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Classes of Singular Integral Operators Along 
Variable Lines 

B y  Anthony Carbery, Andreas  Seeger, Stephen Wainger, and James Wright  

ABSTRACT. We prove estimates for  classes of  singular integral operators along variable lines in the plane, 

for  which the usual assumption of  nondegenerate rotational curvature may not be satisfied. The main L p 

estimates are proved by interpolating L 2 bounds with suitable bounds in Hardy spaces on product domains. 

The L 2 bounds are derived by almost-orthogonality arguments. In an appendix we derive an estimate for  the 

Hilbert transform along the radial vector field and prove an interpolation lemma related to restricted weak 

type inequalities. 

1. I n t r o d u c t i o n  

For a special class of  non-vanishing smooth vector fields v : ~2 __~ R2 we study the Hilbert  
transform H along the lines ~x = {Y : Y = x - t v ( x ) ,  t ~ ]~}, defined by 

H f ( x )  = p.v. f ( x  - t v ( x ) ) - -  . (1.1) 
0o t 

We also consider the related maximal  operator M defined by 

if) M f ( x )  ---- sup - I f ( x  - tv(x)) ldt  (1.2) 
h>0 h 

and it is our objective to prove L p estimates for H and M. 

Presently it seems to be an open problem whether for every smooth v the operators H and M 
are bounded in L p (~2),  for any p 6 (1, oo) (although the globally defined operators (1.1) and (1.2) 
may fail to be L p bounded i f  p < 2, see the remark in Section 6). If  the curvature of  the integral 
curves of  v never vanishes to infinite order (as a function defined on an integral curve), then local 
versions of  H and M are indeed bounded in L p,  for all p 6 (1, ~o); see [3], [10], and [11]. We 
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are concerned here with obtaining estimates in some globally defined model  examples as well as 
in cases in which the curvature may vanish to infinite order. We shall assume that our vector field 
depends only on x l, 

v (Xl, x2) = (1, a (Xl)) �9 (1.3) 

It is well  known that in this case the L 2 boundedness of  H can be derived from Hunt 's  extension 
of  Carleson's  Theorem [8], [16] (this was perhaps first pointed out by Coifman and E1-Kohen). 
However, neither the L p boundedness for p # 2, nor any result on M seems to be a corollary of  
the Car leson-Hunt  Theorem. In this paper we restrict ourselves to vector fields of  the form (1.3) 
where a '  is monotone for t # to. and limt~t0 a'(t)  = 0 (here we allow the cases to = 4-oo). It is of  
course possible to estimate the Hilbert  transform for xl > to and xl < to separately, so without loss 
of  generality we assume that to < ~ and consider the operators 

5 ) f ( x )  = X(t0,oo)(Xl)  f (xl - s, x2 - sa (xl))  - -  (1.4) 
r S 

9Ytf(x)  = X(to,oo)(Xl) sup [ f ( x l - s ,  x 2 - s a ( x l ) ) l d s  (1.5) 
h>0  ~ 

and we assume that a t is nonnegative, monotonic, and increasing in (to, cx~). Then the monotonicity 
of  a '  implies the sets 

l ( r )  = {t > to : r / 2  < a'(t)  < 2r} 

are intervals for all r > 0 and we shall always make the following assumptions. The first hypothesis 
is that the length of  I ( r )  is not changing too fast, specifically 

1I(2r)l  0 < inf [ I (2 r ) l  < s u p -  < c ~ .  (1.6) 
3>0 [ I ( r ) l  - 3 > 0  I I ( r ) l  

As a second hypothesis we impose the condition 

1 fo r I I ( a ) [  s u p -  d a  < ~ ,  (1.7) 
3>0 r I I ( r ) l  

see also Lemma 1.1 for an alternative hypothesis. 

T h e o r e m .  L e t a  : (to, ~x~) --+ [0, cx~) bea C l func t ionsa t i s f y ing l imt~ tod( t )  = O a n d s n p p o s e  
that a t is increasing in (to, cx~). Suppose that the assumptions (1.6) and (1.7) are satisfied. Then the 
operators 5) and 9X are boundedon L P ( ~  2) for 1 < p < ~ .  

Remarks. 
1 

(i) I f  to = 0 and a(t)  = # ,  then [ I ( r ) l  ~ r T ~ .  I f  to = -cx~ and a(t)  = e t, then [ I ( r ) [  ~ 1. 
In both cases (1.6) and (1.7) are clearly satisfied. The L p version of  the theorem is new for globally 
defined examples such as a(t)  = e t. 

(ii) Notational changes in our proof  yield local versions of  the theorem. Assume to ---- 0. If  we 
set 

f ~ dt  
7-If(x) = X[O,1l (xl )  p.v. f (xl -- t, X 2  - -  ta (xi))  - -  

/~ t 

A / I f ( x )  = X[o,1] (xl)  sup 1 [ h  O<h</~hdo ] f ( x l - t ,  x 2 - t a ( x l ) ) l d t  
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and if we assume that (1.6) and (1.7) hold with the modification that the supremum in r is only 
extended over all r < rmax for suitable rmax, then 7-I and .A4 are bounded on L p for 1 < p < ~ .  
This version applies to examples such as a(t)  = e x p ( - 1 / t )  or a(t)  = e x p ( -  exp(1 / t ) ) ,  t > 0. 

(iii) Similarly for the global version it is not necessary to assume that a t vanishes at to. If  
limt--+t0 at(t) = rmin > 0, then we assume that in (1.6) and (1.7) the supremum in r is only extended 
to over all r > 2Trnin, and the conclusion of  the theorem holds. This version applies to examples 
such as a(t)  = exp(exp(t)) .  

We point out that we may always assume that a (to) = 0. To see this let h (t) = a ( t ) - a  (to) and let 
~9 be as in (1.4) with a replaced by ~. Define Ax = (x 1, x2 + a (to)x I ), then Y3 f ( Ax  ) = Y) [ f (A.) ] (x) 
and a satisfies our assumptions if  and only if  fi does. Moreover, we may assume without loss of  
generality that at(t) > 0 for t > to. For if  a ~ vanishes in (c, d),  then the Hilbert  transform Y3f(x)  
coincides for Xl e (c, d)  with the translation invariant Hilbert transform along a fixed line and 
the LP-boundedness of  this operator is of  course well known. Assuming these normalizations, an 
alternative formulation of  the theorem can be obtained from the following result (which states that 
the hypothesis (1.6) and (1.7) is then equivalent to the hypothesis (1.6) and (1.9) below). 

Lemma 1.1. Let  a : [to, cx~) -+  [0, ~x~) be a C I function satisfying l imt~to a(t)  = 0 and 
l imt~to at(t) = 0 and assume that a t is strictly increasing in (to, cx~). Suppose that condition (1.6) 
is satisfied. Then there is a positive constant C such that 

a t ( t ) l l ( r )[  
sup < C (1.8) 

tEl(r) a(t)  

for all r > O. Moreover, condition (1.7) is satisfied i f  and only i f  there exists a positive constant b 
such that 

a t ( t ) l l ( r ) l  
inf > b (1.9) 

t~i(r) a(t)  

uniformly in r > O. 

Proof. Let t E I ( r )  and choose s E I ( r / 1 6 ) .  Then 

a(t)  > a(t)  - a(s)  > a'(~r)&r > I I ( r / 4 ) l  > c v l I ( v ) l  
(~/4~ - 8 - 

where in the last inequality we have used (1.6). 

Suppose now that the expression in (1.7) is D. Then for t E I ( r )  

f0 z ( t  f/ a(t)  < d ( s ) d s  < cl I r 2  - I  r 2  - I  ~ C2 ]I(cr)lda 
l>O 

< c2D2r[I (2r ) l  < c3Da ' ( t ) l I ( r ) l ;  

here we have used (1.6) and (1.7). Conversely, if (1.9) holds and if  t 6 I ( r )  and T is the right 
endpoint of  the interval I ( r / 8 ) ,  then 

f0 [ l ( a ) l d a  < c, E 2-k  I ( 2 - k )  < c 2  Z 2-~ I ( 2 - ~ )  < c 3  a'(s)ds  
2-k<4r 2-k<r/8 2- /8 (2-k) 

< c3 a ' (s)ds  = c3a(T) < c3a(t) < c3b- ta ' ( t ) l I ( r ) [  < c 4 b - l r l I ( r ) l .  [] 
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We shall now give an outline of  the proof of  the theorem, leaving the main technical details to 
Sections 2 and 3. We shall assume that limt~t0 a(t)  = 0 and that at(t) > 0 for t > to; as pointed 
out above, this is no loss of  generality. 

Following [21], [22] we decompose the operator, according to the size of  the curvature of  the 
integral curves. For g ~ Z let 

Ie = {t > to :  2 -e-1  < d ( t )  < 2 -e} o 

then Ie is an interval by the monotonicity assumption on a t. Let 8 > 0 be such that 

10~ < IIe+ll / l lel  < (103) -1 

6 < b/ lO (1.10) 

for all g ~ Z. Let X E C ~  such that X(t) > 0 for all t, X(t) > 0 if Jtl < 1/2 and X(t) = 0 if 
Jti > 8 + 1/2. Let se be the center of  Ie and let 

X (lle1-1 (t - se)) 
pe(t) = 

~ m ~ z X  (llm1-1 (t -- Sm)) " 

Then the family {Pe} forms a partition of  unity of  the interval (to, ~ ) .  Moreover, 

le C supppe C Ie-i  0 Ie O Ie+L (1.11) 

and therefore 
2 - e -2  < a'(t)  < 2 -e+2 i f t  6 supppe ; (1.12) 

also supp Pe f] supp Pm -~- fJ if le - m l > 4. Finally observe that 

]p~(t)[ <_ C IIe1-1 . (1.13) 

We choose an odd function ~p 6 C ~ with support in {t : 1/2 < Itl ___ 2}, such that 

1 
Z 2 J , - l o  (2J• - l t )  = t 
jEZ 

and set 
~rj(t) = 2 J 3 - 1 0  (2J3-1 t )  . 

Here the factor ~ is as in (1.10); this normalization is introduced for convenience and simplifies the 
notation later; note in particular that supp Pe + supp ~tj C Ie-1 I,.J I e IJ Ie+l  if 2 - J  < lie I. We split 

= ~1 + ~ 2  

where 

~ 2 f ( x )  = Z p e ( x ] )  E f ~ j ( t ) f  (X 1 - - t ,  x 2 - t a ( x l ) ) d t .  
e 2- J<lIe[ 

L e r n m a  1.2. ~2 is bounded on L P ( ~  2) for l < p < ~ .  

P r o o f .  Fore ,  m E Z let Rem = {y c R 2 : Yl c Ie, (m - 1)2-eilel 2 < Y2 < m2-el lel  2} and let 

fern ~- f XRem" Set 

~)2,emf(x) = Z f ~ j ( t ) f e m ( X l - t ,  x 2 - t a ( x l ) ) d t .  
2-J<_lIel ~ 
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Note that [ x ~ - y l l a ( x l )  < 2-Jb-~ 32-e+2[Ie[ < 2-e[Iel2 i fxl  ~ U~+~_l I j , x i -Y l  ~ supp~pj and 

2-J < Ilel [cf. (1.10)]. 

Therefore, ~)2 fern (x) = 0 if x does not belong to the union of rectangles Rz~ with s - 2 < )~ < 
s + 2 and m - 2 < / z  < m + 2. It follows that 

e,m 

hence it suffices to obtain a uniform L p bound for ~2,em. 

Define Aemx =([le 1-1 (xl - u~m), 2 e [/e 1-2(x2 - u~m)) where (u~ m, tt~2 m) i s  the center of  Rem. 
Then the affine transformation Aem maps the rectangle Rem to the unit square Q centered at 0 and 

= ~2,em [fem (Aem ")] (Aemx) with ~2,ernf(X) ~ -1 

~2'emg(Zl'Z2)= Z f 2Jllel6-1~P(2Js-11Ielt)gQ ( z l - t ' z 2 - a e m ( z l ) ) d t  
2-J<llel 

where aem(Zl) = 2e[Iel-la(u~ m + Ilelzl) and gQ = gXQ. Note that alem is bounded above and 
below, uniformly in s m. This is essentially the case of  nonvanishing rotational curvature, however 
standard theorems [10], [11], [15] or [20] cannot be immediately applied since we are dealing with 
a globally defined operator and since a is not smooth enough. Nevertheless, standard arguments can 
be applied and indeed the operators "~92,em and therefore the operators -r are uniformly bounded 
in Lp(R2),  1 < p < oo. More details are carried out in Section 5. [ ]  

The nontrivial contribution comes from the operator ~ 1. We choose a non-negative C ~ function 
4~ supported in {# : 1/2 < Ilz t < 2} with Y~-r~z q~(2-r/z) = 1 fo r /z  ~: 0. Then ~1 is a sum of 
operators 

T f e f ( x ) = p e ( x l )  f T t j ( x l - Y l ) f ( y )  f (p(2-rtz)eilZ[x2-y2-a(xO(xl-yl)ldlzdy (1.14) 

where lie [ < 2 - j  �9 We decompose ~) 1 = 7- + R where 

7 - = E E  Z ;e 
e 2 J>l lel  r>_2j+e 

The operator R = ~ 1 - 7- can be handled by standard arguments from Calder6n-Zygmund theory. 

L e m m a  1.3. R is bounded on LP (R 2) for 1 < p < o~. 

Proof. We expand e -ilza(xl)(xl-yl) in a power series in lza(xl)(xl - Yl) and observe that the 
terms (1.14) which contribute to R satisfy 2rla(xl)(xl - Yl)[ < cb-~62r-J-elle[ < c I. Define 
operators ~k,r  by 

~k,rg (Xl, X2) = y ~  ~ Pe (Xl) f ~ j  (Xl - Yl) [2 ra (Xl) (Xl - yl)]  k g (Yl, x2) dyl �9 
d 

e 2--J>FI~ I 
r < 2 j + e  

Next define Lit t lewood-Paley operators Lr, Lr,~ in the second variable by Lr"~(~) = qb(2-r~2)T(~) 

and Lr, k f ( ~ )  = (2-r~2)k~(2-r~2)f'(~); here ~ is supported in 4-(1/4, 4) and equals 1 on supp ~b. 
Then 

o~ (_i) k ~ Zr, k~k,r [Lrf] �9 R = E  k! 
k=0  r c Z  
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By standard Calder6n-Zygmund theory 

~r Lr, khr p 5~ Cp lOk (~r IZrhr]2) l/2 p 

for 1 < p < oc. By another application of Littlewood-Paley theory it clearly suffices to show that 
the vector-valued operator F = {fr }reZ ~-+ {Gk,r fr }rcg maps L p (s into itself with operator norm 
bounded by CBk, 1 for some positive constant B. 

Observe that | is essentially dominated by a maximal Hilbert transform in the first variable; 
in fact Cotlar's inequality [24, p. 35]) holds: 

I~O,rg(X)] < C (Ml[g](x) + M1 [Hlg] (x)) ; 

here M1 and H1 denote the standard Hardy-Littlewood maximal function and the Hilbert transform 
in the first variable, respectively, and C does not depend on r. If  k > 0 and r, s are fixed, then for 
Xl EIs 

IGk'rg(x)l <-- C Z  Z Pe(x') f l 2 r a ( x ' ) ( x l - Y l ) l k l ~ j ( x l - y ' ) l  Ig(yl'x2)ldyl 
2-J>llgl 
2j+e>r 

< C Z p g ( x ' ) Z  (2b-l'2r-'-2J) k _ Mlg(x) < C 'BkMlg(x) .  
e 2 j+e>r  

By the Fefferman-Stein inequality for sequences of maximal functions [12] and a vector valued 
inequality for the Hilbert transform 

I /, \ 1 / 2  

IZr, r,') 
< C'B k Ifr[ 2 

\1/2 p 

Zr l~ + ,r 2) lJ2 

[ ]  

Our main estimates concern the operator 7- and we shall introduce a further decomposition. 
For nonnegative integers s and n let 

Pls= [(j ,g)  :2-J-S > llel > 2 - j - s - l }  

and 

(1.15) 

7~sn = Z T 2j+(+njg ; (1.16) 

(j,g)EQls 

then T = ~s , ,=o  Tss,. 

1 Here and in the sequel C will denote some absolute "constant" which may depend on p and whose value may change 
from line to line. 



Classes of Singular Integral Operators Along Variable Lines 

Proposition 1.4. Let  1 < p < 2, g < 1 - l / p. Then for  all f ~ L p 

and 

589 

liTsnfllp < C• -nY min {1, 2 (n-s)~ } Ilfl[p i f  I3 < 1/2 

[l%fllp<c,, ,p2-"'min{1, Z n-' }llfll, if f l < l - - 1 / p .  

Clearly the theorem follows from Lemmas 1.2, 1.3, and Proposition 1.4. The appropriate L 2 
estimates for Proposition 1.4 will be derived in Section 2. The difficulty in obtaining L p estimates is 
the absence of a Calder6n-Zygmund theory on a suitable space of homogeneous type. Fortunately 
in our present analysis we can interpolate the L 2 estimates with somewhat weaker estimates on 
multiparameter Hardy spaces. These are derived in Section 3. In Section 4 we shall discuss the 
modifications needed to estimate the maximal operator 9)I. Section 5 contains the estimates needed 
to complete the proof  of  Lemma 1.2 above. The final section is an appendix where we study the 
Hilbert transform along the radial vector field, including a general interpolation lemma related to 
restricted weak type estimates. 

2. LZ-estimates for oscillatory integral operators 

The following result is a straightforward consequence of the almost-orthogonality lemma by 
Cotlar and Stein (see [24, p. 280]); in our application below we will be able to choose E = 1/2. 

Lemma 2.1. Suppose that 0 < E < 1, 0 < C1 <_ ~v/--C2. Le t  {Tj} be a collection o f  bounded 
operators on a Hilbert space H such that 

and 

II J II s Cl 

max {llzJ II(rj)* zkll} 5 C2 2- lj-kl 
for all j ,  k ~ Z.  Then the partial sums ) - ~ - - N  Tj converge in the strong operator topology to a 
bounded operator T as N -+ oo and T satisfies the bound 

lIT[[ < 10 , -1C ,  log 2 (1  /cl) . + 

Proof. By the Cotlar-Stein lemma 

IITII 5 ~ sup 
n=0 Ij-kl=n 

max lilt+ II 1/2 , II (w+)*   111/2 / 

Let N = 2E -1 log2(1 § x/--C~/C1). We dominate the n th term in the series by C1 i f n  < N and by 
~ 2 2  -En/2 if n > N. Hence, 

This implies the asserted inequality. [ ]  

In what follows we consider oscillatory integral operators acting on functions g E L2(R). 
Suppose that q/j E C2(]I~ x R) and that 

qlj(X, y) = 0 if Ix -- yl >_ $2 - j + 2  or Ix - yl _< 3 2 - J - 2 ,  (2.1) 
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where S is as in (1.10). Suppose also that 

8yqJj(x, y) < A2J2 j~, K = 0, 1, 2 . (2.2) 

L e m m a  2,2. For given n E Z and )~ ~ R let j ~ e ( j )  denote a function defined on a subset a o f  
Z satisfying [)~[/2 _< 2 e(j)+2j+n <_ 2[~.[ and (j,  s  E 9As for all j E a [here 9As is as in (1.15)]. 
Define an operator Pj acting on Schwartz functions o f  one variable by 

Pig(x)  = pe(j)(x) f eiZa(x)(x-Y)qJj(x, y)g(y)  dy ; (2.3) 

here g2j is as in (2.1), (2.2). Then Pj is bounded on L 2 and for all g c L 2 (R) 

1[ PJ g [[2 -< CA min {2 -s/2, 2-n/2}[[g[[2 (2.4) 

where C does not depend on j and the particular function s Moreover, ( P j ) * Pk = 0 for [ j -- k [ >_ 10 
and the L 2 operator norm of  Pj P~ satisfies 

IIPJP;IIL2 L2 <- CA22-1J-lr " (2.5) 

Finally i f  79 = )-~ j ~ P j , then P is bounded on L 2 (R ) with norm <_ C A ( l + s + n ) min { 2 -s/2, 2-n/2}, 

P r o o f .  The asserted L 2 bound for 7 9 follows from (2.4), (2.5), and Lemma 2.1. The modulus of 
the kernel Kj~ of Pj P~ is given by 

= pe(j)(x)pe(k)(z) f o~j(x, y)qJk(z, y)e-i)~y[a(x)-a(z)]dy �9 (2.6) Igjk(x, Z)[ 

A crude estimate yields [Kjk(X, z)[ < CA 2 min{2J, 2 k } and in tum 

f I g j k ( x , z ) l d x  + f I g j k ( x , z ) l d z  < CA22 -s . (2.7) 

If j = k, then [a(x) - a(z)[ ~- 2-e(J)[x - z[ and if Ix - zl > 2J+e(J))~ - l  we may improve the 
previous estimate by integrating by parts twice. This yields 

[Kjj(x,  z)[ < CA 2 min {2 j,  23j+2e(J))~-2[x - z[ -2 ] 

and therefore 

f l gjj(x 'z)ldx-[- f l Kjj(x 'z)Idz < ca222J+e(J))~ -1 < CA22 -n .  

This together with (2.7) implies (2.4). 

Now assume that IJ - kl > 10; then also le(j)  - e ( k ) l  _> 10. By taking adjoints we may without 
loss of  generality assume that k < j .  There is an interval I, between ls and Ie(k) which does not 
intersect either Ie(k) o r  [s but satisfies II - s  < 5. Then by assumption (1.6) we obtain 

la(x) - a ( z ) l  _> 2 - t -1  1/11 > c2 -e(j) II.j>l 
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if x e supp pc(j) and z e supp Pe(•). Integrating by parts once in (2.6) yields the pointwise bound 

2J+klK] -1 
IKjk(x, Z)[ < CA 2 lie(j) [ 2_e(j) < A22-n2 k- j  [Ie(~)1-1 

For fixed z we integrate over x e supp Pe(j) and obtain 

f lKi~(x, z)[ ___ CA22-n2k-J dx 

If  we also use (2.7) we obtain by the continuous version of Schur's lemma the asserted estimate (2.5), 
where A is actually replaced by the smaller value A2 -(s+n)/4. [] 

The usefulness of  the following lemma has been demonstrated for example in [19]. It follows 
by a twofold application of Plancherel 's theorem. 

L e m m a  2.3. Let m e Lc~(R), let {Px} be a family of bounded linear operators on L2(R). 
Suppose that for every f in the Sch warz space S (Re) the function ( x 1, Ye, ~-) ~ Pz [ f (-, Y2 ) ] (x I ) is 
continuous and suppose that the L e operator norms of Px are uniformly bounded by B. For Schwartz 
functions f e $ ( ~ 2 )  define T by 

T f (x) = f f m().)ei;V(x2-y2) P~. [ f  (., Y2)] (xl)d)~dy2.  

Then T extends to a bounded operator on L 2 (~e ) with operator norm bounded by c B. 

C o r o l l a r y  2.4.  The operator Tsn defined in (1.16) is bounded on L2(]R 2) with operator norm 
< C(1 + s + n) min{2 -" /2 ,  2-s/2}. 

4 7~ P r o o f .  We write T~, = E i=0  sn,i where "]~sn,i is as in (1.16), with the additional specification that 
only values of  e with ~ = i mod 5 occur in the sum. As an immediate consequence of Lemma 2.2 
and Lemma 2.3 we obtain the L 2 boundedness of  "]~sn,i, with the required bounds. [ ]  

The following variant of  Lemma 2.3 will be used when f has some cancellation property with 
respect to the y2 variable. 

L e m m a  2.5. 2 Let { P~ } be a family of bounded linear operators on L (N ) satisfying the assumptions 
of Lemma 2.3. For Schwartz functions f e S ( R  2) and fixed u2 define Sr by 

Then 

Srf(X) = ff q~(2-r).)e ixx2 (e -i)~y2 --e -ixu2) e z [ f  (', Y2)](xl)d)~dy2. 

(f )'" IlSrf[12 < CB2 r [Y2 - u212 If(y)12dy 

where C does not depend on u2. 

Proof i  We write the difference of exponentials as an integral over a derivative and see that Sr ~- 

fd Sr,ada where 

Sr, a f ( x )  = - i  f f ~.dp (2-r~.) e iz(x2-(l-a)u2-ayz) (Y2 - u2) P). [ f  (', Y2)] (Xl) dy2 d~. . 
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Set Gu(yl)  =- f e -i#y2 (y2 - u2)f(yl ,  Y2)dy2 = 5r2 [(. - u2)f(yl ,  ")](#) where 5r2 denotes the 
Fourier transform in the Y2 variable. Then 

= i f Z~b (2-r~.) ei~(x2-(l-a)u2)e,~ [O,~a] (Xl) dZ .  Sr, o f (x )  

From applications of Plancherel's theorem and Fubini's theorem it follows that 

]]Sr, crfl]2 = ~ (ff [ z ,  (2-r)~)] 2 ]Pz [Gzo] (Xl)] 2 dxld)v) l/2 

< B ~ ( f f l ) ~ c k ( 2 - r ~ . ) 1 2 l G x ~ ( Y l ) 1 2 d ~ . d y l )  1/2 

< Ccr - l / 2B2r ( f lY2 -U212 l f ( y ) [2dy )  1/2 

and the desired estimate is obtained by integrating in a .  [ ]  

3. Estimates for rectangle atoms 

The L p estimates for ~n  and their adjoints are derived by interpolation of the L 2 estimates in the 
previous section with appropriate estimates on the Hardy space H~rod (R • ~ )  with the multiparameter 

dilation structure. The interpolation theorem can be found in [9]. In order to prove the H 1 estimates 
we use the version of Calder6n-Zygmund theory as developed by Journ6 [ 17]. A particularly elegant 
variant of it which is valid in two parameters was proved by Fefferman [12]. In this setting it suffices 
to check the behavior of the singular integral operator on rectangle atoms. 

Let R = J1 • J2 be a rectangle with edges parallel to the coordinate axes and center (Ul, u2). 
Then f is called a rectangle atom associated to R if f is supported in R, if 

Ilfl]2 - I n l  -~/2 

and if 

f f (Xl, dxl = 0 for almost ~ J2 X2) every x2 

f f (xl,x2)dx2 = 0 for almost c J1 every x1 I 

Let wR,~(x) = ]--I21 (1 + ]xi - ui I/IJi I) ~. Suppose that the operator T is bounded on L 2 and 
suppose that there is e > 0 such that for all R and all rectangle atoms fR associated to R 

f ]TfR(x)l WlC,E(x)dx < (3.1) B 

where B does not depend on R. Then according to Fefferman's theorem, the operator T maps 
Hplrod(R • ~)  to L I (R  2) and there is the estimate 

IITIIHI_~L l <_ cIITIIL2~L2 -'F C~B . 

In what follows we fix a rectangle atom f associated to a rectangle R and estimate Tssn f in rectangular 
regions in the complement of R. Given m = (m l, m:) with nonnegative integers m l, m:  and given 
a rectangle R = J1 • J2 as above we define J l ( m l ) ,  Jz (m:) ,  and ~ ( m )  by 

{Xi : IXi -- Uil < 8 ]Jill if mi = 0 
~ (mi) = {Xi :2mi+31Jil < Ixi - u i l  <2mi+41Jil} if mi > 0  (3.2) 
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T~(m) -- J l  (ml) • J2 (m2) �9 (3.3) 

It is our objective to prove the following proposition which together with Corollary 2.4 implies 
Proposition 1.4. 

P ropos i t ion  3.1. Let f be a rectangle atom associated to the rectangle R = J1 • .12 with center 
(Ul, U2) and let T~(m) beasin  (3.3). Then for 0 < E < 1/2 

f ~  ]Tsnf(x)I dx < C~22(s+n)e2-e(m'+m2)II~n { l , 2  (n-s)~2 } (3.4) 
(m) 

fT~ [Ts* f (x)] dx Ce22(s+n)~z--~(m'+m9 (3.5) <_ 
(m) 

Consequently Tsn and Ts* map Hlprod (R x R) boundedly into L 1 and, for every u > O, the operator 

norms are bounded by C~2 ~n and C~2 a(s+n), respectively. 

We now decompose T~n = Y~-r Ts~ where 

(j,g)e~2[s 
r 

L e m m a  3.2. Let f be a rectangle atom associated to the rectangle R = J1 • J2 with center 
(u l, u2) and let 7-r be as in (3.3). Then 

1[7~snf[[Ll(T~(m)) + (2 r [J2[) -1 U~rsnf[[Ll(7~(m)) 

_< C(1 + s + n)2 (ml+m2)/2 rain {2-s/2,2 -n/2 ] . (3.6) 

and the same estimates hold i f  Tsn and T~ r are replaced by their adjoints. 

Proof .  We have already proved the L 2 bounds for Tsn in Section 2 (see Corollary 2.4), and the 
asserted estimate for Ts~ follows by the Cauchy-Schwarz inequality and the size estimate for the 
atom. Similarly, in view of the y2 cancellation of f we can use Lemma 2.5 instead of Lemma 2.3 to 
obtain also the estimate for Ts~. [ ]  

L e m m a  3.3. Let f be a rectangle atom associated to the rectangle R = J1 • .12 with center 
(ul, u2) and let Jz(m2) be as in (3.2). Then for M = O, 1, 2 . . . .  

\ 1/2 fg2<m ,(fg,<Ol .f(x)l dx,) 
(2n-m2~ M 

< CM2n/2(l + s  + n )  k , ~ .  } mJn{1,2 (n-s)/2} 

• min {1; 2 r [J2[ + 2  -m2 } IlfllLt(L2) (3.7) 

where [lfIILS(L2) = f (f If(xl ,x2)12dxi)i/2dx2 �9 The same estimates remain true when T~r~ is 
replaced by its adjoint. 
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P r o o f .  Denote by K~e the kemel of the operator Tire. By an integration by parts with respect to 

the frequency variable ~. and the Leibniz rule we express K~e x-,M+1 r = z..,v=0 Kjev, where 

K~eu(x, Y) = Pe (Xl) Pe (xl) f FX,M+I (x2 -- Y2) tlIj,v,L (Xl, Yl) ei)~a(xl)(Xl--Yl)d~., (3.8) 

where FZ,M+1 (u) = eiXUu -M-1 and 

qJj,v,z (xl, Yl) = cv'fie (Xl) (a (xl) (Xl - yl))  v 2-r(M+l-v)d~ (M+l-v) 0~2 - r )  ~ j  (Xl - Yl) ; 

here "fie(x1) is supported in U2i_2Ie+i and equal to 1 on the support of Pe. If g = r - n - 2 j  the 
functions ~j,v,z satisfy (2.2) with A = Av where 

av < C (]Iel2-e-J)V2 -r(M+l-v) < C'2-sv2-(2J+e)~2 -~(M+l-v) < C'2-sv2(n-r)(M+l) 

and C may depend on M. We fix v and ~. E supp ~b(2 - r  .) and define an oscillatory integral operator 
by 

/ i  

Pz,vg(u) = Z De(U) t tlI J'v')~ (U' w)e-iZa(u)(u-W) g(w)dw " 
J 

e=r-n-2j 

The left-hand side of (3.7) is bounded by a linear combination of terms of type 

f72(m2) i x 2  - -  Y21-M-1 f [ f  (', Y2)]IIL~(R)dXdy2dx2; 

note also that T'z,v[f(. ,  Y2)] = 0 if 2-rX r suppq~. The operator norm of  7vz,v is bounded by 
min{2 -s/z, 2-n/Z}(s q- n + 1)Au; this follows from Lemma 2.2. Therefore, we obtain 

fJ2(m2) ( f  l7~rsnf (X)12dxl) l/2dx2 

f(f (2n-m2~Mmin{1,2(n-s)/2} [f(Xl x2)[2dxl) dx2 < CM2n/2(n q-s -k- 1) \2r1J21. ] , . 

This proves one of the estimates claimed in (3.7). If we also use the cancellation of the atom in the 
Y2 variable we may replace the term I'Z,M+I (x2 -- Y2) in (3.8) by 

(X2- Y2)- F)~,M+I (x2-  u2)= O (]J21 Ix2- y21 - M - I  [Ix2- y21-1 + 1)~1]) I'~.,M+ 1 

and the previous argument yields the second estimate in (3.7), with the factor 2 r 1121 + 2-m2. The 
same argument applies to the adjoint operator. [ ]  

LerBrBa3.4 .  Let f bearectangleatomassociatedtotherectangle R = J1 • J2 withcenter(ul, u2). 
Let M1 > 0 and let T~(m) be as in (3.3). Assume [Ie[ <_ 2 - i .  Then Tfe f (x) = (Tjre)*f(x) = 0 i f  
x E 7~(m) and2JIJl[ > 2 -ml. 

I f  r = s + 2 j + n and (j, e) ~ 9ds then for 0 < Ol , 02 < 1 

f _  Tfef(x) dx < C2 -s (1 + 2 n - s )  ~ (2 j IJl l)  ~ (2 r 1J21) ~ (3.9) 
dT~ (m) 

fTe(m) ](Tfe)*f(x) dx <_ C (1 + 2 n + 2s) 01 (2 j 1J11) 01 (2r1J21)02; (3.10) 
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moreover i f  also U I J21 > 10b- 12 n-s 2-m2 then 

f7"r Taef(x) dx _ C2 -s (1 -+- 2n-s)  01 " O, < (2 J l J l [ )  (2m22 r I./21) -1 (3.11) 
(m) 

,x < ~ (i + 2n+ 2s) O' (2 j [Jll) O' (2m22 r [J2[) -I . (3.12) 

P r o o f .  The first statements are obvious and we give the proof for (3.9) through (3.12). It suffices to 
prove these inequalities for 01,02 6 {0, 1}; the general case then follows by taking geometric means. 

F ~ F  F r �9 r Denote by Kje and Kje the kernels of  Tje and (Tje) ,  respectively. Then Kje(x, y) = Kje(y, x) 
and 

Kje(X, Y) = Pc (Xl) apj (Xl - Yl) 2 r s r - l q  ~ ( 2r (x2 - Y2 - a (Xl) (Xl - Yl))) 

where ~ ' -  I q~ is the inverse Fourier transform of 4). Let Wr, M (x, y ) = 2 r ( 1 + 2 r I xe -- Y2 -- a (x 1 ) (x I -- 
Y l )I)-M- Then it is straightforward to check from (1.11) through (1.13) that for 01,02 ~ {0, 1 } 

j -- C2 j 2 r - ( i le l )  ~ 2rO2cOr, M(X, 80y~ OOy~ Kre(x, y) < (2 j + y) 

:x y) < c2J (2J  +2r-e -J  +llel-l~Ox2rO2wr, M(y,x)  O01~02 ~ r  
yl UY2L~-jg~, , __ \ ]  

Since Kffe(x, y) = 0 if [Xl - Yl] > C2 - j  or xl ~ supp Pe we use the cancellation properties of  
the atom to obtain 

f T f e f  dx < 

f (Tjg) f dx r * < 

which implies (3.9) and (3.10). 

Note that if also 2 r I J2l > 10b-  12n-s 2-m2, then 2 'n21J2l > b-  12-g-j tie I and therefore 

Wr, M(X, y) + OJr, M(y, X) < CM2 r (1 + 2fix2 -- y21) -M 

for x ~ ~ ( m ) ,  y ~ R. Now the previous argument also yields (3.11) and (3.t2). [ ]  

.. s.,,.., (, +.r ' ")0' (.',.,,)0' (.',..,10' 

C(l+2r-'-2J+2-Jllel-l)O'(2JlJlOO'(2rlJ21) 0' 

We now decompose Ts, = ~ j Tj,s,n where 

.~_ Ts +n 
E -j, 

s 

The proof of  the following lemma is similar to the proof of  Lemma 3.4. 

L e m m a  3.5. Let f be a rectangle atom associated to the rectangle R = J1 X J2 with center 
(U 1, U2) and let J1 (m 1) be as in (3.2). Assume lie [ <_ 2 - j  �9 Then 7~,s,n f (x) = 0 i f  x ~ ~(m)  and 
2JlJil > 2-ml ; moreoverfor 0 < 0 < 1 

f J l ( m l ) ( f  2 ,1/2 [Tj,s,nf (Xl, X2) dx2) dxl 

< .,.(a+,..>o(,,,,,,)of(f,:(y>,.,y.)',',y, (3.13) 
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2 \ 1/2 

fffl(m,) f "T'j*,s,n f (x l ' x2)  dx2) dxl 

5 C ( l + 2 n + 2 s ) O ( g J l J l l ) ~  1/2 dyl (3.14) 

ProoL The first statement is obvious. Let g(x l ,  yl,  ~.) = pg(x l )~ j (Xl  - y l )e  i~'a(xl)(xl -Yl), then 

Ig (Xl, Yl,)~) - 8 (Xl, Ul, X)I 

18 (Xl, yl,  ~) - 8 (Ul, yl, ~)l 

< C2 j (2 j + 2  -~ [Ie[ [~-I)IJl[ 

< C2 j (lle1-1 + 2  j + 2 - e - J l 3 q ) I l l l  

Note that in the present case, if I~1 ~ 2r then 2-g[IellM ~ C2 j+n-s,  2-e - J lk [  ~ 2 j+n and 
Ile1-1 <_ 2 j+s. 

Let 5v2f denote the Fourier transform of f in the second variable. If  2 j IJll < 1, we use the 
cancellation of  f in the yl variable and we obtain the estimate 

2 \ 1/2 

C m i n t l , ( l + 2 n - s ) 2 J l J 1 ]  a [ 1 [  dp(2-r~k).T'2f(Yl,X) d)~ dyl 

where the sum is extended over all r that can be written as r = ~ + 2 j  + n with (j, ~) 6 9As. Also 
note that the expression on the left-hand side is supported on It. We apply Plancherel's theorem 
and perform the xl integration to arrive at (3.13), with 0 = 1. The general case follows by taking 
geometric means. A similar argument also yields (3.14). [ ]  

Proof of Proposition 3.1. Since (3.4) implies (3.1) we only have to prove the estimate for 
rectangle atoms by Fefferman's theorem. This in turn follows from the above lemmas by applications 
of  the Cauchy-Schwarz inequality and by summing geometric series. Specifically we use Lemma 3.2 
for Tsn if ml + m2 < 10 + (n + 1)(1 + E). For rnl < 10 and m2 > (n + 1)(1 + e) we estimate 
the operators T~ and their adjoints and then sum in r. Here we use Lemma 3.2 if 2 r I-/21 -< 2 -me, 
Lemma 3.3 with M ----- 0 i f2  -m2 < 2rlJ21 < 2 -2m2E, and Lemma 3.3 with M = 10/E if 2rlJ2] > 
2-2m2E. 

Form2 < 10 andml  > (n + 1)(1 + e )  we estimate the operators 7"j,s,n and 7"j's, n and then sum 

in j .  Only terms with 2J I Jl I < C 2-m i will occur and the desired estimate follows from Lemma 3.5, 
with 0 = E. 

For m2 > 10 and ml > (n + 1)(1 + ~), we estimate Tfg with g = r - 2 j  - n, ( j , g )  6 2ts 

using Lemma 3.4 with 0l = ~ and sum in r, j ;  again only terms with 2 j ]J1] 5 C2 -ma will occur. 
We consider T~n and distinguish two cases, depending on whether 2 n-m2~210b-1 is large or small. 
In the first case where 2 n-m2~210b- 1 > 1 we also have 2 m2 ~ C2 2n and we use (3.9) with 02 = 1 if 
2 r ] J2 ] < 2-n ,  (3.9) with 02 = 0 if 2 -n < 2 r ] J2 ] 5 10b-  12 n, and (3.11) if 2 r ] J2 ] < 10b-  12 n" In the 
second case where 2n-m2/210b -1 < 1 we use (3.9) with 02 = 1 if 2rlJ2l < 2-~-m2/z10b -1, (3.11) 
with 02 = 1 if U I J zl > 2-n-m2/210b -1 �9 Finally, this analysis also applies to the operator (Tjrt)* if 

in the previous argument we replace (3.9) by (3.10) and (3.11) by (3.12). [ ]  
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Remarks. 

(i) It should be possible to extend our result to cover similar classes of  vector fields in R n. 
Instead of  Fefferman's theorem one would have to use the version of  Calderrn-Zygmund theory 
in [5]. In our two-dimensional setting we used Fefferman's theorem for convenience, but we verified 
in effect the hypotheses of  Theorem 1 in [5]. 

(ii) There is the open problem of L p boundedness for the Hilbert transform associated to an 
arbitrary C ~ vector field. As a first step one might try to find a version of  our theorem for vector 
fields v which do not necessarily depend on only one variable. 

(iii) It would be interesting if there is an underlying Calderrn-Zygmund theory for our operators 
that is different from the product theory. In a different context such variants have been considered 
in [6]. 

4. The maximal operator 

The arguments in the previous sections apply equally well to prove the L p boundedness for 
the maximal operator 9Jr; in fact, some of  those arguments simplify. Let �9 be a nonnegative C ~ 
function with support in (1/2, 2) and assume that ~ ( t )  = 1 for t ~ (1/x/~, ~ ) .  Let o2j(t) = 
2J6 -1 ~ ( 2 J s - l t ) .  Then it is straightforward to see that 

f 
9Yt f (x) <_ C sup ~ pe(xl) I qJj(t) I f  (Xl - t, X2 -- ta (Xl))l dt 

J s J 

and we may clearly assume that f is nonnegative. Then the estimate 

(f f r ~]\I/P pe(xl) sup q J j ( t ) f ( x l - t ,  x z - t a ( x l ) ) d t  d x |  < CII f l lp  
2 J<_lle[ 

(4.1) 

follows by the rescaling argument in Lemma 1.2 and known estimates for maximal operators in the 
case of nonvanishing rotational curvature. 

Let S~e be defined as Tj% in (1.14), but with ~pj replaced by ~ j .  For k = 0, 1 . . . .  define 

S j s  ) = t0s (Xl) f (2 ra  (Xl)(Xl -- yl))  k * j  (Xl -- Yl) f ( Y ) f  ( 2-r/,/,)k ~b (2 -r/,.s eilZIx2-y2]d#dy 

so that Sje = Y~=o (- i )k  (k!)-lS~e k. In order to complete the proof we have to show that 

,:2 >lI, I 2) 1/2 
~j P ~ r >~j + S J s f 

p, sup E s;, I 
j:2-J >llel r<2j+s 

Cpllfl[p (4.2) 

Cpnkllfllp (4.3) 

Note that the cancellation of  ~p was not used in the estimates for 7- and in fact straightforward 
modifications of  the arguments in Sections 2 and 3 also yield (4.2). In order to see (4.3) we argue as 
in the proof of  Lemma 1.3. Let M1, M2 be the Hardy-Littlewood maximal operators acting in the 
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first and the second variable, respectively, and let 

r~ f (x) = SUPm r~<m l~r'k Lr f (X) 

where Lr, Lr, k are as in the proof of Lemrna 1.3. Then Cotlar's inequality [24, p. 35] applies: 

moreove~ 

Ze Pe(Xl) 2 supj>llel r 2j+s ~ S~ekf(x) < C10/CMl [F~f]  (x) .  

Since the operator ~r~__~ Lr, kLr is hounded on L p with norm O (cpB k) and suitable B the two pre- 
vious inequalities imply (4.3). The asserted estimate for the maximal operator 93I follows from (4.1), 
(4.2), and (4.3). 

5. The case of  nonvanishing rotational curvature, revisited 

We consider the operator defined for smooth functions by 

f 
Tf (x )  = X(xl) Z / tI/j (XI, Y l ) f  (Yl, x2 -I- S (Xl, Yl)) X (Yl) dyl �9 

d j>0 
(5.1) 

Here X and qJj are  C 2 functions; X is supported in the interval [ -1 ,  1], and qlj(Xl, Yl) = 0 unless 
2 - j - 3  < [Xl --  Yll < 2 - J + 3 .  We assume that (2.2) holds and that ~ j  has the additional cancellation 
property 

f g 2 j ( x , y ) d y = f ~ j ( x , y ) d x = O .  (5.2) 

As a model case for S we consider the example S(Xl, Yl ) = - a  (Xl) (x 1 - Y l ), and with the appropriate 
choice of ~ j  we recover a local version of the Hilbert transform in (1.1). The assumption of rotational 
curvature is that the mixed derivative Sxly~ does not vanish from below. 

Proposition 5.1. Suppose that S is a C l function on [ -  1, 1] 2 and assume that the partial deriva- 
tives Sxl yl,  Sxl yl YI' Sxl yl yl yl exist and are continuous in [ -  1, 1]. Assume that Sxx yl does not vanish 
in [ -1 ,  1]. Then T extends to a bounded operator on L p, 1 < p < ~ .  

As previously mentioned the proof is quite standard, and we shall be sketchy. If r is as 
in (1.14), then we define (r(X, y) = 2rbt---l[r (X2 -- Y2 + S(Xl, Yl))) and | = 1 - }--~r>~ (r. 
Then T ~ where = Z n = I  Tl,n n t- T2 

Tl,nf(x)  

Tz f  (x) 

= . L J  x (Xl) x (yl) * j  (Xl, yl) ~2j+n(X, y ) f ( y ) d y  
j :>D- -_  

= Z f X (Xl) X (Yl) tpj (Xl, Yl) O2j(x, y ) f ( y ) d y .  
j_>0 ~ 
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and that the same estimates hold for the adjoint operators. This of  course proves Proposition 5.1. [ ]  

By Lemma 2.3 the case p = 2 can be reduced to estimates for certain oscillatory integral 
operators in one dimension. Let )~ be fixed, ILl >_ 1/2, and define the operator 

Pjg(u) = X(U) f eiLS(u'w)~j(u, w ) x ( w ) g ( w ) d w  �9 

For the first result we assume that q/j is as above, but we do not actually need the cancellation 
condition (5.2). 

Lemma 5.2. Suppose that S is a C 1 function on [ -  1, 1 ]2 and assume that the partial derivatives 
Suw, Suww, Suwww exist and are continuous in [ - 1 ,  1] 2. Assume that Suw does not vanish in [ - 1 ,  1] 2. 
Then for2 2j <_ ILl the L 2 --~ L 2 operator norm of  Pj is bounded by C A2 J IX[ -1/2. 

P r o o f .  This is a version of  the argument in Lemma 2.2. One writes out the kernel Kj (u, z) of the 
operator Pj P~, and integrates by parts twice if lu - z l > 2 j ILl- 1. If  r (u, w, z) = S(u, w ) -  S(z, w), 
then our assumptions guarantee that I qbw (u, w, z)t is bounded below by c lu - z l and that q~ww and 
qbw ww are O (lu -- z I). Therefore, a consequence of  the integration by parts is the pointwise estimate 

[Kj(u,z)l < 2J ( l  + )~2-J(u-  z) 2) -1 

and the desired estimate follows by Schur's Lemma. 

In the next lemma we use the cancellation of  the q/j but not the assumption of  rotational 
curvature. 

Lemma 5.3. 

Suppose that kIIj is as above and satisfies the additionM cancellation property (5.2). Suppose 
that S is a C 1 function on [ -  1, 1] 2 and assume that the partial derivative Suw exists and is continuous 
in [ - 1 ,  1]. Then the operator )-~22j>_x Pj is bounded on L 2. 

P r o o f .  We verify that [Iej*ekll + Ileje~ll ~ 2-1j-kl, provided that 22j > [~-I, 22k > ILl. We may 
assume j > k. The kemel of  Pj* Pk is given by 

K .u z, = f q (u z w).j(u to)dto 

where qk(u, Z, w) = eiX[S(u'w)-S(z'w)]lx(w)lX~---k~, w). Observe that for u, z ~ supp p, [w - ul < 
2 - J ,  Iw - zl < 2 -k we have [Sy(u, w) - Sy(z, w)l < C2 -k and, since L2 -2~ < 1, 

Iq~(u, z, w) - q~(u, z, u)l _< C2 k + [X (Sy(u, w) - Sy(z, w))[ _< C '2  ~ . 

Now using the cancellation of  q.tj in the second variable we see that f ]K(u, z)ldz < 2 -j+k and 
f IK(u, z)ldu < 2 - j+~ and the desired estimate for P;P j  follows. 

[] 

It turns out that for 1 < p _< 2 

IITl,nfllp < Cpn-l+2/P2-n(1-l/P)llfllp (5.3) 

]]Txfllp < Cpllfllp (5.4) 
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Next, the kemel of Pj P~ is given by 

Ljk(U, Z) = X(u)x(z) f rl~(u, z, w)qJj(w, u)dw 

where rk(u, Z, w) = [X(W)12ei)'(S(w'u)-S(w'z))~k(W, Z). The desired estimate follows from the 
cancellation of q/j in the first variable since [Owrk[ = O(1~-12 -k + 1) = o(2k). [ ]  

The L 2 estimates for Tl,n and T2 immediately follow from the two previous lemmas and 
Lemma 2.3. In order to show the L p estimates, one shows that T2 and its adjoint are of weak 
type (1, 1), moreover Tl,n and its adjoint satisfy a weak-type inequality with constant O(n). From 
this the L p estimates follow by the Marcinkiewicz interpolation theorem. 

The weak-type estimates rely on Calder6n-Zygmund theory in [ -1 ,  1] x R which is made 
into a suitable space of homogeneous type (cf. [24, Ch. I]). The underlying distance function is 
d(x, y) = [Xl - Yl[ -t- Ix2 - Y2 -t- S(x1, yl)[ 1/2, with the balls B(y, 6) = {x : d(x, y) < 3}. Our 
assumption is that S 6 C 1 and the mixed derivative Sxly I exists and is continuous. The standard 
properties of this metric were derived in [14], in a more general context; see also [19]. In particular 
d is essentially symmetric, d(x, y) ~ d(y, x). Let ]Cj,n (x, y) = X (Xl)X (Yl)tI/j (Xl, Yl)r (x, y) 
and s  y) = X(Xl)X(Yl)~j(Xl,  yl)O2j(x, y). It is a straightforward exercise to verify that for 
suitable large D and for y~ E B(y, 8) 

s ) I)~j,n (X, y') -- )~j,n(X, y)[ dx 

e\B(y,D(S [/~j (X, y') - s  Y)I dx 

< Cmin{1 ,2n2J t ,  2n2-J8 1] 

< C m i n { 2 J s , 2 - J t - l }  ., 

we omit the details. This implies the asserted weak-type estimates for Tl,n, T2 and by the symmetry 
of the situation the estimates for the adjoints follow in the same way. 

�9 Similar considerations can be applied to the analogous maximal operator, defined by 

M f  (x) = sup I Aj f(x)[ (5.5) 
J 

where 

Aj f ( x )  = X (Xl) ] (I)j (X1, Yl) f (Yl, x2 + S (Xl, Yl)) X (Yl) dyl ; 

here S satisfies the assumptions of Proposition 5.1, and (I)j is as q/j above, but does not necessarily 
have any cancellation property. Let 80 be an even Schwartz function on the real line such that 
~'0(X) = 1 for IXl _< 1. Let 

Bj f (x) = X ( X l ) f f  dl)j (Xl, Yl)22J30 (22j Y2) f (yl, x2 - Y2-I-S (Xl, yl) ) X (Yl) dyldy2 ; 

then 

Mf(x )  <_ sup [Bjf(x)[ + [Aj f (x )  - B j f (x ) [  2 (5.6) 
J 

The maximal function sup [Bj f l is pointwise controlled by the Hardy-Littlewood maximal function 
with respect to the nonisotropic balls B(y, 8) defined above; it is bounded on L p for 1 < p _< oo. 
The square-function in (5.6) can be considered as the 62 norm of a vector valued singular integral 
and the L p boundedness follows as above. 
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6. Appendix 

6.1. The Hilbert transform in the radial direction 

We now study the operators H and M for the radial vector field v (x) = x / I x  I, in d dimensions, 
d > 2, i.e., 

ff H f ( x )  = p.v. f ( x  + t x / l x ] ) - -  (6.1) 
t 

and the maximal  operator M defined by 

i F M f ( x )  = sup I f ( x  + tx / Ixl) l  d t .  
h>0 ~ h 

(6.2) 

For this example the critical exponent for L p boundedness turns out to be the dimension d, and 
for p = d we prove a restricted weak type inequality (for a similar result on the Kakeya maximal 
operator acting on radial functions see [4]). In what follows let L p,q denote the Lorentz space. 

Proposition. Let  H and M be as in (6.1), (6.2),respectively. Then H is bounded on L P (Rd) i f  
and only i f  d < p < oo. M is bounded on L P (I~ d) i f  and only i f  d < p <_ oo. 

Moreover, H and M map L d' q (~d) to L d'r (JR d) i f  and only i f  q = 1 and r = oo. 

Proof. The proof  of  these results is elementary. One introduces polar coordinates to reduce 
matters to standard estimates for Hilbert  transforms, maximal  operators, and Hardy operators in one 
dimension. We shall give only the proof  for the operator H.  The proof  for the maximal operator M 
is similar. 

where 

We split 

H = HI + H2 + H3 

fit dt  H l f ( x )  ---- p.v. f ( x  + t x / I x l ) - -  
1_>41xl t 

f 
41xl dt 

H 2 f ( x )  = p.v. f ( x  + t x / i x l ) - -  
J-Ixl/4 t 

f 4lxl<t<__lxl/4 tdt n 3 f ( x )  = f ( x  + t x / I x l ) ,  . 

We first show that H1 is bounded on L P ( R  d) for 1 < p < 00. For I = 0, 1, 2 . . . .  set 

= f ( x  + t x / I x l ) - -  , 
H i , i f ( x )  t+21xl<_ltl<_21--31xl t 

then H1 ---- ~ l=O H i j .  Let Fp(s, O) ---- f ( sO)s  (d-l)/p and let .A41 denote the Hardy-Li t t lewood 
maximal  operator in the s-variable.  Then 

Ilnl'zfllq <- (ffs l• [f2l+2r<_ltE<_2l+3rlf((r+t)o)ld--~/]Prd-ldrdO) I/p 

< C2-1(d-l)/P ,~+ [f21+2r<_ltl<_21+3r 
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f ( (r  + t)O)(r + t)(d-1)/P i-~ljdt-lPdr dO)\ l/P 

< C2-1(cl-1)/P(i Le-ix~+ ['A'li[Fp("O)](r)]PdrdO) 1/p 

(fL )1'~ <_ C2 -l(d-i)/p IFp(r,O)l p drdO <_ C'2-;(d-1)lPllfllp 
d- l  x ~ +  

and the L p boundedness of  Hi follows. 

Next, we show that H2 is bounded o n  LP(~ d) for 1 < p < oo. For a function of  two variables 
denote by H,  the maximal Hilbert transform in the first variable. Let X~ be the characteristic function 
of  the interval [2 k-3, 2k+4]. Let Fk,p(S, O) = 2k(n-1)/Pf(sO)xk(s). Then 

IIH2fllp <_ 

< 

-2 k+l f4lx, to)d.~iPrd_ldrdO) 
(~k Ld_l ilk P'V'J--Ix'/4 f(x@ 1/p 

f IH, Fk,p(r,O)+ dlCll (Fk,p)(r,O)l p drdO) 1/p 

l/p 
f ]Fk,p(S, O)t pds  dO < C']lfllp. 

Finally we estimate Ha where the restriction p > d is needed. Observe that 

II H3 f llq 

Let for j = 0, 1 . . . .  

Then 

(fL I 4f-r/4 I p )lip < [f((r+t)O)ldt rd-ldrdO 
d-1 •  d--4r 

(SL [!L 4r ]P ) lip 
<_ 2 If(sO)lds rd-ldrdO d-1 • 

1 L Sjg(r) = r -J+lr<lsl<2-J+2r g(s) ds. 

Isj  r l p < 
lip 

\ 0 d2 J+lr 

Now for f �9 LP(R d) define H3,j by I-I3,jf(rO) = Sj[f(.O)](r). Then [I-I3f(rO)l <_ ~j~=o IH3,j 
[Ifl](rO)l and H3,j is bounded on LP(R d) with operator norm _< C2 j(-l+d/p). This implies the 
asserted L p estimate for p > d. It also implies that/-/3 is of  restricted weak type (d, d), that is T3 
maps L a, 1 into L a,~, see Section 6.2 below. 

We now turn to the necessary conditions. It is easy to see that H does not map L ~ to L ~ .  In 
order to check the sharpness of  the LP estimates, we test / - /on the characteristic function X of  the ball 
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of  radius 1, centered at the origin. Then I I f ll p ~ C and I H f  (x)[ >- clxl for I xl >_ 2. This implies that 
L p boundedness only holds for p > d; moreover, if  H maps L d,q to L d'r then necessarily r = e~. 
We still have to show that L d'q ~ L d, ~ boundedness can hold only for q = 1. Since by interpolation 
the above estimates show that H1 and/-/2 are bounded on all L p'q spaces for 1 < p < oe, it suffices 
to consider/-/3. For large N define fN(x) = 1/[x[ if  1 _< Ix[ < N and fN(x) = 0 otherwise. Then 
IlfNllLa,q ~ [logN] 1/q and for 10 < ]xl < N/2  we have [H3fN(X)l > clx[ -1 l o g N .  This shows 
that IIH3fN IILd,o~/llfN IlLa,q > C[log N] 1-1/q. Now if  H is bounded from L d'q to L d'~, then H3 is 
bounded from L d'q t o  L d'c~ and this can only happen i f q  = 1. [ ]  

R e m a r k .  One may construct a C ~ vector field which coincides with v (x) = x / Ix l  if  Ixl > 1 and 
Ixd[ >-- Ix I/2. There are the same obstructions to LP boundedness as for the radial vector field and 
in fact L p boundedness for the Hilbert  transform (1.1) will  fail if  p < d. The same remark applies 
to the maximal  function (1.2). These obstructions are not present if  one considers local versions of  
the Hilbert  transform or the maximal  operator. 

6.2. An interpolation lemma 

Suppose A = (A0, A1), B = (B0, B1) are two couples of  normed vector spaces, compatible 
in the sense of  interpolation theory. Suppose that we are given a sequence of  operators Tj mapping 
A0 + A1 to B0 + Bl such that 

IlTjall s <_ Ms2J~sllallAs, s = 0, 1 (6.3) 

where or0 < 0 < or1. Then it is easy to see that T = ~ Tj maps A0 tq A1 to B0 + Bl .  In fact if  
a c A0 A A1, we obtain 

j~>m Tja B~ + t j~<_m Tja B1 
< ~ Mo2J~~ + t Z Ml2J~l [[allA1 

j>m j<m 

< C [MoZm~~ q- tMl2 m~l [1alia1] . (6.4) 

Recall  the definition of  the Peetre K-funct ional  

K (/, a,  A) = inf {[[a0 [Iz 0 -[- t Ilal IIAI : a = a0 + a l ,  a0 E a0 ,  a l  E a l  } 

and the definition of  the real interpolation space Ao,q = Ko,q (A) with norm 

( f  d~) 1/q []al[-~o,q = [ t -~  ( t ,a ,A)]  q , 

with the natural modification in the case q ---- c~. 

If  for fixed t we choose m in (6.4) such that 2 m ( c q - ~ ~  -~ MollallAo/(tM11Jallal), we see that 
f o r 0  = ot0/(ot0 - o q )  6 (0, 1) a n d a  6 A0 A A1 

1-0  0 IITall~o.~ = sup t -~  (t, Ta,-B) <_ CM~ M l [[a][lo~176 l . (6.5) 
t>0  

This inequality is an extension of  an inequality implicit ly in [2], for L p spaces. For the concrete case 
As = Bs = L ps, s = 0, 1 we may apply (6.5) for a being the characteristic function of  a measurable 
set and then (6.5) becomes a restricted weak type inequality. This implies [26, Ch. V] that T maps 
the Lorentz space L p'! into L p'ec if  (1 - O)/po + O/pl = 1/p and 0 = oto/(oto - O i l ) .  
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The following lemma is an abstract extension of this interpolation result. It implies (6.5), since 
Ko, 1 is an interpolation functor of exponent 0 (see [1, p. 40]. 

L e m m a .  Let { Tj } be a sequence o f  operators mapping Ao + A 1 to Bo + B1 and satisfying (6.3), 
with ao < 0 <otl. Let O = oto/(oto - Oil). Then T = y~ Tj extends to a bounded operator mapping 
Ao, 1 to Bo,~,  with operator norm bounded by C M 1-~ M o ; here C = 0 ((Oel - oto)2 (~ 1 -~o)O). 

Proof. Since A0 N A1 is dense in Ao, 1 (see [ 1, p. 47]) it suffices to prove the required inequality 

for a 6 A0 A Al. Fix t and for every j 6 Z split a = a j + a~ such that 

aJ Ao q- 2 j ( a ' - a ~  a{ A, <- 2 K  (2J(a l -C~~ X )  . (6.6) 

Then 

t - ~  (t, Ta, B) < 

< 

< 

o+ l 1 
t-O Z j  M02Ja~ ag A0 + t  ~ j  M 1 2 j a l  a~ AI 1 

Mo~j (2J(al-a~ aJo Zo+2J(al -a~ 1 a{ AI ] . 

By (6.6) and the monotonicity of the K functional one easily obtains 

and therefore 

< 2 aO / "2(j+l)(cq ao)t 
- -  Ctl--~ 2a0_l  J2i(al-aO)t s-OK(sM1/Mo, a, A)~- 

f o  ~ 

_ _  1 - 0  0 IITall~o ~ < CMo s - ~  (sM1/Mo, a,-A) ds = CM~ Ml llall~o ' . 
' S �9 

[ ]  

References  

[1] Bergh, J. and L6fstr6m, J. Interpolation Spaces. Grundlehren der mathematischen Wissenschaften, 223, Spfinger- 
Verlag, Berlin, 1976. 

[2] Bourgain, J. Estimations de certaines fonctions maximales, C. R. Acad. Sc. Paris, 310, 499-502, (1985). 

[3] Bourgain, J. A remark on the maximal function associated to an analytic vector field, Analysis at Urbana. Berkson, 
E., Peck, T., and Uhl, J., Eds., Cambridge University Press, 111-132, 1989. 

[4] Carbery, A., Hemandez, E., and Sofia, E Estimates for the Kakeya maximal operator on radial functions, Proc. ICM-90 
Satellite Conference on Harmonic Analysis, Igari, S., Ed., Spfinger-Verlag, Berlin, 41-50, 1991. 

[5] Carbery, A. and Seeger, A. H P and L P variants of multiparameter Calder6n-Zygmund theory, Trans. Am. Math. Soe., 
334, 719-747, (1992). 

[6] Carbery, A., Wainger, S., and Wright, J. Hilbert transforms and maximal functions along fiat variable plane curves, J. 
Fourier Anal. Appl., Kahane special issue, 119-139, (1995). 

[7] Carbery, A., Wainger, S., and Wright, J. A variant of the notion of a space of homogeneous type, J. Funct. Anal., 132, 
119-140, (1995). 

[8] Carleson, L. On convergence and growth of partial sums of Fourier series, Acta Math., 116, 135-157, (1966). 



Classes of  Singular Integral Operators Along Variable Lines 605 

[9] Chang, S.Y.A. and Fefferman, R. The Calder6n-Zygmund decomposition on product domains, Am. J. Math., 104, 
445-468, (1982). 

[10] Christ, M. Hilbert transforms along curves III, Rotational curvature, unpublished manuscript, 1986. 

[11] Christ, M., Nagel, A., Stein, E.M., and Wainger, S. Singular and maximal Radon transforms, in preparation. 

[12] Fefferman, C. and Stein, E.M. Some maximal inequalities, Am. J. Math., 93, 107-115, (1971). 

[13] Fefferman, R. Harmonic analysis on product spaces, Ann. Math., 126, 109-130, (1987). 

[14] Folland, G.B. and Stein, E.M. Estimates for the Ob complex and analysis on the Heisenberg group, Comm. Pure Appl. 
Math., 27, 429-522, (1974). 

[ 15] Greenleaf, A. and Uhlmann, G. Estimates for singular Radon transforms and pseudo-differential operators with singular 
symbols, J. Funct. Anal., 89, 202-232, (1990). 

[16] Hunt, R.A. On the convergence of Fourier series, Proceedings of  the S. I. U. Conference on Orthogonal Expansions. 
Southern Illinois University Press, Carbondale, IL, 235-255, 1968. 

[17] Journr, J.L. Calderrn-Zygmund operators on product spaces, Rev. Mat. Iberoamericana, 1, 55-91, (1985). 

[ 18] Nagel, A., Stein, E.M., and Wainger, S. Hilbert transforms and maximal functions related to variable curves, Harmonic 
Analysis in Euclidean Spaces, I, Wainger, S. and Weiss, G., Eds., Proc. Syrup. Pure Math., 35, Am. Math. Society. 

[19] Phong, D.H. and Stein, E.M. Hilbert integrals, singular integrals and Radon transforms I, Acta Math., 157, 99-157, 
(1986). 

[20] Phong, D.H. and Stein, E.M. Singular Radon transforms and oscillatory integrals, Duke Math. J., 58, 347-369, (1989). 

[21] Phong, D.H. and Stein, E.M. Radon transforms and torsion, Intl. Math. Res. Not., appeared as an appendix in Duke 
Math. J., 49-60, (1991). 

[22] Seeger, A. Degenerate Fourier integral operators in the plane, Duke Math. J., 71, 685-745, (1993). 

[23] Seeger, A. L 2 estimates for a class of singular oscillatory integrals, Math. Res. Lett., 1, 65-73, (1994). 

[24] Stein, E.M. Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University 
Press, Princeton, NJ, 1993. 

[25] Stein, E.M. and Wainger, S. Problems in harmonic analysis related to curvature, Bull. Am. Math. Soc., 84, 1239-1295, 
(1978). 

[26] Stein, E.M. and Weiss, G. Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 
NJ, 1971. 

Received January 15, 1996 

Department of Mathematics and Statistics, University of Edinburgh, 
King's Buildings, Mayfield Rd., Edinburgh EH3 9JZ, UK 

Department of Mathematics, University of Wisconsin, Madison, WI 53706 

Department of Mathematics, University of Wisconsin, Madison, W153706 

School of Mathematics, University of New South Wales, Sydney, Australia 
e-mail: jimw @ maths.unsw.edu.au 


