products <, >, 
i.e., we have 

fMgL(o,t)fet(Ox+X(O))og~=fMfL(r162 ~ (4.6) 

for any f, g ~ Wx.  

ii). Suppose ~2 is a posiOve form in C] (M) and d) = cbt is a smooth solu6on of  Equation (3.9) 
at t. Then the first eigenvalue of  L(r is positively definite. 

Proof. i). Let L(r = ZX'f + tX( f ) .  Then by (4.2), it suffices to prove < T,(r g > = <  
L(r f >. For each p E M, choose a local coordinate system (x] . . . . .  Xn) so that o9r = 
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~-L--lo9 i /x ~i .  Then (0x + X (~b)) T = X 7. By using integral by part, we get 

fm gZ(r et(Ox+X(C~)'w~ = fM (gfi7 + tgX-[fi)et(Ox+X(4~))wn~ 

= fM (fgi7 +tfgT-X7-btfgiXT +tgfXu-bt2fgXT"-XT)et(~162176 

- t fM (fgiXi + gfXi7 + tfgXTXT) e'(~ 

= fM (:g~7 + t:~Tg~) ~'~~ 

= f., ::=,: +,~.x,=>)<,<o.+~<~ = f= fL(4~,t>get<~162 (4.7) 

ii). Let • be the first eigenvalue of L(~,I) and ~p an eigenfunction of X, i.e., 

A'ap + tX(~p) - f= +,,<0,+=<+>,wz = - x +  

Clearly, k = fM e'(Ox+X(r > 0 if ~p --= const r 0. 

By using integral by part together with Ricci formula and identities (3.10), we have 

,. f., +,+,<,<o.+x<+>><o~ = _ f= (~,+ +,x<+~), ~,~,<ox+x,~ 

= _  f=.,.+,~,+,..,.o,,o.+=<o,,_~ _,  f,, (XT~i,ij _}_ XTi~ilpj)etOx+X(4J))o3 ~ 

= SM (RiJ -- tX'~i) ~i~ijet(Ox+X'Ca)'~ 4- f= +ijl~uet<Ox+X(4~ ~ 

>_ f= f2i-j~i~Ojet(~162 . (4.8) 

Since f2 is positively definite, we prove Z > 0. [ ]  

Set 1 = It �9 [0, 1]1 there is a smooth solution q~t of Equation (3.9) at t }. Then we have the 
following: 

Proposition 4.3. The set I is nonempty and open. 

Proof. By Yau's solution for Calabi 's conjecture, there is a unique smooth solution q)0 of Equa- 

tion (3.9) at t = 0 with lo(q~0) = f01 fM r d r  = 0. So I is nonempty. Now we suppose Ct is 
a smooth solution of Equation (3.9) at t. Consider the map F(~b, t) : Hk+2(M) • [0, 1] ~ Hk(M) 
defined by (4.1). By Lemma 4.1 and the standard regularity theorem of elliptic equations, the lin- 
earized operator L(r : Hk+2(M) --+ Hk(M) of F(4~, t) with respect to the first factor at (Or, t) is 
invertible. Then applying the implicit function theorem to the map F(q~, t), there is a small number 

> 0 such that there are ck+2-functions ~s of Equation (3.9) at any s �9 [t, t + 8). By the regularity 
theorem of Monge-Amp6re equations [16], ~s are in fact smooth. This proves 1 is an open set. [ ]  

5. C~ 

Let (S 2, Wgo) be a unit two-sphere in R 3 with the standard metric go. Since S 2 is conformal to 

C 1 U { + ~ } ,  a holomorphic vector field X of S 2 can be denoted by X = (a + ~ / - ~ b ) ( r  ~ + ~ ) ,  
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where (r, 0) is the polar coordinate system on C 1 and a, b are two real numbers. 

767 

L e m m a  5.1. Let  X be the above nontrivial holomorphic vector field and tog a Kiihler form o f  S 2 

with tog < Atog o for some positive constant A. Suppose that tog + ~/-~DOd~ is a Kiihler form such 
that X ((~) is a real-valued function. Then 

IX(401 _< 21a lA .  

Proof .  Since X( r  is real-valued, we have 

b r ~ r  + a ~ o  = 0 .  

ar 
First assume a = 0. Then 37 = 0. It follows 

D0 D~ _bDb 0 X ((~) = a r - -  - b = = 
Dr DO DO ' 

since X(40lr=O = 0. So we may assume a # 0. By (5.1), we have 

X(qD = a + r - -  
Dr 

and 

On the other hand, since 

tog "~ " ~ t t - ~ D ~  > 0 implies 

It follows by (5.3), 

D 0 2 -  ~ r  ( r - ~ )  " 

togo = ~ dz A d~ 

(l + Iz12) 2 ' 

D2~ 1 a s r -2  ~ ----- ZS~ 
Or - - y  + r-~r + aO 2 

--4 Wg - 4 A  
> > 

- (1 + r~) 2 to~o - (1 + r~) 2 

0~b --4A fo r s - 2 A  r - -  > �9 -- 
Or - I + (~)2 (I + s2) ~ds >- I + (~)~ 

(5.]) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

and 

0~b 4A f o e  s 
F"~T _5< Jr 1 + (~)~ (I + s2)2 

Combining (5.2), (5.5), and (5.6), we obtain 

i d s  ~ - -  
2A 

(5.6) 

IX(~)l 5 21alA . [] (5.7) 
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Definition 5.2. Let K be a closed set of complex manifold M and S a connected compact manifold. 
A family 5 r of  complex curves Fs (possibly singular) with base points Os (s ~ S) is said to be a smooth 
S2-fiber covering of  M with K if there exist 

i) a differentiable manifold y and a smooth submersion 0 : 3) --* S whose fibers are S2-complex 
curves and 

ii) two smooth maps o : S ~ 3; and r : y ~ M such that for each s e S 

(a) 0-1 (s) ~ S 2 is the normalization of  Fs under the map r 

(b) r(cr(s)) = Os and M = ~'LI K. 

C o r o l l a r y  5.3. Let (M, tog) be a Kiihler manifold with a nontrivial holomorphic vector field X. 
Suppose that q~ is a smooth function of M such that o3g + ~L--lO-~qb is a K~ler  forrn and X (q~) is a 
real-valued function. Then there is a uniform constant C independent o f r  such that IX (~)l < C. 

Proof. Let K = {p E MI X(p)  = 0}. Then span{Real(X), Im(X)} defines a two-dimensional 
distribution on M \ K and the closures of its integral orbits through a point p e M \ K are all 
complex curves with possible singularities in M. Since there is no nontrivial holomorphic vector 
field on any compact Riemannian surfaces with genus > 1, we see that all normalizations of  orbits 
are holomorphically isomorphic to S 2. So one can construct a connected compact manifold S and a 
family ~" of  integral orbits Fs with base points Os (s ~ S) such that ~ is a smooth S 2- f iber  covering 
of  M with K. Applying Lemma 5.1 to each normalization fiber S 2, we see there is a uniform constant 
C independent o f ~  such that IX(401 < C. []  

Proposition 5.4. Let ~, be solutions of Equation (3.9) at t. Then there is a uniform constant C 
such that Id~t I < C. 

Proof. From Equation (3.9), we have 

elt(r f J M = L  oo,g . (5.8) 

It follows by Corollary 5.3, there is a uniform constant CI such that Ih(4~,)l _< C1. Let .~ = 
lt(~t) + f - t(Ox + X(#)t ) ) .  Then I~1 _< c2 for some uniform constant C2 and Equation (3.9) 
becomes 

det (gi7 + ~ t i j ) = d e t ( g i ] ) e f C t ,  (5.9) 

where ~t = 4h - ct and ct are constants chosen so that supra ~r = - 1 .  By an arg,,ument of  
C~  in [13, p. 157-159], we see that there is a uniform constant C3 such that 14',1 _< C3. 
On the other hand, by (3.6) in Lemma 3.1, we have 

fo fM ,,h et(Ox+sX(4at))o9 n ,4~ It (dPt) = wt sr u~ 

= Ctfo 'Let~~ fM4~e"~162 (5.10) 

It follows by Corollary 5.3, 

et(Ox+sX(4)'))o)~r A d s  - It (dpt) < C4 
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and consequently Ictl < C5 for some uniform constants C4 and C5. Therefore, we prove 

_< ~, [ + Ic, I _< c3 + C5. I~, I 
I 

6. C2-estimates and C3-estimates 

Proposition 6.1. Let 4~t be solutions of Equation (3.9) at t. Then there are two uniform constants 
C and c such that 

n + AOt < Cexp {c (~t - infM~t)} . 

Proof. For simplicity, let r = 0t. Given each p E M, choose a local coordinate system 
(xl . . . . .  xn) so that gi] (P)  = ~ij and ~ij(P) = Sij~iT(P)" Then by using Yau's C2-estimate [16], 
[11], one can obtain 

A'((n + A~b)exp{-c~b}) = exp{-c0} ( A ( f  - t(Ox + X(q~))) - n2infi,lRi~lT) 

- cexplc~}n (n +/xd~) + (c + infielRiTfl) expl-c4~l(n + A40 1 +4~i7 , (6.1) 

where A' denotes the Lapalacian operator associated with K~hler form we. 

Let p be the maximal point of function A'((n + A40exp{-c4~}). Then at this point, we have 
q~fli = c(n + A40q~i. It follows 

~l~i X'~ = c(n + A ~ ) ~ i  X" [ 

c(n +/xq~)X(tb) <_ c(n + A~)supM(X(r  (6.2) 
~)i7lX7 : 

Thus by Corollary 5.3, we have 

A ( - - f  + t(Ox + X(~b))) = - - A f  q- t (0 X + X(q~))i~ 

= - A I  (gk7 + 

= - - A f  -q- tX~gk7 i + t~PkTiX- ~ + t (X-~i (gk7 + qbkT) 

<_ C] + t(n + A49)supkXff + ct(n + A~b)supMX(~b) 

_< (n + A0) (C2 + cC3) + C] (6.3) 

for some uniform constants C1, C2, and C3. 

Inserting (6.3) into (6.1), we have 

A'((n + A~O)exp{--cq~}) 

> exp{-c~b} ( - C I  - n2infi#lRiTfl) - exp{--c~}(n + A~) (cn + C2 + cC3) 

+ (c + infietRfifl) expl-cO}(n + A4)) 1 + 

> -C4exp{-c4)} - cCsexpl-cr~l(n + A~) 

+ (c + infi#iRfifl) expl--c4~}(n +/X4~) 1 -F4~i7 " (6.4) 
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c Choose c sufficiently large so that c + infir > -~. Then by using Equation (3.9), one can get 

A' ( (n  + A r 1 6 2  > - e x p { - c r  (C4 + cCs(n + Ar 

+ C6exp{-cfb}(n + Ar la ,~] (6.5) 

Now applying the maximal principle theory to the function exp{-cq~}(n + Ar  at the point p the 
same as in [16], we see there is a uniform constant C such that 

n + A~bt < Cexp {c (r - infMCt)} �9 [ ]  

Combining Proposition 5.4 and Proposition 6.1, we have the following. 

C o r o l l a r y  6.2.  Let (bt be solutions o f  Equation (3.9) at t. Then there is a uniform constant C 
such that n + ACt < C. 

I Keep the notation in Proposition 6.1. Let gi7 = gij  + dPi'j and 

tiY tjs tk~ ~ @r , 
S = 2.., g g g iTk rst 

where (g t i j )  is the inverse of  matrix (gi7). Then we have the following. 

Proposition 6.3. Let r be solutions o f  Equation (3.9) at t. Then there is a uniform constant C 
such that S < C. 

Proof .  For convenience, we use a notation as in [16]. We say that A ------- B if BA - BI < 
a(S  + ~/-S) + b for some constants a and b which can be estimated. By using Corollary 5.3, one can 
compute (c.f. [16]) 

A S  . . . .  - -  li~ I]s  Ik?-- r g "r g'jS gtkt FiTkd~rs? -I- g g g rPiTkr-is~ 

_ (g,i~g,p-eg,]S g'k~ + g,reg,pj g,S~g,k~ + gtiFg,S]g,p,g,k~) 

• Fp~4)~Tk#~7 + So,  (6.6) 

where F = f - t (Ox + X (cp)) + It (r and 

So = Z;  (l (1 + (1 + (1 + 

• { ~j~ - ~ . , , ~ j ,  (1 + 
/ 

~pff) - 1 2  

/ 

+ di)iffkl--~P (q~pil~)PT' +~pikdPpTI)(I+ / > 0 .  
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and 

Furthermore, we have 

Fi] k = ( f - t (Ox + X (dP))i] k 

= (f-- tOX)i~k--l( fPl~iXlk "~-~l~kXl q-~l~Xlk)--tdDl~ik x l  , (6 .7)  

= ,: -,o..,>-.:-, +,.,-.x'.) 

- t (4~rpRs-pfi - d~psRpvfi) , (6.8) 

Fp~ = ( f  - tOX)p~ - t (~I~X 1 q- dPl~pXl) , (6.9) 

w h e r e  Ri]ki are sectional curvatures associated with the K~ihler metric g. 

Inserting (6.7) through (6.9) into (6.6) and using Corollary 6.2, it follows 

AS ~-- - t  X l { g'ff g'jS g'ki dpi]kldP~rs 7 + g'i-i g']S g'k~ dpi-]k d~rs~ 1 

_ (g,i~g/p~ g,SS g,k7 + g,i-i g,p-]gWg,k7 + g,i-ig/STg,p~g,k#) 

x r + so 

= --tXl[g'i~g'jSg'kT(Cpi],d~rsT)l--dPp~ldPij, d~rs, 

x (g,i~g,p~:g/]S g,k7 + g,ffg,pTg,S~g,k~ § g,ffg,S]g,p'g,k~)} + SO 

= - i X  l ( #  - # )  + So, (6.10) 

where 

and 

S) = g,i-i g,']s g tk7 ( dpi..]k d~rs~ ) l 

3 2 = ~p~l~i]kd~rs~ 
X (g,i~g,p~g,~Sg,k~ + g,ffg,pjg,S~g,k7 + g,i-ig,S]g,pTg,k~) . 

(6.11) 

(6.12) 

On the other hand, one can prove (c.f. [16]), 

A'A4> >_ AF "I- CI S - C2 

= ( f  --tOx)p-p - - t  (~)l'fiXlp -'[- ~gl-fipX I) 

+ C1S - C2C >_ C3S - Ca,  (6.13) 

for some positive uniform constants C1, C2, C3, and C4. Thus combining (6.10) and (6.13), we have 

A'(S +cA4J ) > c C s S - t X  l (S] - S 2) - C 6  (6.14) 
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as c sufficiently large. 

Let p be the maximal point of  function S + cAq~. Then we have (S + cA~)t = O. It follows 

S] - S 2 = -CCbp-~t . (6.15) 

Inserting (6.15) into (6.14) and then applying the maximal principle theory to the function S + cA4~, 
we obtain 

0 >__ A ' (S  + cA4O)(p) 

> (cC5S-.kctXl~pp-~l-C6)(p) 

> c C v S ( p ) -  C8, 

and consequently S(p) < C9 for some uniform constant C9. By Corollary 6.2, it follows 

= S + cA4b - cA4b _< maxM(S + cA4b) - cinfgA4b 

5 ( S + c A r  + n c  

< S(p) + c m a x g A r  + n c  < Clo (6.16) 

for some uniform constant Cl0. [] 

7. Proof of Main Theorem 

Proof  o f  Main Theorem. By Proposition 2.1, it remains to prove the existence and uniqueness 
of  Equation (3.4). i) Existence. We shall prove that there is a smooth solution of Equation (3.9) at 
t = 1. Since we have proved 1 is an open set in Proposition 4.3, it suffices to prove 1 is closed. 
This is immediately followed from Proposition 5.4 and Proposition 6.3, and the regularity theory of 
Monge-Amp6re equations (cf. [ 16]). In fact, we prove there are smooth solutions 4~t of  Equation (3.9) 
for any t ~ [0, 1 ]. 

ii) Uniqueness. Let w be a K~ihler form solving Equation (1.2). Then there is a smooth function 
qb ~ M x  and a constant c such that o9 = o9~ = o9 8 + ,vl-ZTO-~4~ and 

det (gi'] + dPij) = det (gi j )exp {f  - ( O x  + X (dp)) + c} 
> ' ~  " "  (7.1) 

where f and 0x are both real-valued functions of  M determined by (3.2) and (3.1), respectivly. 
Choose c' such that ~ = 40 + c' and 

1 ( ~ )  = Llfm~peOx+sX(')Wns~Ads 

= L l  fM (d~+c')eOx+sx(O)w~Ads=O. (7.2) 

Consider the following normalized equations with the parameter t 6 [0, 1], 

> o .  
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where It (~)  is defined by (3.6). Clearly, ~ is a solution of  Equation (7.3) at t = 1. Then by the 
similar arguments as ~ Part i), one can prove there are smooth solutions ~t of  F_~uation (7.3) for any 
t e [0, 1] with q~l = ~b = ~p + c'. Choose  constants ct so that c + l t ( ~ t )  = lt(cPt + ct), i.e., 

Ct = C et(Ox+sX (4~t)) toT(b, /X d s  . (7.4) 

Then ~t + ct are smooth solutions of  Equation (3.9) at t. On the other hand, $0 is a unique solution 
of  Equation (3.9) at t = 0 (cf. the proof of  Proposition 4.3). Thus, we have r + co = q~0 and 
consequently ~t + ct = q~t for any t 6 [0, 1], where 4~t are solutions of  Equation (3.9) proved in 
Part i). In particular, by (7.2) and (7.4), we have 

r = ~ l - C ' = e ~ l - C ' - c l  
-1 

-(lois e~162162 Ads)-lioiSMdceOx+sX(r162 Ads. (7.5) 

This shows to = to4,J and to is the unique solution of  Equation (1.2) in the class [tOg]. [-7 

R e m a r k .  Since Calabi's conjecture is true for any f2 e Cl (M),  one may believe that the assumption 
that f2 is positively definite can be removed. From the above discussions, we  see that all results are 
still held for any f2 e C1 (M) except in Section 4 as long as X and fl  satisfy Conditions i) and ii) in the 
Main Theorem, if one uses the continuity method to prove the existence and uniqueness. The only 
difficulty is how to prove the linearized operators of  Equation (3.9) for the variable q~ are invertiable 
without the assumption that Q is positively definite. 

References 

[1] Aubin, T. Rrduction du cas positif de l'rquation de Monge-Amp~re sur les vafi~t~s Kiiblerinnes compactes ~ la 
drmonstration d'un int~galit(~, J. Funct. AnaL, 57, 143-153, (1984). 

[2] Bando, S. and Mabuchi, T. Uniqueness of K~ihler-Einstein metrics modula connected group actions, Algebraic Geom- 
etry, Adv. Studies in Pure Math., 10, Sendal, (1987). 

[3] Cao. H.D. Existence of gradient K~ihler-Ricci solitons, Elliptic and parabolic methods in geometry, Peters, A.K., Chow, 
B., Gulliver, R., Levy, S., and Sullivan, J., Eds., 1-16, 1994. 

[4] Cao, H.D. Limits of  solutions of  the Kiihler-Ricci flow, J. Differ. Geom., 45, 257-272, (1997). 

[5] Ding, W. and Tian, G. K~ihler-Einstein metrics and the generalized Futaki invariants, lnvent. Math., 110, 315-335, 
(1992). 

[6] Futaki, A. An obstruction to the existence of  Kghler-Einstein metrics, lnvent. Math., 73, 437--443, (1983). 

[7] Futaki, A. K~ihler-Einstein metrics and integral invariants, Lect. Notes in Math., 1314, Springer-Verlag, Berlin, (1988). 

[8l Futaki, A. and Mabuchi, T. Bilinear forms and extremal K~ihler vector fields associated with K~ihler classes, Math. 

Ann., 301, 199-210, (1995). 

[9] Hamilton, R.S. Eternal solutions to the Ricci-flow, J. Differ. Geom., 38, 1-11, (1993). 

[10] Koiso, N. On rationally symmetric Hamilton's equation for K~ihler-Einstein metrics, Algebraic Geometry, Adv. Studies 
in Pure Math., 18-1, Sendal, (1990). 

[111 Siu, Y.T. The existence of K~ihler-Einstein metrics on manifolds with positive anticanonnical line bundle and a suitable 
symmetry group, Ann. Math., 127, 585-627, (1988). 

[12] Tian. G. On Calabi's conjecture for complex surfaces with positive Chern class, Invent. Math., 101, 101-172, (1990). 

[13] Tian, G. K~ihler-Einstein metrics on algebraic manifolds, Lect. Notes in Math., 1646, Springer-Verlag, Berlin, (1996). 



774 X iaohua Zhu 

[14] Tian, G. Kahler-Einstein metrics with positive scalar curvature, Invent. Math., 130, 1-39, (1997). 

[15] Tian, G. and Zhu, X.H. Uniqueness of K~ler-Ricci solitons on compact complex manifolds with CI (M) > 0, to 
appear in Acta Math. 

[ 16] Yau, S.T. On the Ricci curvature of a compact Kahler manifold and the Monge-Amp~re equation, 1", Comm. Pure 
Appl. Math., 31,339--441, (1978). 

Received January 23, 1998 
Revision received September 10, 1998 

Department of Mathematics, Peking University Beijing, 100871 ER. China 
e-mail: zxh @ sxx0.math.pku.edu.cn 

Communicated by Peter Li 


