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1. Introduction 

In his paper [3], E. Anders~n proved, among several other interesting results, that every 
holomorphic automorphism of C n whose Jacobi determinant is identically I can be approximated 
locally uniformly by finite compositions of  so-called shears. Later [4], E. Anders6n and L. 
Lempert  proved that every holomorphic automorphism of C n could be approximated locally 
uniformly by finite compositions of  overshears. This work was elaborated on by E Forstneri~ and 
J.P. Rosay, and used by them to study AutC n equivalence [12]. Many other results concerning 
automorphisms of C n proceeded to appear, and the list is growing. (A large collection of these 
results may be found in the survey [9].) 

One of the major ingredients common to all of  the results alluded to above is the use of  the 
following theorem, due to Anders6n and Lempert  [3, 4]: 1 

Every holomorphic vector field on C n can be approximated locally uniformly by finite sums of 
complete (in fact, generalized shear) holomorphic vector fields. I f  the vector field has identically 
vanishing holomorphic divergence, then it can be approximated locally uniformly by finite sums 
of complete divergence free (in fact, shear) holomorphic vector fields. 

In an attempt to generalize the recent work on automorphisms from C n to other complex 
manifolds, the author was led to the following definitions: 

A complex manifold M is said to have the density property if every holomorphic vectorfield on 
M can be approximated locally uniformly by Lie combinations 2 of complete vectorfields 3 on M. 

It is also natural to study so called "geometric structures," i.e., Lie subalgebras of  the Lie 
algebra ,V O (M) of all holomorphic vector fields on M. 

A geometric structure 1~ on a complex manifold M is said to have the density property if every 
holomorphic vector field in t~ can be approximated locally uniformly by Lie combinations of 
complete vector fields in 1~. 

1 The theorem does not appear in this form in [3, 4], but is phrased in this way in [ 12], Lemma 1.3. The analogous 
theorems in [3, 4] are [3], Theorem 5.1, and [4] Proposition 3.9. 

2See (2) below. 
3See Section 2.3 
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Clearly M has the density property if and only if , 'go(M) does. Another important special 
case occurs when we specify on our complex manifold M a holomorphic volume form co. Denote 
by 2(~(M) the Lie algebra of all holomorphic vector fields X on M with div~oX = 0 (see 
Section 2.2). 

I f  the geometric structure X ~ ( M )  has the density property, we say that (M, o9) has the volume 
density property. 

We remark (see Section 4) that for a complex Lie group G there is a natural choice of 
holomorphic volume elements, namely left (or right) invariant ones, and that the algebra A'~ (G) 
is independent of the choice of left invariant o9. We can thus refer to a complex Lie group as 
having the volume density property, omitting reference to the left invariant holomorphic volume 
element in question. We can now state our 

Main Results: 

I. 1. I f  M and N are Stein manifolds with the density property then so is M x N. 

2. I f  a Stein manifold M has the density property, then so do M x C and M x C*. 

3. I f  ( M, o9) is a Stein Manifold with holomorphic volume element such that ( M x 
C, co A d z )  has the volume density property, then M x C has the density property. 

II. 1. For any complex Lie group G, G x C has the volume density property. 

2. I f  moreover, G is Stein, G x C has the density property. 

3. I f  G is a complex Lie group having the volume density property, then G • C* has 
the volume density property. In particular, (C*) k has the volume density property 
for  all k E N. 

n,k consisting o f  holomorphic vector III. 1. I f  n > k > 1, then the geometric structure go ' 

fields on C n = C l~ • C n-k which vanish on C/~ • {0}, has the density property. 
> �9 n k  �9 �9 �9 2. I f  n > k _ 2, then the geometrm structure gT" , consisting of  holomorphlc vector 

fields on C n = C k x C n-k which are tangent to C k x {0}, has the density property. 

Remark: Regarding the results IlI above, an observation about some results in [5, 8] gives the 
following negative result: 

For n > 2 there exist proper holomorphic embeddings j : C n-1 ~ C n such that the geometric 
structures fJ T ( j  ) ( resp. go(j)),  consisting o f  holomorphic vector fields which are tangent to ( resp. 
vanish on) j (cn-1),  do not have the density property. 

The basic intention of the definition of the density property is to isolate those complex mani- 
folds for which the gap between differential topology and holomorphic geometry is considerably 
narrowed (that is to say, where the holomorphic geometry is somewhat flabby). The idea is that 
if for example a Stein manifold has the density property, then its group of holomorphic automor- 
phisms is "very large." (The passage from the infinitesimal regime of vector fields to the global 
regime of automorphisms is provided by the theory of ordinary differential equations. This is 
explained more precisely in Section 2.3.) In contrast, the reader should compare our ideas with 
those discussed in the books of S. Kobayashi [22, 23]. Thus the density property for Stein man- 
ifolds should be thought of as the opposite extreme of (Kobayashi) hyperbolicity, of finite type 
G-structures, or of elliptic structures on compact manifolds, etc. 

In some cases, the fact that a complex manifold or a geometric structure has the density 
property gives little information. For example, when the manifold is compact the density property 
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holds trivially, but there are relatively few holomorphic vector fields [22]. However, if M is a 
Stein manifold, then Xo(M) is an infinite dimensional complex vector space. Since complete 
vector fields on M are very sparse [6, 10], if the geometric structure in question is sufficiently 
large (e.g., ~1 ---- Xo(M)or, if d i m c  M > 2, ~ = X~(M)), the density property for ~t may be 
useful in the construction of  various global objects. 

A well-known object of  study, introduced by S. Chern, is that of  G-structure. A G-structure 
on a manifold M is a subbundle P of  the principle bundle L (M) of  frames of  M, with structure 
group G. Some of  the geometric structures which we study arise as infinitesimal automorphisms 
of  G-structures, but this is not the case, for example, with the structures ~r  and 1~0 of  Section 5. 
Geometric structures in our sense represent more the geometry of  the group of  automorphisms in 
question than that of the manifold. 

Finally, it should be emphasized that the understanding of  the density property at this point 
is very poor; all we have is a collection of examples and applications. Little is known about 
the relationship between the density property and other, more accessible properties of  complex 
manifolds. (For the few known facts, see [29].) 

Before proceeding, we should clarify matters regarding our notation. 

(1) For us, holomorphic vector fields on a complex manifold M are holomorphic sections of  
the bundle TI'~ and we denote the set of  holomorphic vector fields by Xo(M). However, 
we implicitly identify TI'~ with TM. (T1'~ 9 X ~ 2Re(X) ~ TM.) This presents no 
difficulties, since we restrict our attention to holomorphic vector fields. See Section 2 for the 
definitions and the Lie algebra structure of  ,'YO (M). 

(2) A Lie combination of  elements of a subset S of  a Lie algebra a is an element of  the Lie 
subalgebra of  a generated by S. That is to say, a Lie combination of  elements of  a subset S is an 
element of  a which can be written as a finite sum of terms of the form 

[ [ . . . [ [ a l , a 2 ] , a 3 ]  . . . . .  a n - l ] , a n ]  , 

with al . . . .  , an E S. 

(3) The local flow of  a holomorphic vector field X on a complex manifold M is the unique local 
1-parameter group or pseudogroup of biholomorphisms [pt} on M which represents the "set of  
local solutions" of  the O.D.E. (in a local coordinate chart U _ M) 

d t ~ (z) = x o ~0t(z), ~0~ = z (z ~ u ) .  

This local flow satisfies the local group law 

ps opt (z) = ~o s+t (z) 

wherever and whenever both sides make sense. (If the statement makes sense for all s, t E 1~ and 
z 6 M, we say X is ]~-complete; see also Section 2.3). This group law is a consequence, via 
the uniqueness theorem for solutions of  O.D.E., of  the fact that vector fields do not depend on 
time (i.e., X defines an autonomous system, and so the "physical laws" which X represents are 
"symmetric" with respect to time.) 

(4)Atime-dependentvector fieldis aspecialoneparameterfamilyofvectorfields {Xt} _c Xo(M). 
The parameter t, called time, lies in (some subset of) ~,  and it is implicitly understood that the 
solution (also called "time dependent flow" or "evolution operator") of  the O.D.E. associated to 
{Xt} has the same time parameter t. In particular, the solutions depend on the initial time. We 
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denote these local one parameter families by {~0~ }. Precisely, we have (locally) 

d t 
2;~os(z) = x t  o ~o~(z), ~0~(z) = z, (z e v ) .  

The local group law of the autonomous system is replaced by the determinacy law 

o r ~g(z) = ~Or' ~s(Z) 

wherever and whenever this makes sense. 

(5) We think of T as the "tangent functor" (see [17]), and so for a holomorphic map f : M ~ N 
we denote by T f  : TM ~ TN the map which, in locally trivial coordinates, is given by 

Tf(x,  v) = (f(x),  f '(x)v) . 

We prefer this notation to the more common notations d f  and f , ,  using the former for the linear 
manifold C n, and reserving the latter only for diffeomorphisms/biholomorphisms, when pushing 
forward a vector field: for a vector field X, f , X  is the vector field given by 

(: ,X)  (x) : :  T :  ( s - l ( / ) ) X  ( : - l ( x ) )  . 

In particular, if the local flow of X is ~o t, then that of f , X  is f o ~0 t o f - 1 .  

The organization of this article is as follows: 

In Section 2 we describe the ideas in complex geometry and ordinary differential equations 
(dynamical systems) which motivate the definition of the density property, and are useful in 
applications. The status of this section as it pertains to this note is motivational. In Section 3 we 
define the density property and discuss its relation to automorphism groups on Stein manifolds. 
We then prove some general results about the density property, namely its behavior with respect to 
Cartesian products of complex manifolds. In Section 4 we prove that various complex Lie groups 
have the density property and the volume density property. In Section 5 we discuss relative 
geometric structures, proving both positive and negative results regarding the density property. 

2. Holomorphic vector fields 

In this section we introduce the basic notions needed from complex geometry and the theory 
of ordinary differential equations (O.D.E.). 

2.1. Basic definitions 

It is well known that there are two (R-isomorphic) representations of the holomorphic tangent 
spaces of a complex manifold M of C-dimension n. To recall, one begins with the real tangent 
space TzM, and obtains a complexified tangent space TCM := TzM| The complex structure 
on M then gives rise to a (holomorphically well defined, or integrable) splitting 

rzCM ~ rzl,OM e rY, lM,  

where Tz I'0M := span{ ~zj } and Tz ~ := span{ ~ }. Writing Jr z : Tz CM --* Tz l '~ for the 

projection and Jz : TzM ~ TzeM for the injection, it is then easy to see that ~0 z := 7rz o Jz is a real 
vector space isomorphism for each z ~ M. (More details can be found in [14].) Consequently, 
we obtain a map ~0 which takes sections of TM (i.e., the usual vector fields) to sections of TI'~ 
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Precisely, qg(X)(z) := ~ozX(z), and it is easily verified that q)-lZ = 2ReZ. One also defines an 
almost complex structure J on T M  by Jz := (q)z)-lvrL-lq)z �9 

The sections of T M  and those of T k ~  both form Lie algebras when endowed with their 
respective commutator brackets. (The commutator bracket on T l '~  is the one inherited from 
TCM,  which itself is the complexification of the commutator bracket on T M . )  When restricted 
to so-called holomorphic vector fields, ~o is a Lie algebra isomorphism. 

More precisely, the holomorphic vector fields, which we denote by 2(O (M), are those sections 
of T M  which are mapped by q9 to holomorphic sections of TI '~  It is an immediate consequence 
of the Cauchy-Riemann equations that for any vector field X on M and any holomorphic function 
f on M, qg(X) f  = X f .  Hence an alternate definition of holomorphic vector field is that as a 
derivation, it maps O ( M )  to O ( M ) .  This is now easily used to show that q) is in fact a Lie algebra 
isomorphism from XO (M) to the holomorphic sections of T I,~ Note, in particular, that every 
holomorphic vector field X commutes with J X .  

2.2. The invariant notion of divergence 

Let M be a complex manifold of complex dimension n, and let w be a nonvanishing holo- 
morphic (n, 0)-form, i.e., a holomorphic volume element. Let X E ,u (M), and let ~o t be the 
local flow of X (see Section 1). Then we can define divojX to be the unique holomorphic function 
on M which satisfies 

d 
(div~oX) w := (~o-t)* ~-~ (qgt)* (.o = L x w .  

We recall H. Cartan's formula for differential forms ce [11: 

Lxo~ = XJdot + d(XJt~) , 

where for a k-form/3, X J/3 is the (k - l)-form defined by 

(XJ/3)p (Vl . . . . .  V k - 1 )  : =  /3p (X(p) ,  1)1 . . . . .  1 ) k - l )  , Vl . . . . .  Vk-1  E TpM.  

Using the fact that w is closed, we obtain 

(divojX) o) = d ( X J w ) .  

This formula makes sense even if X is time-dependent. Moreover, it is known (see [1, The- 
orem 2.2.24]) that if Xt is a time-dependent vector field with evolution operator ~Os t, then the 
formula ,) , ,  

holds. Consequently we obtain. 

Proposition 2.1. Let  Xt  be a time-dependent vector field with evolution operator ~ots. Then 
(~o~)*w = oJ i f  and only i f  d i % X t  =- O. 

The reader can easily verify that when X ~ O(C) and w = dz, 

div  = 

while when X ~ O(C*) and w = -~, 

div~o X (z) . z = z - -  �9 
Oz 
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More generally 4 if G is a complex Lie group, {V1 . . . . .  Vn} (n = d i m c  G) is a basis of  left 
invariant vector fields on G, and coc is the unique left invariant holomorphic volume element on 
G such that coc (V1 . . . . .  Vn) = 1, then for 

x =  _xjvj Xo(O) (xi o(o)) 
J 

we have 

div~~ = Z Vj (Xj) . 
J 

A result which will be very useful in the sequel is: 

Lemma 2.2. div~([X, Y]) = XdivojY - YdivojX. 

Proof .  Recall that L[x,y] = L x L y  - L y L x .  We have 

(div~o[X, Y]) co = L[x,r]co 

= L x L y w -  L y L x w  

= L x  ((divwY) co) - Ly ((div~oX) co) 

= (Xdiv~oY) co + (divo~Y) Lxco - (Ydiv~oX) co + (divo~X) Lyco 

: (XdivwY - Ydiv~oX) co + (divwXdiv~oY - divo~Ydiv~oX) co 

: (Xdiv~oY - Ydiv~oX) co , 

as desired. [~ 

Finally, let us point out that if (M, w) and (N, 0) are complex manifolds with holomorphic 
volume elements, then so is (M x N, (srM)*W A (SrU)*O), where ~rM : M • N -+ M and 
Y~U : M x N --+ N aretheusualprojections. I t i seasy tover i fy tha t fo rX = (U, V) ~ 2(o(M x N)  
one has (writing w/x 0 for (~M)*CO A (TrU)*O) 

div~oAoX = divo~U + div0V . 

2.3. Elementary ideas from O.D.E. 

In this section we recall some results from the theory of  O.D.E., regarding approximation of  
solutions to O.D.E. These results are the essence of  the passage from the infinitesimal regime of 
Lie algebras of  vector fields to the local and global regimes of  pseudogroups of biholomorphisms 
and groups of  automorphisms, respectively. The main reference here is the book of  R. Abraham 
and J.E. Marsden [1]. We omit many details, and so refer to this source for background from the 
outset. 

Def in i t ion .  A holomorphic vector field X (time independent or not) is called I~-complete if its 
integral curves through any point are defined for all t c l~. X is called C-complete if both X and 
i X are R-complete. 

In general, it is possible to extend the "time" of  flows of  holomorphic vector fields to the 
complex domain, and define C-completeness in a different but equivalent way. Since we do not 

4See Section 4. 
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make use of flows defined for complex time, we shall skip over this point. The interested reader 
is referred to [6, 7, 10] for more on this subject. 

Perhaps the most crucial fact for us regarding holomorphic vector fields is that the flow of 
a complete holomorphic vector field is a one parameter group of automorphisms. (The group 
structure is lost if the vector field is time dependent, and we just get a one parameter family of  
automorphisms.) This is not true if the vector field is not complete. Generally, the flow of an 
incomplete vector field is a local one parameter group (or family if there is time dependence). Our 
aim is to understand when the time T maps of this local flow can be approximated, uniformly on 
compacts in their domains of  definition, by automorphisms. A notion which helps in this regard 
is that of  consistent algorithms. 

Definition ([11). Let M be a complex manifold, X E 2(o(M),  and I c_ ~ an interval 
containing 0. Suppose q~ : M • I --+ M is a continuous mapping such that qb(z, .) is C 1 for 

a ,  
each z c M, and q~(., t) and ~- ( - ,  t) are holomorphic for each t 6 I .  We say q~ is an algorithm 
consistent with X if 

(i) qb(., O) = idM, and 
(ii) o0 @-Jt=O = X.  

We write qbt :=  qb(., t) and define qb~ 1) :=  * t ,  ,~n)  :=  (i)t o ,~n -1 ) .  

The following theorem is proved in [1, Theorem 2.1.26] in the real setting, but the same 
proof holds in the holomorphic category. 

T h e o r e m  2.3 ([1]). Let  �9 be an algorithm consistent with a vector field X,  and let {~pt} 
(n) be the f low o f  X.  Then for (t, x)  in the domain o f  definition o f  {~o t }, Ot/n (x) is defined for n 

sufficiently large and converges to 9 t (x ) as n --+ oo. Conversely, i f  d~ l~)n is defined and converges 

for 0 < t < T, then (T, x) is in the domain o f  definition o f  {~ot}, and 

lim +~n) (x )  = ~vt(x) 
r/---~ (x) ] 

R e m a r k :  The notion of consistent algorithm can be applied to approximate evolution operators 
of  time dependent vector fields by using a standard "one step method." 

The next proposition, together with Theorem 2.3, is the reason for the Lie algebra structure 
in the formulation of the density property in Section 3. 

P r o p o s i t i o n  2.4. I f  X and Y are vector fields with flows f and g, then 

I. (z, t) w-~ f t  o gr (z) is an algorithm consistent with X + Y, and 

2. (Z, t) ~ g - . f~ l  o f-sgn(t)~f~l o g~f[i~ o f s g n ( t ) ~ l ( Z )  is an algorithm consistent with 

[x, Y]. 

Proof .  This is just an exercise in differentiation. In particular, it is seen that locally g-S o 
f - t  o gS o f t  (x) = x + s t[X,  Y](x) + O(S 2 -4- t2), and hence the algorithm in 2 is C 1. [ ]  

More generally, this proposition can easily be used to show that given any Lie combination of 
vector fields, an algorithm can be constructed for this Lie combination using a finite composition 
of the flows of the vector fields appearing in the Lie combination. 
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It is a standard fact in the theory of  O.D.E. (using Grrnwall 's  inequality, see [1] for the 
latter) that approximation of  vector fields leads to approximation of  flows. Together with this, 
Theorem 2.3 and Proposition 2.4 tell us that if we are given a family of  complete vector fields 
{X~} on a complex manifold M, then we can approximate the local flow of any Lie combination 
of  the Xa 's  by automorphisms of  M. 

There are two natural subgroups of AutM associated to the collection {Xa } of  complete vector 
fields. The first group, denoted by 5 r = 5r({Xa}), is the group consisting of  finite compositions 
of  all time-t maps of  the vector fields in {Xa}. The second group ~ = G({Xu}) is the closure of 
5 r in AutM, in the topology described in [4], namely, the one in which we say fn --+ f if fn ~ f 
and f n  1 --+ f - 1  uniformly on compact subsets. (The first group U was of  importance in [3, 4], 
where they showed that in general, 5 r # G. Contrast this with the case of  finite dimensional Lie 
groups.) 

Suppose now that one is given an automorphism qb ~ AutM, which is connected by a C 1 
path {~t} ___ AutM to idM, and one wants to know whether ~ 6 ~. In this direction, write 
Xt :=  ~ t  t o ~ -  1. Xt is a time dependent vector field. Let $ be the closure in 2( O (M) of  the Lie 
algebra generated by the Xa's.  With this notation we have 

Theorem 2.5. I fX t  ~ $ foreacht E [0, 1], then �9 ~ G. 

We will make use of  the following well-known lemma, which we do not prove. 

L e m m a  2.6. Let { fn } be a sequence of automorphisms which converges to an automorphism 
f uniformly on compact sets. Then { f n  1 } converges to f -  l uniformly on compact sets. 

Proo f  o f  Theorem 2.5. In view of  Lemma 2.6, we need only to show that given an E > 0 
and a compact set K CC M, there are f l  . . . . .  fN E F such that 5 

sup dist (fn o . . .  o f l (x ) ,  qb(x)) < ~ . 
xEK 

Fix 6 > 0, and N c Z+ large enough so that N3 < 1. Put T :=  Nr, Tj :=  j6  for 0 < j < N, 
Ij := [ T j _ l ,T j ] f o r l  < j < N, and 

I 0 t ~ Ij 
X j , t  

I Xrj_l t ~ lj  

( N 
Z j = I  Xj,t  should be thought of as the piecewise constant approximation to Xt for 0 < t < T.) 

By approximation, we may assume that each XT,j is a Lie combination of  the X~'s. The flow of  
X j, t i s  

id t < Tj-1 

t gj = htj -Ti-I Tj-1 < t < Tj 

E hj t >  Tj 

where hj is the local flow of  the (time independent) vector field XTj_I. Then the local flow of 

Y~N= 1 Xj,t at time T is 

oh;_1 

5The distance dist is with respect to some fixed complete Riemannian metric. 
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It is possible to show (see for example Section 4 of [3]) that this flow converges to the time-T 
map of the flow of Xt locally uniformly. The conclusion of the theorem now follows by taking 
T = 1 and applying Proposition 2.4 and Theorem 2.3 to approximate �9 by a finite composition 
of the hj 's,  and to approximate each of the hj's by finite compositions of members of b r .  [ ]  

3. The density property 

In this section, we define the density property, and develop some elementary aspects of it. 
While it makes sense for any complex manifold, the density property is most interesting on Stein 
manifolds. 

3.1. The definition 

Let M be a complex manifold. A Lie subalgebra ~t of XO (M) is said to have the density 
property if the Lie subalgebra of ~t generated by all the complete vector fields in 9 is dense in g 
in the locally uniform topology: 

(X 6 ~ : X complete) = ~1 �9 

Perhaps the most important case occurs when the Lie algebra under consideration is A" O (M) - 
the Lie algebra of all vector fields. In this case, we will say that M has the density property. 
Another very important case occurs when M admits a holomorphic volume element w. We will 
say that (M, o9) has the volume density property if the Lie algebra Ac'~(M) of divergence zero 
vector fields on M has the density property. 

3.2. A remark regarding automorphism groups 

In our forthcoming note [29], we explore more precisely the consequences of the density 
property on automorphism groups. For now, we content ourselves with the following remark. 

While there is a theory of infinite dimensional groups which assigns infinite dimensional 
manifold structures to these groups and so on, the theory has been most successful over compact 
manifolds. Since we are interested mostly in noncompact manifolds, we shall avoid these details 
in this article, and give an operational definition based on the following facts. 

Suppose we have a (finite dimensional) Lie group G acting on a manifold M. (M can be 
either C r, 1 <_ r <_ o9 or complex.) Then the set of infinitesimal generators of one parameter 
subgroups of | forms a finite dimensional Lie algebra. Conversely, the following is Theorem 3.1 
of [22] 

Proposition 3.1 ([22]). Let G be a group of  differentiable transformations o f  a manifold 
M. Let S be the set o f  all vector fields on M which generate global 1-parameter groups {q)t} of  
transformations of  M such that {~0 t } _ 6 .  I f  the set S generates a finite-dimensional Lie algebra 
of  vector fields on M, then ~ is a (finite dimensional) Lie transformation group and S is the Lie 
algebra o f t .  

This motivates the following definition. 

Definition. A group G of holomorphic transformations on a complex manifold M is said to be 
infinite dimensional if the set of complete holomorphic vector fields whose flows lie entirely in 
G generates an infinite dimensional Lie algebra. 
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Of course, by the work in Section 2.3 above, this definition is equivalent to any reasonable 
definition of infinite dimensionality. 

With this definition we have the following proposition. 

Proposition 3.2. Let  M be a Stein manifold, 

1. I f  M is o f  positive dimension and has the density property then Au tM is infinite dimen- 

sional. 

2. I f  M is o f  complex dimension >_ 2 and admits a holomorphic volume element w such 

that (M,  oJ) has the density property, then 

AutC~ := { f  E AutM : f * w  = w} 

is infinite dimensional. 

The proof is an immediate consequence of the definition of the density property and the 
following lemma, whose proof is itself an elementary application of Cartan's Theorem A and the 
defining properties (see [18]) of Stein manifolds. We state without proof the following. 

Lemma 3.3. Let  M be a Stein manifold. 

1. I f  M has positive dimension then 2( 0 (M)  is an infinite dimensional vector space over 

C. 

2, I f  M is o f  complex dimension > 2 and admits a holomorphic volume element co then 
AS~ ( M )  is an infinite dimensional vector space over C. 

We remark only that in the proof of 2, one must use the duality provided by w. 

The converse of Proposition 3.2 is false. That is, there exist Stein manifolds without the 
density property which have infinite dimensional automorphism groups. We leave it to the reader 
to check that C x A is one such manifold, where A is the unit disc. 

3.3. Product theorems 

We begin with the following result. 

Theorem 3.4. I f  M and N are Stein manifolds with the density property, then so is M x N.  

The proof is an almost immediate consequence of the following lemma. 

Lemma 3.5. I f  a Stein manifold M has the density property and Xx is a holomorphic vector 

field on M depending holomorphically on a Stein parameter)~ c A ,  then Xx can be approximated 
locally uniformly on M x A by Lie  combinations o f  complete holomorphic vector fields which 
depend holomorphically on the parameter )~. 

P r o o f  Let j : A ~ C n be a proper holomorphic embedding. (Such embeddings always exist 

for Stein manifolds; see e.g., [18].) Consider the vector bundles T M  x A "> M x A defined 

by zc(v, X) (x,)~) for v ~ TxM, and T M  x C n :r' cn  = = > M x defined by Jrt(v, z) (x, z) for 
v ~ TxM. The embedding j induces a bundle monomorphism j : T M  x A --~ T M  x C n, i.e., 

7f ! 
j ( v ,  k) = (v, j()~)). Now, t h e s h e a f S o f g e r m s o f h o l o m o r p h i c s e c t i o n s o f T M x C  n > M x C  n 
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is known to be a coherent analytic sheaf over M • C n (see [15, 16] for this and other facts 
used below, regarding coherent analytic sheaves on Stein manifolds), and since A is an analytic 
submanifold of C n, the subsheaf ZM • A of germs of  holomorphic sections vanishing on M • A 
is also known to be coherent analytic over M x C n. By standard sheaf theory, the quotient sheaf 
~M• :=  S/ZM• is also coherent analytic over M x C n, and the latter is identified with the 

sheaf of  germs of holomorphic sections of TM • A ~r > M x A. The short exact sequence 

0 ~ ~ M x A  ~ S ~ ~MxA --> 0 

gives rise to a long exact sequence in cohomology, a segment of which is 

. . .  ---> HO (M x C n , s )  ----> HO (M x Cn,~MxA) ---> HI (M x Cn,ZM• ---> . . . .  

and since M x C n is Stein, Cartan's Theorem B says that 

H 1 (M x C n, Z M •  = 0 .  

It follows that 
HO(M • cn,s)"- ' -> HO(M • cn ,  ~M• 

is surjective. As H ~ is identified with global sections, we see that every section of T M  • A rr > 

M • A is the restriction to M • A of  a section of  T M  • C n ~r'> M • C n, via the identification 
mentioned above. 

To finish the proof of the lemma, we observe that the section Xz of  TM • A ~r > M x A 
can be developed in a power series in )~ (thinking of ~. as a point in cn), whose coefficients are 
members of  ,V O (M). Truncating the power series finishes the job. [ ]  

P r o o f  o f  Theorem 3.4. Write X = (V, W) c 2(o(M x N) as X = (V, 0) + (0, W). Now 
use Lemma 3.5 to approximate (V, 0) and (0, W) by a Lie combination of  complete holomorphic 
vector fields on M x N which are tangent6to M and N, respectively. [~ 

We now turn our attention to some results for Stein manifolds which are not encompassed in 
Theorem 3.4. (We note that the Stein manifolds in question must be of  positive dimension for the 
results to be true, but we will neglect to mention this, assuming it from the outset.) These results 
rely heavily on the following lemma. 

Lemma 3.6. On any Stein manifold M there exist vector fields X1 . . . . .  X N ~ X'o(M) and 
functions 91 . . . . .  q9 u ~ O(M) such that 

N 

Z Xjqgj = 1. 
j = l  

Proof. Choose q)l . . . . .  ~0 N as the coordinate functions of some immersion ~o " M ~ C N. For 
a holomorphic vector bundle Y, denote by S(Y)  the sheaf of germs of  holomorphic sections of 
Y. We denote by EM the Whitney sum of N copies of  TM with itself, and by 1M the trivial line 
bundle over M. Then ~0 defines a map <P : S(EM) -+ $(1M), defined by 

N 

(I) (V1 . . . . .  VN) = Z Vj~oj = t race  (T~o (V1 . . . . .  VN)) . 

1 

6A vector field X on M • N is said to be tangent to M if it is of the form X = (V, 0), and similarly for N. 
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qb is clearly surjective, and hence we obtain a short exact sequence of coherent analytic sheaves 

0 ~ ker cb ~ S (EM) ~ S (1M) -~ O. 

Passing to the induced long exact sequence in Cech cohomology and applying Cartan's Theorem B, 
we obtain that H~ S(EM)) ~ H~ S(1M)) is surjective. In particular, the global section 
1 of S(1M) is in the image of qb,. That is to say, there are vector fields X1 . . . . .  XN such that 
E Sjqgj = 1, as desired. []  

R e m a r k :  In a previous version of this note, we had an approximate version of this lemma, which 
was sufficient for the proofs to come, but which made those proofs more cumbersome. We wish 
to thank Laszlo Lempert, as well as the referee of this note, for pointing out to us that this lemma 
is true. 

Before stating the next theorem, we make the following observation. If M is a complex 
manifold, then any vector field on M x C (resp. M x C*) can be expanded in a power series 
(resp. Laurent series) in z ~ C (resp. C*) which converges locally uniformly on M x C (resp. 
M • C*). The component of this vector field which is tangent to M will be a power (resp. 
Laurent) series in z with coefficients in A'o(M). By truncating the power (resp. Laurent) series, 
we can approximate our vector field locally uniformly by vector fields which are polynomial 
(resp. Laurent polynomial) in z. (This is the trivial case of Lemma 3.5, whose proof basically 
consists in reducing to this case.) If M admits a holomorphic volume element w, the reader may 
verify that the approximation can be done in a divergence free way. (We use the volumes dz on 
C and ~z on C*; see Section 2.2.) 

Theorem 3.7. I f  M is a Stein manifold with the density property, then so are M • C and 
M x C * .  

Proof.  As observed above, we need only to prove that every holomorphic vector field which 
is polynomial (or Laurent polynomial) in z can be approximated, uniformly on compacts, by Lie 
combinations of complete vector fields. Moreover, since M has the density property, it is easy to 
verify (say, using power or Laurent series) that the set of vector fields on M • C (or M x C*) 
which are tangent to M must also have the density property. Thus it suffices to prove that for 
each k ~ Z (k ~ Z+ for the M x C case) and each ~0 E O(M),  the vector field zk~o(x)~z can 
be approximated, uniformly on compacts, by Lie combinations of complete vector fields. In the 
case of M x C and k = 0, there is nothing to prove, as the vector field ~o(X)~z is complete. For 
the general case, let X1 . . . . .  XN, qgl ..... q9 N be as in Lemma 3.6. Now 

zk-lq)(x)Xj(x) (-1-0" ~) 

is approximable, locally uniformly, by Lie combinations of complete vector fields (since M has 
the density property), and ~oj(x)z~ is complete (both on M x C and on M x C*). Hence the 
vector field 

Izk-lq)(x)Xj(x),q)j(X)Z~-~] 
(k > 1 in the M • C case) is approximable, locally uniformly, by Lie combinations of complete 
vector fields. But by Lemma 3.6, 

N[ o] k 0 
j : l  OZ 
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modulo vector fields tangent to M. Thus the proof is finished. 

T h e o r e m  3.8. I f  (M, co) is a Stein manifold with holomorphic volume element, such that 
(M x C, co Adz)  has the volume density property, then M • C has the density property. 

We shall need the following lemma. 

Lemma 3.9. Under the hypotheses of Theorem 3.8, let f c O( M) and k c Z+. Then there 
is a holomorphic vector field Z ~ X o ( M  • C) which is approximable by Lie combinations of 
complete holomorphic vector fields on M x C, such that 

(div Z)(x, z) = zk f (x) �9 

Proof. Let X1 . . . . .  XN, ~O1 . . . . .  ~ON be as in Lemma 3.6, and put 

:> 

Then divYj = 0, so by hypothesis Yj is approximable by Lie combinations of complete (diver- 

gence zero) vector fields on M • C. Since ~oj(x)z~ is complete, 

Zj(x, z) : =  ~j(x, z), ~oi(x)zTz 

is approximable by Lie combinations of complete vector fields on M • C, and by Lemma 2.2 

div Zj (x, z) = Yj (x, z)q~j (x) = z k f (x) (X j ~oj) (x) . 

By Lemma 3.6, 
N 

Z := ~ - ~ Z j  

j = l  

does the job. [ ]  

Proof  o f  Theorem 3.8. Let V ~ A'o(M x C). By the observation preceding Theorem 3.7, 
we may assume V is of the form 

k=O 

Since ~k0(x) ~ is complete, we may assume ~0 = 0. Now 

. i v  (z, + 
k=0 

Let Zk, 0 < k < N be vector fields on M x C, chosen so that 

div Zk = z k (div~oVk(x) + ~k+l (x)) . 

Such vector fields, with the additional feature that they are approximable by Lie combinations of 
complete vector fields on M x C, are provided by Lemma 3.9. A computation shows that 

div (V - ZZk) = O. 

It follows from the hypotheses that V - Y~ Zk is approximable by Lie combinations of complete 
vector fields, and hence so is V = ~ Zk + (V - ~ Zk). This completes the proof. 
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4. Complex Lie groups 

A complex Lie group G is a complex manifold which has the structure of a group, such that 
the mappings Lg : h ~ gh and Rg : h ~ hg of G to itself are holomorphic for each g ~ G. For 
details about complex Lie groups, we refer the reader to [13], which is one of many references 
on the subject. 

Every complex Lie group has trivial canonical bundle, and in fact admits a canonical one 
parameter family of holomorphic volume elements, constructed as follows: Let V1 . . . . .  Vn be a 
basis of left invariant vector fields on G, and let al . . . . .  an be a dual basis of left invariant 1-forms. 
Then the holomorphic volume element WG : :  al A. �9 �9 A an is a left invariant holomorphic volume 
element. Every left invariant volume element is a constant multiple of ~OG. We note that the Lie 
algebra of vector fields X ~ Xo(G)  such that LxwG = 0 (i.e., divog~X = 0) is independent of 
the choice of left invariant COG. As we pointed out in Section 2.2, if 

?/ 

X : Z X i l ~  c 2(o(G) 
1 

then 

div~o6 X -- Z Vi X i  �9 

Thus, in particular, left invariant vector fields are of divergence zero. 

Let us now turn our attention to Stein Lie groups, i.e., complex Lie groups whose underlying 
manifold is Stein. It is known [21, 28] that G is Stein if and only if H 1 (G, 69) = 0. 

Proposition 4,1. I f  G is Stein, then every X c 2(o(G) is C-complete i f  and only i f  it is 
IR -complete. 

Proof. Since G admits one to one immersions of either C or C* tangent to any direction 
at any point (use the flows of left invariant vector fields), there are no nonconstant negative 
plurisubharmonic functions on G. The result follows from a theorem of Forstneri~ [7]. [ ]  

Let us give some examples of Stein Lie groups. 

1. Every simply connected complex Lie group is Stein [25]. (Recall that there is for every 
finite dimensional complex Lie algebra a a unique (as Lie group, but not as complex 
manifold) simply connected complex Lie group whose Lie algebra is ~.) Some examples 
are SL(n, C), Spin(n, C), and Sp(n, C), among many others. 

2. Gl (n ,C) (n  > l )andSo(n ,C) (n  > 2)areStein. (So(n ,C) is thesubgroupofGl(n ,C)  
consisting of matrices A satisfying A t = A-1.) None of these are simply connected (and 
they are distinct except for Gl(1, C) = So(2, C) = C*). Gl(n, C) is Stein because it is 

the complement in C n2 of the closed subvariety {det = 0}. So(n, C) is Stein because it 
is a closed complex submanifold of the Stein manifold Gl(n, C). 

3. The only commutative Stein Lie groups are (C*) k x C t. 

There are, of course, other examples. 
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4.1. Density theorems 

We now come to our first results regarding the density property. When we refer to a com- 
plex Lie group as having the volume density property, it is with respect to (any) left invariant 
holomorphic volume element. 

Theorem 4.2. Let G be a complex Lie group. 

(1) G x C has the volume density property. 

(2) I f  G is Stein and of  positive dimension, then G • C has the density property. 

Remarks: 

1. If  G = C n-1 , n > 2, then Theorem 4.2 (1) was proved by E. Andersdn [3] and Theo- 
rem 4.2 (2) by E. Andersdn and L. Lempert [4].7 

2. C has the volume density property, but not the density property. Indeed, divdzX = 
d X / d z  = 0 implies that X is constant, and all constant vector fields are complete. On 
the other hand, all complete vector fields on C are affine linear. 

The requirement in Theorem 4.2 (2) that G is Stein cannot be dropped completely. For 
example, if qi" is any compact complex Lie group (these are all diffeomorphic to tori) then "11" x C 
cannot have the density property. Indeed we leave it as an exercise to prove that: 

Proposition 4.3. Aut (~ • C) consists o f  all mappings of  the form 

(t, z) ~ (Fz(t), az + b),  F z �9 AutO, a �9 C*, b �9 C . 

Consequently every Lie combination of  complete vector fields on qI" x C is of the form 

(t, z) w-~ ( f ( z ) ,  otz + fl), f �9 O(C),  ~, fl �9 C ,  

and so q? • C cannot have the density property. 

P r o o f  o f  Theorem 4.2. We begin by pointing out two things. First, as the reader can verify, 
every vector field on G x C which has zero divergence can be approximated, locally uniformly, 
by divergence zero vector fields which are polynomial in z E C. Second, the vector fields 
(g, z) w-~ ~o(g)~ (~o �9 O(G)) are complete and have divergence zero. 

Assuming Theorem 4.2 (1), 4.2 (2) follows immediately from Theorem 3.8. To prove 
Theorem 4.2 (1), let V1 . . . . .  Vn (n = d i m c  G) be a basis of  left invariant vector fields on G. A 
computation shows that for any q) �9 O(G) there is a function ~p �9 O(G x C) such that 

[~o(g)~z,O k + l l z k+IVJ]=  z k q g ( g ) V j - t  - ~ ( g , z ) ~  

is a Lie combination of  complete holomorphic vector fields on G x C. Hence, taking any vector 
field P �9 2 '~ (G x C) (w = O)G• which is polynomial in z �9 C, 

j=l  / 

7See footnote 1. 
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there is a Lie combination X ~ ,V~(G x C) of complete holomorphic vector fields such that 

P - X = h ~  for some h E O(G x C). And since div(P - X) = 0, h is independent o f z  e C, 
whence P - X is complete (by our second observation above). Thus P = X + (P - X) is a Lie 
combination of  complete vector fields. By our first observation above, the theorem is proved. [ ]  

We cannot, at this time, prove a result like Theorem 4.2 (1) with G • C* in place of G • C. 
However, we have the following. 

T h e o r e m  4.4. Let G be a complex Lie group. 

(1) I f  G has the volume density property, then G • C* has the volume density property. 

(2) I f  G is Stein and has the density property, then G x C* has the density property. 

From this we have, by induction, the following special case. 

C o r o l l a r y  4.5. Let k E {2, 3 . . . .  }. 

1. (C*) k has the volume density property. 

2. I f  (C*) 2 has the density property, then (C*) k has the density property. 

Remark: At this point it not known whether (C*) 2 has the density property, or what is more, 
1 d if there are any complete holomorphic vector field on (C*) 2 with ~-~ z A dw-divergence not 

identically zero. 

Proof  o f  Theorem 4.4. The second statement is a special case of  Theorem 3.8. The proof 
of  the first is virtually the same as that of  Theorem 4.2 except that there is one additional detail 
which must be taken care of  first. This detail is precisely the reason that one needs additional 
hypotheses on G. 

Suppose (M, o~) is a complex manifold with holomorphic volume element, and 

(M • c*) X E "~0 

is of  the form 

(z / X(p,  x) = ~-~xkVk(p) + xk~o~(p) XTx . 
kEZ \ k E Z  / 

If  

then 

(z ) x O(Z / divX = d ivo~ xkVk(P) + Ox xk~~ 
\ k ~ Z  / \ k~Z  / 

-- )--~x k (div~oVk(p) § k~Ok(p)) 
kcZ 

= 0  

divoj V0 = 0 .  

Returning to our proof, suppose G has the volume density property. We note that, similar to 
the proof of  Theorem 4.2, those divergence zero holomorphic vector fields on G x C* which are 
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Laurent polynomials in x 6 C* form a dense subset of  the divergence zero holomorphic vector 
fields on G x C*. Let 

P(g,x) = q)kj(g)x k V j ( g )  .+ xl fl(g) X~x 
j = l  l 

be a divergence zero holomorphic vector fields on G • C* which is Laurent polynomial in x ~ C*. 
By the above computation, 

Thus, since G has the volume density property, we may assume without loss of generality that 

n 

E ~ooj (g) Vj (g) = O. 
j = l  

1 x 0 Now, as xkVj and ~r ff-s are complete, and 

_i~oj~(g)XTx ] a x~Vj ' I a = x%j~(g)Vj + (,)X-~x, k ~ z\{0}, 

we see that there is a vector field X on G x C* which is a Lie combination of  complete divergence 
zero holomorphic vector fields on G x C*, such that P - X = hx ~ for some h ~ O(G x C*). 

Now 0 = div(P - X) = xo-~h, which implies that h is independent o fx  6 C*. It is thus a simple 
matter to check that P - X is complete. Hence, P = X + (P  - X) is a Lie combination of  
complete holomorphic divergence zero vector fields, as required. [ ]  

5. Relative geometric structures in C n 

5.1. Main results 

Let us begin with the definitions of  the geometric structures in question. Suppose that 
j : M ~ C n is a holomorphically embedded Stein manifold. (For us, an embedding is a proper 
1-1 immersion.) We define the geometric structures (on C n) gT(j) and g0(J) as the families 
of  holomorphic vector fields on C n which are tangent to j (M), and which vanish on j (M), 
respectively. In case M ----- C k and j0 : C/~ ~ C n is the standard embedding j0(zl . . . . .  zk) -- 

(Zl . . . . .  z~, 0 . . . . .  0), we put g~,k := gr( j0) ,  and gg,k := go(jo). It is easy to verify that g r ( j )  
and g0(j)  are subalgebras of  2(O(cn), the Lie algebra of  holomorphic vector fields on C n with 
the usual Lie bracket [X, Y] :=  XY - YX. Hence these are geometric structures in the sense of  
Section 1, and as such, one can investigate whether or not they have the density property. 

For general Stein manifolds M, g r ( j )  and g0(j)  will not have the density property. For 
instance, in the case of  gzr ( j )  one can encounter obstructions which can be seen via the following 
considerations: 

For X 6 9T (J) denote by j* X the restriction of  X to j (M). j* X can be identified in a natural way 
with an intrinsically defined tangent vector field on M, and it is a standard fact that j*[X, Y] = 
[ f iX ,  f lY],  the bracket on the right being that of  Xo(M). Now, it is a consequence of  Cartan's 
theorems that every vector field on M is the restriction to M of some vector field in C n, that is, 
j*(gT(j)) = 2(o(M). With this, and with the obvious but important fact that every complete 
vector field on C n gives rise, via the Lie algebra epimorphism j*, to a complete vector field on 
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M, we see that the density property for 2(o(M)  is a necessary condition for OT(J) to have the 
density property. Thus if AutM is finite dimensional (for example if M = C or C* or if M is 
Kobayashi hyperbolic) then 0T (J) will fail to have the density property (see Proposition 3.2). 

R e m a r k :  These arguments do not hold for 00(J), and in this regard, one is led to ask the 
following very basic question: Is there an embedding j : A ~ C ~ of the disc in C n (for any 
n > 2) such that 00(J) has the density property? More basically, is there such an embedding with 
the property that there is a non-zero complete holomorphic vector field on C n which vanishes 
precisely on j (A)? This is of course a very special case of the more general question: What are 
the zero sets of  complete holomorphic vector fields? 

More remarkable, however, is the fact that even if ?(o(M)  has the density property, the 
particular embedding in question may still force that 0 r  (J) (and 90 (J)) do not have the density 
property. This reveals the "relative nature" of the geometric structures oT( j )  and g0(j) ,  i.e., their 
dependence on the embedding j as well as on M. The examples displaying this phenomenon will 
be given shortly. 

From here on we restrict ourselves to the case M = C k. The following theorem is the main 
result of this section. 

T h e o r e m  5.1. Let  n and k be integers with 1 <_ k < n. 

n,k (I)  Oo has the density property. 

(2) I l k  > 2, g~'g has the density property. 

R e m a r k :  As pointed out above, AutC is finite dimensional, and hence 0~ "1 cannot have the 
density property. 

Before proving Theorem 5.1, we tum our attention to the study of its dependence on the 
n,k n k fact that the embedding j0 defines g r  and g0' , as opposed to some other embedding. The first 

observation is that for any (I) E AutC n , OT (dO o j )  (resp. 00((1) o j ) )  has the density property if and 
only if Or (J) (resp. 00(J)) does. Thus, Theorem 5.1 holds if j0 is replaced by any straightenable 8 
embedding j : C k ~ C ~. Abyankhar and Moh [2] showed that every polynomial embedding 
C ~ C 2 is straightenable by (polynomial) automorphisms. The same result for polynomial 
embeddings C ~ C n holds true for n > 3, and is somewhat more elementary [ 19, 20].9 However, 
there are embeddings of  C ~ in C n which cannot be straightened out by automorphisms, for 
1 < k < n - 1 [27, 11, 5, 8]. In fact [5, 8], there exist embeddings j '  : C ~ ~ C" with the 
property that every immersion f : C ~-~ --* C n has image which intersects j ' ( C  ~) infinitely 
often. As a corollary of  the latter results, one has the following. 

P r o p o s i t i o n  5.2. There do not exist n - k complete independent (as vector fields, but not 
necessarily pointwise) holomorphic vector fields in C n which are in involution, and which are 
tangent to j t (C~).  

P r o o f  If  such vector fields exist, we obtain, via the holomorphic Frobenius theorem, an 
immersion C n-~ --+ C n which is in the complement of  j ' ( c n - k ) ,  contradicting [5, 8]. [ ]  

8An embedding j : C k ~ C n is straightenable (also called tame) if there exists qb c AutC n such that 
gO o j ( z )  = (z, 0) for all z E C k. 

9For the case n = 3 it is not known that the straightening automorphism can be taken polynomial. 



The Density Property fl)r Complex Manifolds" and Geometric Structures 153 

Consequently one immediately obtains the following. 

Corollary 5.3. There are embeddings j : C n-1 ~ C n (n > 2) such that g r ( j )  and g0( j )  do 
not have the density property. 

5.2. Auxiliary algebras and the proof of Theorem 5.1 

The proof of Theorem 5.1 is somewhat technical, and requires several cases. The general 
scheme, however, is not markedly different from that in [4], where it is proved that X o ( C  n) has 
the density property. There are two major differences. The first is that the introduction of the 
Lie algebra structure of  ,u ~) into the game simplifies the technicalities. The second is that 
technicalities require the introduction of several auxiliary Lie algebras. In [4] the auxiliary Lie 
algebra used is that of  divergence zero vector fields, which is in itself quite interesting (see [3]). 
In our case, different auxiliary algebras are needed for different proofs, and not all (but most) are 
defined as kernels of  divergence-type operators. And though the algebras we define may be of 
intrinsic interest, we do not focus our attention on them. 

Defini t ion .  A Lie subalgebra a c A'o(C n) is called densely polynomial if {X c a : X is 
polynomial} is dense in a, in the topology of uniform convergence on compacts in C n. 

All the Lie algebras which come up in this section are densely polynomial. This fact is based 
on the observations that all of  our linear differential operators map homogeneous polynomial 
maps of degree j to homogeneous polynomial functions of  degree j - 1, and that holomorphic 
maps of the form C" ~ z ~ z j X ( z )  c C n can be approximated uniformly on compact subsets 
by polynomials of  the form C n ~ z ~ z j P ( z )  E C n. We shall neglect to mention this again, 
leaving it to the reader to verify the statement a is densely polynomial whenever it arises. 

We now list a collection of complete vector fields on C n which will be used to prove that 
the various Lie algebras in question have the density property. These are all shear fields, with 
obvious conditions added so as to force these fields to lie in the particular algebra in question. 
The latter conditions will be clear when the particular algebras are defined. For z ~ C n we write 
z = (z ~, z") with z' ~ C k and z" ~ C n-k. Also f ,  g ~ o ( c n ) .  Here is our list: 

0 Of = 0  l < _ j < k  
(Sl , f , j )  Z ~ f ( z ) ~  oz/ 0 1 < j < k 
(Gl , f , j )  z ~  z j f ( Z ) o z  j Ozj - - 

(S2,g,j) zw-~ g(z)&@j ~ =--0, g ( z ' , O ) = O  k + l  < j  <_n 

o Og =--0 k + l  < j  < n  (G2 ,g , j )  Z ~ z j g ( Z ) ~ z  j Ozj - - 

We note that when k < n - 1, these shears all lie in g~,k, that (S2,g, j )  and ( G 2 , f , j )  lie in gg'~, 

and that if f ( z ' ,  0) = 0, (SI ,Lj)  and ( G l , f , j )  also lie in 9g 'k. When n = k + 1, (S2,g,j) - O. 

Def ini t ion.  A vector field in C n is called n-basic (resp. 1-basic) if it is of  the form 

z - - + f  (1 < j  < n - l )  resp. f 0 + z  - -  ( 2 < j  < n )  
OZj ~ -- -- OZl OZj -- 

for some f 6 o ( c n ) .  That is to say, 

(i) All but one of its last (resp. first) n-1 components are zero, and 

(ii) this non-zero component is a monomial. 
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P r o o f  o f  T h e o r e m  5.1 (1). L e t l  < k  < n -  1. Define ~ = 8n,k :gg,k --+ o ( c n )  by 

0 ~ + ' " +  ~z--~-' 
t~n, k X j ~Z j :~--" 

j = l  OXI OX, X, k = n - 1 
~ T  + ' ' ' +  ~z, z , '  

and let ~n,k :=  ker ~n,k. We note that ~n,k is well defined. Indeed, the only possible problem is 
when k = n - 1, and in this case 

X ~ gg'k =~ Xn(z' ,  O) - O < ~ Zn dividesXn.  

It is a straightforward matter 1~ to verify that 

~([X, Y]) = X(~Y)  - Y (~X)  

from which it follows tha t  [~n,k is a Lie subalgebra of  og,k, i.e., it is a geometric structure. 

L e m m a 5 . 4 .  Fora l l j  suchthat l  < j < n - 1  andallot E (Z+) n suchthatotlr + . . . + a n  > O, 
(*) 7z~ which is Lie combination o f  complete vector there is an n-basic vector field z ~ ~ ]  + a 

fields in b n'k. 

Proof 

Case 1 : 1  < k < n - l ( N o t e : n > 2 )  

(a) Suppose k < j < n - 1. If  otj = 0, Z ~ ~ _ ~ is complete. If  Or j 0 ,  then 

1 ZUZn 
0 X2(Z)  : =  - -  uj 

X I ( Z )  := zJJ OZn' (Oln + 1) Zj OZj 

are complete vector fields in ~n,k, and 

[X1,  X 2 I ( z )  = Z  - -  q - ( * )  �9 
Ozj 

(b) Suppose 1 < j < k. Then one of Otk+l . . . . .  O/n must be positive. Say that l 6 {k + 1 . . . . .  n} 
is the smallest integer such that al0. 

(b') If  I < n, take 

to get 

~j ul 0 1 z~ 
X I ( Z )  : =  Z: Z l - - ,  X2(z )  :~--- - -  

J OZn (ol n + 1) zj~ ZlOt l OZj 

O O 
[X1,  X2]  (z) = z - -  + (*)  

Oz j ~z~ " 

(b") If  l = n, take 

uj a~ 0 
g l ( z )  : =  z j  z n OZn-l '  X2(z) : =  

1 ZaZn-1 0 

(Otn_ 1 -'1- 1) ZaJZ u" OZj j n 

10This can be done directly, but is most easily seen by noticing that the divergence with respect to the left invariant 
volume form associated to the complex Lie groups C n (when k < n - 1) and C n - t  • C* (when k = n - 1) is 
precisely 6, and then applying Lemma 2.2. 
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Then X1, X2 c b ~'~ and 

cl 0 ( Olj ) Zn-1 zc~ 0 
[ X l ,  X 2 ]  (Z) : Z - -  - -  

~Zj Oln--T-+ I Zj OZn--1 

and by (a) there are complete vector fields Y1, Y2 E I~ n'k such that 

Otj ) Zn_lT~ a ~ 
[Yt, 1121(z) = a n ~ - +  1 z j  Ozn-1 + (*)-~Zn" 

Thus 

[X1, X2] (z) + [Y1, Y2] (z) = z c~ 0 + ( * ) -  

and Case 1 is proved. 

Case 2: k = n - 1. In this case C~n > 0. We take 

0 

OZn ' 

a X 2 ( Z )  . - -  1 Z ~ 
X I ( Z )  : =  ZnZJJ OZn' ol n Zj j OZj 

Then 

[XI, Xz] (z) = z - -  + (*) 
O Z j ~Zn " 

This proves Case 2, and hence Lemma 5.4. [] 

C o r o l l a r y  5.5. I~ n,k has the density property for 1 < k < n - 1. 

P r o o f  In view of  Lemma 5.4, for each c~ ~ ( Z + )  n such that O/k+ 1 -q- . . .  Jr- a n  > 0 and each 
j E { 1, 2 . . . . .  n - 1 } there is an n-basic vector field z ~ ~ + (*) ~ which is a Lie combination 

of  complete vector fields in b n'k. It then follows that, given a polynomial  vector field X c [~n,k, 
there is a Lie combination Y ~ bn,k of complete vector fields such that X - Y = (*) 0-~, �9 Now, 
�9 (X - Y) = 0, and it is a simple matter to see that any n-basic vector field in ker 6 is complete. 
It follows that X : Y + (X - Y) is a Lie combination of  complete vector fields, and since [~n,k 
is densely polynomial,  the proof  is complete. [ ]  

n,n--1 L e m m a  5.6.  f i X  ~ flo , then 3X [ Cn- 1 X {O} : O. 

P r o o f  Let 
0 O 0 n,n-1 

x =  + . . .  + 1 + z.  -ffz �9 

OXl ~- OXn-I ~Zn Then Xj[c,_~• = 0 fo r  1 < j < n - 1 ,  a n d s i n c e 3 X  = -~-t + . . .  o~ ,_ t+Zn  , t h e l e m m a  

is proved. [ ]  

L e m m a  5.7.  Given o t ~  (Z+)  '~ (an > 0 i l k  = n - 1; see Lemma 5.6), there is a Lie 
combination X o f  complete polynomial vector fields in g~,k with 3X (z) = z% 

P r o o f  

Case 1: k < n - 1 (=:~ n > 2). 
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,~ 0 Then (3X)(z)  = z ~. Otherwise If a l  = 0 for some I with k + 1 < 1 < n, take X (z) = z zt b57zt ' 
cr > 0 for all l 6 {k + 1 . . . . .  n}. In that case, take 

O~n_ 1 0 
Xl(z) = Zll . . .Zn_ 10Zn' 

1 ,~ 0 
(Cln + 1 , znn+lzn-1 X 2 ( z )  

) OZn-1 

(Note that these are both in g~,k for k < n - 1.) Then 

~Xl = 0 ,  8 X e ( z ) -  

a,z+l 
Zn 

(an + 1) ' 

and so 

( [ X l ,  X2] )  (Z) ~--- ( X l a X 2 )  (Z) = Z a �9 

Hence X = [X1, X2] does the job. 

Case 2: k = n - 1 .  

In this case simply take 

O X 2 ( z ) -  1 z lz  ~ O 
xl (z )  = z] 'lzn 0z . '  o~. z~ I 0zl 

Then 

and 

Z c/ 

~X~ = 0 ,  3 X 2 ( z ) -  
OlnZTl ' 

([X1, X2]) (z) = ( X l ~ X 2 )  ( z )  = z ~ . 

Again, X = IX1, X2] does the job, and Lemma 5.7 is proved. [ ]  

C o n c l u s i o n  o f  the  P r o o f  o f  T h e o r e m  5,1 (1). By Lemmas 5.6 and 5.7, given a polynomial  
n,k �9 n k  

vector field X 6 g0 , there is a polynomial  Lie combination Y of complete vector fields in go' 

such that 3X = 6Y. Hence X - Y c O n'k, and since X - Y is polynomial,  by Lemma 5.5 

X = Y + (X - Y) is a Lie combination of complete vector fields in g~'~. Since gg,k is densely 
polynomial,  Theorem 5.1 (1) is proved. [~ 

The tangential phenomena seem to present more technicalities than the vanishing phenomena 
which we have just  dealt with. 

P r o o f  o f  T h e o r e m  5.1 (2). We begin with the definition of an auxiliary Lie algebra. A 
straightforward calculation shows the following. [ ]  

L e m m a  5.8. The set o f  vector fields 

n n'k : =  { X  E g T  'k :Z j  d i v i d e s X j ,  k + 1 < j  < n }  

is a Lie subalgebra o f  g~ 'k. 

n,n- I Remark:  n n,n-1 = gT , but for 1 < k < n - 1, n n'k ~ gT 'k. 
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We define ~ : n n,k --+ O(C n) by 

( 0_.7__ q - . . . - ~ - X  O ) oXI  OXn Xk+l 
n - -  := "~-.. .q- 

XI  Ozl OZn OZl OZn Zk+l 

and put 

X n  
�9 , � 9  

Zn 

[n,k := k e r ( 8  : nn'k ---~ O ( C ~ ) )  . 

As before, one verifies that 6([X, Y]) = X 3 Y  - Y 3 X ,  whence [n,k is a Lie algebra�9 
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L e m m a  5.9. For 2 < k < n - 1, [n,k has the densi ty  property. 

P r o o f .  For the same reasons as in the proof of  Lemma 5.5, it suffices to prove that for any 
�9 z ~ j 6 {2 . . . .  n}, t~ E (Z+) n (otj > 0 if j > k), there is a 1-basic vector field (*)o~ + Ozj 

which is a Lie combination of  complete vector fields in [n,k. 

If  j > k then otj > 0, and we take 

O X 2 ( Z ) -  1 ZlZjZ u O 
Xl(z) = z~ j -~ozl ,  ~ + 1 z~ j Ozj 

Then 
3 za 

x 2 ]  = + 

Otherwise j < k (here we use k > 2), and we simply take 

and again get 

This proves Lemma 5.9. 

0 
= - - -  

1 ZlZ ~ 0 

oq + 1 z~ j OZj 

0 0 
[Xl ,  X2] (Z) = (*) ~ -'l- Z ~ 

aZl Ozj 

[] 

L e m m a  5 .10 .  n n,k h a s t h e d e n s i t y p r o p e r t y f o r 2  < k < n - 1. 

P r o o f  It suffices, by Lemma 5.9 and the linearity of  8, to show that given any monomial z '~, 
there is a polynomial vector field X which is a Lie combination of  complete vector fields in n n'k 

such that ( 6 X ) ( z )  = z ~. For this take 

Z~ Zn O 1 O 
X l ( z )  --  an X2(z) ~--- - -Z lZ~  n 

Zn OZn Otn " OZl 

Then 
[X1, X2] (Z) = XI~X2 - X2t~Xl ~-- XI~X2 = z c~ , 

and the proof is finished�9 [] 

We note that Theorem 5.1 (2) is now proved i fk  = n - 1. 

n,k 
L e m m a  5.11. L e t  2 < k < n - 2 .  Given any  po lynomia l  vector f ield X ~ ~ r  , there is  a 

po lynomia l  vector  f ield X I which is a L i e  combinat ion o f  comple te  vector  fields in gnT'k, such that 
X -- X ! c n n'k. 
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Proof. Let j 6 {k + 1 . . . . .  n} and l 6 {k + 1 . . . . .  n}\{j}. (This is possible because 

I{k + 1 . . . . .  n}l > 2.) Set 

0 1 ZlZaZl 0 
x l ( z )  : =  - X 2 ( z )  : =  - -  

Ot I + 1 zjaJ OZj J OZl  

Then 
0 0 

[Xl,  X2] (z) = (*) ~---0Zl -~- zlza jOz--' 

and Lemma 5.11 follows as is by now usual. [] 

n,k Conclusion o f  the P r o o f  o f  Theorem 5.1 (2). Let X 6 g r  be a polynomial holomorphic 

vector field. By Lemma 5.11 there is a polynomial vector field X t ~ g~,k such that X - X t 

n n,k. Since n n'k has the density property (Lemma 5.10), and since g~,k is densely polynomial, 
Theorem 5.1 (2) follows. [ ]  

5.3. More than one submanifold: a prelude 

In many constructions, one might need to prove results about vector fields in C n which vanish 
in more than one submanifold. We shall restrict ourselves to affine complex hyperplanes (i.e., 
zero sets of  holomorphic polynomials of  degree 1). 

Example  5.12. Two parallel hyperplanes. 

If  we fix two parallel hyperplanes in C n , the set of  vector fields on C n which vanish on these 
hyperplanes will not have the density property. We prove this now. 

Proposition 5.13.  Aut (C n x C\{O, 1}) consists of  maps of  the form 

(C" x C\{0, 1}) ~ (z, w)  ~ (Fw(z) ,  •  , 

where y ~ Aut (C\{0, 1}). 

Remark: Actually, (z, w) ~ Fw(z) is holomorphic, and for each w 6 C\{0, 1} Fw ~ Aut C n, 
but we won' t  need these facts. 

Proof. Let �9 6 Aut C n, and write ap = (f,  g). Fixing w 6 C\{0, 1}, we get a map 
C n ~ z w-~ g(z, w) ~ C\{0, 1}, which must be constant. Write y(w)  :=  g(z, w). Repeating 
the same argument for ep -1 we get ~ - l ( z ,  w) = ( f ( z ,  w), ~(w)). Computing ap o ~ - 1  and 
qb- 1 o qb, both of  which are the identity, we get the result. [ ]  

Now, Aut (C\{0, 1 }) consists of  all Mrbius transformations which permute {0, 1, c~} ___ S 2, 
and since the values of  a Mrbius transformation on {0, 1, oo} uniquely determine this transforma- 
tion, Aut (C \  {0, 1 }) is a finite group. It follows from this and Proposition 5.13 that every complete 
vector field in C n which vanishes on the two hyperplanes {Zn = 0} tO {Zn = 1} must have its Zn 
component identically zero. Since this is clearly true of  Lie brackets of  complete vector fields 
as well, and since there are plenty of  vector fields whose Zn component is not identically zero, it 
follows that the Lie algebra of  vector fields on C n which vanish on {Zn = 0} tO {Zn = 1 } does not 
have the density property. 
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E x a m p l e  5.14. k hyperplanes through zero. 
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If we have k > n § 1 hyperplanes through the origin in C n, then as soon as k = k(n)  
is large enough (for example, if n = 2, k = 3 will do) we obtain "little Picard theorem"-type 
obstructions to the density property. Denote the union of these hyperplanes by S. We quote 
a theorem of Fujimoto and Green from [24] to the effect that any mapping f : C ~ CIP n 
which misses n § p hyperplanes has image which is contained in a projective linear subspace 
of dimension < [p]. In particular, it must be the case that every complete holomorphic vector 

field on C n which vanishes on S must be tangent to every hyperplane through 0 in C n. Since 
being tangent to a hyperplane through zero is a "Lie-closed" condition, it follows that any Lie 
combination of complete holomorphic vector fields on C n which vanishes on S must be tangent 
to every hyperplane through 0 in C n. However, there are many vector fields on C n which vanish 
on S and which are transverse to many hyperplanes through the origin. Thus the theorem of 
Fujimoto and Green gives obstructions to the density property. 

On the other hand, if 1 < k < n, there are some positive results. Since the methods used 
to prove these results are analogous to those used in the proof of Theorem 5.1, we will content 
ourselves with stating results, and omit all proofs. Replacing k by n - k, we denote by ct n'k the 
Lie algebra of vector fields which vanish on {Zk+l = 0} U . . .  U {zn = 0}. We have. 

Proposition 5.15. With the above notation, 

. 

2. 

I f  1 < k < n - 2, a n,k has the density property. 

The Lie  algebra o f  vector fields in a n,n which satisfy 

j=l ~ = 0  

has the density property. 

In connection with the remark following Corollary 4.5, it is not known whether a n,n has the 
density property. 
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