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Quadratic Presentations and Nilpotent K ihler Groups 

By James A. Carlson and Domingo Toledo 

1. Introduction 

It has been known for at least thirty years that certain nilpotent groups cannot be K~ihler groups, 
i.e., fundamental groups of compact K~ihler manifolds. The best known examples are lattices in the 
three-dimensional real or complex Heisenberg groups. It is also known that lattices in certain other 

standard nilpotent Lie groups, e.g., the full group of upper triangular matrices and the free k-step 
nilpotent Lie groups, k > 1, are not K~ihler. The Heisenberg case was known to J-P. Serre in the early 
1960's, and unified proofs of the above statements follow readily from Sullivan's theory of minimal 
models [6], [15], [19], Chen's theory of iterated integrals [4], [10], or more recent developments 

such as [9]. 

We recall that in [6] compact K~ihler manifolds are shown to be formal in the sense of rational 
homotopy theory. This implies formality of the one-minimal model of the manifold, meaning that 
this object can be constructed formally from H l and the kernel of the cup-product map. Equivalently, 

the Lie algebra of the Malcev completion of the fundamental group is quadratically presented, i.e., is 
the quotient of the free Lie algebra on its abelianization by an ideal generated in degree two. It is not 
hard to see that the Lie algebras of the groups mentioned above do not admit quadratic presentations, 

It seems to be less well known that many nilpotent Lie algebras have quadratic presentations, for 
instance the real or complex Heisenberg Lie algebras of dimension at least five. Thus the methods of 
rational homotopy theory do not exclude lattices in the corresponding Lie groups from being K~ihler, 
contrary to an apparently commonly held impression that the only nilpotent K~ihler groups are almost 
abelian. An exception is [ 12], where the problem of lattices in higher-dimensional Heisenberg groups 
being K~ihler is explicitly posed. 

This matter has finally been settled by the remarkably simple examples of nilpotent K~ihler 

groups found by Campana [2]. Remarkable also is the fact that such examples were already in 
the literature [ 18], presumably with the connection with nilpotence passing unnoticed. Campana 

constructs K~ihler groups that are lattices in all real Heisenberg groups of dimension at least nine. In 
our unpublished notes [3] we had proved that no lattice in the five- or seven-dimensional Heisenberg 
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group is K~ihler, so this construction is sharp for the Heisenberg groups. It is also sharp with respect to 
the rank of the abelianization. Namely, [3] gives (and we prove this below) that the abelianization of a 
nilpotent, not almost abelian K~ihler group must have rank at least eight. The fact that abelianization 
of rank four is impossible appears in [2] by a different argument, but the mention there of the 
impossibility of rank six is based on [3]. 

The general question raised by these results is: which finitely generated nilpotent groups with 
quadratically presented Malcev Lie algebras are K~ihler groups? A less delicate question would be: 
for which quadratically presented nilpotent real Lie algebras (with rational structure constants) is 
there a lattice in the corresponding simply connected nilpotent Lie group that is a K~ihler group? For 
the Heisenberg Lie algebras of dimension at least five, this question is answered above. 

This paper addresses two related questions. First, how wide is the class of quadratically presented 
Lie algebras? We give an infinite family of examples of quadratically presented three-step nilpotent 
Lie algebras, thus indicating that this class is quite wide. We also classify quadratically presented 
complex nilpotent Lie algebras with abelianization of dimension at most five. It turns out that there 
are only finitely many isomorphism classes, and they are at most three-step nilpotent. As part of work 
now in progress, S. Chen has produced examples of quadratically presented nilpotent Lie algebras 
of arbitrarily high class of nilpotency, beginning with a four-step nilpotent one with six-dimensional 
abelianization. Thus, this class of algebras is even wider than indicated by the results of this paper. 

The second question we address is how restricted within the class of quadratically presented Lie 
algebras is the subclass of Malcev Lie algebras of nilpotent Kfihler groups. Using K~ihler geometry 
we deduce a lower bound on the rank of certain elements in the kernel of the cup-product map. 
This implies the lower bound on the rank of abelianization mentioned above. We also show that this 
excludes certain infinite families of quadratically presented Lie algebras containing algebras with 
abelianization of arbitrarily large dimension from being Malcev algebras of K~ihler groups. This 
appears to be the only restriction beyond quadratic presentation that is known as of this writing. 

These results raise two specific questions (also raised in [2]). First, are there nilpotent K~ihler 
groups of class larger than two? Note that there are no known obstructions to many of our three-step 
nilpotent examples being K~ihler. Second, can the kernel of the cup-product map of a K~ihler manifold 
with nilpotent fundamental group have elements of type (2, 0)? If the answer to this question were 
negative, then our main theorem would imply that there are no elements of rank less than eight in 
the kernel of the cup-product map of a nilpotent K~ihler group. 

In view of the preceding discussion it appears that the difficult problem of classifying K~ihler 
groups is wide open even in the restricted context of nilpotent groups. It is interesting to note that 
the situation for polycyclic groups is better, in the sense that it has been reduced to nilpotent groups. 
Namely, Arapura and Nori prove in [ 1 ] that a polycyclic K~ihler group must be almost nilpotent. 

We thank W. Goldman, J. Koilfir, and J. Millson for helpful discussions, and S. Chen, E Deligne, 
and J-E Serre for suggesting improvements to our original manuscript. This paper is based on [3] 
and a lecture delivered at the joint meeting of the American Mathematical Society and the Sociedad 
Matem~itica Mexicana held in Mrrida in December of 1993 to celebrate the 50th anniversary of the 
SMM. We thank the organizers of this meeting for their hospitality. 



Quadratic Presentations and Nilpotent Kiihler Groups 361 

2. Differential algebras and Lie algebras 

As noted above, a compact K~ihler manifold is formal, as is the l-minimal model of a formal 

space. In general, the l-minimal model of a space X is a free, connected, minimal differential algebra 

Ad (l), generated in degree one, which maps to the de Rham algebra of X, induces an isomorphism on 

H l , and induces an injection on H 2. The 1-minimal model .M (l) of  X is said to be formal if it is the 

same as the 1-minimal model of  the differential algebra H* (X) with zero differential. Equivalent to 

this is the existence of a map of differential algebras A4 (1) > H*(X) inducing an isomorphism 

on H l and an injection on H 2. In terms of  .M (l) alone, this means that there is a map of  differential 

algebras A4 ~1) > H*(.Ad 0)) inducing an isomorphism on H I and an injection on H 2. 

We also recall from [6, p. 87] that the 1-minimal model is constructed inductively as an increasing 

union 

-/~(1 l) C ./~[~l) C " ' "  C M I  l) C " ' "  C .A/[ (I), 

A~ (1) defined precisely so as to kill the kernel of where each A-4~I) is a Hirsch extension of  - - i  avti+ 1 
H2(A41 ')) > H Z ( x ) .  More explicitly, if V = HI(x) ,  then A4] I) ----- A V ,  and M~ I) = 

A ( V  G Co), where Co, a space homogeneous of degree one, and d : Co > A Z v  are defined so 

that the sequence 

0 > Co > A2V > H2(X) (2.1) 

is exact, where the last map is the cup-product. Consequently, Co is isomorphic to the kernel of the 
cup-product map A Z H  1 (X) > H2(X). The differential on the free differential algebra .AA~ n is 

determined by the requirement that it be zero on V and that on Co it be as just defined. Thus d has 

degree one in the grading of A ( V  q) Co). 

Now, i fX is formal, then the construction of  the remaining . /~I 1) is purely formal, in the sense 

that it makes no further use of X. It can easily be checked that the construction of  .A4 m described 

in [6] proceeds as follows in the formal case. Define Cl to be a space of  homogeneous elements of 

degree one and define d : Cl > V @ Co so that the sequence 

0 > C 1 > V | C 0 m> A3 V (2.2) 

is exact, where m is defined by m(v | c) = v A dc for all v ~ V and c ~ Co. For i > 2, define 

a space Ci of homogeneous degree one and d : Ci > V | C i_l inductively by the requirement 
that the sequence 

0 > C i ) V ~ Ci_ I m> A2 V | Ci_2 (2.3) 

is exact, where m is defined to be the composition 

V ~ Ci- i  I| A| ) V @ V ~ C i _  2 A2V ~ Ci-2. 
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Then .Adl l) is the free minimal differential algebra generated in degree one by the space 

V | 1 7 4 1 7 4  2. 

It is therefore the exterior algebra 

A ( V  0 Co 0 "'" 0 Ci-2) (2.4) 

with differential determined by the conditions that on V, d : 0, and that on Ci, i > 0, d is defined 
as above. 

Observe that in [19, Theorem 12.1], it is proved that formality is independent of the ground 
field. For this reason we will sometimes be vague on the field of definition (Q, ~ ,  or C). 

Finally, we recall the relation of the 1-minimal model to the Malcev Lie algebra E of zrj (X) .  

First,/2 is a tower of  graded, nilpotent Lie algebras {/2i }: 

�9 "" > /23 > /22 > s > 0. 

(1) 
Each element of  this tower/2i is dual to the differential algebra .AA i . This means that 

/2~ "~ V t~ C O t~ C l �9 " ' "  ~D C i_  2, 

and that, under this isomorphism, the restriction to s of the differential d defined above is the 

map d : E~ ~ A2/2 * dual to the Lie bracket A2/2i > /2i. Formality of  A4 ~l) is equivalent to 

quadratic presentation of 12 in the sense that the tower {/2i } is isomorphic to the tower of  maximal 
i-step nilpotent quotients of  .U(V*) / I ,  where 5v(V*) denotes the free Lie algebra [ 17] on V* and 

I is a homogeneous ideal generated by 12, its homogeneous component of  degree 2. Moreover, 
12 C ,~"2(V*) ~ A 2 V  * is the annihilator of  Co C A2V. Equivalently, 12 is the image of the map 
H2(X)  > A2V * : A 2 H I ( X )  dual to the cup-product map A 2 H I ( X )  > H 2 ( X ) .  This is 

a special case of  results in [15] and can be seen by a discussion similar to, but simpler than, that 
surrounding the proof of  Theorem 9.4 of that paper. Namely, drop all discussions of  bi-grading and 
replace his generating space A by our simpler V*. 

Since we are only interested in formal spaces X with y'c I ( X )  nilpotent, we are only interested 
in the case in which the tower s is finite; equivalently, A4 <l) = A.4 ~) for some j ,  or Ci = 0 for - -j 

some i. We collect this summary of known facts in the following proposition: 

Proposition 2.1. There is a one-to-one correspondence between nilpotent, quadratically 
presented Lie algebras and finite-dimensional, formal, free minimal differential algebras generated 
in degree one. This correspondence assigns to a Lie algebra/2 : .~(V*) / I ,  where 3t~(V *) is the 
free Lie algebra on V* and I is a homogeneous ideal generated by 12, its homogeneous component 
of degree two, the differential algebra (2.4). The space d(Co) C A2V is the annihilator of ]2, and 
Ci is defined as above for i > 1. l f  Cj ~ 0 and Cj+l : O, the class of nilpotency of~2 is j + 2. 
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The Malcev Lie algebra of Yrl (X),  where X is a formal space with 7rl (X)  nilpotent, is obtained in 
thiswaywith V = H l ( X )  andd(Co) thekernelof thecup-productmap AZV > H Z ( x ) .  

Using this proposition, we will sometimes describe a Lie algebra by describing the correspond- 

ing differential algebra. This correspondence also gives us a very useful invariant of a quadratically 

presented Lie algebra, which we now define. 

Definition 2.2. I f / 2  is a nilpotent Lie algebra as in the proposition (or a quadratically 

presented tower as explained above), its characteristic subspace C C A 2 V is the annihilator of 

12 C A2V * ~ f2 (V*) .  The characteristic classes of L are the elements of C. 

R e m a r k .  If s is the Malcev Lie algebra of 7rl (X),  then its characteristic subspace C C 

A2V = A 2 H ~ ( X )  is the kernel of the cup-product map. For formal X we have seen that C 

determines the 1-minimal model of X and hence the Malcev Lie algebra 12. [ ]  

We illustrate this proposition and the concept of the characteristic subspace with the simplest 

examples of  non-abelian, quadratically presented nilpotent Lie algebras. 

E x a m p l e  2.3 (The Higher-Dimensional Heisenberg Algebras). Let V* be a symplec- 

tic vector space of  dimension at least four with symplectic form co = xj /x Yl + �9 �9 �9 + x ,  /x y,,, 
n > 2. Let C C A e v  be the one-dimensional space with basis co. The kernel of the map m in (2.2) 

is {v | co " v A co : 0} = 0 (because n > 2) and so this map is injective. Thus, if we let Co be a 

one-dimensional space with basis z of  degree one and let d �9 Co > C defined by dz  : co, then 

the process gives CI : 0. Consequently, the minimal differential algebra 

A(x l ,  Yl . . . .  xn, y , ,  Z), d z  = x, /x Yi + �9 "" + x , / x  y~ (2.5) 

is formal and corresponds to a two-step nilpotent, quadratically presented Lie algebra, the 2n + 1- 

dimensional Heisenberg Lie algebra, which we denote by 7-((n). This is the Lie algebra of the 

Heisenberg group H ( n )  of matrices of the form 

g =  I , 
0 

(2.6) 

where I is the n x n unit matrix, x is an n-dimensional row vector, y is an n-dimensional column 

vector, and Z is a scalar. A quadratic presentation of  7-/(n) is obtained by taking the dual basis 

{Xl, YI . . . . .  Xn, Yn} of  V* and writing down the annihilator of  co. Doing so, we obtain the relations 

[X,, Xj] = O, [Y~, Yj] = O, [X,, Yj] = O, i ~ j 

and 

IX,, r~] = [x~, Yj]. 
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From these and the Jacobi identity, one easily finds that Z = [XI,  Yl ] . . . . .  [Xn, II,] is central 
and that the algebra is two-step nilpotent. (The assumption n > 2 is critical here.) 

R e m a r k .  If in the above example we set n = 1, we obtain the three-dimensional Heisenberg 
Lie algebra ~ ( 1 )  which is well-known not to be quadratically presented. One proof is as follows. 

Let x and y be a basis for V, and let X, Y be the dual basis. Since [X, Y] is nonzero, the image of 

x A y is nonzero. Therefore, Co is the one-dimensional space with basis x A y. But the image of 

x | (x A y)  and y @ (x A y)  under the map m in (2.2) is zero, so Cl is nonzero. Thus, i f ~ ( 1 )  were 
formal, it would have index of nilpotence greater than two, a contradiction. In other words, the formal 
l-minimal model determined by the same cup-product relations as 7-/(1) is infinite-dimensional: for 
each i > 1, the elements (Z j, @" -- | Z j,) @ (x A y),  where each z equals either x or y, give linearly 

independent elements of  Ci. Thus for all i, Ci -74 O, and so the dual Lie algebra is not nilpotent. 
[] 

This way of thinking about 7~(1) leads to a very useful lemma: 

L e m m a  2.4. Let C C AZV be the characteristic subspace of a nilpotent, quadratically 
presented Lie algebra ~ ---- f ( V * ) / 1 ,  and let v c C | C, v ~ O. Then v is not decomposable. 

P r o o f .  Suppose, on the contrary, that s is quadratically presented and v = x m y C C | C. 
Apply the last argument of  the remark to contradict the nilpotency of E @ C. An alternative argument 

would be to complete x ,  y to a basis of  V | C, let X, Y E V* @ C be dual to x ,  y, and to observe 
that the elements of I2 contain no occurrence of the monomial [X, Y], so that the free Lie algebra 

~-(X,  Y) has zero intersection with I ,  hence injects into E @ C, contradicting the nilpotency of s  
In this connection, compare with Theorem 4. ! of  [4]. [ ]  

C o r o l l a r y  2.5. The full algebra of strictly upper-triangular (n + 1) • (n + 1) matrices, 
n > !, is not quadratically presented. 

P r o o f .  This Lie algebra is generated by the space V* consisting of matrices with only the 
entries directly above the main diagonal not zero, which has basis Xl . . . . .  Xn, where Xi has all 
entries zero except for position (i, i + 1) where it has a one. Thus we can write the algebra as 

E ( V * ) / I ,  and it is easy to see that the homogeneous component of degree two, 12, has basis 

[Xi, Xj], j - i  > 1. 

Therefore, if xl . . . . .  xn denotes the dual basis of V, then the characteristic space C has basis 

X i A Xi+I, i = 1 . . . . .  n - 1, 

and thus, by the lemma, 12 cannot generate I .  [ ]  
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Example 2.6 (Three-Step Nilpotent Algebras). We now produce, for each integer m of  

the form m = k ( k  + 3)/2 ,  k >_ 2, a three-step nilpotent quadratically presented Lie algebra with 

abelianization of  dimension m. Let V be a vector space of dimension m, with a basis that we divide 

in two subsets: 

{ X I  . . . .  Xk},  {Yij " i ,  j = 1 . . . . .  k; Yij  = Y j i } .  

Let c~ E A2V be defined by 

Ci = Z XJ A Y i j ,  

and let C C A2V be the subspace with basis cl . . . . .  ck. Set Co = C,  with the homogeneous 

degree shifted down by one, and define d : Co > C to be the identity map. For i > 1, let Ci be 

defined by the inductive process described above. For the corresponding differential algebra, let s  

denote the corresponding Lie algebra, nilpotent according to Proposition 2.7, and let L ( k )  denote 

the corresponding simply connected nilpotent Lie group. Since the structure constants of E(k)  are 

rational, this group contains lattices [ 13, Theorem 7]. 

Proposition 2.7. The Lie algebra s  just  defined for  each k > 2, is a quadratically 

presented three-step nilpotent Lie algebra o f  dimension (k 2 + 5k + 2)/2.  Its abelianization has 

dimension k ( k  + 3 ) / 2  and its center is one-dimensional. 

P r o o f .  By construction, s  is quadratically presented and its abelianization is the vector 

space V of the asserted dimension. To prove the remaining assertions we must show that dim (C i )  ~ 1 

and C2 = 0. Recall that CI is defined to be the kernel of the restriction to V | Co of  the wedge 

product map V | A 2 V  ~ A 3 V. 

We claim that C 1 is one-dimensional with basis b ---- x I ~ C 1 "]- " " �9 -{- X k ~ C k. First, note that 

b E C1. Next, suppose a E CI.  Since cl . . . . .  Ck is a basis for Co, there exist vl . . . . .  Vk E V such 

that a ---- Vl | Cl + �9 �9 �9 + Vk | Ck. Write vi = Y~4 otilxl. Then a E Cl means that 

Z Olil X l A Xj A Yi j  = O. 
i,j,I 

If  i ~ l, the coefficient o fx t  A x i A Yii in this expression is Olil , so that Olil = 0 for i 5~ 1. Moreover, 

if i # j ,  the coefficient of  xi m xj  A Yij is Olii - -  Oljj, hence otii = o0j. Thus there is a scalar )~ so 

that 1) i = )~X i for i = 1 . . . . .  k, i.e., a = Xb, and Cl is one-dimensional with basis b, as asserted. 

If  x E C 2 ,  then there exists a v E V such that x = v | b and Y~(v A xi)  | ci ---- 0. It 

follows that v A xi ---- 0 for i ---- 1 . . . . .  k; hence v ---- 0 since k > 2. The proof  of  the proposition 

is complete. [ ]  
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Example  2.8. 

V, and let 
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We write down in detail the Lie algebra s Let xj . . . . .  xs be the basis for 

C1 : Xl  A X3 ~- X2 A X4, C2 ~--- Xl A X4 "3ff X2 A X5 �9 

Let S 1 . . . . .  X 5 be the dual basis of V*. Then a basis for the space 12 of quadratic relations is given 

by 

and 

[Xl, X2], [Xl, X5], [S2, X3], [X3, X4], [X3, X5], [S4, X5] 

[XI, S3] - [X2, S4], [Xl, S4] - [X2, X5]. 

There is a single nonvanishing triple commutator formed with the basis elements, namely 

[XI, [Sl ,  X3] ] = [Xl, [S2, X4] ] = [X2, [XI, X4] ] = [X2, [S2, X5] ] mod(I) ,  

which generates the center of L (2), and all four-fold commutators are in I .  

3. Classification for V of small dimension 

The purpose of this section is to classify nilpotent quadratically presented Lie algebras s over 

C such that the dimension of the abelianized algebra F--ab is at most five. We take them to be of the 

form 12 = . ~ ( V * ) / I ,  where the ideal I is generated by 12 C .T'2(V*) ~ A2V *, its homogeneous 

component of degree two, and where dim(V) < 5. Recall that s is determined by its characteristic 

subspace C C A2V, the annihilator of 12. 

If V is a vector space of dimension at most 3, then every element of A2V is decomposable, 

so by Lemma 2.4 it follows that C = 0, and so E is abelian. If n > 4, the lines determined 

by decomposables constitute the Plticker embedding of the Grassmann manifold G (2, V) of two- 
dimensional subspaces of V in the projective space of A2V. The former has dimension 2(n -- 2), 

where n = dim(V), while the latter has dimension n ( n  -- 1)/2 -- 1. 

If dim(V) = 4, then the Grassmannian has dimension four and the projective space has 

dimension five, so if dim C > 1, then C would contain a decomposable element, contrary to 

Lemma 2.4. Consequently, if s is finite-dimensional, then dim C ----- 0 or dim C = 1. In the first 

case, E is abelian. In the second case, there is a single characteristic class o9 that is not decomposable 

and so is nondegenerate, i.e., symplectic. Thus, s is the five-dimensional Heisenberg Lie algebra 

7-/(2). 

If dim(V) = 5, then the Grassmannian has dimension six and the projective space dimension 

nine. If dim C > 3, then C would contain a decomposable element, contrary to Lemma 2.4. Thus 

we must have dim C < 3. If dim C = 0, then 12 is abelian, and if dim C = 1, then s = ~(2)  ~ C, 

the direct sum of the five-dimensional Heisenberg algebra and a one-dimensional abelian algebra. It 
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remains to analyze the cases dim C : 2 and dim C : 3. This will be done in the following three 

lemmas. 

Lemma 3.1. Let V be a five-dimensional vector space over C, and let C C A2V be a 

two-dimensional subspace that contains no decomposables. Then 

(a) The map $2C > A4V defined by qc2  > cj A c2 is injective. 

(b) For any basis q ,  c2 of  C, there exists a basis xl . . . . .  x5 of V so that 

C 1 = X 1 A X 3 -~- X 2 A X4, C 2 = X 1 A X 4 -~-X 2 A X 5 

is a basis for C. In particular, all such spaces are equivalent under automorphisms of  V. 

Proof .  Recall that c c A 2 V is decomposable if and only if c A c : 0. Thus c m c :~ 0 

for all nonzero c in C. Define the carrier of an element of A 2 V to be the vector space obtained by 

contracting it with the dual of V. For any nonzero element c E C, the carrier is four-dimensional 

and c A c is a volume element for it. Consider a basis Cl, c2 of C and suppose for a moment that 

the volume forms of cl and c2 are proportional. Then the carriers of these elements coincide and so 

constitute a single four-dimensional vector space U. But then C is a two-dimensional subspace of 

A2U and so must contain decomposables, a contradiction. Now suppose that cl A c2 = 0. Then 

(C 1 + C2) A (C 1 "3i- C2) : (C 1 - -  C2) A (C 1 - -  C2). But {Cl - -  c2 ,  Cl + c2} is also a basis for C and 

our previous argument applies to exclude proportionality of the associated volume forms. It follows 

that cl A c2 :fi 0, for any pair of nonzero elements q ,  c2 E C, and this proves the first assertion. 

For the second assertion, let Cl, c 2 be a basis of C, and choose a nonzero element w E A 5 V. 

Then there is a unique z E V* so that c~ A c2 : t(Z)W, where t denotes interior product. Since t is 

a derivation, ( t ( z ) q )  A c2 + cl A t(Z)C2 : 0. Thus, i fx l  : t(Z)C2 and x2 : t (z)cj ,  then 

X 1 A C  1 "~-X2 A C  2 : 0 .  

It follows that xt and x2 are independent (otherwise a linear combination of cl and c2 would be 

decomposable). Then it is well known and easy to check that there exist elements x3, x4, x5 c V 

so that 

C 1 = X 1 A X  3 %-X 2 A X 4 ,  C 2 = X 1 A X  4 - ~ - X  2 A X  5. 

If the set x l ,  �9 �9 �9 x5 were dependent, C would be a subspace of two-vectors in a vector space of 

dimension < 4; thus it would contain decomposables. Therefore Xl . . . . .  xs forms a basis for V, 

and the proof is complete. [ ]  

Corollary 3.2. Let E be a nilpotent, quadratically presented Lie algebra over C with 

dim s : 5 and dim(C)  : 2. Then s is isomorphic to the three-step nilpotent Lie algebra 

s  of Example 2.8. 
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It remains to consider the case of  d im(C)  = 3. To this end, we introduce the following: 

L e m m a  3.3. Let V be a five-dimensional complex vector space, and let C C A2V be a 

three-dimensional subspace that contains no decomposables. Then there is a basis xr . . . . .  x5 for 
V so that 

Cl ~ X l  A X 3 + X 2 A X 4 ,  C 2 ~ X I A x 4 -~- X 2 A X 5 ,  C 3 ~ X 2 A X 3 _3f_ X5 A X 4 

is a basis for C. In particular, all such spaces C are equivalent under automorphisms of  V. 

P r o o f .  Let G denote the Grassmann manifold of  three-dimensional subspaces of  A 2 V, which 

is a manifold of  dimension 21. We compute the dimension of  the S L ( V )  orbit of C in G. To this 

end, consider the map ~b " $2C ~ A a v  given by ~ ( C I C 2 )  = C 1 A C 2. By the first assertion 
of  Lemma 3.1, for any two-dimensional subspace C '  C C, the restriction of  this map to $2C ' is 

injective. In other words, the kernel of  q5 contains no nonzero symmetric tensors of  rank < 2. Now 

the subvariety of  symmetric tensors of  rank < 2 is the cone on the secant variety of  the Veronese 

variety and so has codimension one. If the kernel of ~b is of dimension greater than one it must 

intersect the Veronese variety, a contradiction. We conclude that q~ has one-dimensional kernel and 

hence is surjective. The kernel is generated by an element q of  rank three, which we take to be of  

the form q = c~ + 2c2c3 for some basis q ,  c2, c3 of C. 

Let H C S L  (V)  denote the identity component of the isotropy group of  C. Then the action of  

H on C preserves q up to scalars. On the other hand, the action of  H on C contains no homotheties 
by s where s _~ 1. Indeed, such a homothety would map by the surjection q~ : $2C > A4V to 

a homothety by s on A4V. Since S L ( V )  acts unimodularly on A4V,  this is impossible. It follows 

that the action of H on C preserves q. Since the group that preserves a quadratic tensor in dimension 

three is three-dimensional, d im(H)  < 3. Since S L ( V )  has dimension 24 and G has dimension 21, 

the orbit of  C in G has dimension 21 and hence is open. Moreover, it follows that H is isomorphic to 

an orthogonal group in three variables, hence it operates transitively on the set of  homothety classes 

of  bases for C satisfying the relation c~ + 2clc2 = 0. Consequently, all such spaces C and all such 

choices of  basis Cl, c2, c3 are equivalent (up to homothety) under the action of  S L ( V ) .  

I fx l  . . . .  , x5 is a basis for V and q ,  c2, c3 are defined as in the statement of  the lemma, then it 

is easy to check that the space C = span{cl, c2, c3} contains no decomposables and that the relation 
C 2 ~ 2C2C 3 = 0 is satisfied. This completes the proof of  the lemma. [ ]  

L e m m a  3.4. Let V be a five-dimensional complex vector space with basis xl . . . . .  Xs, let 
C C A2V be the three-dimensional subspace with basis 

C l ~ X l A X  3 7!- X 2 A X4,  C 2 -~- X I A X 4 -~- X 2 A X5,  C 3 ~ X 2 A X 3 -~ -X  5 A X 4 ,  
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and let C'  C V | C be the five-dimensional subspace with basis 

Xl @ Cl "~- X 2 @ C2, X3 @ CI "~ X 4 @ C3, X4 @ C2 -- X 2 @ C3, 
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X2 @ CI "q- X5 @ C2 -Jr- Xl @ C3, 

Then the sequences 

and 

are exact. 

X4 @ C l + X 3  @ C2 + X 5  @ C3. 

0 :' C '  ~ V |  > A3V - ~ 0 (3.1) 

0 > V | C '  > A2V | C (3.2) 

P r o o f .  To see that the last map in (3.1) is surjective, observe that if xi A xj m xk, i < j < k, 

is a basis element for A3V other than x~ A x3 A xs, then it is of the form •  A Cm for some 1, rn. 

This is because q ,  c2, c3 are nondegenerate two-vectors in the four-dimensional subspaces of V 

obtained by deleting the basis vector x5, x3, x i, respectively. But x l A x3 A x5 = c l A x5 + c2 A x4, 

so the surjectivity of this map follows. 

By counting dimensions, we see that the kernel of this last map is five-dimensional. One checks 

easily that C '  is contained in this kernel, and so the exactness of (3.1) follows. 

To prove the exactness of  (3.2), let Yl . . . .  , Y5 denote the basis elements of C ' ,  written as listed 

in the lemma. We must show that if vl . . . . .  1)5 E V and a = 1)1 | Yl + " ' "  + v5 | Y5 is in 

the kernel of the map V | C '  ) A 2 V  | C,  then 1)1 . . . . .  1)5 = 0. Writing explicitly the 

coefficients of Cl, c2, c3 in the image of a under this map, we obtain the system of equations 

1)1 A X 1 "q- 11 2 A X  3 -~- 1)4 A X  2 "q- 1)5 A X 4 = 0 

1)1 A X 2 -~- 1)3 A X 4 + 1)4 A X 5 + 1)5 A X 3 = 0 

1)2 A X 4 - -  1)3 A X 2 ~-  1)4 A X 1 "-t- 1)5 A X 5 ~ 0 

for vl . . . . .  v5. At this point it is convenient to relabel the unknowns as w ~ , . . . ,  Ws, where w I = 

1)2, 11)2 ~ 1)5, ll)3 ~ 1)1, 11)4 ~ 1)4, W5 ~ 1 ) 3 - T h e  equations then become 

W 3 A X 1 -3 I- W 1 A X 3 -31- 1/)4 A X 2 "-~ Ii) 2 A X 4 ~-~ 0 

W 3 A X 2 "31- W 5 A X 4 "Jr- LU 4 A X 5 "-t- LU 2 A X 3 ~-  0 

W 1 A X 4 - -  113 5 A X 2 -Jl- W4 A Xl n t- //)2 A X 5 ~-  0 .  (3.3) 

Write wj = Y~i aijxi. Then, since the indices 5, 1, 3 do not appear in the first (second, and third, 
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respectively) equation, the matrix aij must have the form 

all 0 0 0 0 

a2j a22 a23 a24 a25 

0 0 a33 0 0 

a41 a42 a43 044 a45 

0 0 0 0 a55 

(3.4) 

Recall the fact that i fy l  . . . .  Y5 E V and Yl/x Xl + �9 �9 �9 + Y5/x x5 = 0, then the matrix expressing 
the yj in terms of the basis xi is symmetric. Thus each equation imposes some condition on an 

appropriately rearranged 4 • 4 submatrix ofaij. Explicitly, the first equation implies that the matrix 

0 0 ajl 0 "~ 

J 
a23 a24 a21 a22 
a33 0 0 0 

a43 a44 a41 a42 

is symmetric. Thus we must have a23 = a21 = a43 = a41 = 0. Set these coefficients equal to zero 
in the matrix (3.4), and then write down the condition imposed by the second equation, namely that 
the matrix 

0 a22 a25 a~4 / 
a33 0 0 

0 a42 a45 O44 ) 
0 0 a55 

is symmetric, hence a25 ----- a24 ~ a42 = 0. Set these coefficients also equal to zero in the matrix 
(3.4), and write down the condition resulting from the third equation, namely that the matrix 

(o 0 a, 0] 0 0 a22 

- - 0 4 5 0 0 0 )  
-a55 0 

is symmetric, hence a45 = 0. This leaves the coefficients a s J, a22, a33, a44, a55. From the symmetry 
of the first two submatrices, we see that all these coefficients are equal, and from the symmetry of 
the third, a22 = --a55. Thus, all coefficients also vanish, and the proof is complete. [ ]  

Example 3.5. Let V be a 5-dimensional vector space over any field (say Q, R, C) with basis 

xt . . . . .  xs, and let C, and C '  be the spaces defined by the bases in the last lemma. Let Co = C 
except that Co is declared to have homogeneous degree one, let d �9 Co ~ C be the identity, and for 

i > 1, define Ci by the process described in Section 2. Then the lemma yields Ci -~ C'  and C2 : 0. 

Let/C denote the corresponding nilpotent Lie algebra and K the corresponding simply connected 
nilpotent Lie group. Then/C is a three-step quadratically presented nilpotent Lie algebra of dimension 

13 with five-dimensional abelianization and five-dimensional center. Note that the orthogonal group 
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of the form q defined in the proof of Lemma 3.1 acts on/C by Lie algebra automorphisms. Note also 
that K contains lattices since/C has rational structure constants [ 13, Theorem 7]. 

Corollary 3.6. Let L be a nilpotent, quadratically presented Lie algebra over C with 
dim Lab = 5 and dim(C) = 3. Then L is isomorphic to the three-step nilpotent Lie algebra 1C 

of Example 3.5. 

We can summarize the discussion of this section as the following classification theorem. 

Theorem 3.7. Let L be a nilpotent, quadratically presented Lie algebra over C with 

dim Lab <_~ 5. Then 

(a) I f  dim Lab < 3, then L is abelian. 

(b) I f  dim L,b = 4, then L is either abelian or the 5-dimensional Heisenberg algebra 7-/(2) 
of Example 2.3. 

(c) Ifdim Lab = 5, then L is either abelian, or 7-((2) OC, or the algebra L(2) of Example 2.8 
or the algebra 1C of Example 3.5. 

In particular, these algebras are classified up to isomorphism by the dimensions of Lab and of the 
characteristic space C. 

4. Restrictions on nilpotent K~ihler groups 

In this section we derive restrictions on nilpotent K~ihler groups that use K~ihler geometry and 
go beyond the conclusions of rational homotopy theory. We work first in the context of a formal 
topological space X with nilpotent fundamental group qb. By passing to a finite cover of X, we may 

assume that qb is torsion free; in fact, �9 is a lattice in the simply connected real nilpotent Lie group 
L with Lie algebra s the Malcev completion of qb [ 13]. 

LetTbeatorusofdimensionrank(dPab)andlet f : X > Tbeacontinuousmapthatinduces 
an isomorphism qbab ) zr l (T) .Then f *  : H I ( T , R )  > H I ( X , • )  = V is an isomorphism, 
where V is as in the notation of Section 2. Because f *  preserves the multiplicative structure of 
cohomology, the spaces ker ( f*)  C H2(T,  JR) ~- A 2 H  l (T, R) and C C A2V correspond. 

Now suppose X is a compact K~ihler manifold, which we denote by M. Then the toms T can 

be given a complex structure as the Albanese torus of M, namely 

A l b ( M )  : H~'~  Z), 

and the map f can be chosen to be holomorphic, namely the Albanese map. Then we have: 
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L e m m a  4.1. Let M be a compact Ki~'hler manifold, let T be its Albanese torus, let f : 

M > TbetheAlbanesemap,  a n d l e t s  

Then the canonical isomorphism H 2 (T, •) -~ A 2V takes ker ( f* )  to the characteristic subspace 

C. In particular, V has an integral structure and a Hodge structure that induce integral and Hodge 

structures on A 2 V. With respect to these structures, C is a subspace of  A 2 V defined over the integers 

and has a Hodge structure. 

Now consider a real (p ,  p )  form ot on a complex manifold M. At each point x of  M one can 

find a coordinate system that diagonalizes ot in the sense that otx is a linear combination of basic 

monomials, i.e., of  products of the forms 

4~L--Tdz, A d~,.  

If  the coefficients of  the basic monomials are nonnegative, we say that ot is semipositive at x. If  ot 

is semipositive at all points of M and has at least one positive coefficient at one point, we call it 

quasipositive. The following lemma is basic: 

L e m m a  4.2. I f  a closed (p,  p)-form ot is quasipositive and M is Kiihler, then ot is nonzero 

in cohomology. 

For the proof, consider fl = ot A ogre-p, where m is the dimension of  M and o9 is its K~ihler 

form. Then fl is a quasipositive (m, m)-form, hence a form with positive integral. Therefore it, 

and so ot as well, is nonzero in cohomology. The next result is an immediate consequence of  the 

preceding two lemmas. 

C o r o l l a r y  4.3. Let 09 be a characteristic class of a Kiihler group. Then the (1, 1) component 

of  o9 is not (positive or negative) definite. 

Recall that if o9 E A 2 V, then the rank of  co (necessarily even) is the dimension of  the smallest 

subspace W C V such that 09 E A 2 W. Observe that rank(og) = 2 if and only if o9 is decomposable. 

With these preliminaries we can state our main theorem: 

T h e o r e m  4.4. Let M be a compact Kdhler manifold with nilpotent fundamental group ~P 

which is not almost abelian, let C and V be as above, and let 09 E C C A 2 V, 09 ~ 0 be integral 

and of  type (1, 1) (in the sense of  Lemma 4.1). Then rank(o9) _> 8. 

Proof. Let o9 be as in the hypothesis. We may view w as an integer-valued skew form on the 

real vector space V* ----- Hi (T, R), the universal cover of  T. Let J be the complex structure on V*, 

that is, the pullback of  the complex structure on T. Since o9 is of  type (1,1), it is invariant under J ,  

so its null space is j-invariant, i.e., a complex subspace, and defined over Z. It therefore covers a 
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complex subtorus T '  of T and determines an exact sequence 
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0 > T' ~ T q> T" > 0  

of complex tori, and so a holomorphic map g = q o f of M to T". Moreover, d im~(T")  = rank(co), 

and co is the pullback of an integral (1, 1) class co" on T" of maximum rank. 

We already know from Lemma 2.4 that rank(co) > 4. Thus, to prove the theorem we only need 

consider two cases: 

Case 1. rank(co) = 4. Then, the map g : M > T"  has real rank 2 or 4. In the latter case 

it is surjective, g*m "2 is quasipositive, hence nonzero in cohomology, which contradicts g 'co"  = 0 

in H2(M). In the former case, the image of g is a (possibly singular) Riemann surface Y. Since 

g* factors through the one-dimensional space H 2 ( y ) ,  its kernel has codimension one and hence 

contains decomposables, in contradiction with Lemma 2.4. 

Case 2. rank(co) = 6. Then, the map g : M ) T"  has real rank 2, 4, or 6, and the case 

of rank 2 can be disposed of as above. The case of  maximum rank 6 is also as above: g.co,,3 is 

quasipositive, hence nonzero in cohomology, which contradicts g 'co"  = 0 in H 2 ( M ) .  

It remains to treat the case in which the real rank of g is 4. Then Y = g(M) is a possibly 

singular algebraic surface and T"  is an algebraic torus. Consider first the case in which Y is ample 

and smooth. Factor g as j o k where j : Y > T"  is the inclusion. By the Lefschetz hyperplane 

theorem [14, p. 41] , j*  : H 2 ( T  ") > H2(Y) isinjective, so that j* co" is nonzero. Let rl be a class 
in H 2 ( y )  such that j ' co"  U 0 is a positive multiple of the fundamental class. Then k*(j*co" U rl) 
is quasipositive of  rank 2 and so is nonzero in cohomology. But k*(j*co" U r/) = g 'co"  U k 'r / ,  so 

g 'co"  --fi 0, and so we arrive at the by now familiar contradiction. 

For the singular case, a slightly more elaborate argument is required, but the conclusion is the 

same: g ' r /  5~ 0. To see this, we begin with the observation that the Lefschetz theorem [14, p. 41] 

still applies to give j ' r /  r 0. Next, consider a resolution of  singularities p : I ~ > Y. By a mixed 
Hodge-theoretic argument [5, Proposition 8.2.7], we know that the kernel of  p ' j*  is the same as the 

kernel ~ j*.Therefore, p*j*~ ~ O. Now let h~/be a desingularization of the fiber product ~" x r M,  

and let k " M > ~', q �9 M > M be the natural maps. Since p*j*o -~^0, there is a class ot 
such that p*j*r 1 U ot represents a multiple of the fundamental class. Therefore, k* (p*j*o U or) 5/= O, 

^ 

and so k*p*j*o ~ O. But then g ' r /  = q*k*j*o ~- O, which is what was claimed. 

Let us now consider the case in which Y is not ample. Then T" is reducible, and Y is the 

pullback of a divisor on a quotient toms [ 16, pp. 25-26]. In addition there is a finite unramified cover 

of  T"  which splits as s x A, where s is an elliptic curve and A is an abelian variety of  dimension 

2. Replace M and T"  by the corresponding unramified covers so as to reduce the problem to one in 

which T"  splits. Then the divisor Y has the form s • C, where C is a genus-two curve, or s • s  

or {p} x A, where p is a point. The second and third cases are excluded, otherwise g .  would not be 

surjective on HI.  The first case is also excluded, for it yields a nonconstant map of  M to a Riemann 

surface, thus contradicting Lemma 2.4, as in Case 1. The proof of  the theorem is complete. [ ]  
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C o r o l l a r y  4.5. Let �9 be a nilpotent, not almost abelian, Kiihler group. Then rank(~ab)  > 8. 

P r o o f .  We only need to show that if �9 were a nilpotent Kahler group with rank(qbab) < 6 

and 09 E C, co # 0, then co has type (1, 1). But if co had a nonzero (2, 0)-component  co~2,0), then 
co~2,0) E A 2 H 2 ' ~  Since dim H2"~ < 3, co~2,0) would be decomposable, in contradiction 

to Lemma 2.4. Thus co is of type (1,1), in contradiction to the theorem, and the proof is complete. 
[] 

C o r o l l a r y  4.6. Let dp be a nilpotent Kiihler group that is not almost abelian, and let C be as 

above. Then there exists x E C with rank(x)  >_ 8. I f  dim C _< 2, then rank(x)  _> 8for  all x E C, 

x#0 .  

P r o o f .  If  qb is not almost abelian, then C r 0. If  C is of  type (1,1), i.e., C | C ---- C i, L, then 

the theorem gives us that every nonzero element of  C has rank at least 8. Otherwise, C 2'~ -~ 0, and 

if or is a nonzero element of  C 2'~ then by Lemma 2.4, rank(u)  > 4. Thus, there are complex linear 

coordinates z~ . . . . .  zn for V so that 

ot = dz~ /x dz2 + �9 " + dz2k-l /X dZek, k > 2. 

It is then easy to check that any nontrivial linear combination of the real and imaginary parts of  ot 

has rank 4k _> 8. Thus, there are elements of  C of rank > 8, and the first assertion follows. For the 
second assertion, if dim C = 1, then C is of  type (1,1), and if dim C = 2, then the only possibilities 

for C is that it be either all of  type (1, 1) or all of  type (2, 0) + (0, 2). In either case, we have seen 

that all its elements have to have rank at least 8. 

C o r o l l a r y  4.7. Let r be a cartesian product o f  one o f  the following forms: 

(a) qb ___ qb I • dp2, wheredP I is a lattice in the the five- or seven-dimensional real Heisenberg 

group H ( 2 )  or H(3) ,  and ~2 is a free abelian group; 

(b) qb = qbj • qb 2 • qb3, where r and ~2 are as in (a) and r i sa la t t i ce inaHeisenberg  

group H ( k ) ,  k > 2; 

(c) qb _-- qb I • qb2, where r is a lattice in one of  the real Lie groups L(2)  or L(3)  of  

Example 2.8 or the group K o f  Example 3.5 and 4P2 is free abelian. 

Then the Malcev Lie algebra o f  dp is quadratically presented. By suitable choice o f  r or qb 3, the 

rank o f  (~) ab c a n  be made even and arbitrarily large, yet dp is not a Kiihler group. 

P r o o f .  By construction, either dim C < 2 and some characteristic class of qb has rank at 
most 6, or, in the cases involving L(3)  and K ,  dim C = 3 and all elements of  C have rank at most 

six. Thus, the last corollary excludes these as K~ihler groups. [ ]  
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Remark 4.8. It is not known whether characteristic classes of type (2, 0) can occur for 

nilpotent K~ihler groups. If  it were true that C always has type (1, l), then our theorem would give 

much stronger restrictions on nilpotent K~ihler groups. [ ]  

5. Remarks on the examples 

Finally, we examine the characteristic classes of Campana's examples of  nilpotent K~ihler groups 

[2]. For the construction, it is helpful to consult Section 9 of [7] and Part II of [9]. Let A and B be 

Abelian varieties of  dimension n, and let f " A > F and g �9 B > F '  be finite maps. Set 

X = A x B and let h = f • g " X > F x ?n, which is also a finite map. Choose two copies 

,4 and B of I~ in ~2,+J which are in general position, hence disjoint. Let V be the complement of  

these, and note that it fibers over A • B with fiber C*. Indeed, i fx  is a point of V, let a be the unique 

point of intersection of the (n + l)-dimensional linear space spanned by x and B with ,4. Reverse 

the roles of the two IW's to construct a point b on/~,  and define p(x)  = (a, b). The characteristic 

class of this principal C* bundle is (o9, - w ) ,  where 09 is the class of  the hyperplane section. Let X* 

be the pullback of  V to A x B via h. Note that X* is a quasi-projective variety, and is a principal 

C* bundle with characteristic class r/ = ( f ' w ,  --g'w).  Let dO = rrl (X*). The exact sequence of 

the fibration gives 

0 > Z ) dO > Z 2n x Z  2" > 0. 

In fact, dO is a central extension of  Z by Z 4n with characteristic class r/. Since r/2n c H 4n(X, Z) 
is a nonzero multiple (namely, the degree of  h) of  the positive generator, r/is a symplectic form on 

the vector space Hi (X, Q). This implies that the rational Malcev completion of dO is the rational 

Heisenberg group H ( 2 n )  of Example 2.3 and that dO is a subgroup of  finite index in the integral 
Heisenberg group, namely the group of matrices (2.6) with integral entries. In fact, it is easy to see 

that if dl . . . . .  d2~ are the elementary divisors of  r/as a skew form on H~ (X, Z) ~ •4n, then dO is 

isomorphic to the subgroup of  (2.6), where xi is divisible by di and where x = (xj . . . . .  x2,). 

Observe that dO cannot be isomorphic to the full integral Heisenberg group. If this were the 

case, all elementary divisors of f*o9 and g*o9 would be one, in which case the cohomology classes 

would define principal polarizations of A and B respectively. However, the line bundle of a principal 
polarization has a one-dimensional space of  sections, and so it cannot be induced from a map to IF'. 

Note that do is the fundamental group of  the quasiprojective variety X*. Now let kt : X* > V 
be the map of  C* bundles covering h : X > II ~ x 11 v', and let L C Ii z2n+l be a linear space of 

dimension 2 that is in general position with respect to A and/~. It is contained in V and so we can 

form the projective variety Y = ~ - l  (L).  The generalized Lefschetz theorem of [9, p. 195] implies 
that 

zri(x*, ~ - ' ( L ) )  = 0 

for i _< 2 provided that n >_ 2. Thus 

zrl (Y) -~ 7/" 1 ( X * )  = (ID, 
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and therefore qb is the fundamental group of a projective manifold provided n _> 2. This situation 
is similar in spirit to that of [20], [21 ], in which the fundamental groups of certain quasiprojective 
varieties turn out to be the fundamental groups of certain projective varieties, namely of suitable 

linear sections. 

A concrete example can be obtained as follows. Let E be an elliptic curve, and let E > 1?1 
be the standard map of degree 2. Let E • E > /71 • 171 be the Cartesian product of two such 

maps, and let f : E • E > 172 be the composition of this map with the standard degree two map 

1?1 • 171 > 172. Let A = B = E • E and f = g. Then f and g are of degree 8; consequently, 

h is of degree 64. It can easily be checked that all the elementary divisors of O are 2; thus qb is 
isomorphic to the subgroup of (2.6) with all xi even, where x = (xj . . . . .  x4). The subgroup of 
qb of index two where in addition Z is required to be even is isomorphic to the integral Heisenberg 

group. Another example would be to take polarizations with elementary divisors 1, 5 on A and B 
and f and g generic projections to 172 of their embeddings in ~ [11]. In this case, f and g have 

degree 10 and qb is isomorphic to the subgroup of (2.6) with x2 and x4 divisible by 5. J. Kolkir has 
pointed out to us that polarizations with elementary divisors 1, 3 on generic abelian surfaces also 

give finite maps to I? 2. In this case, f and g would have degree 6, and qb would be isomorphic to the 

subgroup of (2.6), where x2 and x4 are divisible by 3. This is the subgroup of smallest index in the 

integral Heisenberg group, which we know to be a K~ihler group. 

Note that the characteristic class of each qb in the examples just constructed is of type (1, 1). 

It is also indefinite (in accordance with Corollary 4.3) and of rank at least eight, in accordance with 
Theorem 4.4. It is not difficult to extend the construction just given to one for K~ihler groups, which 
are central extensions of Z k by Z 2m for various m and k. (For instance, take more factors of ~ ,  take 

factors of different dimensions, etc.) The characteristic classes are still of type (1, 1 ); cf. Remark 4.8. 
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