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Generalized Low Pass Filters and MRA 
Frame Wavelets 

By Maciej Paluszyhski, Hrvoje Sikid, Guido Weiss, and Shaoliang Xiao 

j 
ABSTRACT. A tight frame wavelet lp is an L2(~)function such that {l~j k (x)} = {2~ @(2Ix - k), j ,  k 

Z}, is a tight frame for L2(~). We introduce a class of  "generalized low pass filters" that allows us to 

define (and construct) the subclass of MRA tight frame wavelets. This leads us to an associated class 

of "generalized scaling functions" that are not necessarily obtained from a multiresolution analysis. We 

study several properties of  these classes of "generalized" wavelets, scaling functions and filters (such as 

their multipliers and their connectivity). We also compare our approach with those recently obtained by 

other authors. 

1. I n t r o d u c t i o n  

We assume the reader is familiar with the Multiresolution Analysis (MRA) method for con- 
structing wavelet bases for L2(•). For the sake of completeness, however, and, also because we 
need to establish an appropriate notation that allows us to explain the contents of this article and 
how our results compare with those of other authors, we begin with a brief description of the 
MRA method. 

An MRA consists of  a sequence {Vj }, j ~ Z, of closed subspaces of  L2(R) that is increasing, 
Vj C Vj+I, the members of this sequence are dyadic dilates of, say, Vo in the sense that f c Vj 

if and only if f ( 2  - j - )  E Vo, L2(R) = U Vj and, lastly, there exists an element q) in V0 (a 
j c Z  

scaling function) such that the sequence of its integral translates ~On (x) -- ~o(x - n) makes up an 
orthonormal basis of  V0. 

An (orthonormal) wavelet is a function ~ 6 Lz(R) such that the system ~jk(x) = 

2 ~ ( 2 J x  - k), j, k 6 Z, is an orthonormal basis of Lz(R). The construction of such a 
from an MRA is rather simple and elegant. If we can produce a ~ in the orthogonal complement, 
W0, of V0, within VI, such that {~k} = {~(" -- k)}, k E Z, is an orthonormal basis of W0, then the 
properties of the MRA { Vj } easily imply that 7t is a wavelet. We refer the reader to [4] for these 
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details (as well as other that are related to much of the discussion of wavelets we shall present). 
In this reference and here the Fourier transform is defined by 

f(~) = fR f(x)e-i~x dx (1.1) 

for f 6 L1 (R). 

One obtains the function ~p from the MRA by making use of  the fact that associated with 
each scaling function ~0 there is a unique 2rr periodic function m 6 L2([0, 270) - L2(T)  such 
that 

~b(2~) = m(~)~b(~) (1.2) 

a.e. A basic property of  m is that 

Im(~)l 2 4- Im(~ + rr)l 2 --= 1 (1.3) 

for a.e. ~ 6 1~. One can then show that 7t 6 L2(R) satisfying 

~(2~)  = m! (~)~b(~) , (1.4) 

where ml (~) = ei~m(~ 4- 7r), is a wavelet. These properties of  ml and gr are straightforward 
consequences of  the fact that we are seeking an element ~p 6 '/1 orthogonal to V0 with the 
properties we described. 

These are the MRA wavelets. There are wavelets that cannot be obtained in this way. The 
class of all wavelets 7t in L 2 (R) can be characterized by two equations and the property [I 7,112 _> 1: 

)2 
Z 2J~ = 1 a.e. ,  (1.5) 
jEZ 

and 

tq(~) = Z ~ ( 2 j ~ )  ~ (2J(~ + 2 q r r ) ) = 0  a.e. (1.6) 
j_>0 

whenever q is an odd integer. We remind the reader that the book [4] presents a complete account 
of  these facts; in Chapter 7 of  this book one can find the characterization of all scaling functions 
as well. There it is pointed out that if the condition 117,1h _> 1 is not assumed, then the two 
equations (1.5) and (1.6) characterize the systems {~jk}, j ,  k 6 Z, that are tight frames with 
constant 1. 

A frame in a Hilbert space H,  with inner product < . ,  �9 >, is a family {qgn, n 6 A} of 
elements in H for which there exist two positive constants, A and B, such that 

AIIf l l  2 ~ y ~  I< f ,  ~0n >[2 < B[if l l  2 (1.7) 
nEA 

for all f ~ H.  The numbers A and B are called the frame constants; if A = B, {~0n} is called a 
tight frame and, after a renormalization, we can assume A = B = 1 (we shall suppose this to be 
the case in this article and, therefore, the term "with constant 1" will often be tacitly assumed). 
The indexing set A for the family {r can be quite general; we assume it to be countable and, in 
particular, we often will be dealing with the case where {qgn } is the sequence of translates {~0(. - n ) }  
of  a function ~0 ~ H C L2(~),  n E Z, or the indexing set consists of the pairs (j ,  k) ~ Z x Z. 
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Many investigators have considered the case when the system {~jk}, j ,  k 6 Z, is a frame 
for L2(~)  rather than an orthonormal basis. This leads to the question of giving meaning and 
studying such frames that arise from a construction that extends the one we described above 
that produced the MRA wavelets. This is the purpose of this study: to introduce an appropriate 
definition of an MRA wavelet frame and, then, to study the properties of  such frames. 

Other authors have posed this problem and have obtained interesting and useful solutions 
of  it (see [1], [3], and [6]). Our approach is different from the ones we have cited and the MRA 
wavelet frames we obtain belong to a class that strictly includes the ones obtained by the other 
authors. 

The next section is devoted to the definition and construction of MRA wavelet frames. We 
consider, at first, only the case of MRA wavelet tight frames. In the fifth and last section, when we 
compare our results with those obtained by others, we show how the study of the general frame 
in [1] can be reduced to the case of tight frames. 

The novelty of  our approach is that we define and construct our MRA wavelet frames by 
making use of  a collection of general low pass-filters. In the wavelet case, the function m 
introduced in (1.2) is called a low pass filter; the pair (m, ml )  is often referred to as a pair of  
quadrature mirror filters, and m 1 is called a high pass filter. The MRA method we described 
above begins with the spaces V0 and V1 and a scaling function ~0 and, from these, one constructs 
W0, the orthogonal complement of V0 within VI. The wavelet is then a member  7z of  W0 such that 
{Tz(. - n)}, n 6 Z, is an orthonormal basis for W0. The MRA wavelet frames introduced by [1] 
and [2] follow this approach after introducing the notion of a "frame MRA" which is defined as 
we did above, except that the integral translates of  the "pseudo-scaling function" ~0 form a frame 
for V0 (instead of an orthonormal basis). 

An important implementation of the MRA construction begins with a low pass filter m and, 
from it, a scaling function and its associated MRA are then produced in order to obtain wavelets. 
This method is very powerful and provides important information about the properties of  the 
wavelet it produces. It was used very effectively, for example, by Daubechies [3] when she con- 
structed her compactly supported wavelets. Unless a complete characterization is known of these 
2re periodic functions m E L2(T),  satisfying (1.3) that are low pass filters for an MRA, con- 
structing wavelets, by the "standard" method from the "known" low pass filters, does not produce 
the general MRA wavelet. Fortunately, some of us were able to find such a characterization [5]. 
In this article we show how one can use the information obtained from [5] in order to develop 
a general theory of MRA frame wavelets based on an appropriate "generalized low pass filter." 
This then will be the principal material included in the second section. 

We want to emphasize that our approach is to obtain tight frames (or, more generally, frames) 

of  the form {~Pjk(X)} = { 2 ~ ( 2 J x  -- k)}, j ,  k 6 Z, from a function ~ constructed from an 
appropriate generalized filter m (a 2zr periodic function satisfying (1.3)). Such a filter need not 
be associated with a "generalized" MRA (say, of the type introduced in [1]). In the literature, 
the function m(~) = (1 + e3i~)/2 is often presented as an example of  a 2Jr-periodic function 
satisfying (1.3) that is not a low pass filter. It is then cast away as "useless." We shall show, in 
fact, that this m can be used for constructing an "MRA tight frame wavelet" (MRA TFW) and 
provides an example of  such a generalized filter that does not arise from a "generalized MRA." 
Our moral is simply: Do not discard a generalized filter even though it is not a low pass filter; it 
may very well yield a bonafide "MRA tight frame wavelet." 

In the third section we study the "multipliers" associated with the classes of  MRA frame 
wavelets, the corresponding "pseudo-scaling functions," and generalized low pass filters. That 
is, we characterize those measurable functions v such that ( v~ )  v belong to the class C whenever 
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7* belongs to C (C will be the class of frame wavelets, MRA frame wavelets, and pseudo scaling 
functions that we have introduced). We also characterize those measurable functions/z such that 
/zm is a generalized low pass filter whenever m is such a filter. In the fourth section we study 
certain consequences of the multiplier results in the previous section and the connectivity of the 
classes of wavelet frames we introduced. This is very much in the spirit of [7]. The fifth section is 
devoted to a comparison of our approach with those used by other investigators [1], [2], and [6]. 

We want to thank Ziemowit Rzeszotnik for his suggestions and corrections. 

2. Preliminaries and basic definitions 

We introduced the notion of a tight frame immediately after the inequality (1.7). We shall 
study such frames when they are generated by a function in L2(]~). 

Definit ion 2.1. A function ~ E L2(]~) is a tight frame wavelet (for short, TFW) if the system 

{7tjk}j,kcz, where 7*jk(x) = 2~ ~(2Jx -- k), is a tight frame (with constant 1) for L2(IR); that is, 
for all f E L2(IR), 

f = Z < f' ~jk > ~jk (2.1) 
j,kcZ 

unconditionally in L 2 (IR). 

This is equivalent to the condition 

llfll~ = Z ] < f '  ~jk >l 2 , (2.2) 
j,kcg 

for every f 6 L2(IR) (this corresponds to the definition of a tight frame we discussed in the first 
section; see [4, Chapters 7 and 8]). 

We shall use the following characterization (already mentioned in the first section) of TFW's, 
which is essentially proved in [4], Theorem 1.6 of Chapter 7 (the frame terminology is not used 
in Theorem 1.6, since in [4] frames are introduced in Chapter 8). 

Theorem 2.2. A function ~ E L2(R) is a TFW i f  and only i f  ~p satisfies (1.5) and (1.6). 

Following [5], we shall denote by F the set of generalized filters; i.e., m E ~" if m is 2~r- 
periodic, and satisfies (1.3). 

Definition 2.3. A function ~0 E L 2 (IR) is called a pseudo-scaling function if there exists m E ~' 
such that 

~b(2~) = m(~)~b(~) for a.e. ~ ~ IR. (2.3) 

R e m a r k  2.4. Notice that m is not uniquely determined by the pseudo-scaling function ~0. 
Therefore, we shall denote by ~'~0 the set of all m E F such that m satisfies (2.3) for ~0. For 

example, if ~0 = 0, then, F~0 = F', while, if ~0 is a scaling function for an MRA (see [4, Chapters 2 

and 7]), then, ~'~ is a singleton. 

Note that for a pseudo-scaling function ~0, the function I~1 v is also a pseudo-scalingfunction, 
and i fm E ~'~0, then, Iml E Fkal v. Let us recall (see [5, Section 3]) that for every m E F, we can 
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oo 

define ~01m I 6 L2(IK) by letting ~blml(~) : H Im(2~)l" However, in general, it is not true that 
j = l  

1~1 can be obtained as the infinite product of the values of Iml (take ~o = 0 for example). Hence, 
it is not necessarily true that I~bl = ~[ml- In order to explore this further let us mention (see [5, 
Lemma 1]) that for almost every ~ 6 R \ {0} the limit lim ~bl,nl(2-n~) exists and is either equal 

n---~ o~ 

to 0 or 1. Since this limit is not going to change if we replace ~ with any dyadic dilate 2k~, k e Z, 
of ~, it is important to consider the Lebesgue measure of the set 

N0(Im[) := { ~ e  I, n~lim ~lml (2-n~)=0} 

where I = [-Jr,  7r) \ [--~, 9) (see also [5, Theorem 2 and Lemma 4] for the significance of 
No(Iml)). 

Proposition 2.5. Suppose that ~o is a pseudo-scaling function and rn ~ Fr I f  

lim I~b(2-'~)l = 1 for a.e. ~ ~ 
n--~ oo 

t h e n ,  

I~(~)1 = f i  m ( 2 ~ )  [ = ~lml(~) 
j = l  

and, obviously, INo(Imt)l = O. 

(2.4) 

for a.e. ~ ~ ]K (2.5) 

Proof. By (2.3), we have, for every n E N, 

Using (2.4), we obtain that I~b (~)1 -- ~blm t (~) and, therefore, (2.5) and IN0 (Iml)l = 0 are clearly 
satisfied. 

Following [5], we shall call a generalized filter m with the property that I N0(lm L)I = 0, a 
generalized low passfilter (see [5, Section 3], for more details). 

Remark  2.6. Note that even for a pseudo-scaling function ~0 which satisfies (2.4), the set 
~'~o is not necessarily a singleton. For example, take q3(~) = X[--E,E](~), (0 < ~ < -~). Any 
m E F, m >_ 0, such that m[[-e,El = X[-~,~]I[-~,E] is an element of ~'~. Since m restricted to 
[ - 9 ,  9) \ [ - e ,  E) can be any measurable function with values in [0, 1] (m can then be extended 

to [-rr ,  rt) so that it satisfies m(~) 2 + m(~ + ~r) 2 = 1), it is clear that ~'~0 contains infinitely many 
elements. 

Definition 2. 7. 
m E F~0 such that 

A TFW ~p is an MRA TFW if there exists a pseudo-scaling function ~0 and 

for a.e. ~ e l K .  (2.6) 

The following lemma is an elementary result in integration theory. Since we shall apply it 
several times in the sequel, we provide a proof for the reader's convenience. 
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L e m m a 2 . 8 .  I f f  E LI(II~), then, fora.e. ~ ~]K, lim f(2n~) = 0. 
n-->-F-oo 

P r o o f  Without loss of generality, we can assume that f > 0. Assuming that f e L 1 (~) and 
applying the monotone convergence theorem we obtain 

f~ E f  (2nR) dbl :n~E~ f R f  (2nu) dbl -~- Z 2 - n  fRf(u)du : Ilfl[1 < hEN 

It follows that for a.e. u, E f (2nu) is finite. Therefore, for lim a.e. U, 
n - - + + ~  

nEl~I 

f (2nu) = O . [] 

Proposition 2.9. Suppose ~p is an MRA TFW and ~o is a pseudo-scaling function satisfy- 
ing (2.6). Then q9 satisfies (2.4); thus, m is a generalized low pass filter. 

P r o o f  
obtain 

Since ~p is a TFW, we can use (1.5) and, since ~ is an MRA TFW, we can use (2.6) to 

= E ~(2J~) 2 = Z m (  2j- l~  + r r )  2 ~b (2J- l~)  2 

j E Z  j E Z  
n 

= nli~rn~ Z m (2J-l~ +7r)  2 ~ ( 2 J - l ~ )  2 
j ~ - ? l  

=n] i rn  ~ { 1 - m ( 2 J - l ~ ) 2  / ~b(2J- '~) 2 

j=-n 

Since ~o 6 L2(R), Lemma 2.8 implies nlimoo I~b(2n~)l 2 -- 0 for a.e. ~. This shows that for 

a.e. ~ e R, lim I~b(2-n~)l = 1. [] 
n ----~ (X) 

R e m a r k  2.10. Observe that if ~p in Definition 2.7 happens to be a wavelet, then, ~t is an MRA 
wavelet in the usual sense. To see this, recall that (2.6) implies 

oo 

le  )l 2= s 
j -=l  

(2.7) 

A consequence of (2.7) is that 11~112 = 11~112, and, since 7z is a wavelet, this implies that 
I1~o1 [2 = 1. Using Proposition 2.9 and Proposition 2.5, we conclude that the generalized filter m 
in (2.6) satisfies Ig0( Im I)1 = 0, ~bl., I = kbl and [l~01mlll2 = 1. We can now apply [5, Theorem 2] to 
conclude that m is a low pass filter and ~0 is a scaling function. Therefore, ~p is an MRA wavelet. 

The notions presented suggest a natural way of constructing MRA TFWs from generalized 
low pass filters. We will, in fact, show that this offers us a method that yields all the MRA TFWs 
that we just introduced. 

The cons t ruc t ion  of  M R A  TFWs.  Suppose that m is a generalized low pass filter. 
Using results from [7] and [5], we know that there exists a filter multiplier tt (i.e., # is unimodular 
and 2~-periodic) such that m(~) = Iz(~)lm(~)l and a scaling function multiplier v (i.e., v is 
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unimodular and v(2~)v(~) is 2zr-periodic) such that v(2~)v(~) = fz(~) for a.e. ~ ~ R. If 
we define a function q9 6 L2(]1~) by ~b(~) := v(~)~blml(~), then q9 is a pseudo-scaling function, 
I~bl = ~blm I and ~b(2~) = rn(~)g3(~) a.e. We then define a function gr 6 L2(1R) by (2.6) 

~(~)  : = e i ~ m ( ~ f f z r ) ~ ( ~ )  . 

First, we show that ~p is a TFW (this would imply immediately that 7t is an MRA TFW). 
Secondly, we will show, as promised, that all MRA TFWs are obtained in this way. 

Theorem 2.11. The function ~p defined by the procedure we just presented using equality (2.6) 
is a TF~. 

Proof. Theorem 2.2 shows that it is enough to prove that ~ satisfies (1.5) and (1.6). 

Note that since IN0(Iml)l = 0 and I~bl = ~lml, the function ~p satisfies (2.4) (see comments 
preceding (2.5)). The argument in the proof of Proposition 2.9 shows that 

Z 1~ (2J~e) 2 2 . :nl2meo[ ~(2-n-l~) --[~b(2n~)l 2] 
j6Z 

Lemma 2.8 and (2.4) now immediately yield (1.5). 

The following argument shows (1.6). When q is an odd integer we have 

o ~  

Z + 
j=0 

o o  

= ~(~)~(~ + 2zrq)+ Z ~ (2jse) } (2J(~ + 27rq)) 
j=l 

=ei[m(~+Jr)~(~).e-i~7 . ( -1 ) .m(~+zr (q+l ) )~ (~+zrq )  

o ~  

+ Z m  (2J-l~ + rr)~b ( 2 J - 1 ~ ) - m  (2J- l~ + zr) ~b (2J-l~ + 2Jrrq) 
j=l 

j=l 
o o  

j=l 
- ~ (2J~) ~b (2J(~ + 2zrq)) ] 

= lim [--r 
N--++o~ 

= 0  

for a.e. ~ 6 R. []  

Theorem 2.11 completes our construction since it shows that, indeed, we always obtain an 
MRA TFW by this method that starts with an arbitrary m c ~" satisfying IN0(lml)l = 0. 
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We still have to answer the opposite question: Suppose we have an MRA TFW ~p (meaning, 
of  course, that there exists a pseudo-scaling function q) which satisfies (2.6)), is it true that gr 
can be obtained by the construction described above? The problem is that it is not a priori clear 
that there exists a scaling function multiplier v such that ~b(~) = v(~)~blml(~), where m 6 ~'~o 
satisfies (2.6) for ~p. The following theorem gives a positive answer to this question. 

Theorem 2.12. Suppose that 7t is an MRA TFW and ~o is the associated pseudo-scaling 
function which satisfies (2.6). Then, ~ and ~o can be constructed in the way described preceding 
Theorem 2. I I. 

Proof. ~ is defined by (2.6) in terms of a pseudo-scaling function ~o and an associated m c ~'~0. 

Hence, we need to show that q) is obtained by our construction from m ~ ~'. More precisely, we 
shall prove that there exists a scaling function multiplier v such that 93(~) = I ) (~)q31ml(~) .  By 
Proposition 2.9 q) satisfies (2.4). Then, by Proposition 2.5, I~bl = ~lm I and IN0 (Im I) I = 0. We also 
know that there is a filter multiplier/~ such that m = / z l m  I- Consider a signum function for ~b, i.e., a 
function t which is unimodular and 93 (~) = t (~)l~b (~)1 (obviously, such a function exists). Hence, 
we only need to prove that there exists a unimodular function v such that v(2~)v(~) = / z ( ~ )  a.e. 
and v(~) = t(~) when ~b(~) 7~ 0. If we do this, then our construction based on this m gives us 
precisely this ~0 when we choose/x and v as indicated. 

Take~ 6 IR such that ~b(2~) ~: 0. Therefore, ~b(~) 7~ 0andm(~)  7~ 0. The following simple 
computation 

#(~)lm(~)lq3(~) = m(~)~b(~) = q3(2~) = t(2~)193(2~)[ = t(2~)t(~)lm(~)l~(~) 

shows that in this case t(2~)t(~) = I t( t) .  

Consider an arbitrary ~ 6 ]R for which (2.4) is true (as we observed above, a.e. ~ 6 R has 
this property). If ~b(2n~) 7~ 0 for every n ~ Z, we define v(2n~) :--- t(2n~) for every n ~ Z. 
Otherwise, by (2.4) and (2.3) we must have an no ~ Z such that ~b(2n0~) # 0 and 9~(2n~) -- 0 
f o r n  > no + 1, while ~b(2n~) 7~ 0 f o r n  < no. In this case, we define v as follows: for 
n < no, v ( 2 ~ )  :=  t ( 2 ~ ) ,  while, for n > no + 1, v(2n~) :=  v(2~- t~)#(2~- l~) .  This clearly 
completes the proof. [ ]  

We shall complete this section by addressing yet another question that appears naturally in 
our construction o f M R A  TFWs. As we have shown above, given m 6 ~" such that IN0(Iml)l = 0 
we can construct an MRA TFW gr from m. It is important to emphasize that we can construct 
infinitely many different lp's, since our choice of  the corresponding pseudo-scaling function ~0 
depends on our choice of  a scaling function multiplier v. Recall that the only requirement for v 
was to be unimodular and to satisfy that v(2~)v(~) = / z (~ ) ,  where # is a filter multiplier such that 
m(~) = #(~)lm(~)l.  It was shown in [7] that there are infinitely many v's with those properties, 
since we can define v to be an arbitrary unimodular function on I (defined immediately before 
Proposition 2.5) and then extend it inductively by using v(2n~) = v (2n- l~ )# (2n- l~ )  for n > 1 

and using v(2n-l~)  = v (2n~)#(2 n l~) for n _< --1. Observe that under our assumption it is not 
OO 

necessarily true that the product H m(2~)  converges a.e. 1 Moreover, even in the case when the 
j = l  

OG 

l For example, if r~(~) = -[m(~)l, the product H r n ( 2 - J ~ )  is not convergent. The reader might amuse 
j = l  

him/herself by producing a ~? such that n3 6 F'~. 
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o ~  

product I - I  m(~@) converges a.e. to a function ~ 6 L2(R) (obviously, q3 is then a pseudo-scaling 
j = l  

function and m ~ ~',~), by choosing an arbitrary v as above we may not pick exactly ff (although, 
by Theorem 2.12, we know that there is a proper v among those available). The question now 
becomes: Can we prescribe a particular choice of v (and, therefore, of ~p as well) in the general 

OG & 

situation so that in the case when the product 1-I m(~@) converges a.e. our ~0 happens to be 
j = l  

exactly ~? The answer to this question is yes. Let us prove that. 

Suppose, as above, that m E F and IN0(Iml)l : 0. Consider a filter multiplier/z such that 
N 

m(~) =/z(~) lm(~) l .  For ~ c I consider a sequence {1-I # (2  J~)}NEN. S ince  this is a sequence 
j = l  

of points in the toms we can pick (measurably with respect to ~) an accumulation point on the 
toms of this sequence. Let v(~) be this accumulation point, i.e., we have defined v properly on 
I. As before, we extend v to R and define ~p by ~b(~) := V(~)~lml(~), ~ E ~.  We claim that this 
is the proper choice of ~p. 

OQ 

that ~(~) = H m(2-J~)  exists. We have to prove that in this case ~0 -- ff (as ele- Suppose 
j = l  

ments in LZ(R), of course). By our assumption ~(~) = lim /~(2-J~) " 1--I Im(2-J~)l �9 
N---~+ec 

j = l  j = l  

Since IN0 (Im I)l = 0, for almost every ~ ~ R, there exists n = n (~) 6 N such tha t  @m I ( 2 - n ~ )  • 0 
N 

and ~ ( 2 - ' ~ )  # 0. This implies that for u = 2-n~ the limit lim ] ' - [ / z (2-Ju)  exists. It follows 
N--++oo I l k  

j = l  
N 

that the limit lim 1-1 # ( 2 - J ~ )  exists for a.e. ~ 6 1~. By our choice of v above it is clear that, 
N---~+oo ~" �9 

j = l  

fora.e. ~ ~ I,  v(~) = l - I  #(2-J~)"  Since theproduct I - I / z ( 2 - J ~ )  exists for almost every ~ ~ N 
j = l  j = l  

oo 

and v(2~)v(~) = / z ( ~ ) ,  we conclude by induction that, for a.e. ~ 6 R, v(~) = 1-I /z(2-J~)"  It 
j = l  

then follows that, for a.e. ~ 6 R, 

O<3 O~ 

~ ( ~ ) =  I - I / z (  2 - j ~ ) I - I  m ( 2 - j ~ )  =v(~)q31ml(~) ~ ( ~ ) '  
j = l  j = l  

which completes the proof and concludes this section. 

3. Multiplier results 

We will now describe the multiplier classes associated with TFWs. 

Definition 3.1. (1) A TFW multiplier is a function v such that ~ = (~  v) v is a TFW whenever 
q~ is a TFW. 
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(2) An MRA TFWmultiplier is a function v such that ~ = (v~) v is an MRA TFW whenever 
~p is an MRA TFW. 

(3) A pseudo-scaling function multiplier is a function v such that ~ = (~bv) v is a pseudo- 
scaling function associated with an MRA TFW whenever q9 has the same property. 

(4) Finally, a generalized low passfilter multiplier is a function # such that rh = m# is a 
generalized low pass filter whenever m is a generalized low pass filter. 

The next theorem shows that the class of TFW multipliers is identical to the class of wavelet 
multipliers (see [7, Theorem II]). 

The o re m 3.2. A measurable function v is a TFW multiplier i f  and only i f  v is unimodular and 
v(2~)v(~) is 2re-periodic. 

Proof. 0f) TFW's are characterized as elements of L2(~) satisfying (1.5) and (1.6). Being an 
element of L 2 (I1~) and (1.5) are properties invariant under multiplication by a unimodular function 
on the Fourier transform side. Thus, let us consider (1.6). Let ~ be a TFW, so that (1.6) holds. 
Let us assume v is unimodular and v(2~)v(~) = /z(~) is a 27r-periodic function, necessarily 

unimodular. Let ~(~) = ~(~)v(~). Let q be an odd integer, and let j > 0. Then 

] t ( 2 J ~ ) ] t ( 2 J ( ~ + 2 q z r ) ) = ~ ( 2 J ~ ) ~ ( 2 J ( ~ + 2 q r r ) ) v ( 2 J ~ ) v ( 2 J ( ~ + 2 q z r ) ) .  (3.1) 

I f j  > lthen, 

v (2J~) v (2J(~ + 2qrr)) 

= # (2J-1~) v (2J-1~) # (2J-l(~ + 2qrr))v (2J-1(~ + 2qzr)) 

= / z  (2J-l~)/z (2J-l~)v (2J-l~) v (2J-1(~ + 2qrr)) 

= v (2J-1~) v (2J -1 (~ + 2qrr)) 

by 2rr periodicity and unimodularity of #. If j - 1 >_ 1, then we can repeat the above argument 
until we obtain 

v ( Z J ~ ) v ( Z J ( ~ + Z q z r ) ) = v ( ~ ) v ( ~ + Z q z r )  for j > l .  

Using this equality in (3.1), and summing over j >_ 0 we obtain 

oo oo 

E ~ (2j~) ~ (2J(~ + 2qrr ) )=  v(~)v(~ + 2 q r r ) Z  ~ (2j~) ~ (2J(~ + 2qTr)). 
j = 0  j = 0  

Since, by (1.6) the right-hand side is 0, we conclude that ~ also satisfies (1.6). Hence, ~ is a 
TFW and, thus, v is a TFW multiplier. 

(only if) Let v be a TFW multiplier. We will first show the unimodularity. Let ~p be the Haar 
wavelet: 

~ ( x )  = x t 0 , � 8 9  - Xl�89 
It follows that I~(~)l > 0 for a.e. ~. By assumption, for every n > 1, (~ vn) v is a TFW and, 
thus, satisfies (1.5): 

j 6 Z  
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In particular, for a.e. ~ and every n E N, 

Iv(~)l  n j / ( ~ )  2 __5 1 .  

This is only possible if ]v(~)[ < 1 a.e. since ~ almost never vanishes. Using (1.5) for 4/and 
(v!~) v, and subtracting, we obtain 

~ ( 2 J ~ ) a ( 1  - v ( 2 j ~ ) 2 ) = 0  a.e. ~ 
j~z 

which is only possible if all terms vanish. Thus, I v(~)[ = 1 a.e. 

Having established this unimodularity, we see that the application of the multiplier v does 
not effect the L2(J~) norm of ~ (11~112 = II'Pl12). It follows then that v is a wavelet multiplier 
(see (1.5), (l.6), and the discussion immediately preceding and following these two equations). 
We can, therefore, use [7, Theorem II] and conclude that v(2~)v(~) is a 2zr-periodic function. [] 

The next result shows that the class of TFW multipliers coincides with the class of MRA 
TFW multipliers. 

Theorem 3.3. A measurable function v is an M R A  T F W  multiplier i f  and only i f  it is unimod- 
ular and v (2~) v (~ ) is 2zr -periodic. 

Proof .  (/f) Let v be unimodular, and let 

s(~) = v(2~)v(~) (3.2) 

be 27r-periodic, necessarily unimodular. We now use [7, Lemma 2.1] to obtain a unimodular, 
2rr-periodic function t such that 

s ( ~ ) = t ( ~ ) t ( ~ ) t ( ~ + z r )  . (3.3) 

Let #(~) = v (~ ) t (~ ) t (~  + Jr); then/z is unimodular, and 

+ +  (+)t 

= s ( , ) t ( , ) t ( ,  +zr)t  (~ ) t  (5 +Tr) (3.4) 

= t ( ~  + Jr) 

is a 2zr-periodic function. In the above computation, we have used (3.2) and (3.3) as well as the 
unimodularity and the periodicity of t. Let r be an MRA TFW, ~0 an associated pseudo-scaling 
function with m 6 F~0 such that (2.6) holds. Let 

rh(~) = m(~)t (~ + Jr) 

and 

Then, fit 6 F~: 

} ( ~ )  = r  �9 

~(2~) =/z(2~)~(2~) = t(~ + 7r)/z(~)m(~)~(~) = fft(~')~(~). (3.5) 
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Let 
~(~) = v(~)~(~). 

Since ~ is a TFW, we can apply Theorem 3.2 to deduce that ~ is a TFW. It follows, that ~ is an 
MRA TFW, since 

= e ~ t ( ~ +  ei~f f t (~-}-7~)~o(~)  i~ 2zr)m (~ + z r )#  ( ~ )  ~ ( } )  

= ~ ( ~ ) t ( ~ ) # ( ~ ) = ~ ( ~ ) t ( ~ ) l z ( ~ ) t ( ~ + T r )  

= 7 ~ ( ~ ) ,  

where we have used (3.4), and the definition of it. 

(only if) The Haar wavelet is, in particular, an MRA TFW; we can then proceed as in the 
proof of Theorem 3.2 to show the unimodularity of v. Using Remark 2.10 we conclude, that v is 
an MRA wavelet multiplier. The theorem then follows from [7, Theorem II]. [ ]  

The next theorem characterizes the class of generalized low pass filter multipliers. Gener- 
alized low pass filters are functions m e ~'r for some pseudo-scaling function ~0 satisfying (2.4). 

That is, m e F and IN0(lm[)l = 0. We will use this fact in the following result. 

Theorem 3.4. A measurable function v is a generalized low pass filter multiplier i f  and only 
i f  v is unimodular and 27r-periodic. 

Proo f  (if) If we let rh (~) = v (~)m (~), and v is unimodular and 27r periodic, then, clearly, if 
m e F, Ig0(lrnl)l = 0 then these properties are also true for rh. 

(only if) We proceed as in the proof of the two previous theorems. 

Let ~p be the Haar wavelet, and m the corresponding low pass filter, since {~1 > 0 a.e., it 
follows, that Iml > 0 a.e.. Let 

~(~) = v ( ~ ) m ( ~ ) .  

By assumption rh (~) e F; in particular, rh is 2zr-periodic, and so v is also 27r-periodic. Applying 
v repetitively, we obtain 

Iv(~)l"lm@)] ~ 1 a.e. ~ n > 1. 

This implies, that Iv(~)] < 1 a.e.. Unimodularity follows, since both m and rh are in ~" and, 
thus, satisfy Ith(~)] 2 + Irh(~ + rr)l 2 = 1 = Im(~)l 2 + Im(~ + rr)[ 2. [ ]  

The above three results provide description of TFW, MRA TFW, and generalized low pass 
filter multipliers. These classes are identical with the respective multiplier classes of wavelets. 
This fact is basically a consequence of the fact that all of  these multiplier operations necessarily 
preserve the L2(I~) norm of the TFW 7t. 

The following result is somewhat surprising, since it shows that the situation for pseudo- 
scaling function multipliers is completely different. A pseudo-scaling function (psf) multiplier 
is a function v which transforms, via the associated multiplier transformation, pseudo-scaling 
functions, satisfying (2.4) into pseudo-scaling functions satisfying the same requirement. Let us 
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observe, that pseudo-scaling functions satisfying (2.4) are exactly those, which appear in (2.6). 
This follows from Propositions 2.9 and 2.5, and Theorem 2. l 1. Let us introduce some notation 
for the next theorem. 

For a measurable function v, let E = {~ : v(~) # 0} and #(~)  -- 
v(2~) 

- -  - -  o n E .  

T h e o r e m  3.5. v is a p s f  multiplier i f  and only i f  

(1) 1v(2r < [v(~)[ a.e. and lim Iv(2-J~)l  = 1 a.e. 
j---> oo 

(2) #(~ ) extends to a 2zr-periodic function. 

(3) I f  ~, r~ ~ E, and ~ - ~1 is an odd multiple o f  Tr , then l/z(~)I = l/z(r/)l = 1. 

Proof .  
Let 

~(~) = ~(~)~(~).  

Using condition (1), we see, that • satisfies (2.4): 

lim ~ ( 2 - J , ) =  lim v ( 2 - J ~ )  �9 lim ~ ( 2 - J ~ ) = 1 .  
�9 j ----~ O~ j--*oo j--*oo 

Let us now examine the 2-scale equation 

: 

We claim that there exists fit 6 ~" such that 

(if) Let ~0 be a pseudo-scaling function satisfying (2.4), and suppose v satisfies (1)-(3). 

(3.6) 

v(2se)m(~) = v(~)fit(~).  (3.7) 

If  ~ E E, then (3.7) is equivalent to 

v(2~) 
f i t (~ )  - m ( ~ ) .  ( 3 . 8 )  

If  ~ ~ E, then, by (I),  2~ r E and, thus, (3.7) is satisfied automatically. Requirement (2) 
implies that fit defined on E by (3.8) is 23r-periodic on E; that is, if ~, r/ 6 E,  ~ ~ r/(mod 2rr), 
then fit(~) = fit(r/). We will now define a 2Jr-periodic extension of fit to I1~ satisfying 

[fit(~)[ 2 + Ifit(~ + zr)[ 2 = 1. (3.9) 

Let us consider [ -J r ,  zr]. Define fit (~) on (part o f ) [ - J r ,  zr] by the following: If  ~ + 2kJr 6 E 
for some k ~ Z, then 

fit(~) = fit(~ + 2kzr) .  

The definition is consistent with the 2re periodicity o f m  on E. Let ~, r /6  [ -J r ,  zr] and 1~ - 17[ = zr. 
Then one of the following conditions must hold: 

(a) 3k, g 6 Z, such that ~ + 2krr 6 E and r / +  2err ~ E; 

(b) 3k 6 Z, such that ~ + 2kzr 6 E and for any ~ ~ Z, r / +  297r r E; and 

(c) for any k c Z, s e + 2kzr r E and r / +  2kzr r E. 
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In the (a) case, (~ + 2kzr) - ( t / +  2gzr) is an odd multiple of zr, so by (3), 1 = I/x(~ + 
2krr)l = I/z(~/+ 2Or)l. Thus, Irh(~)l = Irh(~ + 2kzr)l = Im(t  + 2krr)l = Im(~)l and, similarly, 
Irh(o)l = Im(r/)l. 

Since m 6 F this implies 
Irh(~)l 2 + Irh(r/)l 2 = 1. 

We have either ~ + zr = r/or t / +  zr = ~, so (3.9) holds. 

In the (b) case we extend the definition of rh to the set of  all such r /6  [-zr ,  ~r) by 

rh(r/) = ~/1 - I r h ( t ) l  2 . 

In the (c) case, we let 
rh(ff) = 1 

i f~ ~ [ - ~  ~, ~-), and 
rh(~) = 0 

i f g  6 [-~r,  Jr) \ [ - -} ,  ~) ,  whenever ~ = ~ or r/. 

We have thus extended rh to the entire interval [ -J r ,  Jr) so that (3.9) holds if t and ~ + Jr are 
in [ -J r ,  Jr). We now extend rh to R by 2zr-periodicity. Clearly, rh 6 F', and (3.6) is satisfied. 

(only if) Let 9 be the Shannon scaling function; that is, q3(~) = X[-Tr,rr)(~). Then ~(~) = 
v(t)~b(~) = v(~) on [-zr ,  Jr). By (2.4) for ~ we have 

.lim v ( 2 - J t )  = 1 .  
j--+ oo 

Now, let q) be the Haar scaling function, so that I~1 > 0 a.e. Take the unique m 6 Fe, and 
select ~ ~ F'r then 

v(2~)m(~)q3(~) = v(2t)~,b(2~) = ~ (2 t )  = rh(~)~( t )  = rh(~)v(~)~b(t) . 

S o ,  

v(2~)m(~) = rfi(~)v(t) a.e. ~ ~ R .  (3.10) 

For ~ ~ E,  

v(2~) rh(t)  

v(~) -- m(~) 
(3.11) 

This establishes (2), since the right-hand side is 2rr-periodic. Since m(~) 7~ 0 a.e., then it 
follows from (3.10) that i f~  r E,  then 2~ r E. To conclude (1), we need to establish 

Iv(2t)l  _< [v(~)l for ~ e E .  

We do this by using specific filters m. Given any t0 6 E that is not an odd multiple of  zr, we can 
produce a generalized low pass filter m l, such that m l (t0) = 1, m l is smooth and m l (~) # 0 a.e. 
It follows that the associated pseudo-scaling function gh satisfies ~bl # 0 a.e. and, thus, for this 
ml ,  instead of m, (3.10) holds. So, 

Iv (2~o)1 Irh (t0)l 
- - - -  < 1 .  

Iv (~0)l [ml (~0)l - 
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Hence, (1) is established. Let us return to the Haar low pass filter and consider (3.11). Let 
~, 0 6 E, and ~ - 0 be an odd multiple of zr, 

fit(~) = #(~)m(~), fit(0) : #(0)m(0) �9 

Then, 
1 = Ifit(~)l 2 + Ifit(0)l 2 : I/z(~)12[m(~)l 2 + I#(0)121m07)12 

_< Im(~)l 2 + Im(0)l 2 = 1 

by (1). Hence, the inequality is actually an equality and we obtain (3). [ ]  

Remark  3. 6. Let v (~) = X[- �88188 (~). It is easy to see, that (1)-(3) in Theorem 3.5 are satisfied. 
Thus v is a pseudo-scaling function multiplier, which is not unimodular. It cannot be a scaling 
function multiplier. 

4. Connectivity question for MRA TFWs 

As we have seen in Sections 2 and 3, MRA TFWs have several common traits with MRA 
wavelets. More precisely, as in the case for MRA wavelets, MRA TFWs satisfy equations (2.6) 
and (2.7), and the class of MRA TFW multipliers coincides with the class of MRA wavelet 
multipliers (Theorem 3.3). This suggests that the question of connectivity of the set of all MRA 
TFWs can be treated by the argument applied in [7]; where the connectivity of the set of MRA 
wavelets was proved. 

We shall prove in this section that this suggestion is only partially true. It turns out that 
the proof (given in [7]) of the connectivity of the MRA wavelets ~p with given absolute value 
I~l translates word for word to our situation. On the other hand, the path we constructed in [7] 
connecting two MRA wavelets having Fourier transforms with different absolute values fails to 
do so in the case of MRA TFWs. 

We begin by proving the analog of Theorem 3 from [7]. Suppose that lPo is an MRA TFW 
and ~o0 is a pseudo-scaling function associated with ~#0 (in the sense that ~o0 and 1#0 satisfy (2.6)). 
Although such ~P0 is not uniquely determined by ~0, we know, by (2.7), that I~ol is unique. Fol- 
lowing [7, p. 578-579], it makes sense to define the three classes of MRA TFW's, ~p, determined 
by ~o (notice that in the following definitions, ~p denotes a pseudo-scaling function associated 
with an MRA TFW ~ by (2.6), while v denotes an MRA TFW multiplier): 

~/V~ F : :  { ~ :  ~ ( ~ ) :  ~0(s e) a.e.} , (4.1) 

s o \  F :=  = 1 0( )1 a.e.} , (4.2) 

A/[~ F : =  { ~ : 3 v s u c h t h a t ~ ( ~ ) = v ( ~ ) ~ 0 ( ~ )  a.e.} . (4.3) 

Theorem 4.1. / l e o  is an MRA TFW, then 

w ; \  F = G F : MTo 

Proof. 
given in [7]. Let us only highlight the main steps of the proof. 

Notice that (2.7) immediately implies that I/V~, zff ___ s TF and that 

The proof of this theorem is essentially the same as the proof of MRA wavelet case 

1~(~) 2 = ~ ( ~ )  2-- 1~(~)12 �9 (4.4) 
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Obviously, (4.4)implies that S~ F ___ 1,V~oF. 

By Theorem 3.3 we know that an MRA TFW multiplier is unimodular; thus, d~  TF C ]/~TF 
~o - ~o " 

TF C .A4 TF This part of the proof requires some subtle modifications It remains to prove that Sr _ ~o " 
of the proof in [7]; we shall emphasize these details. 

Suppose ~1 E S~ ft. By (2.6), there exist pseudo-scaling functions ~P0 and ~ol, and general- 

ized filters m0 and ml such that kb0(~)[ = I~bl(~)[ a.e., m j  E F~oj and ~ j ( ~ )  = ei~mj(~ "4- 7~)~Oj 

TF = wTF I~0(~)1 = I~1(~)1 a.e. Therefore, it makes (~), j = 0, 1. In particular, since Sr ~0 ' 

sense to define ~ ~ L2(l~) by 

:= ei~ I~j(~)l; j = 0 , 1 .  (4.5) 
I I 

Notice that ~ is well defined by (4.5), despite the fact that it is not necessarily true that Im01 
and Imll are equal (see Remark 2.6). Imil and I~bil v, i = 0, 1, are a generalized low pass filter 
and pseudo scaling function satisfying (1.2); thus, it is clear that (4.5) provides a function ~ that 
is an MRA TFW. As in the proof of [7, Theorem 3] it is enough to show that there exists MRA 

TFW multipliers vj such that ~ j  ~-- p j ~  (j = 0, 1) (by Theorem 3.3, these multipliers satisfy 
exactly the same properties as the MRA wavelet multipliers constructed in [7]). Without loss of 
generality we shall consider the case j = 1. 

Toward this end, let 

F : =  / ~ 6 R : ~ b l ( 2 e + l ~ ) = m l ( 2 t ~ ) ~ b l ( 2 e ~ )  forall e 6 Z ]  , (4.6) 

and it is clear that 

IR \ FI = 0.  (4.7) 

Also let E = {~  6 F : ~1 (~) 5 & 0}. We then have E C 2E, and, consequently, 

2nEc2n+lE for n - - - -0 ,1 , . . . .  (4.8) 

It follows that if we define A0 = E, An = 2hE \ 2n-lE 
for m # n. We claim that 

F \ n>OU 2n E = 0 .  

fo r  n > 1, t h e n  A m M An = 0 

(4.9) 

If we accept (4.9) the rest of the proof follows verbatim the proof in [7]. Indeed, since 

] ~ \ U 2 n E = [ ( R \ F ) \ U 2 n E ] U {  F \ U 2 n E I  n>_O n>__O I 

(4.7) and (4.9) imply II~ \ U 2nEI = 0. Thus, it suffices to define V 1 on the disjoint union 
n_>0 

U An = U 2hE which has full measure. We accomplish this by defining first the function # 
n>_0 n>_0 
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such that/x(~)lml(~)[ = ml(~) ifml(~) 5& 0, and #(~) = 1 if ml(~) = 0 (notice that/z is 
unimodular and 2zr-periodic), and then, we define the function t (~) inductively on U An so that 

n_>0 

and 

We define vl by 

t (~)-  [,h(#)[ for ~ e Ao, 
,h(~) 

t ( ~ ) = # ( ~ ) t ( ~ )  for ~ e A n .  

and it follows that Vl is unimodular and Vl (2~)Vl (~) =/z(~ + Jr)#(~ + rr)#(~) is 2zr-periodic, 

i.e., vl is an MRA TFW multiplier and ~1 = Vl �9 ~P a.e. 

Therefore, it remains to prove (4.9); however, we have to modify the argument presented 
in [7] to do so. 

Suppose K is a measurable subset of F \ U 2 " E  = A ( F \ Z n E ) .  I f~  6 K, then, 
n>0 n_>0 

C F = 2 n F for all n ~ Z. Hence, 2-n~ c F for all n ~ Z; moreover, 2-n~ ~ E for all n >_ 0. 
It follows that ~1 (2-n~)  = 0, for all n > 0. We conclude that for all n _> 0, 

XK (~)q31 (2-"s ~) = O. (4.11) 

Apply (4.4) for lpl and q)l to conclude that for all j < 0, j E Z, 

1~1 (2J~) X K ( ~ ) ~ - 0 ,  (4.12) 

Since ~Pl is a TFW, it satisfies (1.5). Thus, by (2.7), we obtain 

I = E  ~ ' ( 2 j ~ )  2 = 1  ~b l (~ )12+Z ~ t ( 2 J ~ )  2 a.e. (4.13) 

jE• j_<0 

Observe that (4.11) for n = 0, (4.12), and (4.13) imply that XK(~) ---- 0 a.e., i.e., IKI = 0. This 
proves (4.9) and completes the proof of Theorem 4.1. [] 

Let us now consider the proof of [7, Theorem 4]; in particular, the part of the proof which 
establishes the connectivity of the set.MT~ 0 (see [7, p. 587-588]). Notice that this part of the proof 
uses only the properties of wavelet multipliers, which are, by Theorem 3.2, exactly the same as 

TF defined by (4.3), is well the properties of TFW multipliers. Observe also that the class .Mr 
defined for an arbitrary TFW ~P0- Hence, the first part of the proof of [7, Theorem 4] translates 
verbatim to this situation and shows that the following theorem is valid. 

Theo rem 4.2. l f  ~Po is a TFW, then .hd~ F is arcwise connected in L2(N). 

Using Theorem 4.1 we obtain the following corollary in the MRA case. 

C o r o l l a r y  4.3. I f  qro is an MRA TFW, then W TF is arcwise connected in L2(~). ~o 
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Re mark  4.4. With Corollary 4.3 we have reduced the question of connectivity of  MRA TFWs 
significantly. What remains to be answered is the following question. 

Suppose that 7t0 and 7tl are MRA TFWs that are obtained from pseudo-scaling functions 
whose Fourier transforms ~b0 and ~b~ are nonnegative. Can we connect 7t0 and 7tl with a continuous 
path in L2(~) ,  within the class of MRA TFWs? 

Observe that without loss of generality we can assume that, say, 7t0 is a particular MRA 
TFW; for example 7t0 can be the Shannon wavelet. As is well known (see [7, Theorem 4]), this 
question has been answered positively for MRA wavelets 7t0 and 7tl. However, as we shall see 
below, the analogy with methods [7] breaks down in the MRA TFW case. 

In order to see that, let us recall (see [5]) that a generalized nonnegative filter m which is 
HOlder continuous at zero and bounded below a.e. by a positive constant on [ - 9 ,  9]  has to be a 
filter of  an MRA wavelet. 

Choose 7t0 to be the Shannon wavelet and 7tl to be an MRA TFW whose associated pseudo- 
Jr (see Remark 2.6). Then, scaling function is ~0 such that ~b(~) = X[-~,~](~), where 0 < E < ~- 

obviously, the norm of 7tl satisfies 

117t1112 < 1 ,  

and it is impossible to connect 7to and 7tl with a path which has the property that 7tt is an MRA 
wavelet for every t 6 [0, 1). Unfortunately, if we define our path as it was done in [7, p. 588], 
then, for every t 6 [0, 1), mt is going to be a Hrlder  continuous at zero, generalized nonnegative 
filter with the property 

mt(~) >_ 1 - - t  for ~ 6 -- , . 

Hence, 7tt has to be an MRA wavelet for t 6 [0, 1). The same thing happens if we choose to 
define mt by the following formula 

mt = v / ( 1 -  t)m2 + tm 2.  

Therefore, the above question remains open and would require a different method. 

5. A comparison with other constructions of MRA wavelet frames and the relation 
to the case of tight frames 

In [1] and [2] a very natural construction of MRA wavelet frames is presented based on an 
extension of the notion of an MRA we described at the beginning of Section 1. As we explained 
there, their extension differs from the "classical" one only in the last assumption: the existence of 
an element tp 6 V0 such that the sequence {~on }, n E Z, of  its integral translates is an orthonormal 
basis of  V0 is replaced by the existence of such a ~0 such that {~On} is a frame in V0; that is, 
they assume that inequalities (1.7) are satisfied by {~0n} for each f E V0. These authors then 
find conditions that guarantee the existence of a function 7t 6 V1 that belongs to the orthogonal 
complement of V0 whose integral translates form a frame for W0 -- V1 ~3 V0 = V~ f3 V~. If  
this is achieved, it follows immediately from the other properties of  an MRA that the system 
{7tjk }, j ,  k c Z, is then a frame for L 2 (1t~). We shall show that these systems form a proper subset 
of  those constructed by our method in Section 2. In particular, the systems obtained by Benedetto 
and his collaborators, in [1], [2], are semiorthogonal; that is, 7tjk_.[_Ttmn if j ~: m (i.e., the spaces 
Wj and Wm are orthogonal when they are the 2J- and 2 m- dilates of W0). This is not always 
the case for the frames we construct. Before showing these things it is useful to consider some 
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properties of  the frames we are considering. We shall often refer to such a generator ~ as being 
semiorthogonal if {aPjk} is a semiorthogonal system. 

Suppose r ~ L2(]~) has the property that its integral translates ~On(X) = r - n) form a 
frame for the closed subspace V0 that they span. Thus, the inequalities (1.7) are satisfied for all 
f E Vo. From these inequalities we can easily deduce several properties related to the frame 
operator S :  V0 ~ ~2 _= s ) defined by S f  = {< f ,  tpn >}, n E Z. Most of  these results and 
the consequences we derive from them are well known and we shall give appropriate references 
later in this section; we need to state them in the notation that is consistent with this article and 
we find it useful to include some of the arguments that establish them. 

It follows from (1.7) that S is a bounded operator on Vo with norm IISII <_ ~/B, and the 
range of S 

= ~ ( S ) =  [a  E s : a = S f  for some f E Vo] ~t 

is a closed subspace of e2(Z); moreover, S maps Vo one-to-one, onto ~ .  The inverse of  S is also 
1 

a one-to-one, onto map, S - l  : ~ ~ Vo and IIS-l l l  < _ .  We consider the adjoint S* of S t o  
~ / a  

be a map from ~2 o n t o  V0 or as a map from ,~ onto V0. In the latter case S* is one-to-one and has 
1 

an inverse (S*) -1 = (S-1)  *. We a lsohave IIS*II _< ~/B and II(S*)-l l l  _< _ .  
~/A 

A simple calculation shows that if a = {an } 6 ~2, then 

S* a = E antPn , (5.1) 
nEZ 

where the (say) symmetric partial sums of this series converge in the norm of L2(]K). Taking 
Fourier transforms of both sides of  (5.1) and writing f = S*a we obtain 

f (~)  = tz(~)r  (5.2) 

where #(~)  = E a n e - i n ~ .  Since a = {an} ~ ~2 this last series converges in the L2(T)-norm, 
nETZ 

where T denotes the toms (which we identify with the interval [0, 2rr) together with addition 
modulo 2rr). The norm on L2(T)  we shall use is given by 

fo 2~ = Ilall~2 (5.3) 
2d~ 

II/ZlI22(T) = llz(~) ~ -  

and we consider/z to be a 2rr periodic function on • having Fourier coefficients a = {an }. We 
can (and shall) consider the correspondence/z ~ ~ a to be an identification of the space e 2 with 
the space L2(T).  Thus, we may regard S* to be a mapping of L2(T) onto Vo with norm not 
exceeding ~/B : IIS*/zll 2 <_ BII/zl122(z). Moreover, since S* is onto, every f ~ Vo satisfies 

equality (5.2). 

I f /z(~)  = E ane-in~ E L2(T)  corresponds to a = {an} E e 2, the last inequality gives us 

nEZ 

II S*/z1122 = [IS*a[[~ < Bllal]~2 = BII#II22(T) (5.4) 

In particular, we have shown the following. 
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T h e o r e m  5.1. I f  go ~ L2(IK) is such that the sequence {~On} = {qg(. - n)}, n ~ Z, is a frame 
for Vo = span{~On, n ~ Z}, then iz~ ~ L2(~)  whenever # is a 2rr-periodic function in L2(T);  
mol"eovel", 

The function # for which (5.2) is satisfied for an f 6 V0 is not, in general, unique among the 
elements of  L 2 (T).  Since S*, as an operator on ~,  is one-to-one and onto V0, it follows from (5.1) 

that the unique element a = {an} ~ ~ such that f = S*a produces a unique )~(r = Z ane-inr 

nEZ 
such that f ( r  = )~ (r (r As we shall show, there is a simple characterization of these functions 
)~ 6 L2(T)  for which the sequence of their Fourier coefficients is a member of  9L 

In order to obtain this characterization we introduce the function 

k~Z 

which is immediately seen to belong to L~(T).  Consider the 2zr-periodic subset of  ]R 

u = {r : : :  # 0}. 

The general ), 6 L2(T)  having Fourier coefficients that make up a sequence in 9] has the form 

It is not hard to see that 

)~(~) = Z < f '  g~ > e-in~' f ~ VO. (5.6) 
nEZ 

~'(~) = Z f ( ~  + 2krr)~b(~ + 2krr) .  (5.7) 
k6Z 

The expression on the fight is clearly a 2zr-periodic function in L l (T) .  Its Fourier coefficients 
are 

1 
i"j0 2rr e -in~ Z / ( ~  + 2kzr)~b(~ + 2kzr) d~ 

k~Z 'F = - -  f ( ~ ) ~ - ~ e  - i ~  d~ 
2~ 0o 

= <  f,~o-n > , 

n = 0, + l ,  4-2, . . . .  This, together with (5.6), shows (5.7) as well as the fact that ~. ~ L2(T).  

Now suppose ~ e U c = {rl : % (~/) = 0} and, thus, ~b(~ + 2kzr) = 0 for all k ~ Z. It follows 

that ~.(~) = 0 a n d ,  consequently, U c C {~ : ~.(~) = 0}. I f ) q f  = ~-2f for ~-1,)~2 E L2(T)  
and )~l(~) = 0 = )~2(~) i f ~  e U c, we claim that ~-1(~) = ~-2(~). Indeed, )q and )~2 agree on 
U c while, if ~ e U then there exists k ~ Z such that ~b(~ + 2kzr) r 0. Since )~1 and )~2 are 
2rr-periodic, 

),l (~)~b(~ + 2kzr) = / ( ~  + 2krr) = ~.2(~)~(~ -k- 2kTr) ; 

consequently, Zl (~) = 3~2(~) and the claim is established. 

We have established the following. 
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Theorem 5.2. Given f E Vo there exists precisely one function )~ = )~f E L2(T) satisfying 

f (~ ) = )~(~ )~(~ ) such that the sequence o f  Fourier coefficients of ) ,  belongs to ~.  This is the 
unique function in L 2 ( T ) satisfying (5.2) that vanishes outside U . This establishes one-to-one cor- 
respondences between the pairs (Vo, .qt) and 69t, L2(U)) ,  where L2(U) = {)~ ~ LZ(T)  : )~(ue) = 
0 i f ~  ~ UC}. f ~ ~ ( S * ) - l f  = a anda  ~ ~ )~f. Furthermore, )~ ~ L2(U) (C L2(T)) is 
characterized by the minimality property II~.[IL2(T ) _< II#IIL2(T) for all # satisfying (5.2). 

The various norms of elements in L2(U), ~2, Vo we have been considering are related as 
follows: 

A2 Ilzs 2 IIL2(u) = A2[[a[[~2 _< Al[fll  2 < I1{< f ,  gon >}11~2 

2 
-< BIIfl l  2 - B2llall 2 = B2 IIZTIIL=(U) �9 

(5.8) 

It is also of interest to characterize the functions go ~ L2(R) that generate such flames by 
their integral translates {gon }: 

T h e o r e m  5.3. Suppose go E L 2 (R), then {gon } is a frame for the space V0 = span{gon : n 6 Z} 
i f  and only i f  there exists a 2zr-periodic measurable subset U C R such that 

AXu(~)  <_ E 1~(~ + 2kJr)[ 2 = ~r~o(~) _< BXU(~) 
k~Z 

(5.9) 

for a.e. ~ ~ N. 

Proof .  Suppose {gon} satisfies (1.7) and suppose F = {~ : crr > BI has positive measure. 
Since ;(F is 2rr-periodic it follows from Theorem 5.1 that the function f defined by f = Xr~3 
belongs to V0. But, using Theorem 5.2 and (5.8), 

fo *r ds e 1 s f (~ )  2 ds e 1 IFN[0 ,2z r ] IB  < XF(~)cr~~ -- 2zr 
2zr 

B 
= Ilfll 2 <_ n IIXFII2"2( T ) ' ~  -- 2zr IF N [0, 2zr]l. 

This is clearly impossible and we conclude that I FI = 0. This establishes the right side 
of (5.9). A completely similar argument, in which the role of F is replaced by G = {ue 6 U : 
u~0(~) < A}, shows that this last set has measure 0. This shows that the inequalities (5.9) are 
satisfied when {~On}, n 6 Z, is a frame for V0 satisfying (1.7). 

Now suppose go satisfies (5.9) and f 6 L2(R). The argument we used to establish (5.6) 
and (5.7) shows that 

~(ue) = E < f '  ~On > e -in~ = E / ( u e  -k- 2kzr)~b(ue + 2kzr). 
n~Z k~Z 



332 Maciej Paluszyhski, Hrvoje ,~ikid Guido Weiss, and Shaoliang Xiao 

Thus, 

lf02  Z I <  f,~On >12 = 2---~ 
nEZ 

1 fo 2Jr < - -  
- 2rr 

_ 1 f0 2rr 
2re 

2kzr) 2 Z f (~  + 2krr)~(~ + d~ 
k~Z 

keg 

+2k ) 2} 
.keg 

(5.10) 

Applying the fight-hand inequality in (5.9) to % (~) (taking into account the 2zr-periodicity 
of Xu) we obtain 

B Z rjo2Jr f (~  + 2kzr) 
2 

Z l< f ,  9n >12 < ~ -  XU(~ + 2kzr) d~ 
nEZ kEZ 0 

= ~ ~ f Xu(~)d~ _< ~ ~ f = n l l f l l  2. 

Thus, the second inequality in (1.7) is true whenever f ~ L2(1R) (not just for f 6 Vo). When 
f 6 Vo it follows from Theorem 5.2 that f = f x u .  Thus, applying the left-hand inequality 
in (5.9), we have 

AIIfl[ 2 A f _  ~~ (~)2 l f_  ~a 2 = - -  Xu(~) f d~ < ~ a~o(~) f (~)  d~ 
2yr oo oo 

= 2---~- Z i(se -I- o'~o(~) d~ = Z I <  f ,  CPn > l  2 , 
o~ kEZ nEZ 

where the last equality is a consequence of (5.10). This shows that the first inequality in (1.7) is 
valid as well when f E V0. [] 

The following result shows that one can replace the assumption that the translates {~0n} 
produce a general frame to the case where {~On} forms a tight frame with constant 1. 

T h e o r e m  5.4. Suppose q9 E L2(R) is such that {~On} = {r - n)}, n E 2~, is a frame for the 
space Vo = span{gn, n E Z}, then there exists (o E Vo such that {q3(. - n)} is a tight frame with 
constant 1. 

Proof. We have shown that under these hypotheses ~0 satisfies (5.9). Let ~ be defined by letting 

@)A = ~b . ~ is, then, well defined since ~b(~) = 0 when %(~) = 0 (we let (~3)A(~) = 0 

x v ( ~ )  . for such ~). Moreover, >.(~) - is a bounded 2zr-periodic function. It follows from 

Theorem 5.1 that ~ ~ V0. Since a~(~) = Xu(~) (5.9) is transformed into an equality with 
A = B = 1, and the sequence {~(. - n)}, n 6 Z, forms a tight frame with constant 1. [] 

Let us now retum to the construction of [1] and [2]. The following lemma is a version of 
Proposition (4.3) in the second of these citations. 
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Lemma 5.5. Suppose ({ V j }, ~o ) is an M R A  o f  the type we described at the beginning o f  this 
section with {~o(. - n) }, n ~ Z, a tight frame with constant 1 for Vo, then there exists a 2rt-periodic 
function m, whose restriction to U is unique, satisfying 

(i)r = m(~)~b(~) fora.e. ~, 

and 

(ii) Im(~)l 2 + Im(~ + rr)l 2 is eitherO or 1 when ~ c U n (U + Jr), 

(iii) lm(~)l is eitherO or l when ~ E U \ (U + rr). 

Proof .  Since ~b(2-) 6 V-l c I~0 Theorem 5.2 tells us that there exists a unique m E L2(T)  
that vanishes on R \ U = U c satisfying (i). The values m assumes on U c are irrelevant to the 
validity of (i); we shall see that these are appropriate non-zero choices for us later on. If  ~ e U, 
then there exists k0 6 Z such that ~b(~ + 2kosr) # 0 and we have 

~b (2~ + 4k0zr) 
m(~) = m (~ + 2k0zr) - 

~b (~ + 2kozr) 

and, in particular, we see that m is completely determined on U. 

Since cry0 (~) = Xu (~) (see Theorem 5.4 and its proof) we have, summing separately over k 
even and k odd, 

Xu(2~) = ~ I~b(2~ + 2k~)l 2 
k6Z 

= ~ I ~b(2(~ + 2eTr))l 2 + Z I g3(2(se + (2g + 1)~))12 
gEZ ~EZ 

= Z I ~b(se + 2err)l 2 Im(~ + 2gzr)l 2 
g6Z 

+ Z I q3(~ + :rr + 2gzr)l 2 Im(~ + Jr + 2ezr)l 2 
e6Z 

= Im(~) lZxu(~)  -J-Im(~ + 7r)lZxu(~ Jr ~ )  �9 

It is clear that (ii) and (iii) are an immediate consequence of the last equalities. [] 

Given this result we shall describe the method used in [2] and [1] to obtain the function 
that generates the wavelet tight frame associated with this MRA. We believe that we are 

clarifying the ideas if we express them in terms of the notion of a generalized low pass filter we 
have introduced in this article and the construction of a wavelet ~r by means of equality (2.6). 
Lemma 5.5 provides us with the function m, defined on U, that is the candidate for the generalized 
low pass filter we seek. In order to have equality (1.3) satisfied on U N (U + Jr) we shall assume 
that Im(~)l 2 + Im(~ + Jr)l 2 > 0 a.e. on this intersection. Lemma 5.5 (ii) then assures us that (1.3) 
is true for these ~. If  ~ ~ U n (U + st)c, Lemma 5.5 (iii) tells us that I m (~)1 is either 0 or 1. In this 
case, r / =  ~ + 7r lies outside U and this allows us to define m(~ + rr) = m0/)  so that Im(~ + zr)l 
is 0 if Im(~)l = 1 and Im(~ + rr)l = 1 if Im(~)l is 0. In fact, this extends m to U c n (U + Jr). On 
the remaining set U c N (U + Jr) ~' we can extend m so that the resulting function is measurable, 
2zr-periodic and satisfies (1.3) (since ~ ~ U c N (U +7r) c if and only i f f  + J r  c U c N (U + 7r)C); 
however, these values play no role in our discussion. 

In order to obtain the generator, ~r, of the MRA TFW, we have to produce such a function 
r c Wo = V1 n V0 A- such that {~n} = {7r(" - n)}, n ~ Z, is a tight frame for the space Wo. We 
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do this by defining ~p to be the function satisfying 

~(2~)  = ei~m(~ § yr)q3(~) ; (5.11) 

that is, we use equation (2.2) with m defined as we described in the last paragraph. We shall show 
that {~pj~}, j ,  k ~ Z, is a tight frame for L2(R). In particular, this also shows that the systems 
obtained in [2] and [1] are of the type we introduced in this work. We shall also show that if 
~P ~ W0 does generate a tight frame, {~(. - n)}, n ~ Z, for W0, then it is of the form (5.11). In 
addition we shall present an example of an MRA TFW of the type we constructed in Section 2 
that is not one that we have just produced; thus, the class of MRA TFW we obtain is strictly larger 
than the class produced in [2] and [1]. 

Assuming, then, that ~p satisfies (5.11), with m described in the paragraph that follows the 
proof of Lemma 5.5, we have, since ~r~o (~) = ;(u (~), 

Im(~ § nzr § 7012 ]qb(~ § nJr)l z 
nEZ 

= Z Im(~ § 2err + z012 I~(~ § 2e'r)l 2 
gEZ 

+ Z Im(~ + 2(e + 1)70121r + zr + 2err)] 
e~Z 

= [m(~ + rr)12Xu(~) § Im(~)12Xu(~ § Jr). 

~(2~ + 2nzr) 2 = 

n c Z  

Since [m($)l 2 § [m(~ + zr)l 2 = 1 i f~  ~ U N (U + Jr) and Im(~)[ is either 0 or 1 when 
6 U N ( U + J r )  c o r ~ r U  c O ( U + J r )  wesee tha t  

~rr -= Z }(2~ + 2nrr) 2 (5.12) 
n~Z 

assumes only the values 0 or 1 a.e. (observe that this is independent of  how m is defined on 
U c rl (U + rr)c). That is, 

cr~,(~) = x e ( n )  (5.13) 

a.e., where E is a 2zr-periodic measurable set E CIR.  Moreover, since m is a 2zr-periodic 
function in L2(T),  Theorem 5.1 and equality (5.11) imply that ~ (2  -1.) 6 V0. In this case this 
is equivalent to ~ c Vi. We want to show that r 6 W0 (equivalently, ~PJ-Vo) and, finally that 
{gr(. - n)}, n ~ Z, is a tight frame for W0. 

We shall show that ~(- - n) _1_ ~o for all n 6 Z and, thus, span{~p(. - n) : n ~ Z} C W0. By 
the Plancherel theorem this orthogonality is equivalent to 

for all n ~ Z. Changing variables by letting r / =  2~ this equality is equivalent to 

fo 0 = e -i"2~ ~ ~b(2~ + 2k~)~(2~ + 2k~)a~ 
ke Z  

Since this last sum is a ~r-periodic function in Ll([O, 70) this last equality is for a l ln  6 Z. 
equivalent to 

Z ~'(2se + 2kzr)~(2~ + 2kJr) = 0 (5.14) 
k~Z 
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for a.e. ~ ~ IR. Using 5.11 and Lemma 5.5 (i) the left-hand side of (5.14) equals 

Z ei~m(~ + kyr + zr)~(~ + kzr)m(~ + kzr)(D(~ + kyr) 
k~Z 

= ei~m(~ + zr)m(~) [crr -- ar + ;r)] 

= ei~m(~ + zr)m(~) [XU(~) - Xu(~ + Jr)] . 

But the difference in the bracket is 0 if ~ 6 U A (U + zr) or ~ 6 U c n (U + zr) c. Furthermore, 
our extension ofm to [U c O (U + zr)] tO [U N (U + Jr) c] is such that the product m(~ + 7r) m(~) 
is 0 on this union. This establishes (5.14) and, consequently, Wo - span{~(. - n) �9 n c Z} C 
Wo= n Vo 

Finally, we show that Wo = Wo. Let P be the orthogonal projection of L2(R) onto Vo �9 Wo. 
Since V1 = V0 @ Wo the desired equality is true if the image of P is Vl. The general f 6 V1 
satisfies 

f(2 ) = (5.15) 

where/z is a 2zr periodic function in L2(T) (this follows from Theorem 5.1 and the fact that 
{ Vj }, j 6 Z, is a tight frame MRA (TF-MRA), as described at the beginning of this section, with 
{~On} a tight frame for V0). Since m satisfies (l.3) we have 

Thus, 

/z(~)~b(s e) = bt(~) l m ( ~ ) ~  + ei~m(~ + 7r)e-iQn(~ + Jr) / 
f I 

Co(t) 

=/z(se)m(~)~(2~) + Iz(~)e-i~m(~ + rr)}(2se). 

f (2~)  =/z(~)m(~)~b(2~) + #(~)e-i~m(~ + :r)~(2s e) . (5.16) 

The equality (B) in Theorem 1.7 of Chapter 3 in [4] can easily be seen to be valid if we apply it 
to the projections onto the subspaces span{~o(. - n) : n ~ Z} and Wo. That is, 

(Pf)A(2~) = Z f(2~ + 2nzr){~b(2~ + 2nrr)~b(2~)+ }(2~ + 2nzr)~(2~)} . 
nCZ 

The last expression, using (5.15) and the usual summation over the odd and even n, then gives us 

(Pf)A(2~) 

Ilz(~)m(q)Xu(q) + I.Z(q + ;r)m(~ + rr)Xu( ~ + rr)} gb(2,~) 
+ {tz(~)e-i~m(~ + 7r)XU(~) 

+ zr)e-i~m(~)Xu(~ + rr)} ~(2~) . (5.17) #(~ 

We now claim. 

L e m m a  5.6. ( e f )A = f whenever f E V1. 

Remark: As pointed out above this implies the desired result W0 = Wo. 
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Proo f  o f  L e m m a  5. 6. If  ~ 6 U M (U + zr)C then ~ + Jr r U (recall that U is a 2rr-periodic 
set) and (5.17) reduces to 

(Pf )A(2~)  = / z (~ )m(~)~ (2~)  § #(~)e-i~m(~ § 7r)~(2~) = f ( 2 ~ )  

(the last equality is (5.16)). 

If  ~ r U then (Pf )A(2~)  = 0 since ~b(2~) = m(~)~b(~) = 0 = ei~m(~ § Jr). ~o(~) = 
~(2~)  (recall that supp~b c U). Also, by (5.15), f ( 2 ~ )  = /z(~)~b(~) = 0. Again we obtain 
(P f )A(2~)  = f (2~) .  

Finally, i f~  6 U M (U + Jr) we have, by (5.16) and (5.17), 

f ( 2 ~ )  - (Pf )A(2~)  

= / z (~ )m(~ )~ (2~ )  + iz(~)e-i~m(~ + 7r)~(2~) 

-{/z(~)m~-~ § § zr)m(~ § zr)] m(~)~b(~) 

+ - + + i 

= 0 .  [ ]  

Let us summarize what we have established with the arguments we just presented. 

T h e o r e m S , 7 ,  Suppose{Vj}, j E Z, isatightframeMRA with~o ~ Vosuchthat{~o(.-n)},n E 
Z, is a tight frame for Vo. Suppose the function m, defined on U, by equality (i) in Lemma 5.5 
satisfies Im(~)[ 2 § Im(~ §  2 > 0 for~ E U M (U + zr). Thenm can be extended to all o f ~  
so that this extension, also denoted by m, is a generalized low pass filter such that the function 

~ Wo = Vl M Vo -L, defined by (5.11), generates a tight frame, {~(. - n)}, n 6 Z, for Wo. As a 
consequence, 

is an MRA wavelet tight Frame For L 2 (~) .  

This is, essentially, the construction of [2] and [ 1 ]. We presented it in the terms we introduced 
in this article and, by doing so, we did not need the smoothness or decrease at oo conditions 
imposed in the two papers cited. We are also restricting our attention to one dimension; [1] 
and [2] consider these frames in ]1~ n as is the case in other treatments of this subject, (see [6]). We 
shall comment  on these other approaches. Before doing so, however, we establish a "converse" 
of  Theorem 5.7. 

T h e o r e m  5.8. Suppose ( { V j }, ~o ) is a tight Frame MRA (as in the last theorem) and there exists 
a ~t ~ Wo = Vl A V~ such that {7.,(. - n)} is a tight frame for Wo, then T~ satisfies(5.11), 

~(2~)  = ei~mo(~ + Jr)q~o(~), (5.18) 

where mo is a generalized low pass filter in Fr and q)o is also a generator of  a tight frame 
{qgo(. - n)}, n E Z, for Vo. 

P r o o f  By Theorem 5.1 there exists an ml 6 L2(T),  2zr periodic and completely determined 
on U such that 

~(2~)  = ml (~)~b(~). (5.19) 
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We also have a function m 6 L2(T),  2re periodic and completely determined on U such that 
Lemma 5.5 (i) is satisfied: ~b(2~) = m(~)~b(~). We claim that 

Im(~)l 2 + [m(~ + ~ ) l  2 = 1 for ~ e U r (U + Jr) .  (5.20) 

By Lemma 5.5 (ii) it suffices to show that the sum in (5.20) is positive for almost all such ~. 
Suppose this were not the case, then the set 

E = { ~  E U M ( U + z r ) : m ( ~ ) = 0 = m ( ~ + J r ) }  

has positive measure. Let Zl (~) = XE(~) and 

{ XE(~) i f~ ~ [2kzr, (2k + 1)zr) 

X2(~) = -XE(~)  if~ E [(2k + 1)rr, 2(k + 1)Jr) 

fork 6 Z. Since E is rr-periodic, both of these functions are 27r periodic (in fact, X1 is zr-periodic). 
We then define f l  and f2 by letting f j (2~)  = Xj(~)~b(~), j = 1, 2. It is clear that f l ,  f2 belong 
to V1. We claim that f l ,  f2 E W0. This follows from the fact that 

Z j~j (2~ + 2kzr)~b(2~ + 2krr) 
kEZ 

= kj(~)m(~)Xu(~) + Zj(~ + 7r)m(~ + n')Xu( ~ + 7r) = 0 

(since supp~.j C E and m(~) = 0 = m(} + zr) for ~ ~ E)  and, thus, f j  _1_ V0, j = 1, 2. Now, 
since we determined that these two functions are in W0, we can find (again, using Theorem 5.1) 
2rr periodic a j  E LZ(T), j = 1, 2, such that 

f j (~ )=o t j (~ ) ] t (~ )=c t j (~ )ml (~ )~ (~ )  . 

From these equalities and the definition of f j  (after multiplying by ~b(~)) we obtain 

Lj(~) Ir 2 = otj(2~)ml(~)ir = 

Applying the usual periodization argument, we obtain 

Zj(~)Xu(~) = e~j(2~)ml(~)Xu(~), j = 1 , 2 .  (5.21) 

Since the left side of (5.21) equals •  it follows that ~j (2~) # 0, for j = 1, 2, when ~ 6 E. 

Since E is Jr-periodic it follows that if ~ 6 E M [0, rr), then ~ + r 6 E M [Jr, 2~r). When 
6 E N [0, zr) then )q(~) = ~2(~) and, using (5.21), we have 

al  (2~)ml (~) = ot2(2~)ml (~) . 

For this same ~ we also have )q(~ + rr) = -L2(~ + zr); using the 2rr periodicity o fcq  and c~2 
we then have 

a l (2~)ml(~  + rr) = - a z ( 2 ~ ) m l ( ~  + Jr) . 

Suppose neither m l (~) nor m l (~ + Jr) is 0, then the last two equalities imply or2 (2~) = a x (2~) = 
-et2(2~) which is impossible since ~j(2~) • 0, j = 1, 2, when ~ 6 E. It follows that either 
ml(~) = 0 or m~(~ + zr) = 0 when ~ 6 E M [0, zr). Since we are assuming that IEI > 0 and, 
since E is rr-periodic, [E M [0, rr)l > 0, at least one of the two sets in the union {~ 6 E M [0, ~r) " 
ml(~) = 0} U {~ ~ E M [0, Jr) : ml(~ + rt) = 0} = E M [0, zr) must have positive measure. 
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Since E is zr-periodic it follows that/~ -- {0 : ml (r/) = 0} A E has positive measure. Let f be 
the nonzero function defined by the equality f (2~)  = X~ (~)~b(~). The argument that showed 
that f j  ~ W0, j = 1, 2, applies to f .  Moreover, X~(~)ml(~) = 0 a.e. and this implies that 

f A_ span{~(. - n) : n 6 Z} and it follows that {Tz(. - n)} cannot be a tight frame for W0. This 
contradiction establishes the claim that m satisfies (5.20). 

We can now use Theorem 5.7 and deduce that the function ~ satisfying (~)A(2~) = 
ei~m(~ + zr)~b(~) generates a tight frame {~(- - n)}, n 6 Z, for W0. By Theorem 5.1 we 

see that ~(~)  = /z(~)(~)^(~),  where # is a 2zr periodic function in L2(T). Hence, ~rr = 
1#(OI2~r~b(~) a.e.; moreover, it is clear that crg, and a~b must be equal a.e. to the characteristic 
function of  the same set S C R. Thus, I~(~)1 = 1 a.e. on this set and we might as well assume that 
this equality is true a.e. on IR. Now let a be a unimodular 2zr periodic solution to the functional 
equation 

iz(2~) = o~(2~)o~(~ + ~r )~(O �9 (5.22) 

(See [7, Lemma 2.1], where this equation is discussed in detail. Also recall that we used this 
functional equation to obtain Theorem 3.3). We claim that q~0(~) = a(~)~b(~) generates a tight 
frame {~o0(. - n)}, n 6 Z, for V0 such that 

q~0(2~) = m0(~)q~0(~), (5.23) 

where m0 is a generalized low pass filter for which (5.18) is true. This claim establishes The- 
orem 5.8 and its proof is simple: first it is clear that m0(~) = c~(2~)a(~)m(~) satisfies (5.23). 
Moreover, 

= / z ( 2 ~ ) ( ~ ) A ( 2 ~ ) =  lZ(2~)ei~m(~ + 7r)~o(~) 

= ei~-(2~)~(s e + ~r)o~(se)m(~ + ~r)~(~) 

= ei~mo(~ + zr)q~0(~). [ ]  

We have described the MRA wavelet frames that were introduced in [1] and [2]. As we 
have already stated we did this in terms of  the construction we developed in Section 2; we 
also claimed that the class of frames we obtained is more general. Let us be specific about 
this. Theorems 5.7 and 5.8 can also be used in order to characterize the class of  all MRA 
(tight) frame wavelets ~p ~ L2(I~) that are semiorthogonal. Recall that this term means that the 

spaces Wj = span{ap(2J - - k )  : k ~ Z} are orthogonal to each other as j ranges through Z. The 
construction of ap as a function in W0, a space orthogonal to V0, makes it clear that { ~rjk }, j ,  k ~ Z, 
is a semiorthogonal tight frame for L2(]R); that is, ~p is a MRA tight frame wavelet. Conversely, 
given a semiorthogonal MRA tight frame wavelet, as defined by Definition 2.7 with r a pseudo- 
scaling function and m ~ F~, it can be shown that it is constructed, as in Theorem 5.7. More 
precisely, we shall show that we have the following characterization of  the semiorthogonal MRA 
tight frame wavelets. 

Theorem 5.9. ~p is a semiorthogonal MRA tight frame wavelet(MRA TFW) i f  and only i f  
is a tight frame MRA wavelet. 2 

2In order to avoid confusion we remind the reader that an "MRA tight frame wavelet" is defined by Definition 2.7 
and does not involve a "tight frame MRA." A "tight frame MRA wavelet," on the other hand, is a function 
1// e W 0 = V! fq V0 L whose translates form a tight frame for W 0. 
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Proo f  We only need to show the "only if" direction since the converse, as we just explained, 
is already established. Thus, we assume ~ is an MRA TFW which is semiorthogonal. We claim 

j - 1  

that the sequence of subspaces Vj = ~ We, together with the function tp in equality (2.6), 
~=--oo 

form a tight frame MRA. That is, the translates ~0(. - n), n e Z, form the desired tight frame for 
Vo. From equations (2.6) and (1.3) we obtain 

oo 

I~)1 ~: Z ~ ( ~ )  ~ 
j = l  

(5.24) 

(see equality (2.16) on p. 61 of [4]). We claim that 

oo 

~(~) Z I~(~ + 2k~)l 2 Z Z ~ (2,(~ + 2k.)) 2 = = = xu (~) 
ke Z  j = l  k eZ  

(5.25) 

for some 2zr-periodic set U. By Theorem 5.3 this would then tell us that {~0(. - n ) } n e  Z is a tight 
frame for S = span{tp(- - n)}neZ. We also claim that 

- 1  

S:Vo: @ w~. (5.26) 

Once these claims are established, since the semiorthogonality of  the system {~Pjk } implies 
that {aP0k} = {~(" -- k)}, k e Z, is a tight frame for the subspace W0, we can invoke Theorem 5.8 
to obtain the desired conclusion that ~p is an MRA tight frame wavelet. This would establish 
Theorem 5.9. 

Inorder toes tabl i sh(5 .25)wef ix~ andletve = {re(n) :n e Z} -- {~/(2e(~+2nrr)) : n  e Z} 
(for a.e. ~ ~ 1~, ve e s Equality (3.3) in Chapter 7 of  [4] is easily seen to be valid in our case: 

oo 

(~'~) = z z ~ ( ~  + ~ ) ~  <~'~ + ~ (~'~) 
s k e Z  

Replacing ~ by ~ + 2nTr, n c Z, in this last equality we obtain 

oo 

v j  ----- Z < v j ,  vs > vs . 

s 

We now apply (3.7) in Chapter 7 of  [4] in order to have 

Ilvetl 2 -- dim {span {re: e > 11} . 
~=1 

(5.27) 

That is, 
oo 

s ke Z  

= dim Ispan I~/2'~ + 2k~')In~ :'--> '1  
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If we apply (2.6), ~(2r/) = eiOm(r7 + zr)~b(0), when r /=  2e(~ + 2nTr), n ~ Z, we obtain 

Vl = [~(2(~ + 2nrr))]nEZ =ei~m(~ -k- :rr) {~(~ + 2n:rr)}nc Z 

and, for ~ > 2, 

ve = {} (2e(~ + 2krr))]nE2 

/ " / = ei2e-'~m(2e-l~ + : r r ) l - Im (2k~) {g3(~ q- 2krr)}n~ Z . 
k=0 

This shows that ve is a multiple of the same vector {~(~ + 2kzr)}n~Z for all e > 1. Consequently, 
the dimension of span{re : e > 1} is either 1 or 0. Hence, D~,(~) = Xu(~), where U is a 
2zr-periodic set. This proves (5.25). 

We only need to show 

- 1  

V 0 = ~]~ Wj = s p a n  {~On}nE Z ~ S .  (5 .28 )  

j = - o o  

It follows immediately from (2.6) that 

- j -2  
(~jO)(~') = 2-~ei2-'-'~m(2-J-l~ + rr) 1-I m (2k~) ~3(~) 

k=0 

- 1  

for j < 0 ( l-I  m(2k~) is to be interpreted to be 1). This means that (l~j0)(~) = ]s for 
k=0 

some 27r-periodic Ix ~ L2(T). Thus, Ojo and, consequently, ~ j k  E S for all k E Z and j < 0. 
- 1  

This shows that V0 = ~ Wj C S. If we show that S _1_ W] for all j > 0 we would then have 

the desired equality (5.28). Toward this end we observe that it suffices to show S _1_ W0 since, 
fo r j  > 0 ,  

2~ j-1 
< ~jk,~oe > =  ~ -  < ~,/z~b >, where/z(r/) =eikne-ie2"TI-Im(2nrl). 

n=0 

It follows that/~b ~ S and, then, the assumed orthogonality S _1_ W0 shows that the last inner 
product is 0 and, consequently, < ~Pjk, ~oe > =  0 for all k, e E Z, j >_ 0. 

Our proof then is finished if we show S A_ W0. But, using (5.11) and Lemma 5.5 (i), we 
have 

Z ~/(2~ + 2kzr)~b(2~ + 2kJr) 
k~Z 

= ei~rn(~ + :rr)m(~) {a~0(~) -- o'~0(~ q- I t ) }  

= ei~m(~ Jr- :rr)m(~) {XU(~) - XU(~ + Jr)} . 

If~ ~ [UM(U+zr)]U[UCM(U+zr)c], Xu(~) -Xu(~+zr )  = 0. When~ E [UN(U+zr)C]U 
[U c M (U + zr)], Lemma 5.5) (iii) and (1.3) imply that either m(~) = 0 or m(~ + zr) = 0. Thus, 

Z }(2~ + 2kJr)~b(2~ + 2k~r) = 0 
keg  
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and, consequently, 

I/ 2zr < ~,  ~o(. - n) > =  ~(~)~(~)e  in~ d~ 
oo 

f_- = 2 ~ ( 2 ~ ) ~ - ) e  2in~ d~ = 2 ~(2~)~o(2~1e 2in~ d~ 

= 2 Z + 2krr)~b(2se § 2kzr) e 2in~ d~ = O. 

This implies S I W0 = 0 and the proof of  Theorem 5.9 is completed. [ ]  

This shows that the systems studied in [1] and [2] are those we have introduced in Section 2 
that are semiorthogonal. We present an example of  an MRA tight frame wavelet that is not 
semiorthogonal. Let m(~) = �89 + e 3i~) and ~b(~) = 4 ( 1  - e3i~). It is easy to check that m is 

a generalized low pass filter belonging t o / ~ .  Thus, the function ~p satisfying 

~(~) e i ~ ( l - - e - ~ i ~ ) ( 1 - e ~ i ~ )  
= (5.29) 

- 3 i ~  

is an MRA TFW, by Theorem 2.11. We claim that 7r is not semiorthogonal. It is immediate that 
7 t = X[_2,-�89 - X[-�89 But 

= 

showing that Wo and W l a r e  not orthogonal. 

Not every tight frame MRA gives rise to an MRA tight frame wavelet. Consider, for example, 
the function ~0 E L2(~)  such that ~ = X [ _ ~ , ~ ) .  Then it is easy to check that t r r  Xu where 

U -- U [ - % ( 8 n  + 3 ) , - ~ - ( 8 n  - 3)). Thus, by Theorem 5.3 we know that {~o(. - n)} is a 
" I "  

nEZ 
tight frame for the closed subspace, V0, these translates generate. The dyadic dilates Vj = 
{f  : f ( 2 - J . )  ~ Vo}, j 6 Z, then, clearly, form a tight frame MRA and ~o satisfies (1.2) with 

m(~) = Z X [ _ ~ , ~ ) ( ~  + 2kzr). Theorem 5.8 and its proof (see, in particular, (5.20)) showed 
k 6 Z  

that, if there exists ~ E Wo ---- V1 N V~ such that {~p(- - n)}neZ is a tight frame for Wo, then 

Im(~)l 2 + Im(~ + zQI 2 -- 1 for ~ ~ U fq (U + zr). In the case we are considering 

U N ( U + s r ) = U [ 4 ( 4 n + l ) , 4 ( 4 n + 3 ) )  , 
ncZ 

which is a n-periodic set that contains the interval I = [ 5r 3rr 8 ' 8 ) and, afortiori ,  the interval 

I + re = [ -~,  ~-) .  But m (~) = 0 = m (~ + Jr) when ~ 6 I and, consequently, I m (~) 12 + [m (~ + 

7r)l 2 = 0 < 1 for all ~ 6 I C U n (U + Jr). This shows that this tight frame MRA does not have 
an associated MRA tight frame wavelet. 

We have shown, in considerable detail, how our construction compares with that of [1] 
and [2]. As we mentioned earlier, we do not need the regularity and decrease at oo assumptions 
stated in [ 1 ] and [2]. This, however, is not an essential point; perhaps the most important difference 
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lies in the direct use of  the generalized low pass filters we employ in Section 2. We would also 
like to point out that in [6] yet another construction of wavelet tight frames is presented that does 
not have, as its base, a frame MRA. Again certain regularity and behavior at ~ assumptions are 
made that could be avoided. It is also important to observe that the treatments in these other 
works apply to ]I~ n and are not restricted to IR 1 = R. One of the reasons for the restriction to 
1-dimension we have made is that we wanted to develop some of the material involving multipliers 
and connectivity presented in the earlier sections of  this article. 
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