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A basic question of global Riemannian geometry is, 

Which closed, smooth n-manifolds admit Riemannian metrics with positive 
(or nonnegative) sectional curvature? 

This problem is almost entirely open. In the case of positive sectional curvature, the list 
of known examples is very sparse (see [1, 2, 3, 7, 8], and [19]); for simply connected, closed 
manifolds, M, there are no obstructions known to sec M > 0 that are not also obstructions to 
either positive scalar curvature or nonnegative sectional curvature. 

The principle underlying the construction of all known examples of manifolds of positive 
curvature is that Riemannian submersions are curvature nondecreasing on horizontal planes [ 15]. 
The image of a Riemannian submersion of a positively curved manifold is thus positively curved. 

Many more examples could be constructed if this process could be reversed in some cases. 
That is: When does the total space of a fiber bundle whose fiber and base are positively curved 
admit a metric with positive curvature? 

"Always" is the answer to the analogous question for positive Ricci curvature and for almost 
nonnegative sectional curvature [14, 16], and [9]. However, it is clear that if there are any further 
examples of this sort with positive sectional curvature, they are very difficult to find. For example, 
if the fibers are totally geodesic, then a necessary condition is that the bundle be "fat" (see [20]). 
This imposes some pretty severe constraints on the topology. 

Among the known fiber bundles whose base and fibers admit positive curvature, perhaps 
the ones for which this question is most intriguing are the S3-bundles over S 4. They are easy 
to construct, fairly abundant, and include 16 of the 28 oriented diffeomorphism classes of exotic 
7-spheres among their total spaces. 

Recall that the S3-bundles over S 4 are classified by Z @ Z as follows [12, 18]. The bundle 
that corresponds to (n, m) 6 Z @ Z is obtained by gluing two copies oflR 4 x S 3 together via the 
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diffeomorphism gn,m : ( ~ 4 \ { 0 } )  • S 3 > (]I~4\[0])  • S 3 given by 

( uumUun ) 
gm,n(U, V) > i~  2, luln+m , (0.1) 

where we have identified ]~x 4 with H and S 3 with {v e H I Ivl = 1}. We will call the bundle 
obtained from gm,n "the bundle of  type (m, n)," and we will denote it by Em,-n. 

In this article we will prove the following. 

T h e o r e m  A.  The exotic 7-spheres that are total spaces o f  S3-bundles over S 4 all admit se- 
quences o f  almost nonnegatively curved Riemannian metrics that have positive sectional curvature 
at a point and an effective, isometric 0 (2) • SO (3)-action. 

This means that these spheres admit sequences of  Riemannian metrics gi so that 

(a) sec(gi) ~ --~; 

(b) diam(gi) _< 1; and 

(e) sec(gi) > 1 at apoint. 

It follows from [13] (and a Meyer-Vietoris argument) that the total space of  a n  S 3 bundle 
over S 4 is homeomorphic to S 7 if and only if it is of  type (m, - ( m  - 1)) (or ( - m ,  m - 1)) for 
m ----- 0, 1, 2, 3 . . . . .  According to [13], the residue class (2m - 1) 2 mod 7 is a s m o o ~  invariant 
of  the total space, and the total space has an exotic differential structure if (2m - 1) 2 ~ 1 mod 7. 
The complete diffeomorphism classification of  these spaces can be derived from [6]. 

In [ 11 ], Gromoll and Meyer showed that the bundle of  type (2, - 1), which is an exotic sphere, 
admits a metric with an effective, isometric O (2) x S O (3)-action whose sectional curvature is 
nonnegative and positive at a point. As a consequence, the bundle of type (2, - 1 )  admits metrics 
that satisfy the conclusions of Theorem A. Thus our theorem can be thought of as extension (with 
a weaker conclusion) of the main result in [11]. In fact, the metric that our construction yields 
on the bundle of  type (2, - 1 )  is, with a minor modification, the Gromoll-Meyer metric, and our 
construction is a natural extension of  the one in [11]. 

The idea behind the construction of  the metrics in our theorem actually works for about half 
of  the S 3 bundles over S 4. We will also give the construction for the other bundles, and show that 
the metrics are almost nonnegatively with effective, isometric 0(2) x SO(3) actions. However, 
we will not give further curvature computations for the other bundles in this article. 

In [5], Davis showed that every S3-bundle over S 4 admits an 0(2)  x SO(3) action by bundle 
maps. It is easy to see that Davis's SO(3) action is the same as ours. The author thinks that the 
two O (2) x S O (3) actions are smoothly equivalent, but this has not been checked. In any case, 
our actions are constructed by different means than those of  [5]. 

The outline of  this article is as follows. 

In Section 1 we give explicit formulas for the Hopf fibrations, h and h, that come from the 
free S3-actions on S 7 from the left and from the right. These formulas are probably well known, 
but the author does not know a reference for them. Since they are needed to rigorously check our 
topological computations, they are included for the sake of  completeness. 

In Section 2 we give some motivation for our construction. The results of  this section will 
not be explicitly used in the sequel, but they do suggest a way to generalize our method, and 
obtain a procedure that constructs new positively curved manifolds from old ones. Unfortunately, 
this method does not work in all cases, but it seems likely that it could work on an ad hoc basis. 
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In Section 3 we define a sequence of  principal S3-bundles, 
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Pl ....... 2 Pl,2 $7 $4 Sp(2 ,  m)  Pl,...m>-I Sp(2 ,  m -- 1) > . . .  Sp(2) > > . 

These are essentially obtained by iteratively pulling back various versions of h and/l  over each 
other. We also define m-actions of  the (m - 1)-fold product S 3 • S 3 x . . .  • S 3 on Sp(2 ,  m )  and 
show that the quotients of  these actions can naturally be viewed as the S 3-bundles over S 4 of  type 
(m, 0), (m, - 1 )  . . . . .  (m, - ( m  - 1)). This topological identifcation is carried out by explicitly 
constructing bundle charts in a manner that is similar to the one used in [11]. Keeping in the 
true spirit of  an article about examples, these topological computations are done explicitly for the 
bundles of  types (3, 0), (3, - 1 ) ,  and (3, - 2 )  in Section 3 and the bundles of  types (4, 0), (4, - 1 ) ,  
(4, - 2 ) ,  and (4, - 3 )  in the Appendix. Although a single computation for the general case could 
probably be done with less ink, the resulting exposition would probably be more cumbersome 
and less informative. It is hoped that the approach taken here will make these computations very 
accessible and thereby facilitate the study of these spaces. 

In Section 4 we review the result of  Fukaya and Yamaguchi that we will use to conclude 
that our bundles have almost nonnegative curvature. Before we can simultaneously achieve the 
other curvature property mentioned in the theorem, we will have to make a further study of  the 
geometry of our spaces. This is done in Sections 5, 6, and 7, where the O (2) • S O (3) symmetries 
are constructed, the tangent space of Sp(2 ,  m)  is found, and a metric on Sp(2, m) is constructed 
that is invariant under all of  the relevant group actions. 

In Section 8 we show that our metrics on the exotic spheres have positive curvature at a point, 
completing the proof of our theorem. 

Background and Notation: We assume that the reader is familiar with the notions of  the 
vertical and horizontal distributions associated to a Riemannian submersion, zr : M > N, and 
with O'Neill 's  "horizontal curvature equation" (see equation {4} p. 464 of  [15]). 

We denote the vertical and horizontal distributions of zr by Vjr and Hjr and the components 
of  a vector, w, that lie in Vjr and H~r by w v~ and w h" , respectively. When we are discussing only 
one submersion and there is no possibility of confusion we may omit the subscript Jr from the 
superscripts v and h 

The sphere of  radius r in N n+l is denoted Sn(r) .  A[~ and A h are the free actions of  S 3 on S 7 
from the left and from the right that give the Hopf fibrations. 

1. An explicit formula for the Hopf fibration 

In this section we write down explicit formulas for the Hopf fibrations h : S 7 ~ S 4 and 
: S 7 > S 4 corresponding to the right and left actions of  S 3 on S 7. These formulas are 

probably well known, but were not found by the author even in the basic reference [10]. 

We denote points on S 7 by pairs of  quaternions written as column vectors. Then the multi- 
plications by S 3 on the left or the fight are the Hopf S 3-actions on S 7. The quotients of  each are 
of  course S 4. We will need the following concrete descriptions of the quotient maps. 

The quotient map for action on the right is 

a 1 
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and the quotient map for action on the left is 

a 1 
fT : (  c)W-~ ( f i c ,~ ( la[2- lc l2 ) )  . (1.1) 

The image is $4(1), which we are viewing as a subset of H q3 l~. 

It is well known that the metrics induced on S 4 by h and f~ are isometric to $4(1/2). Not 
surprisingly, the actual submersion metrics on S 4 induced by h and f~ are each the canonical metric 
on $4(1/2). (Recall that the family of metrics isometric to a given one is parameterized by the 
diffeomorphism group of the underlying manifold. So this is perhaps a pedantic point, but there 
is some actual substance.) 

Proposition 1.1. The metrics induced on $4(1/2) by h and h are both the canonical metric. 

We give the proof only for h since the proof for/~ is the same with different notation. Proof. 

Set e5 = (0, 1) 6 H ~ .  

Note that the S 3 actions on S 7 given by left multiplication with 

( I  ~ )  and ( I  ~ )  (1.2) 

are by symmetries of h, as is the SO (2) action given by left multiplication with 

( cos0 s i n 0 )  
- s in0  cos0 " (1.3) 

The maps induced on $4(1/2) by (1.2) fix ~- and are the standard S 3 and SO(3)-actions on 
the quaternion plane. The action induced on $4(1/2) by (1.3) is the direct sum of the standard 
Zx-ineffective Sl-action on the "purely real" circle in S 4 C H ~ R and the trivial action on the 
purely imaginary quaternions. 

Let gs denote the submersion metric on $4(1/2) induced by h and gcan the canonical metric. 
Let scan(p, D) and SS(p, p) denote the metric spheres about p of radius p with respect to gcan 

e5 and gs. Let r denote the distance from ~- with respect to gcan, and ~ denote the unit radial field 
e5 emanating from ~- with respect to gcan. Using the S3-action above we can conclude that 

gs -~r -~r depends only on r .  (1.4) 

e5 Next we claim that ~ is also the radial field from ~- with respect to gs. To see this observe (cos0) (1) 
that the orbit, - sin 0 , of 0 under (1.3) is a geodesic in $7(1) that is horizontal with 

( ) e5 with respect t~ (1"3) is a ge~ 1 = ~ ,  it follows that the orbit of ~- respect to h. Since h 0 

with respect to gs. The tangent field to this orbit coincides with part of ~r' and its image under (1.2) 
e5 is all of ~ .  It follows that ~ is also the radial field from ~- with respect to gs. 

Therefore, g s ( ~ ,  ~ r ) =  gcan(o~' O)= l and  

s c a n ( ~ , r ) = S S ( ~ , r )  (1.5) 
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for all r. 

It remains to check that gXlScan(~,r) = gcanlsc,n(~,r) for all r. The actions (1.2) show 

that the matrices for the two metrics (with respect to a fixed basis) differ by no more than a 
multiplicative constant for each r, and (1.5) and the fact that (S 4, gs) is isometric $4(1/2) implies 
that this constant is 1. [ ]  

2. Motivation for the construction 

A few of the S3-bundles over S 4 are already known to admit nonnegative sectional curvature. 
Those of types (1, 0), (1, 1), and (2, - 1 )  are, respectively, the Hopf  fibration, the unit tangent 
bundle of  S 4, and the exotic sphere of Gromoll and Meyer [4, 11, 18]. In addition, Rigas has 
observed that types (2, 0), (1, - 1 ) ,  and (2, - 2 )  admit nonnegative curvature [17]. 

The construction of the metrics on all of  these bundles is intimately related to the biinvariant 
metric on Sp(2). In fact, the metrics on the type (1, 0), (1, 1), (2, 0), and (2, - 1 )  bundles are 
S3-quotients of  the biinvariant metric on Sp(2). Therefore it is rather intriguing that Sp(2) itself 
can be constructed from the Hopf  fibration. 

Proposition 2.1. S p ( 2 ) is diffeomorphic to the total space o f  the pullback o f  the Hopf  fibration 

$7 h ~ $4 via S 7 aoh $4 ' where a : S 4 > S 4 is the antipodal map. 

In fact, the biinvariant metric on Sp(2) is isometric (up to rescaling) to the subspace metric 
on the pullback (a oh)*(S 7) C $7(1) x $7(1), where $7(1) is the unit7-sphere andST(1) x $7(1) 
has the product metric. 

Ske tch  o f  Proof .  View Sp(2) as 

l( a 
b) d I a , b , c , d  e H, [a[ 2-k- ]c[ 2 = [b[ 2 + [d[ 2 = [a[ 2-k- [bl 2 = ]c[ 2 q- [d[ 2 = 1 

and aE + bcl = O] 
I 

o 

The first two equations show that the columns of ( a b c d are each in S 7, so Sp(2) can be 
\ / 

identified with a subset of S 7 x S 7. Using the other equations, it can be shown that this subset is 
(a o h)*(S7). 

The direct sum of the standard Sp(2) action on I~ 8 with itself restricts to an action o n  S 7 • S 7. 

The restriction of this action to (a o h)* (S 7) ---- Sp(2) is just the standard left action of Sp(2) on 
itself. Thus it is a tautology that (a o h)*(S 7) = Sp(2) is invariant under this action. A similar 
argument shows that (a o h)*(S 7) = Sp(2) is invariant under the right action of Sp(2). Since 
these actions are by isometries on S 7 • S 7, they are also by isometries on (a o h)*(S 7) = Sp(2). 
Hence the subspace metric on (a o h)*(S 7) = Sp(2) is biinvariant. [ ]  

It follows that we can think of the metrics on the bundles of  type (2, 0), (2, - t) ,  and ( t ,  1) 
as being "created" from the Hopf  fibration, h, via the following recipe: pull back h via a o h and 
mod out the total space of the pullback by an appropriate free S 3 action. Thus it is possible to 
"change the type" of  an S 3 bundle over S 4 by pulling it back over another S 3 bundle over S 4 and 
modding out by a free S 3 action. This leads us to ask: 
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Question 1: Can we obtain metrics on different S 3 bundles over S 4 by replacing one copy of 
S 7 in the recipe above with one of our other known examples, i.e., with the bundle of type (1, 1), 

(1, - 1 ) ,  (2, 0), (2, - 1 ) ,  or (2, - 2 ) 7  

Question 2: Will some of the metrics obtained in this way be nonnegatively (or positively) 

curved? 

General Question: Suppose M and N are compact, positively curved manifolds admitting 

Riemannian submersions, ~M and :rN, onto the same base B. Can we find a free isometric group 

action on the pull back zr~t (N) whose quotient admits positive curvature? 

The answer to Question 1 at least, is yes. In fact, by starting with the bundle of type (2, 0) 
and iteratively applying our recipe (pull back some bundle over a o h and mod out by a free S 3 

action), we can obtain every bundle of type (m, - n ) ,  where m > n > 0. In particular, we can get 
all bundles whose total spaces are exotic spheres, since these are of type (n + 1, - n ) ,  with n > 0. 

We will not carry out this program explicitly here. We have described it only to motivate 

the construction of Section 3, which will accomplish the same goal in a manner that is easier to 

execute. 

The author does not think that the answer to the general question is always yes, but it seems 
reasonable that the answer is occasionally yes, and that this offers a new (ad hoc) method for 

constructing manifolds of positive curvature. 

3. Sp(2, m)-A space which fibers over the bundles of type (m, - k ) ,  (m > k _> 0) 

In this section we define a sequence of spaces and submersions, 

Pl ....... 2 Pl,~ $7 $4 
Sp(2 ,  m)  pl,...,,~-i Sp(2 ,  m - 1) > . . .  Sp(2) > > , 

and show that there are free actions of the (m - 1)-fold product S 3 x S 3 x . . -  x S 3 on Sp(2 ,  m)  

whose quotients are the S 3-bundles over S 4 of type (m, - k )  for all k 6 N with m > k > 0. 

Sp(2 ,  m)  is the subset of the m-fold product S 7 x �9 �9 �9 x S 7, 

Sp(Z,  m)  = [ (Ul, UZ, U3 . . . . .  urn) E S 7 x . . .  x S 7 I h ( u l )  = a o h (u2) , h (u2) = a o h (u3) , 

(u3) = a oh  (u4) . . . . .  h (urn-l)  = a o h  (urn)} �9 

The submersion Pl ..... m-1 : Sp(2 ,  m)  > Sp(2 ,  m - 1) is simply the restriction of the 
projection map of the m-fold product S 7 • S 7 x �9 �9 �9 • S 7 onto its first m - 1 factors. 

Now define actions of the (m - 1)-fold product S 3 x S 3 • .. �9 x S 3 on the m-fold product 
S 7 x - . .  x S 7 by 

(ql, q2 . . . . .  qm-1)  (Ul, u2, u3 . . . . .  urn) 

= (qlUl{lm-n, qlu2t~2, qzu3q3 . . . . .  qm-2Um- lqm-1 ,  qm-aUm) �9 (3.1) 

and 

(ql, q2 . . . . .  qm-1)  (Ul, u2, u3 . . . . .  urn) 

= (qlUl, qlu2q2, q2u3t~3 . . . . .  qm-2Um-l{ lm-1,  qm-lUm) , (3.2) 
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where the n in (3.1) satisfies 1 < n < m - 1. 

We will call the actions in (3.1) and (3.2), Am,-n and Am,O, respectively. 
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T h e o r e m  3.1. 

(i) Am,-n and Am,o are free and leave Sp(2, m ) invariant. 

(ii) The quotient space of  Am,_n is diffeomorphic to the total space of  the S 3-bundle over S 4 of  
type (m, - n  ). 

(iii) The quotient space of  Am,O is diffeomorphic to the total space of  the S 3-bundle over S 4 of  
type (m, 0). 

Proo f  o f  Theorem 3.1 (i). Suppose 

(qlUlqm-n, qlu2q2,  q2u3q3 . . . . .  qm-2Um-lqm-1, qm-lUm) = (Ul, U2 . . . . .  Um) �9 (3.3) 

The equality of  the last factors of  (3.3) yields qm-1 = 1. Equality of  the next factor then 
implies qm-2 = 1. Proceeding in this manner it follows from a reverse induction argument that 
(ql, q2 . . . . .  qm-1) = (1, 1 . . . . .  1). So Am,-n is free. A similar argument shows that Am,o is 
free. 

To see that these actions leave Sp(2, m) invariant, note that both the left and the right actions 
of  S 3 on S 7 are by symmetries of h and fz [10]. When viewed as symmetries of/~ the left action 
induces the identity on S 4 and the right action induces the standard Z2-ineffective S3-action, 
which conjugates the purely imaginary 2-sphere in S 4 and fixes its complementary circle. When 
viewed as symmetries of  h the right action induces the identity on S 4 and the left action induces 
the standard Z2-ineffective S 3-action, which conjugates the purely imaginary 2-sphere in S 4 and 
fixes its complementary circle. Having made these observations, it can now be seen that the 
defining equations of  Sp(2, m) are preserved by the actions in (3.1) and (3.2). [ ]  

The proofs of Theorem 3. l(ii, iii) are by explicit computation of bundle charts and their 
overlap maps. As mentioned in the introduction, these computations will not be done for the 
general case. Instead we will cover the cases when m = 3 in the following subsections, and 
the cases when m = 4 in the appendix. By going through the proofs of  these cases the reader 
will be able to concretely see how the computation changes when we increase m and how the 
computation changes when we increase n. 

3.1. E3,0 

Consider the S 3 x S3-action on Sp(2, 3) that is given by 

(ql, q2) (u, v, w) = (qlu, qlvq2, q2w) . 

The quotient, E3,0, is an S 3 bundle over S 4. Indeed the map 

P3,0 : orbit (u, v, w) ~ f~(w) 

is a bundle map. This is because it satisfies P3,0 o q3,0 =/~  o p33, where q3,0 : Sp(2, 3) > E3,0 
is the quotient map and p3 : Sp(2, 3) > S 7 is the projection of Sp(2, 3) onto its last factor. 

Since each of q3,0, h, and p3 are smooth submersions it follows that P3,0 is a smooth submersion 
and hence (since Sp(2, 3) is compact) a bundle map. 
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Define 4) : •4 

Propos i t ion  3.2. 

> Rby 

Frederick Wilhelm 

1 
~b(u) - (3.4) 

x/l + lul 2 

(E3,0, P3,0) is the S3-bundle overS 4 of type (3, 0). 

/'roof. 
Our computations closely resemble those of [11]. 

The charts hi, h2 : ]~4 • S 3 > E3,0 are defined by 

and 

respectively. 

We prove this by constructing explicit bundle charts and computing the overlap map. 

h'(u'q)= ~ ( ( u q ) r  1 )qb(u)'( ~ ) ) q -~ 1 4~(u) �9 (3.5) 

h2(v,r)= orbit(( fir )~b(v),( ._v 1 )~b(v)'( 1 ) r  " v  (3.6) 

hi and h2 are embeddings onto the open dense sets 

U1 = {~ a ) c  

U2 = {~ a ) c  

' d ' y y ~=0 and 

} a # O  , 
' d ' y 

In fact, the formulas for the inverses are given by 

a b ct ~7/~c ~ 
hll(orbi t((  c ) , ( d  ) , (  y )))=(l~12,1Yl[bllcl, I 

and 

h21 (orbit ( (  a ) ,  

as can easily be verified. 

It follows that 

( b )  ( o r ) ) )  ( f y  t~tta 
d ' y = I~ -2' I~ l -~a lJ '  

h21~ = h21[~ 7 ) t~(u) ' (  1 

(3.7) 

and hence by (0.1) that E3,0 is the bundle of type (3, 0). [] 
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3.2. E3,-1 

Next consider the S 3 • S3-action on Sp(2, 3) that is given by 

(ql ,  q2) (U, V, W) = (qluq2,  qlV~t2, q z w )  �9 

The quotient, E3,-1, is an S 3 bundle over S 4. Indeed the map 

p3,-1 : orbit (u, v, w) ~ / ~ ( w )  

is a bundle map. This can be seen via the argument that we gave for E3,0. 

Propos i t ion  3.3. (E3,-1, p3,-1) is the S 3-bundle over S 4 that is of type (3, - 1). 

Proof As in Proposition 3.2 we define charts hi, h2 : ]I~ 4 • S 3 > E for P3,-1 by the 
formulas (3.5) and (3.6). As before hi and h2 are embeddings onto the open dense sets, U1 and 
U2 in (3.7). 

The formulas for the inverses are now given by 

a b et _~bcy 
h l l ( ~  ) ) )=( [~[2 ' [ y [Z[b l l c l ]  

and 

a b o r ) ) )  ( ] ~ 2 '  6tda~ 
h 2 1 ( ~  ) ( d  ) ( y = 

c ' ' " 

Thus 

h21ohm(u,q ) = h 2 1 [ o r b i t ( (  Uqq ) ~ ( u ) , (  1_, )q~(u),(zT1 )4~(u)) 1 

( ( u3qu'~ 
U uuuq~t~ 1~12 ' �9 -- [u[2, lul 4 . ] - -  lul4 ] 

So by (0.1) E3,-I is the bundle of type (3, -1) .  

is a bundle map. 

Propos i t ion  3.4. The quotient of the action in (3.8) is the total space of the S3-bundle overS 4 
of type (3, -2) .  It is therefore an exotic 7-sphere that is different from the space of nonnegative 
curvature discovered by Gromoll and Meyer in [1 I]. 

3.3. E3,-2 

The S 3 • S 3 action on Sp(2, 3) that gives E3,-2 is 

(ql, q2) (u, v, w) = (qluql, qlvq2, q2w) �9 (3.8) 

The quotient, E3,-2, is an S3-bundle over S 4. Indeed, arguing as in the beginning of Sub- 
section 3.1 we see that the map 

p3,-2 : orbit (u, v, w) w-~ h(w) 
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Proof. We define charts hi, h2 : ]i~ 4 • S 3 ) E for P3,-2 by the formulas (3.5) and (3.6). 

As before, hi and h2 are embeddings onto the open dense sets, U1 and/-12 from (3.7), but 
now their inverses are given by 

u ~'[~cbF 
a b ) ) )  = ( 1 ~ 2 ,  1712[bl21cl ) h l ' ( ~  

and 

Thus 

a b ot "~'~'~ = /' G7 ,  6t~ladot 
h 2 ] ( ~  ) ( d  ) ( F  

c ' ' , I ] . /  ~.1o~12 I o l ~ a l . /  " 

h2 l o h l ( u , q )  = h2 l l o r b i t ( (  Uqq )(b(u),( 1_2 )~(u)'(21 )r 
__ ( u uuuqFt~ ( u u3q~2~ 

)= j .  

So by (0.1) E3,-2 is the bundle of type (3, -2 ) .  [ ]  

4. Almost nonnegative curvature 
In [9], Fukaya and Yamaguchi proved the following theorem. 

Theorem 4.1 (Fukaya-Yamaguchi). Let a compact manifold M admit the structure of  a 
tiber bundle 

F ~ - + M  > N 

with a compact Lie Group G as the s~-ucture group. Suppose that the fiber F admits a G-invariant 
metric o f  nonnegative sectional curvature and that for every e > O, there exists a metric hE 
on N such that sech~ d/am(he) 2 > - e .  Then M also admits a metric ge satisfying the same 
curvature-diameter inequality. 

The submersion Sp(2, k) pL .k-1 Sp(2, k - 1) is actually a principal S3-bundle. The S 3 

action is given by 
q (Ul . . . . .  Uk) = (Ul,  U2 . . . . .  Uk-1,  Ukq) �9 

Thus, applying Theorem 4.1 successively to our sequence of submersions 

Pl . . . . . . .  2 Pl,2 Pl) 57 h $4 Sp(2, m) P l _ ~ - I  Sp(2, m - 1) ) . . .  Sp(2) 

yields metrics of almost nonnegative curvature on Sp(2, m). 

It also follows from Theorem 4.1 that all S3-bundles over S 4 admit almost nonnegative 
sectional curvature. 

To obtain metrics with the additional curvature property asserted in Theorem A we will need 
to define more specific metrics on these bundles. Our metrics will be obtained from Riemannian 
submersions of almost nonnegatively curved metrics on the Sp(2, m)'s. 

Thus we will need to find metrics on Sp(2, m) that simultaneously satisfy the construction 
of Fukaya-Yamaguchi and are invariant under the actions Am,-n and Am,o. 

Before defining these metrics we discuss the symmetries of E(m,-n) and the tangent space 
of Sp(2, m) in the next two sections. 
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5. The symmetries of E(m,-n) 

As was the case in [11], our bundles admit either an 0 (2 )  • SO(3)  or an 0 (2 )  x S 3 
symmetry group. These groups also act by isometries with respect to the metric that we will 
define in Section 7. 

The O(2)-action is from the left. On the level of  Sp(2, m), it is given by 

A (Ul, u2 . . . . .  urn) = (Aul,  Au2 . . . . .  Aura) , (5.1) 

where we are viewing u i E S 7 as a (2 x 1)-column vector with quaternion entries, and we are 
exploiting the natural embedding 0 (2 )  ~ Sp(2) induced from the embedding R ~ H. 

The fact that (5.1) leaves Sp(2, m) invariant follows from the fact that the O(2)-action on 
S 7 that is given by 

(A, u) ~ Au (5.2) 

is by symmetries of both h and h. It is by symmetries of  h, because the S 3-action that gives h is 
on the right and hence commutes with (5.2). (5.2) is by symmetries of/~ because the S3-action 
that gives h can be described via the left multiplication 

0 ) u .  

Since this commutes with (5.2), (5.2) is by symmetries of  h. 

Since the action in (5.1) commutes with Am,-n and Am,o, it induces an O (2) action on each 
of the E(m,-n)'S. 

The SO(3)-action is induced by the S3-action 

q (Ul, U2 . . . . .  Um) ~--- (Ul, U2 . . . . .  Umq) �9 (5.3) 

This clearly commutes with Am,-n, Am,O, and with (5.1). Hence, (5.1) and (5.3) together induce 
an O (2) x S 3-action on E(m, -n). However, on the level of  E(m,-n), the S 3-action is Zz-ineffective 
if n ~ 0. To see this, simply note that 

(ul,  ue . . . . .  urn(-1))  = ( - 1 ,  - 1  . . . . .  - 1 )  (ul, u2 . . . . .  urn) , (5.4) 

where the action on the righthand side is one of the Am,-n 'S  with n ~ 0. On the other hand, (5.4) 
is false if the action on the right is Am,o, and a similar argument shows that - 1 E S 3 acts freely 
on Em,o. 

To find the full kemel of  our actions we prove the following. 

Proposition 5.I. 

(i) Foranyn = O, 1, 2 . . . . .  m - 1, the 0 (2 )  x S3-action on Em,-n induced by (5.1) and (5.3) 
is by symmetries of  pm,-n : Era,-n > S 4. The induced action on S 4 is the restriction 
of  the action on ~5 obtained by taking the direct sum of  the standard Z2-ineffective 
0 ( 2 ) -action on R2 and the standard S 0 ( 3 ) -action on ~3. Equivalently, it is the join of  
the standard Z2-ineffective 0 (2)-action on S 1 with the standard S 0 (3)-action on S 2. 

(ii) For any n = 1,2 . . . . .  m -  1, the kernel of  (5.1) • (5.3) on Em,-n is isomorptn'c to either 
Z2 or Z2 ~ Z2. In the former case it is generated by {(0, - i d ) }  C 0 (2) x S 3. In the 
latter it is generated by { ( -  i d, 0), (0, - i d )  ] C 0 (2) x S 3 . 
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(iii) The kerael o f  (5.1) • (5.3) on Em,o is isomorphic to O when m is odd and to Z2 when m is 
even; in the latter case, the kernel is generated by { ( - id ,  0)} C 0(2)  x S 3. 

Proof.  Let pm m : Sp(2, m) > S 7 denote the projection onto the last factor, and let qm,-n : 

Sp(2, m) > Em,-n be the quotient map. Observethatpm,-noqm,_n = h o p  m. The 0(2)  x S 3- 
action on Sp(2, m) is clearly by symmetries of pro. The induced action on S 7 is the product of 
the action in (5.2) with the action 

(q, u) ~ u~ . (5.5) 

We showed on page 171 that (5.2) is by symmetries of h, and it is clear that (5.5) is by 
symmetries of h. Therefore our O (2) • SO (3)-action o n  Era,_ n is by symmetries of Pm,-n. 

By direct computation we see that the actions induced on S 4 by (5.2) and (5.5) via/~ are as 
described in the statement of (i). In fact we have already given part of the computation for (5.2) 
in the proof of (1.1). 

The circle in $4(1/2) that is fixed by SO (3) is the intersection of $4(1/2) and the "purely 
real" copy of N 2 in H ~ N = iR 3 @ N @ R, where iR 3 @ R is the decomposition of H into purely 
imaginary and purely real numbers. 

The S 2 that is fixed by 0(2)  is the intersection of $4(1/2) and iN 3. This completes our 
outline of the proof of (i). 

Given (i) it follows that the subgroups listed in (ii) are the only possibilities for the kernel 
o f  (5.1) • (5.3) o n  Em,-n. The exact kernel is therefore determined by the action of ( - i d ,  O) C 
0(2)  x SO(3). By direct computation it is easy to see that this element either acts freely or 
trivially o n  Em,-n and that both possibilities can occur. For example it acts freely on E2,-i and 
trivially on E3,_ 1. 

Similarly, it follows from (i) and the exposition before the statement of the proposition that 
the group listed in (iii) is the only possible kernel for the action o n  Am,O. Direct computation 
completes the proof of (iii). [ ]  

Notation: Throughout this article the symbols I 2 S• and aim will stand for the circle and 2-sphere 
in S 4 that were described in the preceding proof. 

Since 0(2)  • SO(3) will ultimately act by isometrics on Sp(2, m), we may reduce the 
problem of studying curvature at an arbitrary point of Sp(2, m) to the problem of studying it at 
certain special points. 

Proposition 5.2. 

(i) I f  n > O, theneverypoin t inEm_n hasapoint in i tsorbi tunderO(2)  x S0(3)  thatcanbe 
represented in Sp(2, m) by a point o f  the form 

( (  cost ) ( a s i n t  ) (  cost ) ( a s i n t ) )  
c~ sin t P ' cos t ' -or sin t ' cos t �9 .. , (5.6) 

with t c [0, ~], re(a) = 0, I~1 = 1, and p an arbitrary member of  S 3. 

(ii) Every point in Em,O has a point in its orbit under 0(2)  • S 3 that can be represented in 
Sp(2, m) by a point o f  the form 

( (  cost ) ( o t s i n t ) (  cost ) ( o t s i n t ) )  (5.7) 
ot sin t ' cos t ' -or sin t ' cos t "" " ' 
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witht  ~ [0, -~],zr re(a)  = 0 ,  andlal = 1. 
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Proof .  Suppose our point is represented by 

( (  al ) (  a2 ) ( am ) )  
, , ' . .  ~ Sp(2, m ) .  

c1 c2 Cm 

Replace this point by a point in the same 0(2)-orbit for which lall is maximal. At such a 
point Re(algl) = 0. Indeed, 

__d ( cost sint ) (  al ) t= 0 :  ( Cl ) . 
dt - sint cost Cl - a l  

/ \ 

Thus if al is not perpendicular tO Cl,then by moving ( al ~ slightly (forward or backward)in its 
\ Cl / 

SO(2) orbit we can increase the size of its (1, 1) entry, contradicting our hypothesis. Therefore 
al is necessarily perpendicular to Cl. 

It follows from the defining equations for Sp(2, m) and the definitions of h and h that 
lall = [aol = Icel for each odd number o and each even number e in {1, 2 . . . . .  m}. Hence if 
lall is maximal for the O(2)-orbit, then laol and Icel are too. By the argument above (a0, co) = 
(ae, Ce) : O. 

In case (i), we now choose qm-1, qm-2 . . . . .  q2, ql so as to arrange that im(ao) = im(ce) =-- 
0 for all odd numbers o and all even numbers e in {2 . . . . .  m}. 

In case (ii) we insure that im(ao) = im(ce) : 0 for all odd numbers o and all even numbers 
e in {1, 2 . . . . .  m} by choosing ql, qe . . . .  qm-1 appropriately, and then choosing the appropriate 
q ~ S 3 for the action in (5.3). 

Our point now has the form of (5.6) or (5.7). []  

6. The tangent space of Sp(2, m) 

Since the 0(2) x SO(3) action will ultimately be by isometries, to study the curvature of 
Em,-n w e  may assume that we are at a point in Sp(2, m) of the form 

( (  cost ) ( a s i n t )  ( cost ) ( a s i n t ) )  
a s in t  P' cost ' - a  sint . . . . .  cost  (6.1) 

if m is even, or 

( (  cost ) ( o t s i n t ) (  cost ) ( c o s t ) )  
a sin t P' cos t ' - a  sin t . . . . .  - a  sin t (6.2) 

if m is odd. 

Convention 6.1. To avoid repetition, whenever we need to write tangent vectors or other 
objects explicitly we will do so as though we were only studying the case when m is even. The 
only difference when m is odd is the substitution o f  the last column in (6.2) for the last column 
in (6.1). 
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( COSt ) ( c ~ s i n t )  ( COSt ) 
Set N ( -- ot sin t p, Ne -- cos t ' and No -- - a  sin t �9 Nk stands for Ne if 

k is even and No if k is odd. If a statement about N p is valid for all p we may omit the p. Notice 
that N 1 p = N p, and that N p, Ne, No, and Ng are all points in S 7. 

It will usually be possible to make statements that are valid for both Ne and No simultaneously. 
There will also be times when a statement for Ne will have an obvious (but not identical) analog 
for No. Whenever either of these situations occurs we will write N instead of Ne or No, and only 
make one statement. When the proof of such a statement requires us to explicitly write down Ne 
or No, we will prove one of the cases and leave it to the reader to consider the other case. 

The vectors 
tJ 1 ~ Nlap ,  0 e =-- Neet, and t~ ~ - Noot 

at the points N1 p, Ne, and No in S 7 are vertical with respect to both h and h. Most often the 

location of the foot point will be clear so we will omit the superscripts and write simply t, for tJ1, 
0 e, or O ~ 

Let Y1, Y2 E H satisfy Re(y/) = 0, IYil = 1, o t l  Yl l Y2 _1_ or, and ylY2 = a,  and set 

01 : Ny1, 02 : Ny2, O1 : y1N, and 02 : yzN �9 

Similarly at N1 p we set 

O, = N~ylp,  02 = NIv2p,  O1 = y1N(,  and 02 = y2N1 p .  

As with o, we will usually make no notational distinction between the versions of the 0 i 'S 
a n d  0 i 'S with different foot points. 

It follows that {t~, 01, 02} and {la, 01, 02} are orthonormal bases for Vh and V[,, respectively, 
and that 

(Oi, Oi) = cos2t . 

In particular, 

and therefore 

1 
dim(Vh A Va) = 3 

d i m ( H h N H h ) =  4 

i f t  5 0  
i f t  = 0 ,  

i f t  5 0  
i f t  = 0 .  

We denote by {x, y} a pair of orthonormal vectors such that {x, y} C Hh N H~ at p. More 

specifically, we require that x is the vector whose projection to S 4 is radial for dist(S 1, .) in 
S 4 = S~ �9 Si 2 .  Thus (under Convention 6.1) 

(x , x  . . . . .  x ) = ( ( - s i n t )  ( o t c o s t )  ( - s i n t  ) ( o t c o s t ) )  
ot cos t  P '  - s i n t  ' -or  cos t  . . . . .  - s i n t  " 

At Ne and No we get an orthonormal basis for the rest of Hh by adjoining x to 

{y = xot, 171 = Xy1, and r/2 = xy2} �9 

Similarly, we get an orthonormal basis for H~ by adjoining x to 

{y = olx, ~1 = ylx,  and ~2 = yzx} �9 
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At N1 p we complete our bases for Hh as follows. 

Hh = s p a n {  ( - s i n t  ) ( - - s i n t ) a p ,  ( - - s i n t )  
ot cos t  P '  c~ cos t ot cost  YlP, 

------ {x, y, 01, 02} 

Hh = span{ ( - sin cos t 

-- Ix, y, 61, ~2} �9 

) (-sint)otp, yl(-sint) ( - s i n t )  } 
P' cr cos t c~ cos t P, Y2 ~ c o s t  P 
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We will call the resulting bases Base(Hh) and Base(H~) respectively. 

Convention 6.2 Q/ ,O-convent ion) .  We will use the symbol O to denote both rll and 02, the 
symbol ~ to denote both ~1 and ~12, the symbol 0 to denote both 01 and 02, and the symbol 0 to 
denote both 01 and 02. To facilitate this convention we let y denote either Y1 or Y2. Whenever a 
statement is made about more than one of  these vectors it is to be assumed that the index is the 
same unless otherwise indicated. 

We will need to know the inner products among the 0's, 0 's ,  ~'s, and 0 so we record them 
here. 

Proposition 6.3. Let ( �9 ) denote the round metric on S 7. 

( 0 , 0 )  = c o s 2 t .  (6.3) 

(0, ~) = - cos 2 t .  (6.4) 

( 0 , 0 )  = - s i n 2 t .  (6.5) 

(~, 0) = - sin 2 t .  (6.6) 

Proof. 

( 0 , 0 )  = ( ( o t s i n t )  ( o t s i n t ) )  
cos t F, F cos t 

- sin 2 t + cos 2 t = cos 2 t .  

( ( a c o s t )  ( o t c o s t ) )  
(0,~) = - s i n t  Y, Y - s i n t  

= - c o s  2 t + s i n  2 t = - c o s 2 t .  

(0, O) = ( ( - s i n t  ) (  cost  
-or  cos t g'  g -oe sin t 

- 2 sin t cos t = - sin 2 t .  
( ( a c o s t )  ( o e s i n t ) )  

(~ ,0)  = y - s i n t  ' cost  Y 

= - 2  sin t cos t = - s in(2t) .  

)) 

[] 

Using the definition of Sp(2, m) it is easy to see 
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P r o p o s i t i o n  6.4. A vector(u1, u2 . . . . .  urn) E T(S 7 • .." • S 7) istangenttoSp(2, m) ifand 
only i f  its foot point is in Sp(2, m) and it satisfies 

dh (Ul) = d(a o h) (u2), dh (u2) = d(a o h) (u3),  dh (u3) = d(a o h) (u4) . . . .  

d/~ (urn- l )  = d(a o h) (urn) �9 (6.7) 

We will refer to the equations in (6.7) as the "tangency equations." 

Because of  the tangency equations we will have a recurring need to know the images of the 
i/'s, t~'s, ~'s, and O's under dh and d/~ and how they relate to each other. We record these relations 
here. 

Proposition 6.5.  For all i = 2 . . . . .  m, 

(i) dhNi(~/) = cos(2t)  d(a o h)Ni+, (rl) 

(ii) d[~Ni (?1) = - d ( a  o h)Ni+, (rl) 

(iii) d[~Ni(O ) = sin(2t) d(a o h ) N i + l ( 7 ] )  
~ 

(iv) dhN((0) = - sin(2t) d(a o h)N2 01) 

(v) dhN~ (~) = - c o s  2t d(a o h)N2(71). 

ql Proof  Let q = q2 

vector tangent to S 7 at q. 

Then 

) ( z l  ) ~ TpSTanarbitrary E S 7 be an arbitrary point and z = z2 

d 
dhq (z) = - ~  h (q cos 0 + z sin 0)10=0 

( 1 ) 
= q1~2 + z1~2, ~ (q1~1 + z1~1 - q2~2 - z2~2) 

= (qlz2 + z102, Re (q lz l )  - Re (q2z2)) , (6.8) 

and 

. 4  
dhq(z) = ~O[l(q cos0  + z sin0)[0=0 

( 1 ) 
= 01z2 + ~1q2, -~ (q1~1 + z @  - q2~2 - z2~2) 

= (qlz2 + zlq2, Re (q lz l )  - Re (qzz2)) �9 (6.9) 

From here the proof  is just  to compute all of the differentials in the statement and compare 
the answers. The computations are a bit different for the cases i even, i > 3 and odd, and i = 1. 
The answers are still as given in the statement, and the computations for each of  the cases are 
about equally difficult. We will do them explicit ly for some of  the cases and leave the other cases 
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to the reader. 

dhNo(7) 

dhNo(O) 

dhNo (0) 

dhN~ (~) 

dhN~ (b) 

dhNe(7) 

dltNo(( --sint  "~ "~ / ~ O) = --~ cost ) Y) = ~--oty cos~t + yc~ sin 2 t, 

(yotcos2t-yotsin2t, O)=(yetcos2t, O). 

(( cos, ) )  = dhuo y = (-oty cos t sin t + ~ cos t sin t, O) 
- a  sin t 

= (yc~ sin 2t, O). 

( ( - s i n t  ) )  ( ) 
= dhNo Y -or cos t = Y~ c~ t + y~ sin 2 t, 0 

= ( - y o f ,  O). 

( ( - s i n t ) )  (pfi6t~cos2t+~p~6tsin2t, O ) --   ,cost ; - -  
~ ) o r  sin t P 

= (aV cos2 t + yot sin2 t, O) = (ay cos 2t, 0),  

= dh 

(6.10) 

(6.11) 

(6.12) 

( ( c o s t ) )  
( c o s t )  y ~ 1 7 6 1 7 6  sin t P 

= (oty sin(2t),O). 

( ( a c o s t ) )  ( ) 
= dhN, - sin t F = ot F sin 2 t + ~F cos2 t, 0 

= (ow, O). [] 

We will need a more concrete description of TSp(2, m). To get this we prove the following. 

Proposition 6.6. The vectors 

( X ,  X ,  X ,  . . .  , X ) 

( - y ,  y, y . . . . .  y)  and 

( 7 ,  7, COS(2t)7 . . . . .  cosm-3(2I)7, cosm-2(2t)7 \ ] 

are all tangent to Sp(2, m). 

For the reader who wishes to have an even more concrete description, see Table 6.1 with 
these vectors for the case m = 4. 

Sketch of Proof One can gain a pretty good sense that the statement is correct by observing 
the relationship between the basis {x, y, 71, 72 } and our join decomposition, S 1 ,  S2m , for S 4 (1/2). 
Indeed, under h, x projects to the vector that is radial for dist(S~, .); y projects to a vector that is 
tangent to the S 1 's and 71; and 7"/2 project to vectors tangent to the S2's. A similar statement holds 
for the basis {x, y, 01, ~2} with respect to h. This observation determines the entries in the first 
two rows of Table 6.1 up to sign, and the entries in the second two rows up to a convex combination 
of {yl, Y2}. Unfortunately, a precise proof cannot be obtained without direct computation. It is 
straightforward to do this using (6.8) and (6.9). 
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T A B L E  6.1 

vector type 1 st col 2 nd col 3 rd col 4 th col 

x ( : : : : : ) .  
y )otp ct(  _C~ ) ( _-ctS n t t )ct ( cos:)et 

and 

For example, 

( ( - s i n t ) )  ( ) dhN~ u cos t P = t~ cos 2 t - t~ sin 2 t, - 2  sin t cos t 

= (-or cos 2t, - sin 2t) (6.13) 

( ( ~ 1 7 6  = (6tsin2t+otcos2t,2sintcost) dhN2 - sin t 

= (or cos 2t, sin 2 t ) .  (6.14) 

(6.13) and (6.14) explain the first two entries in the first row of Table 6.1. The first two entries of 
the second row are explained by the computations 

dhu, ( - (  : s i n :  ) o t p )  = -  ( - c o s  2 

and 

t + ~iR sin 2 t, O) = (1, O), (6.15) 

((ocos, /)  ( ) dhN2 - s i n t  ot = o t o t s i n 2 t - c o s 2 t , 0  = ( - 1 , 0 ) .  (6.16) 

The first two entries of the second and third row are explained by similar computations and 
the last two entries of the last two rows are explained by Proposition 6.5(i). 

We leave the rest of the details of these and the other necessary computations to the reader. 
[ ]  

7. The metric on Sp(2, m) 

Let gl denote the canonical unit metric on S 7. 

Our choice of metrics on Sp(2, m) are the restrictions of certain product metrics 

S 7 (u1))< $7 (I)2, c2) • S 7 (1)3, c3) )< " ' "  • $7 (Pro- l ,  C m - 1 )  x S 7 (1)m, Cm) �9 (7.1) 

The metric on the first factor is obtained from gl by scaling Vr, by vl while keeping H~ _1_ V~. 

We denote the resulting Riemannian metric on S 7 by either gv~ or ( , ) ~ .  

The notation S7(vi,  ci) for the Riemannian manifold that is the i th factor (for 2 < i < m) 
stands for the metric on S 7 that is obtained from gl by scaling Vh by vi and Hh by ci and keeping 
Hh _1_ Vh. We denote the resulting Riemannian metric on S 7 by either gvi,ci or ( , )v i ,e i .  
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The metrics we will use will satisfy 

1 > >  Vl > >  V2 > >  I)3 > >  " ' "  > >  1)m-1 > >  1)m > >  

c2 > >  c3 > >  " "  > >  cm > 0 ,  (7.2) 

where the symbol " >  > "  means "much greater than" Its meaning is only implici t -- that  any 
assertions we make are valid provided the gaps between the numbers in (7.2) are sufficiently 
large. 

0 is not perpendicular to 0 with respect to g~l" The vector, 0n(~l), that is normal to 0 and 
satisfies 

dh (On (~l)) = dh(o) (7.3) 

is 

Vl20h(1) + 0v(1) 

On (~1) = ~12 COS2(2t) + sin2(2t) , (7.4) 

where 0h (1) and 0 v (1) denote the components of  0 that are h-horizontal and h-vertical with respect 
to (., ")l. Use Proposition 6.5[(iv), (v)], (6.4), and (6.5) to verify that 0n (~1) satisfies (7.3). 

The normalization in (7.4) is not the one that makes On (ill) a unit vector, rather it is the one 
that keeps dh (On (Ol)) constant with respect to ~1. 

Remark on Notat ion-fonts  for v: There are three notions we have introduced that one might 
naturally denote by the symbol "v." The vertical component of  a vector, v, (p. 163), the specific 
vertical vector o (p. 174), and the scale, v or ~, on the vertical space of the Hopf  fibrations, h or 
h. Our hope is that these symbols look sufficiently like the letter v that the meaning will be easy 
to remember, and simultaneously that the different fonts are still sufficiently distinct that these 
notions will not become confused. 

Identify Sp(2, k) with the first k columns of Sp(2, m). Under this convention, Sp(2, l)  is 
the first column of Sp(2, m), i.e., Sp(2, 1) = sT(vl).  

We will get a hold of the curvature tensor of  Sp(2, m) by studying the sequence of submer- 
sions 

Pm-l,m-2 P3,2 P2,1 $7 h ,  $4 Sp(2, m) Pro.m;1 Sp(2, rn -- 1) > . . .  Sp(2) (Vl) , (7.5) 

where Pk,k-1 : Sp(2, k) ~ Sp(2, k - 1) is the projection of Sp(2, k) onto its first k - 1 entries. 

Proposit ion 7.1. Let  gr k be the Riemannian metric on Sp(2, k) obtained by restricting the 
metric on S p ( 2, m ) . There is a Riemannian metric g~- I on S p ( 2, k - 1) so that 

( Sp(2, k), g~ ) Pk,k;, ( Sp(2, k 1), gS - k - l )  (7.6) 

is a Riemannian submersion. 

Moreover, i f  we fix ~1, ci, and vi for all i <_ k - 1, and let ck --+ O, then g~_l converges to 
g~-l in the C~-topology.  

Ske tch  o f  P r o o f  The existence of g~-I  is an immediate consequence of the fact that Pk,k-1 

is the quotient map of the free S3-action on Sp(2, k) given by 

(q, u l , . . .  ,uk) = (Ul . . . . .  ukq) �9 (7.7) 
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k-1 It remains to compare g~-I with g~-l" Let Pk-1 denote the projection of Sp(2, k - 1) onto 
k - 1  its last factor, and let W = ker d(h o Pk-1)  C TSp(2 ,  k -  1). Let 

W x 0 =  { (co ,0)  Io9 ~ W} C TSp(2,  k ) .  

The vertical space for Pk,k-1 is spanned by 

{(0,0  . . . . .  O, tJ), (0,0 . . . . .  0 ,01) ,  (0,0 . . . . .  0 , 0 2 ) } .  

So with respect to g~, W x 0 is horizontal for Pk,k-1. 

To get a decomposition for the full horizontal space, we set 

Basis ( I ? t k ) = {  ( x , x , x  . . . . .  x )  , 

( - - y , y , y  . . . . .  y ) ,  

(r/1,n (Vl), r/l, cos(2t)01 . . . . .  cosk-4(2t)r/1, cosk-3(2t)Ol, cosk-2(2t)Ol ) , 

(r/2,n (Vl), 02, COS(2t)r/2 . . . . .  cosk-4(2t)rl2, cosk-3(2t)rl2, cosk-2(2t)r/2 ) ] ,  

and 

/~k = Span { Basis (/-)k ) } �9 

Note that the image of/~k under dpk,k-1 is Hk-1. 

r ^ and g~_l we point out that To compare the metrics gk Ispan{ /-/k-t,W• ) 

(a) the four vectors in Basis(/-)k ) are mutually perpendicular with respect to g~; 

(b) the four vectors in Basis( Hk-1 ) are mutually perpendicular with respect to g~-l; and 

(e) Ifco ~ W andz  ~ Hpk.k_ 1 -- Span{ W x 0, /~k} ,then 

g~(z, (co, 0)) gr (dpk,k-l(Z), dpk,k-l(co, 0)) k-1 

Given (a)-(c) only the possible distortion of lengths of vectors in Basis ( Hk ) could prevent the 

submersion (Sp(2, k), g~) Pk'ksl (Sp(2, k - 1), g~-l) from being Riemannian. It is easy to see 
that there is such a distortion and it is by an additive term whose size is no more than Ck. It follows 
that g~-I converges to g~-I in the Ca- topology as Ck ~ O. [] 

The upshot of (7.1) is that rather than actually having a sequence of Riemannian submersions 
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in (7.5) we have a stack 

Sp(2, m) P . . . . .  -----+ 1 (Sp(2, m -  1), gS_ l )  

, _ )  1) g r  1 

(Sp(2,4),g~) 
P4,3 

(Sp(2,3).g~) 

Pm--l,m 2 
Sp(2, m , _ ) - e~ g~, 2 

Pm--2,m-3 

P3,2 
(Sp(2), g~) 

(Sp(2), g~) P2,~ $7 (Vl) ' 
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(7.8) 

Since the change in the metric when we "go down one of the ~'s" is small in the C ~ topology, 
we may (and will) think of (7.8) as a sequence of Riemannian submersions, provided we remember  
that the curvature computations we make are subject to an error that is very small compared to 
Vm. 

Of course there really is a sequence of R i e m a n n i a n  submersions (7.5), but due to the errors 
introduced at each stage in (7.8), the precise description of  the metrics that make the submersions 
in (7.5) Riemannian is fairly complicated, and the subsequent exposition would be even more so. 
For this reason we will think of the stack (7.8) as a sequence instead of the actual sequence (7.5) 
at the cost of  a small amount of  precision, but with the benefit of  considerable simplification. We 
will make no further mention of this device in the sequel, and trust the reader to remember  that 
there will be an error in our curvature computations that can be made arbitrarily small compared 
to our choice of  Vm. 

8. T h e  exot ic  spheres  h a v e  sec  >_ 1 at  a p o i n t  

It follows from Proposition 7.1 and the proof of  the Fukaya-Yamaguchi result (Theorem 4.1) 
that the family of  metrics (7.1) is almost nonnegatively curved. 

Next we point out that (5.1), (5.3), A m , - n  and Am,O are isometric with respect to the met- 
tics (7.1). This is because each action is by symmetries of  h and/~ in each factor. As a consequence 
we see that (7.1) gives us a family of  metrics on Em, - n  for all m, n E • so that 0 < n < m - 1. It 
follows from O'Nei l l ' s  horizontal curvature equation (equation {4}, p. 464 of [15]) that the family 
of  metrics o n  Em,-n is almost nonnegatively curved. 

Since the exotic spheres are among the bundles of  type (m, - ( m  - 1)), to prove Theorem A, 
it suffices to check that the induced metrics on these bundles have a point of  positive curvature. 

1 
P r o p o s i t i o n  8.1. T h e c u r v a t u r e o [ E m , _ ( m _ l ) i s n e a r l y > _ l a t t h e p o i n t p o = _ o r b i t { ( ( O ) ,  

( 0 )  ( 1 )  ) }  
1 ' 0 , �9 . . . . .  , p r o v i d e d  o u r  m e t r i c  p a r a m e t e r s  ~1, v2 . . . . .  Vm, c2, c 3 , .  �9 �9 , Cm are  

c h o s e n  appropr ia t e l y .  

P r o o f .  Once again our argument can be thought of as a generalization of the one in [ 11]. 
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( 1 )  ( 0 )  
At the points 0 and 1 the vertical spaces for h and/7 coincide. Therefore the 

vertical space for the submersion qm,-(m-1) : Sp(2, m) ) Em,-(,n-1) at this point is the direct 
sum 

where 

(0, Vh, 0, 0 . . . .  0) ~ (0,--Vh, Vh,O . . . . .  0) ~ (0, 0,--Vh,  Vh, O . . . . .  o ) ~  . . . . . .  

(o ,o  . . . . .  o , - -Vh,  Vh) , (8.1) 

(O, --Vh, Vh, O . . . . .  0) -- { ( 0 , - w , w , 0  . . . . .  O) ~ TpoSp(2, m) l w ~ Vh} , 

and the other summands of  (8.1) have the obvious analogous definitions. 

It follows that the horizontal space for qm,-(m-1) at P0 is the direct sum 

(Vh, O, 0 . . . . .  O) ~ t2Im , (8.2) 

where/-)m is as defined on page 180. 

By O'Nei l l ' s  horizontal curvature equation ({4} on page 464 of [15]), it suffices to check that 
every plane tangent to (8.2) is positively curved with respect to the family of  metrics (7.1). 

To see this, observe that (8.2) is also the horizontal space for the submersion p2,1 o P3,2 o 
�9 . .  o Pm,m-1 : Sp(2, m) > S7(pl). The curvature of  a plane in (8.2) is therefore the sum of 
the curvature of  a plane in $7(fil) and the appropriate A-tensor "correction term" in O'Nei l l ' s  
horizontal curvature equation. 

S7(~l) is positively curved for all vl < 1. In case the reader does not know this, we set 
fil = 1. Then the curvature of  our plane is the sum of the curvature of  a plane in the unit 
sphere and O'Nei l l ' s  "correction term." The proof is concluded by observing that multiplying our 
metric parameters v2 . . . . .  vm by e multiplies the correction term by e 2  Therefore by choosing 
v2 . . . . .  Vm to be sufficiently small we can guarantee not only that all curvatures of  planes in (8.2) 
are positive, but actually that they are < and nearly equal to 1. [ ]  

Remark on Ricci curvature: It was shown in [14] and [16] that all of  the S3-bundles over 
S 4 admit positive Ricci curvature. It should not be surprising therefore that all of  the metrics we 
have constructed have positive Ricci curvature. 

Appendix 

Topological computations for the bundles of type (4, .) 

A.1.  E4,o 

Consider the S 3 • S 3 • S 3 action on Sp(2, 4) that is given by 

(ql, q2, q3) (u, v, to, x)  = (ql u, ql vq2, q2 wq3, q3x ) �9 

The quotient E4,0 is an S 3 bundle over S 4. Indeed the map 

P4,0 : orbit (u, v, w, x) ~ fz(x) 

is a bundle map. This can be seen via an argument analogous to the one we gave for E3,0. 
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Proposition A.1. (E4,0, P4,0) is the S 3-bundle over S 4 of type (4, 0). 

Proof. We define charts hi, h2 : N 4 x S 3 ~ E for p4,0 by 

1 
hl(u,q)=orbit  ( (  -uq q )~b(u) ' ( f i )~b(u) ' (1 -ti )q~(u) '(  til /dp(u)/ , (A.1) 

and 

h2(v,r)=orbit ( (  f)r r )q~(v), (~ )q~(v ) ,  (__v 1 )~b(v), ( 

hi and h2 are embeddings onto the open dense sets 

~)q~(v)) . (A.2) 

f 
U1 = /orbit 

U2 = { orbit 

In fact their inverses are given by 

a b 
h[ ' (~  ( ( c ) , ( d  

and 

h~ -1 ( orbit 

Therefore 

h21 ohl(u,q) = 

a b or)(~))67~0}  and ( ( ~ )  ( ~ )  ( ,  
a b o r ) ( ~ ) )  /~r ( ( c ) ( ~ ) ( ~  

o( ) ( ~/ ) ( ~ ) ) ) = ( / 5 8  8~tda 
' ' 1312, lallaltdllai) 

(()(~)( ,  = c ' ' I/~12' I/~l-T-~lbilcl) 

h21[orbit ( (  _qq )q~(u) , (~  )q~(u),( 2t ~ )q~(u) , (~  )q~(u))] 

u .uuuq ~ 

I~ 2' Ivl n .] 
U u4q~ 

i~ ~' ~ / �9 

A.2. E4,-1 
S 3 • S 3 X S 3 also acts on Sp(2, 4) by 

(ql, q2, q3) (u, v, to, x) = (qluq3, qlvq2, q2wgt3, q3x) �9 

The quotient E4,-1 is an S 3 bundle over S 4. Indeed the map 

p4,-1 : orbit (u, v, w, x) ~ h(x) 

is a bundle map. Again we can see this via an argument analogous to the one we gave for E3,0. 
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Proposition A.2. (E4,-1, P4,-I) is the S3-bundle over S 4 of type (4, -1). 

Proo f  Let hi, h2 : ]1{ 4 • S 3 > E be defined as in (A.1) and (A.2). 

and 

h21 

The inverses are now given by 

h l l ( ~  ) , (  b ) 

a b 
hzq (~ ( (  c ) ' ( d  ) '  

Therefore 

oh l (u ,q )  = 

( Y )  ( ~ ) ) ) = ( l ~ '  ,6tda6 
, oe , i~L21~lldllal) 

Y ' 1 3 1 ~ l e l )  

h~-] [orbit ( (  _qq )~b(u),(~ )q~(u),( 2fi )~b(u),(~ )q~(u))] 

( u  u u u u q ~  ( u  u4q(~ 

lu[ 2' ~ ,] = lul2, ~ , J  �9 [] 

A.3. E4,-2 
S 3 x S 3 X S 3 also acts on Sp(2, 4) by 

(ql, q2, q3) (u, v, w, x) = (qlu02, qlvq2, q2wq3, q3x) �9 

The quotient E4,-2 is an S 3 bundle over S 4. Indeed the map 

P4,-2 : orbit (u, v, w, x) w-~ h(x) 

is a bundle map. Again we can see this via an argument analogous to the one we gave for E3,0. 

Proposition A.3. (E4,-2, P4,-2) is tile S 3-bundle over S 4 that is of type (4, -2). 

Proo f  Leth],h2 :R 4 x S 3 > E be defined as in (A.1) and (A.2). 

The inverses are now given by 

a b 
hi -1(orbit(( ) ( d )  ( 9 / )  ( ~ ) ) ) = ( l ~ ' , v , ,  ,,_,, , ' ~ d a ~  ) 

C ' ' ' I,~ I210t IZb'/I lal / 

and 

a b ot h21 ( o r b i t ( ( )  ( d )  ( ) ( ~ ) ) ) =  ( ]~2 ' - f l f /bcyf l  
c ' ' ~ ' 13121~121bllcl] " 

Therefore 

h21 o hl(u, q) [orbit (( q (0 

i~ ~' i=6 6 } =  t~i :' i -~  ] [] 



Exotic Spheres with lots of Positive Curvatures 1 85 

A.4. E4,-3 

The S 3 x S 3 x S 3 action on Sp(2, 4) whose quotient is the exotic sphere of type (4, - 3 )  is 

(ql, q2, q3) (u, v, w, x) = (qluql, qlvq2, q2wq3, q3x) �9 

The submersion from the quotient to S 4 is again given by 

P4,-3 : orbit (u, v, w, x) ~ h (x ) .  

Proposition A,4. (E4,-3, P4.-3) is the S 3-bundle over S 4 of  type (4, - 3 ) .  Inparticular, E4,-3 
is an exotic 7-sphere, and is not diffeomorphic to the example of  Gromoll and Meyer or to E3,-2. 

P r o o f  As before we define charts for P4,-3 using the formulas (A.1) and (A.2). hi and h2 
are again embeddings onto U1 and U2, only now their inverses are given by 

and 

a b ot 
h l l ( ~  c ) ( d '  ) ( ,  Y ) (  6fl ) ) ) = ( 1 ~ 2 , ,  , , ~ ~-~ ~ , / ' ~ ~ a  ' l ~ t c t a d e t '  

a b et 
h21 ( o r b i t ( ( )  ( d )  ( 7 ) ( ~ ) ) ) ~ - - ( F ~  2 '  , t - ,  , ~ , - ,  , , / ~ p b c b g ~  C ' ' ' i,ql21yi2ihl2lcl ! " 

Therefore 

h21 o h l ( u , q )  = h 2 l [ o r b i t ( (  q ) r  fi - u q  1 ) r  1 
- f i  

( U  UUUUqU3"~ ( U  u4qu 3 )  
: 1 2, i.r  / =  i i2, �9 [] 
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