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Classes of Singular Integral Operators Along
Variable Lines

By Anthony Carbery, Andreas Seeger, Stephen Wainger, and James Wright

ABSTRACT.  We prove estimates for classes of singular integral operators along variable lines in the plane,
for which the usual assumption of nondegenerate rotational curvature may not be satisfied. The main LP
estimates are proved by interpolating L? bounds with suitable bounds in Hardy spaces on product domains.
The L? bounds are derived by almost-orthogonality arguments. In an appendix we derive an estimate for the
Hilbert transform along the radial vector field and prove an interpolation lemma related to restricted weak
type inequalities.

1. Introduction

For a special class of non-vanishing smooth vector fields v : R? - R? we study the Hilbert
transform H along the lines £, = {y : y = x — tv(x), t € R}, defined by

*© d
Hf(x) = p.v.f flx— tv(x))Tt . (1.1)

We also consider the related maximal operator M defined by

1 h
Mf(x) = sup 7 / |f(x — rv(x))|dt (1.2)
h>0 0

and it is our objective to prove L? estimates for H and M.

Presently it seems to be an open problem whether for every smooth v the operators H and M
are bounded in L? (R?), for any p € (1, oo) (although the globally defined operators (1.1) and (1.2)
may fail to be L? bounded if p < 2, see the remark in Section 6). If the curvature of the integral
curves of v never vanishes to infinite order (as a function defined on an integral curve), then local
versions of H and M are indeed bounded in L7, for all p € (1, 00); see [3], [10], and [11]. We
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are concerned here with obtaining estimates in some globally defined model examples as well as
in cases in which the curvature may vanish to infinite order. We shall assume that our vector field
depends only on x,

v(x,x) =(,a(x))) . (1.3)

It is well known that in this case the L? boundedness of H can be derived from Hunt’s extension
of Carleson’s Theorem [8], [16] (this was perhaps first pointed out by Coifman and El-Kohen).
However, neither the L? boundedness for p # 2, nor any result on M seems to be a corollary of
the Carleson—Hunt Theorem. In this paper we restrict ourselves to vector fields of the form (1.3)
where a’ is monotone for ¢ # ty. and lim,_,,, a’(¢) = O (here we allow the cases 7y = +o00). It is of
course possible to estimate the Hilbert transform for x| > f9 and x; < fp separately, so without loss
of generality we assume that #y < oo and consider the operators

o d
Hfx) X(tg.00)(X1) / [ (xp—s5,x2 —sa(xy)) Ts (14

M f(x)

I

1 h
Ato.00) X1) sup Z/ |f (xy =5, %2 —sa(x))]ds, (1.5)
h>0 0

and we assume that &’ is nonnegative, monotonic, and increasing in (fg, 00). Then the monotonicity
of a’ implies the sets
I ={t>n:1/2<d@) <2t}

are intervals for all 7 > 0 and we shall always make the following assumptions. The first hypothesis
is that the length of I(7) is not changing too fast, specifically

H (29l 1120l _

0 < inf < sup ——— (1.6)
20 1]~ 150 H@I
As a second hypothesis we impose the condition
1 7|1
sup—/ | (U)’da <00, (1.7
=0T Jo ()]

see also Lemma 1.1 for an alternative hypothesis.

Theorem. Let a : (tp, 00) — [0, 00) be a C! function satisfying lim,, a@’(t) = 0 and suppose
that a’ is increasing in (fy, 00). Suppose that the assumptions (1.6) and (1.7) are satisfied. Then the
operators §) and 9 are bounded on LP(R?) for 1 < p < 00.

Remarks.

1
) Iftg=0and a(t) =V, then |I(7)| = t7 1. If tg = —oo and a(t) = €', then [I(7)| ~ 1
In both cases (1.6) and (1.7) are clearly satisfied. The L? version of the theorem is new for globally
defined examples such as a(t) = e'.

(i) Notational changes in our proof yield local versions of the theorem. Assume #p = 0. If we
set

A dt
Hfx) = xo1&) p-V-/ f—tx—ta (xl)) —
Mfx) = xo1 & Supﬂ—/ I f (x1 —t,x2 —ta (x1))| dt
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and if we assume that (1.6) and (1.7) hold with the modification that the supremum in 7 is only
extended over all T < Ty for suitable Tmax, then H and M are bounded on L? for 1 < p < oc.
This version applies to examples such as a(t) = exp(—1/¢) or a(t) = exp(—exp(1/1)), ¢ > 0.

(iii) Similarly for the global version it is not necessary to assume that a’ vanishes at 7p. If
lim;_,;, @’(t) = Tmin > 0, then we assume that in (1.6) and (1.7) the supremum in 7 is only extended
to over all T > 21nmin, and the conclusion of the theorem holds. This version applies to examples
such as a(f) = exp(exp(t)).

_ Wepointout that we may always assume thata(ty) = 0. Tosee thisleta(r) = a(t)— -a(tp) and let
£ be as in (1.4) with a replaced by a. Define Ax = (xy, x2+a(fg)x)), then H f(Ax) = H[f(A)](x)
and a satisfies our assumptions if and only if 2 does. Moreover, we may assume without loss of
generality that a’(¢) > O for r > fg. For if a’ vanishes in (c, d), then the Hilbert transform $ f (x)
coincides for x| € (c, d) with the translation invariant Hilbert transform along a fixed line and
the L?-boundedness of this operator is of course well known. Assuming these normalizations, an
alternative formulation of the theorem can be obtained from the following result (which states that
the hypothesis (1.6) and (1.7) is then equivalent to the hypothesis (1.6) and (1.9) below).

Lemma 1.1. Leta : [ty,0) — [0,00) be a C' function satisfying lim;,r a(?) = 0 and
lim;_.;, a’(t) = 0 and assume that a’ is strictly increasing in (tp, 00). Suppose that condition (1.6)
is satisfied. Then there is a positive constant C such that

dOI@| _ .

1.8
tertzy aty — (1.8)

for all t > 0. Moreover, condition (1.7) is satisfied if and only if there exists a positive constant b

such that ,
f AOU@L

tel(z) a(t) zb (19

uniformly int > 0.

Proof. Let: € I(t) and choose s € I(1/16). Then

a(t) > a(t) —a(s) > /

a(0)do > =|I(t/4)| > ct|I(7)|
1(e/%) 8

where in the last inequality we have used (1.6).

Suppose now that the expression in (1.7) is D. Then for t € I(7)

t 2t
a(t)y < / a'(s)ds < ¢ Z ’I (12_1)| 727! < cz/ |I(o)|do
to 1>0 0
< D2t|I(27)| < c3Da' (DI (v)] ;

here we have used (1.6) and (1.7). Conversely, if (1.9) holds and if ¢+ € I(zr) and T is the right
endpoint of the interval I (z/8), then

T
/ I@)ldo < o Y 2-"\1(2—")|5cz 3 2—"|1(2~’<)‘SC3 3 / d'(s)ds
0 2-k<4 2% -k 12
<4t <r/8 27%<z /8
T
< f d'(s)ds = c3a(T) < c3a(t) < c3b™ta' (O|I(D)) < cab™H2ll(m)]. OO
1
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We shall now give an outline of the proof of the theorem, leaving the main technical details to
Sections 2 and 3. We shall assume that lim,_,,, a(t) = O and that a’(t) > O for t > to; as pointed
out above, this is no loss of generality.

Following [21], [22] we decompose the operator, according to the size of the curvature of the
integral curves. For £ € Z let

Iy = {t >t: 2 <d() < 2_‘} :

then I; is an interval by the monotonicity assumption on a’. Let 8 > 0 be such that

108 < |Ie11/ 1Ie] < (108)~!
8 <b/10 (1.10)

forall £ € Z. Let x € C§° such that x(¢) > O forall ¢, x(t) > 0if [f| < 1/2 and x(t) = O if
[t| > & 4+ 1/2. Let s, be the center of I, and let

x (117" @ = 50))
ez X (Inl ™' ¢ = sm))

Then the family {p,} forms a partition of unity of the interval (f, 00). Moreover,

pe(t) =

I Csupppe C Ip_y Ul U Ty (1.11)
and therefore
272 <ty <272 ifr e supppr; (1.12)
also supp p¢ N supp p,, = @ if |£ — m| > 4. Finally observe that
loe®| < ClLl™" . (1.13)

We choose an odd function ¥ € C with supportin {t : 1/2 < |¢| < 2}, such that
: : 1

Y 25ty (2]5“:) ==

JEZ d
and set ) _

Vi) =28y (213—1;) .
Here the factor 8 is as in (1.10); this normalization is introduced for convenience and simplifies the
notation later; note in particular that supp p¢ 4+ supp ¥; C Ig—1 U Ly U Igy if 27/ < |I,|. We split

H=H1+9

where

Faf ()= pe(x) Y f YO f (x1 —1,x —ta(x1))dt .
£

277 <
Lemma 1.2. $, is bounded on LP(R?) for1 < p < oc.

Proof. For¢,m € Zlet Ry ={y € R%: y; € I, (m — D272 < yp < m27¢|1;|2) and let
fem = FXRy- Set

Srenf@= Y [0 un 1 =152 = ra .

277 <1y
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Note that [x; — yi|a(xi) < 2776715272 [,| < 274 (I, 2 if x; € UST he 1Ij.xi —y1 € suppy; and
277 < |I| [ef. (1.10)].

Therefore, 32 fom (x) = 0 if x does not belong to the union of rectangles Ry, with £ —2 < A <
£4+2andm — 2 < u <m+ 2. It follows that

19202010 < Csup [92.6mll oo
,m

hence it suffices to obtain a uniform L? bound for $7 ¢/,

Define Agmx = (I1e|71 (x1 — uf™), 26|11,/ 72 (x2 — ub™)) where (1™, u™) is the center of Rey.
Then the afﬁne transformatlon Ay, maps the rectangle Rgm to the unit square Q centered at 0 and
H2.m F &) = 92,em[ fem(Ag) )] (Aemx) with

Hrmg (1, 22) = Y /Zj Il 5~y (2j3_1 IIeIt) 80 (z1—t,22 — agm (z1)) dt
27 =1y

where a;,(z1) = 2£|Ie|_1a(uf’" + |I¢|z1) and g9 = gxo. Note that aém is bounded above and
below, uniformly in £, m. This is essentially the case of nonvanishing rotational curvature, however
standard theorems [10], [11], [15] or [20] cannot be immediately applied since we are dealing with
a globally defined operator and since a is not smooth enough. Nevertheless, standard arguments can
be applied and indeed the operators 5’)2 ¢m and therefore the operators £, ¢, are uniformly bounded
in L? (]Rz), 1 < p < 0o. More details are carried out in Section 5. ]

The nontrivial contribution comes from the operator £)1. We choose a non-negative C* function
¢ supported in {p : 1/2 < |u| < 2} with )", ¢ (2 "u) = 1 for u # 0. Then £, is a sum of
operators

Ti f(x) = pe(x1) f Vi (x1 —y1) £ f ¢ (27" p) eHbamr2maGOE=lgy gy (1.14)

where |I;]| < 27, We decompose $5; = 7 + R where
T= Z X X7
270> Iy} r=2j+E

The operator R = $)1 — T can be handled by standard arguments from Calder6n-Zygmund theory.
Lemma 1.3. R is bounded on L? (R?) for1 < p < oo.

Proof. We expand ¢~ /#¢D™1=yD) jp a power series in pa(x;)(x; — y;) and observe that the
terms (1.14) which contribute to R satisfy 27 |a(x1)(x; — y1)| < cb™182"/=¢[I;] < ¢’. Define
operators &y , by

Grrg(x,x) =Y. > pe (xl)/llfj @1 = yp) [Za ) G — y0] g O x2) dn
£ is
r2<2];—lfft!
Next define Littlewood—Paley operators L,, Zr, & in the second variable by m & =027 éz)f@)

and Z:;f(s) = (2"&2)"5(2*’52)]/“\(5); here q~> is supported in 4(1/4, 4) and equals 1 on supp ¢.
Then

(- z)"
R= Z — 2 LriGir L f] .

reZ
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By standard Calder6n—Zygmund theory

1/2
< ¢p10% (Z |L,h,|2)
r r

r,khr

p

for 1 < p < oo. By another application of Littlewood-Paley theory it clearly suffices to show that
the vector-valued operator F = {f, };cz —> {Gk.r f}recz maps LP (£%) into itself with operator norm
bounded by C B¥,! for some positive constant B.

Observe that Gy , is essentially dominated by a maximal Hilbert transform in the first variable;
in fact Cotlar’s inequality [24, p. 35]) holds:

|Go.rg(x)| < C(Mi[glx) + M1 [H gl (x)) ;

here M) and H; denote the standard Hardy-Littlewood maximal function and the Hilbert transform
in the first variable, respectively, and C does not depend on r. If k > 0 and r, £ are fixed, then for
x1 €l

Sre] = €X X gt [t =l v e -l g 1 xl
4 >
éjfi—élgr‘
Nk
= X > (26782 Mig) < B Mg ().
2j+E>r

By the Fefferman—Stein inequality for sequences of maximal functions [12] and a vector valued
inequality for the Hilbert transform

1/2
(Z IGk,rfr '2>

1/2 172
CB* }(sz) + (Dmmz)

r
P - p P

1/2
C’'B* (Z |f,|2) ) O

14

IA

IA

Our main estimates concern the operator 7 and we shall introduce a further decomposition.
For nonnegative integers s and n let

A = [(j, 0277 > 1| > 2"!'—5—1} (1.15)
and
Z T2]+€+n A (1.16)
<me9l

then T = Zionzo 7;;1.

!Here and in the sequel C will denote some absolute “constant” which may depend on p and whose value may change
from line to line.
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Proposition 1.4. Letl < p <2,y <1—1/p. Thenforall f € L
1Tenfly < Cppp2 ™ min {12078} ), if B <172

and
[T 71, < Crpp2™ min{1.20=98 ypu, it p<1-1/p.

Clearly the theorem follows from Lemmas 1.2, 1.3, and Proposition 1.4. The appropriate L>
estimates for Proposition 1.4 will be derived in Section 2. The difficulty in obtaining L? estimates is
the absence of a Calderdn—Zygmund theory on a suitable space of homogeneous type. Fortunately
in our present analysis we can interpolate the L? estimates with somewhat weaker estimates on
multiparameter Hardy spaces. These are derived in Section 3. In Section 4 we shall discuss the
modifications needed to estimate the maximal operator ). Section 5 contains the estimates needed
to complete the proof of Lemma 1.2 above. The final section is an appendix where we study the
Hilbert transform along the radial vector field, including a general interpolation lemma related to
restricted weak type estimates.

2. L%-estimates for oscillatory integral operators

The following result is a straightforward consequence of the almost-orthogonality lemma by
Cotlar and Stein (see [24, p. 280]); in our application below we will be able to choose € = 1/2.

Lemma 2.1. Suppose that 0 < € < 1,0 < C; < /Cy. Let {T}} be a collection of bounded
operators on a Hilbert space H such that
|71 = ¢

and
max { || T; (Tr)*

@) T} = c2m

for all j,k € 7. Then the partial sums Z?’:_ ~ T converge in the strong operator topology to a
bounded operator T as N — oo and T satisfies the bound

IT1 < 1067y log, (1+V/C2/C1 )

Proof. By the Cotlar-Stein lemma

o0
IT| < Z l_SII:lp max{” T; (Tk)*”l/Z’ I(7;)" Tk||1/2] .
n=0 I 7KI=R

Let N = 2¢~'log,(1 4+ +/C2/C1). We dominate the n' term in the series by C; if n < N and by
VC227"2 if n > N. Hence,

-1
IT) < Cylog, (1 + \/C2/C]) (26—1 n (1 _ 2%/2) ) ‘
This implies the asserted inequality. 0

In what follows we consider oscillatory integral operators acting on functions g € L*(R).
Suppose that ¥; € C 2(R x R) and that

Wi(x,y) =0 if [x —y| > 827 or [x —y| <827/, Q.1
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where § is as in (1.10). Suppose also that

a;wj(x,y)} < A2I2%, k=012, 2.2)

Lemma 2.2. Forgivenn € Z and 1 € R let j > £(j) denote a function defined on a subset 3 of
7 satisfying |A|/2 < 2¢6D+2i+7n < 2|\ and (j, £(j)) € U for all j € 3 [here A, is as in (1.15)].
Define an operator P; acting on Schwartz functions of one variable by

Pig(x) = py(j(x) / MDY (x, y)g(y) dy ; 2.3)
here V; is as in (2.1), (2.2). Then P; js bounded on L? and for all g€ L? (R)
|Pgll, < CAmin {272,272} gl @4

where C does not depend on j and the particular function£. Moreover, (P;)* P, =0 for|j—k| > 10
and the L operator norm of P; P satisfies

| PjBE| oy 2 < CAP2TVHZ 2.5)

Finallyif P = Y ., Pj, then P is bounded on L?(R) withnorm < C A(1+s+n) min{2%/2,27"/2},

J<3

Proof. The asserted L2 bound for P follows from (2.4), (2.5), and Lemma 2.1. The modulus of
the kernel K j; of P; P is given by

|Kji(x, 2)| =

Pe() ()Pt (2) f W (x, ) Wr(z, y)eP1a—a@lgy | 2.6)
A crude estimate yields |K jc(x, z)] < CA? min{2/, 2%} and in turn
/,Kjk(x,z)Idx+/ |Kjk(x,2)|dz < CA%27S . (2.7)

If j =k, then |a(x) — a(z)| = 27¢D|x — z] and if |x — z| > 2/ x~} we may improve the
previous estimate by integrating by parts twice. This yields

|k} (x, )| < CA>min {2!', 23IHAWD ) =2 z|—2}
and therefore
/lij(x,z)|dx+/ |Kjj(x,2)|dz < CAR2H M < A%,

This together with (2.7) implies (2.4).

Now assume that | j — k| > 10; then also [£(j) —£(k)} > 10. By taking adjoints we may without
loss of generality assume that k < j. There is an interval ; between I¢(;y and Iy which does not
intersect either I, ) or Ip(j) but satisfies | — £(j)| < 5. Then by assumption (1.6) we obtain

lax) — a(@)| = 2717114 = 274D |1y |
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if x € supp py(;) and z € supp p¢(k)- Integrating by parts once in (2.6) yields the pointwise bound

k) -1
27 < A22_n2k_j |Ig(j)r1 .

. 2
|Kjr(x, 2| <CA T[22 =

For fixed z we integrate over x € supp pg(;) and obtain
f |Kji(x, 2)|dx < CA?27"2F

If we also use (2.7) we obtain by the continuous version of Schur’s lemma the asserted estimate (2.5),
where A is actually replaced by the smaller value A2~(¢+m/4, L]

The usefulness of the following lemma has been demonstrated for example in [19]. It follows
by a twofold application of Plancherel’s theorem.

Lemma 2.3. Let m € L®(R), let {P,} be a family of bounded linear operators on L*(R).
Suppose that for every f in the Schwarz space S (RZ) the function (x1, yp, A) PA[ FCoyDlxy) is

continuous and suppose that the L? operator norms of Py, are uniformly bounded by B. For Schwartz
functions f € S(R?) define T by

Tf(x) = / / m(A)e* 2P [ f (-, y2)] (x1) dAdys .

Then T extends to a bounded operator on L*(R?) with operator norm bounded by cB.

Corollary 2.4. The operator Ty, defined in (1.16) is bounded on L2(R?*) with operator norm
< C(1 + s+ n)min{2~"/2, 275/2},

Proof. We write 7, = Z?:O Tsn.i where Tg, ; is as in (1.16), with the additional specification that
only values of £ with £ = i mod 5 occur in the sum. As an immediate consequence of Lemma 2.2

and Lemma 2.3 we obtain the L2 boundedness of Tsn.i» with the required bounds. L]

The following variant of Lemma 2.3 will be used when f has some cancellation property with
respect to the y, variable.

Lemma2.5. Let{P,} beafamily of bounded linear operators on L*(R) satisfying the assumptions
of Lemma 2.3. For Schwartz functions f € S (R?) and fixed u define S, by

S f ) = / f B (27 x) e (702 — oMY Py (£ (, 3)] (x1) dAdy;

Then 12
IS, fll, < CB2" ( f |y2—u2|2|f(y)|2dy)

where C does not depend on u;.

Proof. We write the difference of exponentials as an integral over a derivative and see that S, =
fol Sy.odo where

Sro fx) = —i f / A (2772) M2 (mede=ond) (v, oy Py LF G, y2)] (k1) dy2 dA
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Set Gu(y1) = [ e W2(y, —u2) f(y1, ¥2)dy2 = Fo[(- — u2) f(¥1, )]() where F, denotes the
Fourier transform in the y; variable. Then

Srof(x) =i f Ap (2774) 22U PG, ] (xy) dA

From applications of Plancherel’s theorem and Fubini’s theorem it follows that

1/2
IS0 fl, = ~2r (f 16 27 2)|} 1P [Gro] (21 dxldx)

12
BV2w ( [[ 1o @0 16 <y1>|2dxa'y1)

=
1/2
< Co™'?BY (/ lyz — ua? If(y)lzdy)
and the desired estimate is obtained by integrating in o. L]

3. Estimates for rectangle atoms

The L estimates for 75, and their adjoints are derived by interpolation of the L? estimates in the
previous section with appropriate estimates on the Hardy space H[}rod (R x R) with the multiparameter

dilation structure. The interpolation theorem can be found in [9]. In order to prove the H' estimates
we use the version of Calderédn—Zygmund theory as developed by Journé [17]. A particularly elegant
variant of it which is valid in two parameters was proved by Fefferman [12]. In this setting it suffices
to check the behavior of the singular integral operator on rectangle atoms.

Let R = J; x J; be a rectangle with edges parallel to the coordinate axes and center (u], u3).
Then f is called a rectangle atom associated to R if f is supported in R, if

Ifll2 < RI7'2
and if
/f(x1,x2)dx1 = O for almostevery x2 € J,,
ff(xl,xz)dxz = 0 foralmostevery x; € J; .

Let wg (x) = ]'[1.2:1 (14 |x; — ui|/1J;)¢. Suppose that the operator T is bounded on L? and
suppose that there is € > 0 such that for all R and all rectangle atoms fz associated to R

/ITfR(x)l wg(x)dx < B 3.1

where B does not depend on R. Then according to Fefferman’s theorem, the operator T maps
lemd (R x R) to L!(R?) and there is the estimate

1Tl <elTlg2p2+CeB .

In what follows we fix arectangle atom f associated to arectangle R and estimate 7y, f in rectangular
regions in the complement of R. Given m = (m1, m;) with nonnegative integers m, m; and given
arectangle R = J| x J> as above we define J)(m)), J>(m3), and R(m) by

{(xi ¢ |xi —uil < 81Jil} if mj =0

(5 2 2743 |5 < Jx — gl < 24 1} if mg > 0 G-

ji(mi):{
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and

R(m) = J1 (m1) x T2 (m2) . (3.3)

It is our objective to prove the following proposition which together with Corollary 2.4 implies
Proposition 1.4.

Proposition 3.1. Let f be a rectangle atom associated to the rectangle R = J; x J, with center
(uy, uz) and let R(m) be as in (3.3). Thenfor 0 <€ < 1/2

/ Tonf @) dx = C2HHWemewmsm) mig f1, g2 (34
Rm)
f |7?;tf(x)I dx < C€22(5+n)62—e(m1+m2) . (3.5)
R(m)

Consequently Ts, and T map lemd (R x R) boundedly into L' and, for every a > 0, the operator
norms are bounded by C,2°" and Co,2%+™ respectively.

We now decompose Ty, = >, T where

r sn
— r
T = 2 , jt-
G0y
{+2j=r—n

Lemma 3.2. Let f be a rectangle atom associated to the rectangle R = J; x Jo with center
(u1, up) and let R(m) be as in (3.3). Then

-1
1T Lt Remyy + (27 1021) ”TSTnf"L‘(R(m))
< C( + 5 4 n)20m+m/2 1ig {2—5/2, 2*"/2} . (3.6)

and the same estimates hold if T, and T, are replaced by their adjoints.

Proof. We have already proved the L? bounds for 7, in Section 2 (see Corollary 2.4), and the
asserted estimate for 7y, follows by the Cauchy—Schwarz inequality and the size estimate for the
atom. Similarly, in view of the y, cancellation of f we can use Lemma 2.5 instead of Lemma 2.3 to
obtain also the estimate for 7. 0

Lemma 3.3. Let f be a rectangle atom associated to the rectangle R = J; x Jo with center
(uy, uy) and let Jp(my) be as in (3.2). ThenforM =0,1,2,...

, 12
f (/ | Tor f ()] dxl) dx;
J2(mz) \JT1(0)

n—my\ M (1—s)/2
min {1,2""F }
2’|J2[) n[

x min {1; 2" [ 2] + 27" fll o2y 3.7

scMﬂ”u+s+m<

where || fll 2 = [{(S1f (x1,x2)[2dx1)1[ 2dx,. The same estimates remain true when T is
replaced by its adjoint.
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Proof. Denote by K "¢ the kernel of the operator T},. By an integration by parts with respect to

r

the frequency variable A and the Leibniz rule we express K ; = ZS’I: Bl K v where

Ky (x, ¥) = pe (x1) e (1) / Tama1 (52 = 2) Wjoa (x1, y1) €2460E gy (3.8)

where T pr41(w) = e u~M-1 and
W0 (1, 1) = 6B (x1) (@ (x1) (x1 — 1)) 27T MHIIGMHT=D (39 7T) s (xy — y1)

here py(x1) is supported in Uf:_21g+; and equal to 1 on the support of p;. If £ = r — n — 2j the
functions W ,, ; satisfy (2.2) with A = A, where

A, <C (IIZIZ_e_j)V 2= (MH+1=v) o C1p=sv=Qj+Ovy—r(M+1-v) < Cry=svp(n—r)(M+1)
and C may depend on M. We fix v and A € supp ¢(27"-) and define an oscillatory integral operator
by

Prog) = Y PZ(”)/q’j,v,A(u’ w)e~ AW g ()duy

G0
{=r—n—-2j

The left-hand side of (3.7) is bounded by a linear combination of terms of type
[ et [ Ptf ool s didmndra
Ja(m2)

note also that Py ,[f(-, y2)] = 0if 271 ¢ supp¢. The operator norm of P, , is bounded by
min{2_s/ 2 9-n/ 2}(s +n + 1)Ay; this follows from Lemma 2.2. Therefore, we obtain

1/2
/ (/ |7':,,f<x)|2dx1) dx;
Ja(m2)

on—my M 1/2
scMz"/Z(n+s+1)(2,”2|) min{1,2<"*”/2}/(f|f<x1,xz)|2dx1) dx;

This proves one of the estimates claimed in (3.7). If we also use the cancellation of the atom in the
y» variable we may replace the term 'y a741(x2 — y2) in (3.8) by

Dompi2~y) — Doy (o—u)=0 (ile X2 — yo| 7M1 [IX2 ~ ™+ |M])

and the previous argument yields the second estimate in (3.7), with the factor 2”|J>| + 27™2, The
same argument applies to the adjoint operator. L]

Lemma3.4. Let f bearectangle atom associated to therectangle R = J\ x J, withcenter (u, u).
Let My > 0 and let R(m) be as in (3.3). Assume |I;| < 27/. Then Tj.’[f(x) = (Tj’e)*f(x) =0if
x € R(m) and 2/ |J;| > 27™1.

Ifr=¢4+2j+nand(j,£) €A thenfor 0 < y,6, <1

/R<m)
fR(m) l( f'rf)*f(x)l dx

. 61
T f@|dx = €27 (14277 (2711) " @ 1h)® (3.9)

IA

. [
c(1+2"+2)" (27 101)” (1) (3.10)
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moreover if also 2| J,| > 10671275272 then

L(m)
fR " |(77) 00| dx

Proof. The first statements are obvious and we give the proof for (3.9) through (3.12). It suffices to
prove these inequalities for 81, 6, € {0, 1}; the general case then follows by taking geometnc means.
De(;lote by K*, y and K’ Gt the kernels of T’ and (T )", respectively. Then K ’Z x,y) = i K%, (v, x)
an

IA

R [
c2 (1+2)" (1) @21k G

T f ()| dx

A

. [
ci+27+2)" (27 1n1) @2 16) . G

Ky, ) = pe k) ¥ (11 —yD) 2 F 16 (27 (k2 — 2 —a (x1) (x1 — »)))
where F~1¢ is the inverse Fourier transform of ¢. Let w, p (x, y) = 2" (1 +2"|x2 — y2 —a(x)(x; —
y)™M. Then it is straightforward to check from (1.11) through (1.13) that for 6, 6; € {0, 1}

ok | < €2l (242 l) %0 )

o028y, 0| < €2f (2 42 1) 2 )

Since K ; (2, y)y=0if[x; —y1| = C 277 or x| ¢ supp p¢ we use the cancellation properties of
the atom to obtain

IA

C2752/ |14 (1 n 2’4—2!')9l (2j|J1|>91 (27 14))*

T/, f|dx

f\ f{dx

which implies (3.9) and (3.10).
Note that if also 27| J5| > 10b~12% 75272 then 2"2|J,| > b~ '27¢"7{I,| and therefore

IA

C(1+2’_é U 427 L) 1) (2~’IJII) Neabk

-M
@r,m (%, y) + @ m(y, %) < Cy2" (142" |x2 = y21)

for x € R{m), y € R. Now the previous argument also yields (3.11) and (3.12). O

We now decompose Ty = 3 j Tj.s.n Where

2425+
7},5,;1 = Z T s
£:(j, 0,

The proof of the foliowing lemma is similar to the proof of Lemma 3.4.
Lemma 3.5. Let f be a rectangle atom associated to the rectangle R = J1 x J, with center

(u1, up) and let Ji(my) be as in (3.2). Assume |I;| <277. Then T, f(x) = 0 ifx € R(m) and
2J|Ji| > 27™; moreover for 0 < 6 < 1

1/2
le(m1) (f |Tj,s,nf(x1,x2)|2dx2) dx;

1/2
ccararr=y (@) [ ([1roran) (313
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) 172
fjl(ml) (f ‘ﬂfjinf (x1, x2)l dx2) dx|

VY 172
=C(1+2"+2) (2’I11I) /(/If()’)lzdm) dy, (3.14)

Proof. The first statement is obvious. Let £(x1, y1, A) = pe(x ¥ (x — yp)elAaxE =YD then

1€ (x1,y1, ) — & (x1, u1, M)}

IA

c2 (21' + 2701, m) A

€ Gyt ) = E @y M = €27 (1L 427 + 27 1y
Note that in the present case, if |A| & 2’ then 27¢|,|[A| < C2/H"—s, 27¢=J|A| < 2/+" and
! < 2775,

Let > f denote the Fourier transform of f in the second variable. If 2/|J;| < 1, we use the
cancellation of f in the y; variable and we obtain the estimate

1/2
(/ [ﬂ,n,sf(xl,xz)lzdxz) <

Cmin {1, (1+2"7)2/ |m]/ f

where the sum is extended over all r that can be written as r = £ + 2j + n with (j, £) € ;. Also
note that the expression on the left-hand side is supported on I,. We apply Plancherel’s theorem
and perform the x; integration to arrive at (3.13), with & = 1. The general case follows by taking
geometric means. A similar argument also yields (3.14). 0J

5 1/2
DTN R OLN| dr]  dn

Proof of Propesition 3.1. Since (3.4) implies (3.1) we only have to prove the estimate for
rectangle atoms by Fefferman’s theorem. This in turn follows from the above lemmas by applications
of the Cauchy—Schwarz inequality and by summing geometric series. Specifically we use Lemma 3.2
for Tgpif my +my <104+ (m+ (1 4+ €). Form; < 10 and m> > (n + 1)(1 + €) we estimate
the operators 7, and their adjoints and then sum in r. Here we use Lemma 3.2 if 27| J,| < 27™2,

Lemma 3.3 with M = 0if 272 < 27| J,| < 272"2€ and Lemma 3.3 with M = 10/e if 27| J»| =
2-—2m26'

Formj; < 10and m| > (n+ 1)(1 + €) we estimate the operators 7 5 , and ’ijs,n and then sum

in j. Only terms with 27| J;| < C2~™ will occur and the desired estimate follows from Lemma 3.5,
withf = €.

For my > 10 and m; > (n 4+ 1)(1 4+ €), we estimate Tjre withe =r —2j—n, (j,) € YU
using Lemma 3.4 with §; = ¢ and sum in r,j; again only terms with 2/]J;| < C2™™! will occur.
We consider 7y, and distinguish two cases, depending on whether 2"~™2/210b~! is large or small.
In the first case where 2" 2/210b~! > 1 we also have 22 < C22" and we use (3.9) with 6 =1if
27\ <27, B9 withf, = 0if 27" < 27|15 < 1067127, and (3.11)if 27| J5| < 106~ 12", In the
second case where 2""™2/210b~! < 1 we use (3.9) with 6 = 1if 27| /5| < 27"7"2/210b~", (3.11)
with 6, = 1 if 27| J>| > 27"~™2/210b~!. Finally, this analysis also applies to the operator (Tjp*if
in the previous argument we replace (3.9) by (3.10) and (3.11) by (3.12).
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Remarks.

(i) It should be possible to extend our result to cover similar classes of vector fields in R”.
Instead of Fefferman’s theorem one would have to use the version of Calderén—Zygmund theory
in [5]. In our two-dimensional setting we used Fefferman’s theorem for convenience, but we verified
in effect the hypotheses of Theorem 1 in [5].

(ii) There is the open problem of L? boundedness for the Hilbert transform associated to an
arbitrary C™ vector field. As a first step one might try to find a version of our theorem for vector
fields v which do not necessarily depend on only one variable.

(ii1) It would be interesting if there is an underlying Calderén—Zygmund theory for our operators
that is different from the product theory. In a different context such variants have been considered
in [6].

4. The maximal operator

The arguments in the previous sections apply equally well to prove the L? boundedness for
the maximal operator 91; in fact, some of those arguments simplify. Let ¥ be a nonnegative C*°
function with support in (1/2,2) and assume that W(t) = 1 forr € (1/«/5, V2). Let Vi(r) =
278~ (278~ 1). Then it is straightforward to see that

Mf(x) < CSU_PZP(&(X])f‘Pj(I) |f (x1 —t, x2 —ta(x1))|dt
It

and we may clearly assume that f is nonnegative. Then the estimate

(/

follows by the rescaling argument in Lemma 1.2 and known estimates for maximal operators in the
case of nonvanishing rotational curvature.

14 l/p
dx) < Clflp “@.1)

Zpe (x1) sup /‘Pj(t)f(JH —t,x3 —ta(x)))dt
¢

277 <l

Let S;e be defined as Tj"Z in (1.14), but with ¥; replaced by ¥;. Fork =0, 1, ... define

S F0) = pe ) a1 = y0)* 95 1 =) ) (27 ) 0 @) b= apay

so that S; .= Z,fio(—i D S; ¢~ In order to complete the proof we have to show that

2\ 172
Yol D e Y Suf < Gplifllp (4.2)
J o201 r=2j+e
p
Yoo sup | D Siuf|| = CoBUIfl, 4.3)
¢ J27>lel \r<2j+e »

Note that the cancellation of ¥ was not used in the estimates for 7 and in fact straightforward
modifications of the arguments in Sections 2 and 3 also yield (4.2). In order to see (4.3) we argue as
in the proof of Lemma 1.3. Let M, M; be the Hardy-Littlewood maximal operators acting in the
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first and the second variable, respectively, and let

Z Zr,ker(x)

r<m

[y f(x) =sup

~

where L,, L, are as in the proof of Lemma 1.3. Then Cotlar’s inequality [24, p. 35] applies:

I f ()| < CMaf(x) + CM; [ 3 Zr,ker} @) ;

r=—00

moreover,

D e sup | Y Sy f()| < CIOUML [T f1(x) -
)2

27>\l |r<2j+£

Since the operator Zfi_ oo Z,,kLr is bounded on L# with norm O(c, B kY and suitable B the two pre-
vious inequalities imply (4.3). The asserted estimate for the maximal operator 901 follows from (4.1),
(4.2), and (4.3).

5. The case of nonvanishing rotational curvature, revisited

We consider the operator defined for smooth functions by

Tf(x) = X(XI)Z/ WiGxn yD f O x2+ 8 (x yD) x (o dyn - G.D

j=0

Herp x and W, are C? fqnctions; X is supported in the interval [-1, 1], and W;(x1, y1) = 0 unless
27773 < |x; — y1| < 277*3. We assume that (2.2) holds and that W ; has the additional cancellation
property

/\I/j(x,y)dy =/\I/j(x,y)dx =0. (5.2)

As amodel case for § we consider the example S(x1, y1) = —a(x1)(x1 —y)), and with the appropriate
choice of W ; we recover alocal version of the Hilbert transform in (1.1). The assumption of rotational
curvature is that the mixed derivative Sy, ,, does not vanish from below.

Proposition 5.1. Suppose that S is a C' function on [—1, 1)* and assume that the partial deriva-
tives Sy y;» Sxyyiy1» Sx1y1y1y €Xist and are continuous in [—1, 1]. Assume that S, ,, does not vanish
in[—1,1]. Then T extends to a bounded operatoron L?,1 < p < oo.

As previously mentioned the proof is quite standard, and we shall be sketchy. If ¢ is as
in (1.14), then we define £, (x, y) = 2" Fel(2 (x3 — 2+8CLyD)and O =13, &
Then T =) .2, Ti,n + T>» where

Tinfx) = Z/x(xl)x(yl)‘llj (1, ¥ §2j4n(x, ) f (v)dy
Jj=0
Bf@ = ¥ [ 160X 00 @) 051030 ()

Jjz0
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It turns out thatfor 1 < p <2

|Tinsll, = Cpn t¥P27n=UPY £, (5.3)
IT2f1, = Cpllfllp (5:4)

and that the same estimates hold for the adjoint operators. This of course proves Proposition 5.1.[]

IA

A

By Lemma 2.3 the case p = 2 can be reduced to estimates for certain oscillatory integral
operators in one dimension. Let A be fixed, [A| > 1/2, and define the operator

Pig(u) = x () / Y (4, wyy (w)g(w) duw .

For the first result we assume that ¥; is as above, but we do not actually need the cancellation
condition (5.2).

Lemma 5.2. Suppose that S is a C' function on [—1, 1)* and assume that the partial derivatives
Suws Suwws Suwww exist and are continuous in[—1, 11?. Assume that S, dqes not vanishin[—1, 1]2.
Then for 2%/ < |A| the L?> — L? operator norm of P; is bounded by C A2/ |x|~1/2.

Proof. This is a version of the argument in Lemma 22. One writes out the kernel K ; (u, z) of the
operator P; Pj’.", and integrates by parts twice if [u—z| > 2/ A7 If ®(u, w, 2) = Su, w)—S(z, w),

then our assumptions guarantee that |, (1, w, z)} is bounded below by cju — z| and that ®,,, and
@, are O(lu — z|). Therefore, a consequence of the integration by parts is the pointwise estimate

. . 2\ !
|Kju,z)| <2/ <1+ ‘Az_f(u —z)‘ )

and the desired estimate follows by Schur’s Lemma. U]

In the next lemma we use the cancellation of the W; but not the assumption of rotational
curvature.

Lemma 5.3.

Suppose that ¥ is as above and satisfies the additional cancellation property (5.2). Suppose
that S is aC function on[—1, 11* and assume that the partial derivative S, exists and is continuous
in [—1, 1]. Then the operator ZszZ)L P; is bounded on L?.

Proof. We verify that | P} Pe|| + | P; P;'|| < 21—k provided that 22/ > |A|, 2% > |A|. We may
assume j > k. The kernel of Pj’.k Py is given by

Kj(u,z) = mx(z)/qk(u,z. w)W; (u, w)dw

where qi(u, 7, w) = e MSw) =S| (1) |2 W (z, w). Observe that for u, z € supp p, |lw —u| <
277, |w — z| < 27 we have |S, (4, w) — Sy(z, w)| < C27% and, since A27%* < 1,

lge(u, 2, w) — qe(u, z,w)| < C2F + | (Sy(u, w) — Sy(z, w))| < C'2%.

Now using the cance;llation of ¥; in the second variable we see that f |K (u, 2)ldz < 2777 and
f |K (u, z)|du < 277%% and the desired estimate for P; P; follows.
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Next, the kernel of P; P is given by
Ljx(u, z) = x(u)x(2) / rie(u, z, W)W (w, u)ydw

where ri(u, z, w) = |x(w)|Pe*S@W=SW.2)y; (), 7). The desired estimate follows from the
cancellation of W; in the first variable since [3,r%| = O(JA27F + 1) = 0(2%). ]

The L? estimates for T}, and T, immediately follow from the two previous lemmas and
Lemma 2.3. In order to show the L? estimates, one shows that 7> and its adjoint are of weak
type (1, 1), moreover T} , and its adjoint satisfy a weak-type inequality with constant O(n). From
this the L? estimates follow by the Marcinkiewicz interpolation theorem.

The weak-type estimates rely on Calderén-Zygmund theory in [—1, 1] x R which is made
into a suitable space of homogeneous type (cf. [24, Ch. I]). The underlying distance function is
dx,y) = |x1 — yi| + |x2 — y2 + S(x1, y1)['/2, with the balls B(y, 8) = {x : d(x,y) < 8}. Our
assumption is that § € C' and the mixed derivative Sy, y, exists and is continuous. The standard
properties of this metric were derived in [14], in a more general context; see also [19]. In particular
d is essentially symmetric, d(x, y) ~ d(y, x). Let K »(x, y) = x D) x D)V (x1, y1) {240 (%, ¥)
and L£;(x,y) = x(xpDx(yD)W¥(x1, y1)®2;(x, y). It is a straightforward exercise to verify that for
suitable large D and for y' € B(y, 8)

/RZ\B( Da)|/C,-,,,(x,y’)—/c,~,,,(x,y)|dx < Cminf1,2"2/,272757!
¥,

IA

fRz\B( D) €50,y = £0, )] dx C min {2j5, 2—1'3—1} ;
¥

we omit the details. This implies the asserted weak-type estimates for T; ,, 7> and by the symmetry
of the situation the estimates for the adjoints follow in the same way.

- Similar considerations can be applied to the analogous maximal operator, defined by

Mf(x) = sup|A; f(x)] (5.5)
J

where
Ajf(x) =X(x1)/‘1>j LY FOLX+SGLyD) x ) dyr s

here § satisfies the assumptions of Proposition 5.1, and & is as W; above, but does not necessarily
have any cancellation property. Let §p be an even Schwartz function on the real line such that
So(A) = 1for |A| < 1. Let

Bjf(x) = X(xl)// ®; (x1, y1)2% 80 (22jy2> FOLxX—y2+S&,y)) x G0 dyidys ;

then
1/2
Mf() <sup |Bi ]+ | |4 f@ - Bif@| . (5.6)
J

=0

The maximal function sup | B; f| is pointwise controlled by the Hardy-Littlewood maximal function
with respect to the nonisotropic balls B(y, §) defined above; it is bounded on L? for 1 < p < oo.
The square-function in (5.6) can be considered as the £> norm of a vector valued singular integral
and the L? boundedness follows as above.



Classes of Singular Integral Operators Along Variable Lines 601
6. Appendix

6.1. The Hilbert transform in the radial direction

We now study the operators H and M for the radial vector field v(x) = x/|x/[, in d dimensions,
d>2,1e.,

&0 dt
Hf(x) =p.v./ f(x+tx/|x|)——t— (6.1)
—00
and the maximal operator M defined by
1 h
Mf(x):sup—/ |f(x+ex/|x])|dt. (6.2)
n>02h J_p

For this example the critical exponent for L? boundedness turns out to be the dimension d, and
for p = d we prove a restricted weak type inequality (for a similar result on the Kakeya maximal
operator acting on radial functions see [4]). In what follows let L?+9 denote the Lorentz space.

Proposition. Let H and M be as in (6.1), (6.2), respectively. Then H is bounded on L? (R%) if
and only ifd < p < 0. M is bounded on LP(R?) if and only ifd < p < oo.

Moreover, H and M map L4 (Rd) to Ld”(]Rd) ifandonlyifqg =1 andr = 0.
Proof. The proof of these results is elementary. One introduces polar coordinates to reduce
matters to standard estimates for Hilbert transforms, maximal operators, and Hardy operators in one
dimension. We shall give only the proof for the operator H. The proof for the maximal operator M
is similar.

We split

H=H +H + H;

where

d
HifGx) = pv. / Fo+ /e
| =4|x| t

4|x| dt
Hfx = pv. / F+ /1)

—lxl/4

d
Hyf(x) = f Fo+ /e
—4x|<t<—|x|/4 !

We first show that H) is bounded on LP(]Rd) forl < p<oo.Forl=0,1,2,...set

Hyf(x) = f

242 |x]<|r] <243 x|

d
fx +tx/|x|)7t,

then Hy = ) ,_o Hi;. Let Fp(s,0) = f(s@)s(d_l)/p and let M denote the Hardy-Littlewood
maximal operator in the s-variable. Then

dr1P l/p
// / |f ((r + D)0 — rd“ldrde)
Sd-IxRt LJ2MH2r<|r]<2t43r f
Co-1d=1)/p ( / / [ /
SA-1xRT LJ2H42r<|r|<2i+3r

| £,

IA
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dr1? Yp
|7 +06)¢ + =117 H] drda)

1/p
Cca-l@-/p (]‘/Sd_l - [Mi [Fp(,0)] (0] drd9)

I/p
cale-n/p ( f f |Fp(r.0)] dr de) < 27Ny £,
Sd-1xRt

and the L? boundedness of H; follows.

IA

IA

Next, we show that H, is bounded on L? (]Rd) for 1 < p < oo. For a function of two variables
denote by H, the maximal Hilbert transform in the first variable. Let x be the characteristic function
of the interval [2¢73, 264, Let Fy ,(s, 6) = 2¥=D/P £(s0) xx(s). Then

ok+1 41x| arl? 1/p
2 fll, =< (Zf / p-V-f fx+19)— r"“drde)
© Jsdml Jok —Jx|/4 t
1/p
< c(/ Z/|H*Fk,,,(r, 0) + M, (Fi.p) (r, 0)|” drde)
sd=1
<

1/p
¢ (/Sd_l Xk:/ | Fi.p (s, 0)[ dsde) < CIfl, -

Finally we estimate H3 where the restriction p > d is needed. Observe that

4 —r/4 I4 1/p
(// [—f |f((r+t)6)|dt:| rd‘ldrd0>
Sd-IxRY | 7 J_ar
4 o p I/p
2(// [—/ |f(s0)|ds:| rd—ldrde) .
sd-IxR* | 7 Jo

1
si80) =+ | 8(5) ds.
r Jo-itlr<|s|<2-i+2r

0 2-i+2, I/p
c2-/(=1/p) (/ rd—Z/ A {g(s)|P dsdr)
0 2-Jj+ly
. 00 1/p
c2-/U-d/p (/ Ig(s)lpsd_lds) )
0

Now for f € LP(R?) define Hs j by H3 ; f(r0) = S;[f(-0)1(r). Then |H3f(r6)} < Z?io |H3,
[f1¢6)| and H3 ; is bounded on LP(R?) with operator norm < C2/(~1+4/P)  Thjs implies the
asserted L? estimate for p > d. It also implies that Hj is of restricted weak type (d, d), that is T3
maps L4 into L4 see Section 6.2 below.

IA

5P

IA

Letfor j =0,1,...

Then

[e¢] l/p
(/ |Sjg(r)lp rd_ldr)
0

IA

IA

We now turn to the necessary conditions. It is easy to see that H does not map L™ to L*°. In
order to check the sharpness of the L7 estimates, we test H on the characteristic function x of the ball
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of radius 1, centered at the origin. Then || f||, < C and |[Hf (x)| = c|x| for |x| > 2. This implies that
L? boundedness only holds for p > d; moreover, if H maps L% to L%" then necessarily r = oo.
We still have to show that L4 — L4* boundedness can hold only forg = 1. Since by interpolation
the above estimates show that H; and H; are bounded on all L”*9 spaces for 1 < p < o0, it suffices
to consider Hz. For large N define fy(x) = 1/|x}if 1 < x| < N and fy(x) = 0 otherwise. Then
Il fnll g = [log N1'/2 and for 10 < |x| < N/2 we have |H3 fy (x)| > c|x|~!log N. This shows
that || H3 fy || pa.co /|| fw | a.e = Cllog N1'=1/4. Now if H is bounded from L99 to L%%°, then Hj is

bounded from L% to L% and this can only happen if qg=1. ]

Remark. One may construct a C™ vector field which coincides with v(x) = x/|x] if |x| > 1 and
[xq4} > |x|/2. There are the same obstructions to L? boundedness as for the radial vector field and
in fact L? boundedness for the Hilbert transform (1.1) will fail if p < d. The same remark applies
to the maximal function (1.2). These obstructions are not present if one considers local versions of
the Hilbert transform or the maximal operator.

6.2. An interpolation lemma

Suppose A= (Ap, A1), B = (By, B1) are two couples of normed vector spaces, compatible
in the sense of interpolation theory. Suppose that we are given a sequence of operators T; mapping
Ag + A; to By + B; such that

|Tal,, < M2 alla,,  s=0.1 6.3)

where ag < 0 < ay. Then it is easy to see that T = > T; maps Ap N Ay to By + B). In fact if
a € Ag N A1, we obtain

Y Tia| +t|d Tia| < Y Me2®lalla +1 Y M2 flala,
j=m By j<m B Jj>m Jj=m
< C[Mo2"llala, + tM127 |alla,] - 6.4)

Recall the definition of the Peetre K -functional
K (1,a, A) = inf {llaoll 4, +  la1ll 4, : @ =ao+ a1, ao € Ao, a) € Ay}

and the definition of the real interpolation space Ag , = K¢ ,(A) with norm

_ o d\Va
lallz,,, = ( / [k (c.a. A)]" {) :

with the natural modification in the case g = oco.

If for fixed ¢ we choose m in (6.4) such that 2"©®1=%) = My|lal|a,/(t M) ||all4,), We see that
for0 = ap/(ap — 1) € (0, 1) anda € AgN A

ITalg,  =suwpt™°K (1, Ta, B) < CMy " M{|la); °llall}, . (6.5)
' t>0

This inequality is an extension of an inequality implicitly in [2], for L? spaces. For the concrete case
Ag = B, = LPs, s =0, 1 we may apply (6.5) for a being the characteristic function of a measurable
set and then (6.5) becomes a restricted weak type inequality. This implies [26, Ch. V] that T maps
the Lorentz space L?! into L?** if (1 —6)/po +6/p1 = 1/p and 6 = ap/ (g — at1).
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The following lemma is an abstract extension of this interpolation result. It implies (6.5), since
Ky, is an interpolation functor of exponent 6 (see [1, p. 40].

Lemma. Let(T;} be a sequence of operators mapping Ao + A1 to By + By and satisfying (6.3),
withap <0 < «;. Let0 = ag/(ap —a1). Then T = ) T; extends to a bounded operator mapping

Ag.1 to By, oo, With operator norm bounded by CMé_g M?; here C = O (o] — atp)2(@1 009y,

Proof. Since AgN Aj is dense in Ay (see [1, p. 47)) it suffices to prove the required inequality
fora € Ag N Aj. Fix t and for every j € Z splita = aé + a{ such that

Jag| +2i0emingg ! |af], =2K (27 emimg, 0 7). 6.6)
0 1
Then
K (1.Ta,B) < || Tial| +¢|> Tia
Ll Bo J B
-8 jao || J jo J
< t ZMOZ aj A0+IZM12 1 lal ”Al
| J J

A

R —6 . . .
Mo Y (2reeor) e, + 2 eonanngg faf, ]
N 0 1
J

By (6.6) and the monotonicity of the X functional one easily obtains

@/ =01y ~6lla] | 1y + 27~V 1M,/ Molla .,

e —
< ) aao 2.((j+_)(orl) ap)y
— ay—ap 2901 J2/*17%0);

sTUK(sMi /My, a, AL

and therefore

e — ds _
ITalg, < CMO/O sTOK (sM1/My, a, A)T = CMy " "M{|lallg,, - O
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