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Mean Curvature Flow Through Singularities 

for Surfaces of Rotation 

By Steven Altschuler, Sigurd B. Angenent, and Yoshikazu Giga 

ABSTRACT. In this paper, we study generalized "viscosity" solutions of the mean curvature evolution 
which were introduced by Chen, Giga, and Goto and by Evans and Spruck. We devote much of our 
attention to solutions whose initial value is a compact, smooth, rotationally symmetric hypersurface given 
by rotating a graph around an axis. Our main result is the regularity of the solution except at isolated points 
in spacetime and estimates on the number of such points. 

1. Introduct ion  

A smooth, one-parameter family of hypersurfaces Ft C R "+1 (0 < t < T) evolves by its 

mean curvature if its normal velocity at each point p E ['t coincides with the mean curvature of Ft 

at p.  In this paper, we consider the generalized "viscosity" solutions of mean curvature evolution 

which were introduced by Chen, Giga, and Goto [CGG 1 ] as well as by Evans and Spruck [ES 1 ]. We 

are interested mainly in those solutions whose initial value is a compact, smooth, and rotationally 
symmetric hypersurface F0 C R n+1 which is given as the graph of a function r = u(x), in 

cylindrical coordinates. The solutions of the mean curvature flow provided by [CGGI,  ES 1 ] need 

not be smooth hypersurfaces--indeed, in some cases they may even have a nonempty interior. Our 

main result states that such a generalized solution is a smooth hypersurface, except at an isolated set 
of points in spacetime [0, cx~) x R n+l. 

B a c k g r o u n d  to the p r o b l e m .  Concerning smooth solutions of mean curvature flow, 
Huisken [HI] showed that any solution that starts out as a smooth, compact, and convex hyper- 
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Figure 1.1. Figure of a neck pinch. 

surface remains so until it shrinks to a "round point": its asymptotic shape just before it disappears 

is a sphere. He proved this result for hypersurfaces of  R "+1 with n > 2, but Gage and Hamilton 

[GH] showed that it still holds when n = 1, the case of  curves in the plane. The methods used in 
[HI,  GH] do not resemble each other. Gage and Hamilton also observed that any smooth family 
of plane-immersed curves that moves by its mean curvature and that starts out as an embedded 
curve remains embedded. Grayson [Grl ] proved the remarkable fact that such a family must become 

convex before it becomes singular. Thus, any embedded curve in the plane will shrink to a "round 

point" under mean curvature flow. It is natural to ask if the same is true in higher dimensions. While 

it is true that smooth solutions remain embedded if their initial surface is embedded, Grayson [Gr2] 
also showed that there exist smooth solutions that become singular before they shrink to a point. His 

example consisted of  a barbell: two spherical surfaces connected by a sufficiently thin "neck." In 

this example the inward curvature of  the neck is so large that it will force the neck to pinch before 

the two spherical ends can shrink appreciably. See Figure 1.1. 

One's geometric or physical intuition (imagine the surface to be the boundary of  a piece of  ice 

and that mean curvature flow models the melting of  the ice) suggests that even though the smooth 

solution in Grayson's example cannot be extended as a smooth solution, some sort of  generalized 

solution might exist. In this generalized solution one would expect the two halves of  the barbell to 

separate and afterward evolve independently of  each other; one would also expect them to become 
smooth surfaces immediately after separation. 
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A similar situation occurs in the evolution by curvature for plane-immersed curves. Here, 
little loops can attract curvature and force smooth solutions to become singular and form cusp-like 

singularities before they can shrink to a point; here, too, it is very plausible that a generalized solution 

can be constructed. 

The second author [A3] gave an ad hoc construction of  a generalized solution for the motion by 

curvature of  immersed curves. He analyzed the behavior of  a smooth solution as it becomes singular 

and showed that a singular limit curve exists at the time of a singularity. Next, he showed that this 

singular limit curve, after removing some "spurious hairs," is nice enough to be the initial data for 

another smooth solution of  mean curvature flow. By repeating these two steps he obtained a solution 

with isolated singularities; it turned out that such singularities occur at most a finite number of times, 

so that the solution one gets in this way is maximal. Although this method provides a lot of detailed 

information about the constructed solution, it has a few disadvantages. The "spurious hairs" that 

have to be removed are difficult to analyze, and it is not even clear if they really occur. Apart from 

the construction itself, the method does not provide a simple definition of what a solution is. 

Following an idea of Calabi, the first author and Grayson gave another construction of a gen- 

eralized solution. The idea in this construction is to regularize the equation. This regularization is 

achieved by adding an extra (say vertical) dimension to the plane and replacing the curve by a cov- 

ering curve which slowly spirals upward, say with slope e > 0. The spiraling curve is then a graph 

over the vertical axis and one can construct a smooth solution of  the mean curvature flow with this 

spiraling curve as initial data. The fact that this curve is a graph can be used to show that it remains 

a graph over the vertical axis, and that it exists forever--in fact, it converges to a vertical line as 

t --+ ~ without ever becoming singular. Using the upward slope e as a small parameter, one then 

gets a one parameter family of evolving space curves. In lAG] it is shown that this family converges 

as ~ tends to zero; the limit is the desired generalized solution of  the planar motion by curvature. 

While this construction avoids the problem of "spurious hairs," and also has the attractive feature 

that the entire generalized solution is constructed in one step, it is not clear how one could generalize 

it to the higher dimensional mean curvature motions. 

Yet another definition of  weak solutions to mean curvature flow was given much earlier by 

Brakke in his seminal work [B]. He shows how, using geometric measure theory, one can construct 

a theory of generalized solutions for varifolds in R ~+1 of arbitrary dimension and co-dimension. He 
proves the existence of at least one global solution for any initial data; in fact, he shows in an example 
that one initial datum may have many different solutions. This feature of  his theory is be related to 

the "fattening" phenomenon of  the viscosity solutions. 

The generalized solutions with which we are concerned in this paper were introduced indepen- 
dently by Chen, Goto, and the third author [CGGI ], as well as by Evans and Spruck [ES I ]. The idea 

in both approaches is to regard a hypersurface as the zeroset of a function gr : [0, cx~) x R "+l ~ R 

and to derive an equation which guarantees that its zeroset will evolve by its mean curvature. Many 

equations will have this property, but if one requires that not only the zeroset, but all levelsets of the 

function ~ evolve by their mean curvature, then one finds that ~ must satisfy the following PDE: 

~ , - - I V ~ l d i v  ( V I - ~ I )  = 0 .  (1.1) 
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We refer to this equation as the levelset equation. Its derivation assumes that ~ is at least C 2, and it 

is only valid for those levelsets of  ~ that are regular, i.e., on which V ~  does not vanish. 

The idea to represent hypersurfaces as levelsets is of course common in differential geometry; 

in the present context it goes back to Ohta, Jasnow, and Kawasaki [OJK], who used the levelset 

equation to derive a scaling law for "dynamic structure functions" from a physical point of view; the 

idea to use the levelset equation to study motion by mean curvature numerically was used by Osher 

and Sethian [OS, Se2] (see also [Sel ]). 

From the analyst 's point of  view, the levelset equation is not very nice. It is a parabolic equation, 

but it is very degenerate, so that classical techniques and results cannot be expected to apply. Never- 

theless, it was shown in [CGGI,  ES I ] that the theory of viscosity solutions for nonlinear elliptic and 
parabolic PDEs, as presented in [CIL] can be adapted so that it will apply to the levelset equation. 
In fact, in [CGG 1, CGG2, GG 1 ] a larger class of equations was considered. 

The main result of  [CGG1, ES1] states that the levelset equation has a unique continuous 

"viscosity" solution ~ : [0, e~) • R "+j --+ R for any given continuous initial data ~O(x, 0) = 

~0 (x )  for which ~0 -- a has compact support, for some a E R. The most technical step in the 
proofs of both [CGGI]  and [ESI] was to establish a comparison principle for viscosity sub- and 
supersolutions. The proof of the key comparison principle in [CGGI ] has been simplified in [GGIS]. 

Using their solution to the levelset equation, the authors of [CGGI,  ESI]  defined generalized 
solutions of the mean curvature flow as follows. Let F 0 C R "+l be a compact hypersurface, and 
choose some function ~0 E C ~  "+l) with 1-" 0 as zeroset and with ~0 -- a compactly supported 

for some a < 0; then let lp(x ,  t) be the unique corresponding viscosity solution of the levelset 

equation, and put F ( t )  = {x E R "+l : i f ( x ,  t)  = 0}. Of  course one has to verify that the choice 
of  ~0 does not affect the zeroset of the solution ~p, and this is done in [CGG 1, ES 1 ]. 

To define the evolution, one does not have to assume that F0 is smooth. In fact, the definition 

can be applied to any compact set F0 C R "+j . Conversely, the only "regularity" of  the solution F ( t )  
that the definition provides is that F ( t )  is a compact subset of R "+j . There have been some partial 
regularity results which go beyond this (see [ES2, ES3, GG2, I1, I2, ESS, CGG2]), but the general 
question of regularity is still far from understood. 

A particularly disturbing aspect of the solutions of [CGGI,  ES1] is that for t > 0 a solution 
F ( t )  may have a nonempty interior, even if the initial hypersurface is smooth, except for a few 
isolated singularities. An example is given in [ES 1 ], where it is argued that the solution in R 2 whose 

initial position is a "figure eight" (or any other smooth curve with one double point) has nonempty 
interior. 

Intuitively, one can understand this fattening of solutions as follows: If F0 is a possibly singular 
hypersurface, then one can try to construct a generalized solution to mean curvature flow by first 

approximating F0 with smooth hypersurfaces Fi ~ F0, then taking the limit of  the corresponding 

solutions F i ( t )  --+ F0(t).  In particular, one can approximate F0 from the inside and obtain one 
solution, and one can approximate F0 from the outside to obtain another solution. If these "inner" 
and "outer" solutions coincide, then it follows from the maximum principle that any approximating 
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sequence will have the same limiting solution. If they are different, then there is no preferred (smooth) 
solution, and the generalized solution will consist of the entire region between the inner and outer 
solutions. 

One reason why it is of interest to know when a generalized solution will "fatten" is the relation 
with semilinear heat equations. Recently, De Giorgi [DG] proposed another weak formulation of 
solutions of mean curvature flow based on a singular limit of a reaction~tiffusion equation of the 
type 

1 
ut = Au + ~-~u(l -- u2). (1.2) 

It is not known if his solution agrees with ours, although our inner solution is obtained by Evans, 

Soner, and Souganidis [ESS] as a singular limit of solutions of (1.2). They consider the solution 

u~(x,  t)  with initial condition u~(x ,  O) = 2Xoo(x)  -- 1; here Xoo is the characteristic function of 
the region Do enclosed by some compact hypersurface F0. Assuming that the generalized solution 
1-" (t) corresponding to F0 does not"fatten," it is shown in [ESS] that u ~ (x, t) converges to 2Xo~t ) -- 1, 

where D ( t )  is region enclosed by F( t )  at time t. 

There is no known necessary and sufficient condition that describes when a solution will not 
"fatten." But there are a few sufficient conditions, the simplest of which requires the initial hyper- 
surface to be smooth with strictly positive mean curvature (with regard to its inward normal--see 

Theorem 3.10); a generalization of this criterion was given by Soner in [So, SS]. Soner [So] has 

used the results of [CGG 1 ] to set up another theory of generalized solutions of mean curvature flow. 
Unlike the theories of [ES 1, CGG1 ], and more like Brakke's theory [Br], Soner's solutions are again 
not uniquely determined by their initial data, but they always lie in-between the inner and outer 
evolutions, in our terminology. 

After this work was completed, we were informed of recent work ofH. M. Soner and E E. Sou- 
ganidis [SS] closely related to Sections 5 and 7. They proved the cylindrical blow-up theorem 5.9 for 
initial data under a symmetry condition which forces the neck to have no motion along the x-axis. 
They also prove regularity of the inner evolution for surfaces given by rotating a circle around the 

x-axis. 

M a i n  results .  We have studied the generalized evolution corresponding to a smooth compact 
hypersurface 1-" 0 C R n+l which is obtained by rotating the graph ofa function r = u ( x ) , a  < x < b 

around the x-axis. Denote this solution by F( t ) .  

T h e o r e m  1.1. Outside o f  the x-axis  the solution F(t )  is a smooth family  o f  smooth hyper- 

surfaces evolving by their mean curvature. In particular, the solution does not "fatten," and I ' ( t )  

always has empty interior. 

There is a finite sequence o f  times 0 = to < tl < �9 " < tl such that the hypersurfaces F( t )  
_ ~ e n n + l  are smooth and compact in all uj ~ , including the x-axis,  when tj_l < t < tj, j = 1,2 . . . . .  1. 

The solution is empty f o r  t > h. 
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The time tt is called the extinction time of  the solution. The solution F ( t )  is not necessarily 

connected, even though the initial hypersurface F0 is. However, the number of  components of  I" (t) 

can only change at the singular times tj. The next theorem says how. 

T h e o r e m  1.2. Let F,  (t) be a component of  I" ( t ) that becomes singular at tj. Then we have 

the following alternative: 

(i) F,  (t) shrinks to a point on the x-axis; 

(ii) one or more "necks" o f  I ' ,  ( t ) have been pinched. 

The number o f  necks m , ( t )  o f  any o f  the surfaces F , ( t )  is a nonincreasing function o f t  E 

( t j _ l  , tj ). The hypersurface I ' ,  (tj) is smooth away from the x-axis  and its number o f  singular points 

on the x-axis  is not more than m , ( t  - e) for  any e > O. 

Here a "neck" of  F (t) is a positive local minimum of the function r = u (t, x)  which describes 

F (t) in cylindrical coordinates. By the Sturmian theorem (see Section 3) the number of  necks of  the 

solution does not increase with time. Theorem 1.2 implies that at each singular time either a neck or 

a local maximum of r = u( t ,  x )  disappears, so that we have an estimate for the number of times 

that the solution can become singular. 

C o r o l l a r y  1.3. The number l o f  singular times is not more than the number o f  positive local 

maxima and minima of  the function r = u (x ) which defines the initial hypersurface. 

For example, the barbell of Figure 1.1 has one neck and two local maxima, so the corresponding 

generalized solution will be singular at most three times. It may happen that the neck is not very thin, 

and the solution becomes convex. By Huisken's first result the solution will then shrink to just one 
point. On the other hand, if the neck is thin enough then it will pinch, and the remaining two parts 
will each shrink to some point. In this case l = 2 or 1 = 3, depending on whether the two remaining 

parts disappear at the same time or not. 

An intermediate case is also possible: the surface can shrink to a point, but never lose its neck. 
In Section 8 we show, in a concrete example, that such a solution actually exists. Its existence was 
suggested by Hamilton, who invented this solution as an example of  "type-II" blow-up, i.e., as an 
example of  a solution whose maximal curvature blows up faster than c(tr -- t) -1/2 for any c > 0 

(see [Alt]). We also show that this solution really exhibits type-II blow-up. 

The example is given in dimensions 3 and higher, but the arguments we use in w may also be 

applied to the evolution of  curves in the plane. They then provide a rigorous proof for the existence 

of  nonregular ("fattening") solutions starting from a singular curve. 

This first example of  Section 8 is symmetric with regard to reflections in the x = 0 plane. We 

show that for nonsymmetric solutions there is a similar intermediate way of  becoming singular: a 

neck can pinch, but at the same time the part of  the solution on one side of  the neck shrinks to a 
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point on the x-axis. In this situation the generalized solution remains connected after the singularity 
o c c u r s .  

Brief outline of the paper. We have organized the paper as follows. 

Section 2. We introduce some notation and recall the parabolic PDEs that describe the evolution 

of a surface of  rotation. We also recall a Korevaar-type gradient estimate of  Evans and Spruck and 
also Ecker and Huisken. 

Section 3. We elaborate on the generalized solutions of [CGG 1, ES 1 ]. Because of  the "fattening" 

phenomenon, and for other reasons, we have found it more natural to consider the inner and outer 

evolutions D = {(x, t) : ~ > 0} and E = {(x, t) : ~ > 0} rather than the generalized solution 

F = E \ D itself. It turns out that D and E are also uniquely determined by their initial values 

D(0)  = {x : ~z(x, 0) > 0}, E(0)  = {x : ~ ( x ,  0) > 0}. The question of  whether F fattens up or 
not can now be reformulated as "is E the closure of  D?"  

We state some theorems on the continuous dependence of the solution on initial data and on time, 

and also separation properties analogous to the maximum and comparison principles for parabolic 

PDEs. These theorems turn out to have a more natural formulation in terms of  inner and outer 
evolutions. 

The final lemma in this section is a technical condition that prevents a solution from fattening; 

it will be used in Section 7, where we apply it to rotationally symmetric solutions. 

Section 4. In this section the Sturmian theorem is recalled and applied in the same way as it 

has been applied in [AI,  A2, A3]. The idea of counting the intersections of  graphs of  solutions to 

scalar one-dimensional parabolic PDEs was also used in the U.S.S.R. by Victor Galaktionov during 
the last five years: we refer to [GP] and the references given therein. 

The two main results we get out of  the Sturmian theorem are an a priori gradient estimate 

(Theorem 4.3.b) and the attracting axis theorem. The latter says that once a neck gets very thin it 
must move monotonically toward the axis. 

Section 5. Here we consider a smooth solution and give a fairly detailed description of  what 
happens to it as it becomes singular (the singular time is denoted by T). We first show that necks col- 
lapse at isolated points on the x-axis (a stronger version of  this result was announced by X. Y. Chen). 
We then show that the surface converges uniformly to a limit surface at time T. Next, we find a 

blow-up rate for necks, based on the work of Huisken [H2], and prove that appropriately rescaled 

solutions converge to cylinders. A corollary of  this work, pointed out to us by T. Ilmanen, is that 

necks are "flat." Next we show that the surface converges uniformly to a limit surface 

Section 6. In this section we show that the boundary of  the inner weak solution OD(t) satis- 

fies Theorem 1.1. The main step toward this statement consists of  showing that the inner evolution 

immediately becomes smooth after each singular time D(ti). To show this we approximate D(ti) 
monotonically from the inside by smooth domains Dj(O) ( j  = 1,2 . . . .  ). By comparing the solu- 
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tions Dj(t) with shrinking cylinders and counting intersections we then show that the Di(t) stay 

smooth and are represented by "vertical graphs" x = vj(r, t), at least for a short time (0, 3) and 

near the intersection with the axis. 

The Korevaar-Evans-Spruck estimates then allow us to show that D(t) is a smooth family of 

smoothly bounded domains for ti < t < ti + 3. Smoothness of OD(t) away from the x-axis turns 

out to be easier to prove, using the interior estimate of Theorem 4.3.b. 

Section 7. The proof of Theorem 1.1 is completed by showing that E is the closure of D,  i.e., 

that the solution F does not fatten. The proof consists of an application of  the "second regularity 

lemma" of Section 3. To verify the hypotheses of this lemma, however, we have to show that the 

outer evolution E also splits up into components after any neck pinch. We do this by comparing it 

with a special similarity solution, the "shrinking doughnut," and this in turn is only possible because 

we have shown in Section 5 that a pinched neck is "fiat." 

Section 8. This section is devoted to Hamilton's example of  a special solution that shrinks to a 

point but does not become convex. 

The results in this paper were first announced in [AAG]. 

2. Notation and smooth solutions 

Throughout this paper we assume that n >_ 2. Points in R "+l , n _> 1 will be written as (x, y)  

where x C R and y E Rn; i f r  and y occur in the same context, then r will always denote [Yl, i.e., 

r = ~/y~ + - . .  + y2. 

The solid, open cylinder with radius p will be denoted by Cp: 

C p = { ( x , y ) : r  < p } ,  

and its closure will be denoted by Cp. 

Sign and orientation conventions. If F C R n+j is a smooth, compact, and connected 

hypersurface, then the Jordan-Brouwer separation theorem states that R n+l \ F has exactly two 

components. One of these is bounded and will be referred to as the "inside" of  f ' .  The hypersurface 

F is orientable and admits precisely two smooth unit normal vector fields n : 1-" --+ S". In this paper 
we let n be the inward normal. 

The second fundamental form at a point P E F is defined to be the bilinear form 

A(~, r]) = - ( ~ ,  Vn(P)  �9 q}; 
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the principal curvatures of F' at P are the eigenvalues xt ( P )  . . . . .  x,, ( P )  of  the so-called Weingarten 

map - V n ( P ) ;  by the mean curvature we mean H = xl + �9 �9 �9 + x,, (and not (Kl + �9 �9 �9 + xn) /n ,  
as many authors have done since the times of Gaul3). 

With these conventions the principal curvatures of the unit sphere in R "+l are + l ,  and, in general, 

the principal curvatures of  any convex hypersurface are nonnegative. 

o~-domains .  A surface of rotation can be decomposed into two parts, one close to the axis 

of symmetry- -which  may be represented as the union of  two graphs x = vl ( r ) ,  x = v 2 ( r ) - - a n d  

the complement, which lies "away from the axis" and may be represented as the graph of a function 

r = u(x) .  Throughout this paper we find it convenient to quantify the two phrases "close to the 

axis" and "away from the axis," hence the following statement. 

Let ot > 0 be given and let U C R "+~ be an open set of the form 

u = { (x ,  y )  R "+ '  - r < . ( x ) }  (2.1) 

for some 0 < u E C ( R ) .  

D e f i n i t i o n  2.1. We say that U is an a -domain  if 

(1) I = {x E R : u(x)  > 0} is a bounded, connected interval; 

(2) u is smooth on I ;  

(3) OU intersects each cylinder OCp with 0 < p < ot exactly twice and these intersections 

are transverse. 

Consider an or-domain U given by (2.1), and let the endpoints of  the interval I be a l < a2. 

Condition (2) says that 0 U is a smooth hypersurface, except possibly at its endpoints (a i, 0), 

(a2, 0). By the third condition there exist 61,62 > 0 such that 

u(al + 61) = u(a2 -- 62) = Ot, 

u(x)  < ot for x C (a l ,  a l  + 61) U (a2 --  62, a2) 

u(x)  > o r  for x E (al  + 6 1 , a 2 - - 6 2 ) .  (2.2) 

It also follows from the same condition that 

u'(x) I > 0 
I < 0  

w h e n x  c ( a l , a l + 6 j l  

when x C [a2 --  62, a2). 
(2.3) 
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Figure 2.1. A typical a-domain. 

The inverses of  u I[,,,.a, +6,1 and u 1[,,_~-~.,,21 are therefore well-defined functions v i, v2: [0, ot ] ~ R. 
By the inverse function theorem they are smooth on (0, or] and they satisfy 

! / 

v l ( r )  > O, r e ( r )  < 0 (0 < r < or). (2.4) 

Finally, near the axis, the surface 0 U is the union of  two graphs: 

0 U  :'1C~, = {(x, y)  : 0 < r < ot, x = v i ( r ) ,  (i = I, 2)}.  (2.5) 

We refer to the two components of  0 U fq C~ as the left and right caps of  0 U. 

G r a p h  e q u a t i o n s .  Let v(t ,  y)  be some smooth function on an open subset of  R • R"; then 

the graph I" t of t~(t, .) is a hypersurface in R "+j. This family of hypersurfaces moves by its mean 
curvature if and only if 

v, = gU (vx, . . . . .  v , . ) v , .~  . (2.6) 

Here the gij  denote the components of  the inverse matrix to [g i j ] ,  and g i j  are the components of  
the metric on Ft in the coordinates x ~ , . . . ,  x, .  Note that we are using the summation convention to 
conserve notation. The gij  are given by 

gij  (Pl . . . . .  P , )  = 
(1 + Ipl 2) ~ii _ p i p j  

I + Ip[ 2 

We refer to equation (2.6) as the fu l l  graph equation. 

If l-'t is a family of  rotationally symmetric hypersurfaces, then parts of l't may be represented 

either as horizontal  graphs, r = u ( x ,  t ) ,  or vertical graphs,  x = v(r ,  t ) .  

If Ft is given as a horizontal graph, then F't evolves by its mean curvature iff u satisfies the 

horizontal  graph equation 

oqu uxx  n - -  1 
- -  (2.7) 

at  I + u 2 u 
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If I't is given as a vertical graph, then Ft evolves by its mean curvature iff v satisfies the vertical 
graph equation 

0 V Vxx rl -- 1 
- -  - -  - ~  1 )  r . (2.8) 

Ot 1 + v~ r 

In general, if F( t )  C R n+l is a family of smooth hypersurfaces, obtained by rotating a family y ( t )  
of smooth curves in the upper half-plane around the x-axis, then the F (t) will evolve by their mean 

curvature if and only if the g (t) evolve with normal velocity given by 

n - I  
v = k + cos 0, 

F 

where 0 denotes the angle between the tangent to y (t) at (x, r )  and the x-axis, and k is the curvature 

of y (t) at (x, r) .  Both the horizontal and vertical graph equations are equivalent to this equation, 
when they are meaningful. 

The Evans--Spruck estimates. Recall the interior gradient estimates of Evans and Spruck 
[ES3] and Ecker and Huisken [EH2], which were obtained by adapting Korevaar's [Ko] arguments. 

These estimates give a priori bounds on IV v I for any solution of the full graph equation. 

Let BR(p)  be an open ball of radius R centered at p E R n and let T > 0, 3 > 0, t~ E R be 

given constants. Assume that the function v = v(t ,  y)  is defined on 

Q : (o, T + 3) • BR(p) .  (2.9) 

Lemma 2.2. 
Q. Then 

Suppose that v E C3(Q)  f3 C ( O )  is a solution of the full graph equation in 

IVv(T,  P)I _< (3 + 4 8 M / R ) e  2L (2.1o) 

with L = 2 + 180M2/T  + 7 2 0 n M 2 / R  2, M : supQ Ivl. 

This is the same as [ES3, Corollary 5.3] except that we do not assume 3 : T. However, the 
proof in [ES3] actually works without this assumption. 

Corollary 2 .3 .  For s I < $2, to > O, a n d  q c R n w e  se t  

f2 = (sl, s2) x Bp(q).  (2.11) 

Suppose that v E C3(f2) solves the full graph equation in f2 with M = sup~ Ivl < ~ .  For any 

> 0 there is a constant C : C ( M ,  E, n) such that 

IVvl _< C on f2, : (sl + E 2, s2) • Bp_~(q). (2.12) 
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Proof. For (ti ,  p )  6 ~ ,  we put 

Q = (tl - T,  tl + 3) x B R ( p )  

with T : e2, R = ~ so that Q c f2 for sufficiently small 3. The estimate (2.10) now yields (2.12). 
[] 

If the gradient is bounded, then by classical interior H61der gradient and Schauder estimates, 

one can bound the higher space and time derivatives (see [LUS]). We state a version of such results 

for the reader's convenience. Note that such results hold for general quasilinear parabolic equations 
other than the full graph equation. 

L e m m a  2.4. Let ~ be as in (2.11). Suppose that v E C3(~2) solves the full  graph equation 

in ~ with M = sup~ Iv[ < cx~ and N : sup~ IVvl < ~ .  Then: 

(i) For ~ > 0 and nonnegative integer l there is a constant C'  : C '  ( M ,  N ,  E, n,  l) such 

that 

Ilollc,r _< C '  

(ii) (lnterior estimates up to initial data), l f  v E C 2t+l ([sl,  s2) • Bp(q)) ,  then 

Ilvllc,~;> _ C" 

x Bp_~(q) and C" = C " ( M , N , ~ , n , I , K )  where K is a bound of  with ~2'~ = ( s l ,  $2) 
l Iv(0, -)[Icz,+,<~plq)). 

Combining the corollary and Lemma 2.4(i), we observe that solutions of the full graph equation 
immediately become smooth, even if the initial data are singular. 

3. The Inner and Outer Evolution 

In this section we recall various fundamental properties of  the weak solutions to the mean 
curvature problem which were introduced in [CGGi,  ESI] .  These weak solutions were constructed 
as level sets of  a "viscosity solution" to the levelset equation (3.1). We follow the approach of 
[CGG 1 ]. 

We first recall the definition of a weak solution of the mean curvature flow given in [CGG1], 
using a slightly different notation. Let D be an open set in the spacetime domain [0, oo)  x R ' '+j, 

and let I" be a closed set in [0, oo)  x R n+l that is disjoint from D. Suppose that for some ot > 0 

there is a viscosity solution ~ E K:,~ of 

~k, [ V ~ l d i v ( V l ~ l )  - -  = 0  in (0, oo)  x R ' '+l,  (3.1) 
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Figure 3.1. A possible choice of (U, Z). 

where for ot < 0 we define 

/Ca : {~r E C([0,  ~ )  • R n+l) �9 

( ~  - or) has compact support in [0, T] • R n+j for any T > 0}. (3.2) 

If 

F = {(t, z) 6 [0, ~ )  • R ~+' " ~p(t, z) = 0} 

D = {(t, z) E [0, ~ )  • R ~+1 �9 ~ ( t ,  z) > 0} 

(3.3) 

(3.4) 

then we say that (17, D)  is a weak solution of the mean curvature flow problem with initial data 
(17(0), D(0) ) .  Here, and throughout the paper, W(t) denotes the cross section at time t of  any set 
W C [0, cx~) • R "+1, i.e., 

w ( t )  = {z ~ R ~ �9 (t, z) ~ W } .  

Of course, 

w = I , .J{t}  • w(t). 
t~0 

Also, any solution will be understood to be a viscosity solution. 

Suppose that U is a given bounded open set in R n+l, and ~ is a closed subset of R n+l that is 
disjoint from U, but that contains 0U.  According to [CGGI]  there exists a unique weak solution 

(F, D)  with initial data (F (0), D (0)) = ( E ,  U)  (in fact, such a solution was constructed for a much 
larger class of geometric initial value problems). For the mean curvature flow, Evans and Spruck [ES 1 ] 

constructed the set F, given the compact but otherwise arbitrary initial datum F(0) .  This indicates 
that F is completely determined by F(0)  and that it is independent of  D(0) .  In Theorem 3.1 we 

observe a closely related fact: we show that the open sets D(t) are uniquely determined by D(0) .  
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Intuitively {F( t ) ,  t > 0} is a family of hypersurfaces that evolves by its mean curvature, and 

D(t)  is the "inside" of  F'(t).  Evans and Spruck [ESI] observed that this intuition is valid if F (0) 
is a smooth hypersurface: they showed that, as long as the classical smooth solution 1-" (t) exists, it 
coincides with the weak solution; see also [GG2] where the same is proven for general geometric 
evolutions. On the other hand they also showed that if I" (0) is a "figure eight" in the plane, the unique 
(!) solution 1" (t)  has positive area for any t > 0, and hence cannot be regarded as a curve in any sense. 

Theorem 3.1. Let (1-', D) be a weak solution with initial data (I'(0), D(0)). Define E = 

D U F .  

(i) D depends only on D (0) and is independent of F (0). 

(ii) E is completely determined by E(0)  = D(0)  U F(0).  

P r o o f .  We first note that by Theorem 6.8 of  [CGGI]  there exists a unique viscosity solution 
E /Ca of the levelset equation for any given continuous initial value ~ ( 0 ,  z) = a(z),  which is 

constant outside of a compact domain in R n+~ . Choose a so that 

F(0)  = {Z E R "+' "a(z)  = 0},  D(0)  = {z E R "+l "a(z)  > 0}.  (3.5) 

Just as in (3.1-3.4), the corresponding solution ~ E /Ca of the levelset equation then defines a 
weak solution (F, D)  to the mean curvature flow, by 

1-" ---- {(t,Z) E [0, oo) •  "+j " ~ " ( t , Z ) = 0 } ,  

D ---- {(t, z) E [0, oO) • R "+1 " ~O~(t, Z) > 0}.  

Since any choice of  a that satisfies (3.5) will produce the same (F, D)  (see [CGG1, Theorem 7.1]), 
we may choose our a so that 

a(z) = d(z,  0 ( D ( 0 ) ) ) ,  

holds in D(0) ,  where d denotes Euclidean distance. 

We introduce the function 0 : R --+ R, given by O(s) = s x / 0  = max(s ,  0). Since (3.1) 
is "geometric" in the sense of  [CGGI] ,  and 0 is continuous and nondecreasing, it follows from 
Theorem 5.2 of [CGGl]  that ~b(t, z) = O(~"(t ,  z)) is also a solution of (3.1) in (0, ~ )  • R n+l. 

By the uniqueness of  the solution ~pa, given the initial condition a [CGGI,  Theorem 6.7], ~b(t, z) 
is the unique solution of (3.1) in/Co (defined in (3.2)), with 

d#(O,z) = [ d(z,  0 ( D ( 0 ) ) )  f o r z  E D(0) ,  

I 0 otherwise. 

Since D = {~ > 0} = {q~ > 0}, it follows that D is completely determined by D(0) .  

The proof of  (ii) parallels that of (i) if we take 0 (s) = s / x  0 = min(s,  0). [ ]  
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As an aside, we point out that the same result has been proved in [GGI, Remark 2.4] for the 
case of  periodic boundary conditions. 

Definition of  inner and outer evolution. If  Do C R n+j is a bounded open set, then we 

can choose any compact set E0 ~ Do and construct the weak solution (F, D)  corresponding to 

(E0 \ Do, Do). Theorem 3. l says that D is independent of  the way we choose E,  so it makes sense 

to define D to be the inner evolution corresponding to Do. Likewise we define E : D 1.3 F to be 

the outer evolution corresponding to Eo. 

The inner evolution at time t, i.e., D(t),  is always an open set, and the outer evolution at time 

t, E( t ) ,  is a closed set. 

C o m p a r i s o n  L e m m a  3.2. Suppose that D and D' are inner evolutions with initial data 

D(0) ,  D'(0) ,  respectively; let E and E' be outer evolutions with initial data E(0) ,  E ' (0) .  

(i) If  D(O) C D'(O) then D C D'. 

(ii) If  E(O) C E'(O) then E C E'. 

(iii) If  E(O) C D'(O) then E C D'. 

(iv) I f  D(O) C E'(O) then D C E'. 

The nature of  inner and and outer evolutions is such that we frequently have to represent open or 

closed sets as regions where a given function is positive, or nonnegative, respectively. Thus we call 

a function a E C ( R  n+l) admissible for an open set Do C R "+j if Do = {z ~ R "+l " a(z)  > 0} 

and if a (z) is constant and nonpositive outside of  some compact region in R ~+l . 

Similarly, we call a function a c C ( R  ~+1) admissible for a closed set E0 C R "+l if E0 = 

{z E R ~+~ �9 a(z)  > 0} and i f a ( z )  is constant and strictly negative outside of some compact region 

in R "+l . 

Proof of L e m m a  3.2. We begin with (i). Let a ,  a '  be admissible functions for D (0), D ' (0 ) ,  

respectively. By [CGG1, Lemma 7.2], a and a '  can be chosen so that a < a ' ,  since D(0)  C D' (0) .  
The comparison theorem for weak solutions of (3.1) [CGGI,  Theorem 6.7] then implies that the 

corresponding weak solutions ~a  and ~a '  are also ordered: ~a  < ~ ' .  Hence D C D' .  

The proof of  (ii) may be given along the same lines. 

Concerning (iii) we observe that E (0) is a compact subset of the open bounded domain D ' (0) ,  

so that there exists a a E C ( R  n+l) with 

(*) a (Z) =-- --1 outside some large ball that contains D ' (0) ,  

(**) D ' ( 0 ) =  { z ~ R  n+l " a ( z )  > 0 } , a n d E ( 0 ) - - - - { z E R  n+l " a ( z )  > 1}. 
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Again, there is a unique weak solution ~ "  of (3.1) that is constant outside some large ball in space 
and for which ~pa (0, Z) = a(z).  Since a is admissible for D ' (0 )  and a -- 1 is admissible for E(0) ,  

we see 

E = {(t, z) : ~ ( t , z )  > 1}, D = {(t, z) : ~p(t,z)  > 0}, 

which clearly implies that E C D' .  Here we use the fact that with ~a ,  all functions ~ -- c (c E R) 
are also viscosity solutions of (3. l). 

Finally, (iv) is trivially true since (F,  D)  with F = E '  \ D is the weak solution to the mean 
curvature flow problem with initial data (E ' (O) \ D(O), D(O)). [ ]  

Convergence and separation properties. If {Uj : j = 1,2 . . . .  } is a sequence of open 
sets, then we write Uj 1" U i f U j  C Uj+l forall  j > l , and  U = Uj>_IUj. I f { C ) :  j = 1,2 . . . .  } 
is a sequence of closed sets, then Cj $ C will mean that Cy D Cj+,, and C = Nj>_jCy. 

We begin this subsection with a useful lemma that was used implicitly in [ES3]. 

Approximation Lemma 3.3. Let D be an inner evolution. Then there exist two sequences 
of inner evolutions { D' k �9 k > 1} and outer evolutions { E~ " k > 1} such that 

D k ~ D and D k C E' C Dk+ t . (3.6) 

P r o o f .  Let ~b : [0, ~ )  • R ''+1 ----> R be a viscosity solution of the levelset equation for 
which D is the set where ~ is positive. Then we define 

D~ = {(t, z) �9 ~ ( t ,  z) > 2 -k} ,  E~ = {(t, z) �9 ~p(t, z) > 2 -k} .  

These sets clearly satisfy (3.6), and since ~p -- 2 -k is a viscosity solution of the levelset equation, 
they are inner and outer evolutions, respectively. [ ]  

Monotone Convergence Theorem 3.4. 

(i) Let D and {Dj : j = 1, 2 . . . .  } be inner evolutions. If  Dj(O) ~ D(O), then Dj ~ D. 

(ii) I rE  and Ej are outerevolutions then Ej(O) ~, E(O) implies Ej ,~ E. 

Proof. We prove the statement about inner evolutions and leave the analogous proof for outer 
evolutions to the reader's imagination. 
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Let D~, E~ be the approximating inner and outer evolutions for D which were constructed 
in the previous lemma. Then E~(0) is a compact subset of D(0) ,  so there is a jk > 1 such that 

E'k(O) C Dj,(O). By the comparison theorem, we have E~ C Dj,. But the sequence E~ was 
constructed so that D~ C E~ 1" D, and we see that Djk ~ D, which proves the theorem. [ ]  

All the results, stated so far could have been formulated and proved for the more general 
geometric evolution equations of  [GG1 ] rather than just the mean curvature flow. In the following 

result we use a symmetry property of the levelset equation: if ~ is a viscosity solution of (3.1), 

then so is - - 4 .  Geometrically, this symmetry reflects the fact that the definition of mean curvature 
flow for smooth surfaces does not involve the orientation of those surfaces. The viscosity solution 

approach introduces an orientation of the evolving hypersurface since we regard it as the boundary 
of what is "inside" the surface. 

S e p a r a t i o n  T h e o r e m  3.5. Let Di and Ei be inner and outer evolutions, respectively 
(i = 1, 2). 

(i) 

(ii) 

(iii) 

(iv) 
disjoint 

d (El  (t), E2( t ) )  > d(El  (0), E2(O)) f o r  all t > O. 

d (D l ( t ) ,  D2(t) )  > d(Dl  (0), D2(O)) for all t > O. 

If  Dl (0) and D2(0) are disjoint then so are Dj and D2. 

Let D be the inner evolution with initial datum DI (0) U D2 (0). If  Di (0) and D2 (0) are 
then D = D1 U D2. 

The first two statements in this theorem are well known for smooth solutions of the mean 
curvature flow (e.g., [A1, I1], and in particular Matt Grayson's  g-whiskers [Grl]), while it is also 
known that they do not hold for the more general situation in which one evolves objects of  high 
co-dimension by their mean curvature vectors (see [Alt]). 

This theorem will turn out to be useful because of the last two statements. The reason for this 
is that they still apply when the two sets Dl (0) and D2(0) are disjoint, but have zero distance, i.e., 
when their closures intersect. 

P roo f .  The proofs of (i) and (ii) are very similar, and the proof of (i) is essentially given in 
[ES1], so we only prove (ii), for the sake of completeness. 

Let d be the distance between D l (0) and 02  (0), and write dj (z) for the distance from z E R n+ J 
to 3(Dj(O)) ( j  = 1, 2). Define 

a(z)  = 

dl (z) + d /2  

- d 2 ( z )  - d /2  

(d2(z) A d) _ (d,(z)  A ~) 

for Z E D 1(0) 

for Z e D2(0) 

otherwise. 

We claim that a is Lipschitz with constant 1. On the open sets Di (0) (i = 1,2) this is clear, since 
the distance to a set is always Lipschitz with constant 1. Outside of  the closures of the Di (0)s we 
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always have dl (z) + d2(z) > d, by the triangle inequality, so the open sets 

are disjoint. On these sets a (z) is given by +(di (z) - d /2 ) ,  so that a is also Lipschitz with constant 
1 on these sets. Finally, a(z) vanishes on the complement of Dl (0 )  U D2(0) U Vi U V2, and by 
piecing these separate Lipschitz estimates together one finds that a is Lipschitz with constant 1 on 
all of R n+l. 

Moreover, a vanishes far away from Di (0) U D2(0). 

Let ~ E /Co denote the solution of the levelset equation with initial value a. Then +~p + c 
is also a solution for any c E R. This implies that the inner evolution corresponding to the set 
D ' (0)  = {z E R n+ l  : a(z) < 1~} is D '  = {(t, Z) E [0, o~) • R n+l : ~ ( t ,  Z) < /5}, whatever 
the value of [3 < 0. Applying this observation to 

D , (0 )  = {z E R "+' : a(z) > d / 2 } ,  D2(0) = {z E R "+l : a(z) < - d / 2 } ,  (3.7) 

we find 

D, = {(t, z) E [0, cx~) • R "+l : ~ ( t ,  Z) > d / 2 } ,  

De = {(t, z) E [0, c~) • R "+l " ~ ( t ,  Z) < - d / 2 } .  (3.8) 

This clearly implies that Dl and D2 are disjoint. 

Theleveisetequation(3.1)isinvariantundertranslationsandunderthesubstitution ~p ~ ~ + c .  
Using a comparison principle, this allows one to prove (cf. [ES !, GGIS]) that the Lipschitz property 

n + l  of a implies that each ~ (t, -) is a Lipschitz function on R , with constant < 1. Thus, if Zj E Dj (t) 
then by (3.8) 

d = d /2  + d /2  < ~p(t, zt) - ~ ( t ,  z2) < IzJ - z21, 

which completes the proof of (ii). 

To prove (iii) we simply observe that the preceding argument still works if d = 0. It allows us 
to derive (3.7,8) and hence the disjointedness of Dl ,  D2. 

To prove (iv) we invoke the approximation lemma to construct two sequences of inner and outer 
evolutions 

. . . .  / - ~ j + l  D~ C E~ C D{ +l and Dg C Eg C "-'2 �9 

Let O j be the inner evolution with initial value D~(0) U Di (0 ) .  Since E{ and E i are compact, 

= d(e , e j )  > 0, and thus d (D~ ,  D~) > d(E{ ,  E l )  > 0. This implies that D j = D~ U Dj; 
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indeed, if 0 < ff~, ~ J  E C([0,  ~x~) x R n+l) are viscosity solutions of  the levelset equation with 

O~ = {(t, z )  ~A > o}, then s u p p ~  and supp~g are disjoint and are separated by at least 3J, so 

that ~ J  = ~ ]  V ~ j  is again a viscosity solution of the levelset equation; the inner evolution that 
starts with D~ (0) U D~ (0) therefore is given by [ (t, z) : ~ J  > 0} = D j. 

We have constructed a sequence of inner solutions D j which increases to D1 U D2, and whose 

initial values increase to D(0) .  By the monotone convergence theorem we have D j 1' D,  and hence 

D =  DI U D2. [] 

As functions of time the sections D ( t )  and E ( t )  of an inner and outer evolution have a certain 

continuity. To formulate this continuity we define the e-core C , ( V )  of an open set V C R "+1 to be 

C~(V) = {x E R "+l :d i s t (x ,  V ~) > e} 

where V c = R "+j \ V. 

This concept is dual to that of an e-neighborhood of a closed set in Rn+l: indeed, one has 
c~(v) = (H~(vc)) c 

Continuity in Time 3.6. Let D and E be inner and outer evolutions. 

(i) D ( t )  is a lower semicontinuous function o f t  E [0, ~ ) ,  in the sense that for  any t o > O, 

e > 0 a S > 0 can be found such that 

It --  to[ < ~ :=~ D ( t )  D C~ ( D ( t o ) ) .  

Similarly, E ( t ) is an upper semicontinuous function: 

u162 It - t01 < ~ =* E ( t )  C Are ( E ( t o ) ) .  

(ii) D ( t )  is also left upper semicontinuous in t, i.e., for  any to, e > O, a 3 > 0 exists with 

to - 6 < t < to ~ C~(D(t ) )  C D(to);  

and E ( t )  is left lower semicontinuous in t: 

u165 to - & < t < to ~ Ar~(E(t ) )  D E(to) .  

For any two closed sets Cl, C 2 C R n+l the Hausdorff distance between them is defined by 

d n ( C l ,  C2) = inf{e > 0 : C1 C Ar~(C2)&C2 C A/'~(C1)} �9 
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One can define a dual metric between open subsets VI, V2 C R n+l by 

d~(Vj, I/'2) ---= inf{e > 0 : C~(VI) C Vz&C~(V2) C Vl}. 

Clearly d~(Vi, V2) = dn(Vj c, V~). 

The theorem implies that D(t) and E(t) are left continuous functions with respect to the 

Hausdorff metrics on open and closed sets. 

P r o o f .  (i) follows easily from the fact that D ,  E are open and closed sets in [0, (x~) • R n+l  , 

respectively (e.g., C~ ( D  (t0)) i s compact,  so there is a 6 > 0 such that C~ ( D  (t0)) • (to - 8, to + 6) C 

D,  which is what is claimed). 

The two statements in (ii) are dual to each other, and we only deal with the case of  inner 

evolutions. 

Let e > 0, to > 0 be given; put 6 = e2/2n; assume that t is given with to --  6 < t < to. 

Given any point P E C~(D(t)) we observe that 

U~ --= {(s, Q)  ~ [0, oo)  x R "+l �9 d(Q, p)2  < 2 n ( r  - s)} (3.9) 

is an inner evolution that at time t is a ball of radius e '  = ~ / 2 n ( r  --  t)  centered at P .  Since 

to -- t < 6 = ~2/2n there is a r > to such that r --  t < 8. For this r we have U~(t) = B~,(P) 
with e '  < e, so that U~(t) C D(t). By the comparison lemma we then have U~(to) C D(to), and 

hence P E D(to). [] 

Regular evolutions, or the interior of F ( t ) .  Evans and Spruck's  example of  the figure 

eight shows that the set 1-" = E \ D may have an interior, even if the initial value [ ' (0 )  has none. 

In this subsection we make some simple observations about the way F ( t)  can develop an interior. 

D e f i n i t i o n  3.7. An inner evolution D is called regular if its closure D is an outer evolution. 

Suppose that l-'(to) has an interior for some to > 0, say, l-'(t0) contains an e neighborhood of  

P .  Then U(to) C [ ' ( to) ,  where U is the inner evolution corresponding to a shrinking ball, centered 

at P ,  and with radius e at time to, i.e., U = U~ as in (3.9), with r = e2/2n q- to. This means that 

U(to) C E(to) while U(to) and D(to) are disjoint. By the comparison and separation lemmas we 

have U(t) C E(t) \ D(t) for all t > to. Hence we have proved the following. 

L e m m a  3.8.  If F(t0)  has an interior, then so do all F ( t )  with t ~ [to, to + 8), for some 
small enough 6 > O. 

Indeed, we may take 6 = e2/2n. 

We conclude this section with a sufficient condition for the absence of  an interior in [`. 
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Regularity Lemma for Monotone Motion 3.9. Let D and E be inner and outer evolu- 
tions with D C E. 

(i) I f  D ( r )  C D(O) for all sufficiently small r > O, then D( t )  C D(s )  whenever 
t > s > 0 .  

(ii) I f  E ( r )  C D(O)forallsuff icientlysmallr > O, then E ( t )  C D(s )whenever t  > s > 
O, and D = E in (0, ~:~) • R n+l. 

P roo f .  Part (i) follows directly from the semigroup property. If we put 

D '  = {(t -- r ,  z) ' (t, z) E D } ,  

then D '  is the inner evolution with initial datum D ( r ) .  For sufficiently small r > 0 we have 
D ' (0 )  C D(0) ,  so that D '  C D. The comparison lemma tells us that D( t  - r )  = D'( t )  C D( t )  
so that the theorem is true if t -- s is small enough. Iteration of this argument then shows that (i) 

actually holds for all t > s > 0. 

A similar argument shows that, under the hypotheses of part (ii), one has E( t )  C D(s )  for all 

t > s > 0. In particular we have 

E(t) c ~ D(t') c ~ D(t'). 
0<t '< t  0<t '< t  

Since t h e / ~ ( t ' )  are decreasing in t ' ,  the Continuity Theorem 3.6(i) implies that D ( t ' )  $ D ( t )  as 
t '  1" t. Hence E( t )  C /~( t )  for all t > 0, and E C D in (0, ~ )  x R n+l. Since the converse 
inc lus ion/ )  C E is true by assumption, this completes the proof of part (ii). [ ]  

Theorem 3.10. Let D(0)  be smoothly bounded domain such that OD has positive mean 

curvature everywhere. Denote the inner and outer evolutions with initial data D(O) and D(O) by D 

and E, respectively. Then E( t )  C D(s )  for all t > s >_ O, and D = E. 

Indeed, OD(t)  and OE(t)  will be the same smooth hypersurface for a short time, while the 
positivity of the mean curvature guarantees that the normal velocity of  0 D(t )  is bounded away from 
zero, i f t  is small. This implies that E ( r )  C D(O) for sufficiently small r > O. The theorem then 
follows immediately from the previous lemma. 

The last result of  this section provides another sufficient condition for E = D which does not 
involve monotone motion. Although its appearance is more technical than the previous conditions, 

it will enable us to show that rotationally symmetric domains satisfy D = E.  

n+l  Second Regularity Lemma 3.11. Let U be a bounded open set in R that may be written 

as the union of  a finite number of  disjoint open sets U l . . . . .  U k. Denote the inner evolutions with 
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initial data U and U i by D and D i, respectively (1 < i < k), let E i be the outer evolutions with 

initial data (ji ,  and assume that E i = D i. 

Suppose that we are given a sequence o f  open covers { U2 . . . . .  U~ }~>_l of  U which satisfies 

(i) U~ D U~+, and (J i - i  �9 = n a > _ l U ~ f o r t  = 1,2 . . . . .  k. 

(ii) The U 2 . . . . .  U~ are pairwise disjoint for  each ot >__ 1. 

Finally, let E be an outer evolution for  which a double sequence { ta,t }~j>_l exists such that ta,i ~, 0 

as I ~ oc, and 

c u . . .  u (3.10) 

Then D = E in (0, (>0) • R "+1. 

L i Proo f .  et D~ be the inner evolution with initial datum U,~, and let D~ be the inner evolution 

with initial datum U2 U . . .  U U~. From the Separation Lemma 3.5 (iv) we obtain D~ = D~ U . . .  U D~. 

The Comparison Lemma 3.2(iii) tells us that 

E ( t )  C D~( t  - t~,t) 

C O~( t  -- t~.,) U . . .  U O~( t  -- t,~.,) 

C D l ( t  -- t~.t) U . . .  U D~( t  -- t~,t) 

for t > t~,/. Using the Continuity Lemma 3.6(i, ii) we can now let l ~ ec ,  which yields 

E ( t )  C b ~ ( t )  U - - - U  bk~(t) fo r t  > 0. (3.11) 

On the other hand, D~ is contained in E~, the outer evolution starting from D~. Since U~ ~ Oi as 
ot ~ o0, we have E i $ E i, where E i is the outer evolution with initial datum Oi. 

Letting ot ~ (x) in (3.11) we find E ( t )  C E l ( t )  U ..  �9 U Eg( t )  for all t > 0, and since we 
have assumed that E i = D i, we get 

E ( t )  C D~(t)  u . . .  u b ~ ( t )  f o r t  > 0. 

We apply the Separation Lemma 3.5 once again to get D = D 1 U.  �9 �9 U D k, whence E ( t )  C D ( t )  
for all t > 0, i.e., E C / )  in (0, c~) x R n+l. 

Since we already have the converse inclusion D C E,  this completes the proof. [ ]  
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Unlike the previous conditions for regularity of  the evolution, this lemma can be localized in 
time. Indeed, if one replaces the hypothesis " E  i : D i ' '  with 

E i N [0, T]  X R n+l : b i N [0, T] x R n+l 

for some T > 0, then the same proof will lead to the conclusion that 

E A ( 0 ,  T) x R  n+l = b N ( 0 ,  T) x R  n+l. 

It is this localized version which we use in Section 7. 

Besides the sufficient conditions for E = D which we have given here, another condition is 

known. H. M. Soner [So] has found a generalization of  the positive mean curvature condition for the 

initial domain D(0)  which ensures that F has no interior. 

4. Intersections and the Sturmian theorem 

Sturm's classical result. The Sturmian theorem states that the number of zeroes (counted 

with multiplicity) of a solution of  a linear parabolic equation of the type 

u, = a(x ,  t)uxx + b(x ,  t)ux + c(x,  t)u 

does not increase with time, provided u is defined on a rectangle x0 < x < xj ,  0 < t < T, and 

u (xj, t) ~ 0 for j = 0, 1, and all t E (0, T).  This result also holds for the number of  sign changes, 

rather than the number of zeroes of u(. ,  t). If  all zeroes of  u(. ,  t) are simple, then the number of 

zeroes and the number of sign changes coincide of  course. It is sometimes advantageous to consider 

sign changes rather than zeroes, in particular when the coefficients of  the equation lack smoothness; 

in this situation it can still be shown that the number of sign changes does not increase, even though 

it is not clear whether one can guarantee that this number is always finite (see [Ma]). 

The way in which we use the Sturmian theorem in this section is similar to what was done in 

[A2]. It is also similar to the arguments used by V. A. Galaktionov in a series of  papers under the 

heading "intersection comparison method." We refer to [GP] and the references given there. 

The first theorem one can prove using the Sturmian theorem is a direct analog of Theorem 1.1 

of  [A2]. It concerns the intersections of  two families of  compact smooth hypersurfaces of rotation, 

Fl (t) and F2(t),  which evolve by their mean curvatures. If two such hypersurfaces are transverse, 

then their intersection will consist of  a finite number of  (n -- 1)-spheres. In general, the intersection 
of two such hypersurfaces will be the union of  a possibly infinite number of (n -- l)-spheres. We 

refer to this number as the number of intersections of F l U )  and F2 (t). 

Theorem on Intersections 4.1. Either I~j (t) -- Fe(t) for all t ~ (0, T), or the number 

of intersections of F1 (t) and F2(t) is finite for all t E (0, T). In the second case this number is 
nonincreasing in time, and decreases whenever F j(t)  and ['2 ( t ) have a nontransverse intersection. 
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This theorem also holds if F'j and 1"2 have a boundary, provided the O1"j(t) are disjoint for 

0 < t < T. In fact the theorem even holds for noncompact surfaces under the assumption that the 

intersection as a subset of space time is compact. 

The proof of  this theorem can be given along the same lines as that of  Theorem 1.1 in [A2]. It 

should be noted that it is not necessary to assume that either I ' l  (t) or I'2 (t) are obtained by rotating 

graphs around the x-axis: indeed, when interpreted appropriately it also holds for immersed rather 

than imbedded solutions to the mean curvature flow. However, in this paper we never use the theorem 

in that generality. 

Throughout this section we consider a smooth family of surfaces l-'(t) (0 < t < T) which 

evolve by their mean curvature. We assume that each 1'(t)  is compact, connected, and that it is 

obtained by rotating the graph of a function 

r = u ( x , t ) ,  a ( t )  < x  < b ( t ) ,  0 < t  < T, 

around the x-axis. 

Attracting Axis Theorem 4.2. For any r > 0 there is a ~ = 8(1-'(0), r )  > 0 such that 

H > O a t a n y p o i n t o n  1'(t)  with r < ~ a n d t  > r. 

The third main result says that graph-like surfaces of rotation remain graph-like under flow 

by mean curvature. This follows rather easily by counting the number of  intersections of  the given 

solution with hyperplanes x = const. A more refined argument leads to a quantitative version of the 

result, i.e., it provides us with an interior gradient estimate for smooth solutions of  the horizontal 
graph equation. 

Theorem 4.3. 

(a) Let F( t ) ,  0 < t < T be a family  o f  smooth hypersurfaces evolving by their mean 

curvature. I f  I-' (0) is obtained by rotating the graph o f  a function around the x-axis,  then so are the 

F ( t ) f o r O  < t < T. 

(b) Let F ( t )  be as in (a), and assume that it is given by a smooth solution o f  the horizontal 

graphequat ionr  = u ( x ,  t), withO < t < T, a n d a ( t )  < x < b ( t ) , forcer ta insmooth func t ions  

a,  b " (0, T )  --~ R. Then there is a function ~r �9 R+ x R+ ~ R such that 

lux(x ,  t)l < or(t, u ( x ,  t ) )  

holds f o r  all O < t < T,  a ( t )  < x < b( t ) .  The function ~r only depends on supu(x ,  0). 

We see that the function cr is of  the form cr(t, u)  = e ;(")/r, for some positive continuous 

function p on R+. It is clear we may also assume that o-(t, u) is nonincreasing in u and t. 
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Since the function u ( x ,  t) satisfies the graph equation for a ( t )  < x < b ( t ) ,  0 < t < T,  
Theorem 4.3 implies a priori estimates for u~ and hence (see, e.g., [LUS]) for all higher derivatives 
of u, in the interior of  the region where u > 0. 

T h e  C a t e n o i d  a n d  i t s  g e n e r a l i z a t i o n s .  For the proof of the attracting axis theorem we 
need to remind the reader of the steady solutions of  the horizontal graph equation, i.e., the minimal 
surfaces of revolution. These surfaces are obtained by rotating the graph r = u (x)  of a solution of 

Uxx n -  1 

I "q'- (btx) 2 bt 
- -  - -  0 ( 4 . 1 )  

around the x-axis. This equation can be integrated once, after multiplying left- and right-hand sides 

with Ux; one finds after some calculations that 

= ( R )  2(n-l) 
u ' ( x )  2 - l (4.2) 

for some constant R > 0. In the case of two-dimensional surfaces in R 3, one can integrate again, 
and one finds 

u ( x ) =  R cosh ( R )  , 

i.e., one finds the well-known family of  catenoids. If  n > 3, then it seems that one cannot integrate 
(4.2) in terms of elementary functions (n = 3 can be integrated using elliptic functions). We denote 

the one-parameter family of  solutions of  (4.2) that arises by 

for n > 3, and we put/g2 (x)  = cosh(x) .  

Unlike the catenoid, the higher dimensional minimal surfaces of  rotation have finite width, 
given by R �9 IV,,, where 

f ~ dp  
W. = ~/p2~.- ,~_ 1 

- -  - -  B 2 ) 2 ( n - l )  ( - n 2 ] '  " 

(B is Euler 's Beta function.) 

Thus H . ( x )  is only defined for Ixl < W. when n > 3. 
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Figure 4.1. The Catenoid and Co, 

We begin with an application of the Sturmian Theorem which will lead us to a proof of Theo- 

rem 4.3 and which will also be useful in the proof of Theorem 4.2. The lemma essentially says that 

the endpoints of the surface F (t), i.e., the points where it meets the x-axis, move monotonically. 

Moving Caps L e m m a  4.4. a ' ( t )  > 0 > b ' ( t ) f o r O  < t < T.  

Proof .  Near the point (a( t ) ,  0) on the x-axis we can write the surface F( t )  as a vertical 
graph x ---= v(r ,  t), where v is a smooth solution of the vertical graph equation, with vr(O, t)  = O. 

At any time to E (0, T)  we have 

v(r ,  to) > v(O, to) = a( to) ,  

which implies Vrr(O , to) ~_~ O, and hence a'( to)  = n �9 yr,(O, to) ~ O. 

To prove strict inequality we argue by contradiction, and assume that / ) r r (0 ,  to) = 0. In this 
situation w(r ,  t )  -~ v(r ,  t )  -- a( to)  is a smooth solution of the vertical graph equation, defined for 

(r, t) near (0, to), which satisfies w(0, to) ----- Wr(O, to) -'-- Wrr(O, to) = O. 

The arguments in Sections 3 and 4 of [A4] (which essentially present the Sturmian theorem for 

equations with a singular first-order coefficient) imply that there is some integer k > 1 such that 

= 0  f o r j  < 2 k ,  

O/w(O, to) ~ 0 when j ----- 2k 
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Figure 4.2. The absurd situation in the proof of lemma 4.4. 

Moreover, when t < to is close to to, w(-, t) must have k > 2 zeroes. This is absurd, however, 

since it would mean that F ( t )  intersected the plane x = a(to) at least k times, while it is obtained 
by rotating a graph of  the form r ----- u ( x ,  to) around the x-axis. 

Thus a'(to) > 0 and it is clear that the same argument can be used to prove b'(to) < O. [] 

Proof of Theorem 4.3(a).  Let F(0)  be smooth, and suppose it is obtained by rotating the 

graph o f r  = u ( x ) ,  a < x < b around the x-axis. Consider any x E (a, b) and let rr0 C R n+l be 

the hyperplane given by x -~ x0. Initially Zro and 1-" (t) have only one intersection. If  we could apply 

the intersection theorem then it would follow that Yr0 and 1-' (t) have at most one intersection for any 

t E (0, T);  x0 being arbitrary then implies that F ( t )  is indeed graphlike. 

To complete the proof we now show that #Yr0 (1 F ( t )  does not increase with time. If  Jr0 and 

1-' (to) are transverse, then #Jr0 f-) F (t) does not change as t increases beyond to. If 7r 0 and F (0) have 

a nontransverse intersection then F (t) may be represented as a vertical graph x = v (r, t) near this 

intersection. The intersections of  rc 0 and F ( t )  then correspond to zeroes of  v(., t) - x0, transverse 

intersections corresponding to simple zeroes. 

The hypersurfaces F (t) are real analytic, since they are locally graphs of  solutions of the graph 

equation. Hence v (-, t) is real analytic and v (-, t)  - -x0 has only isolated zeroes. If the nontransverse 

intersection is not on the x-axis, then it corresponds to a multiple zero of v(., to) -- x0 at some 

ro > O. The Sturmian Theorem applied to v (., t) -- Xo implies that its number of  zeroes near (r0, to) 

does not increase. Should the nontransverse intersection occur on the x-axis, then we appeal to the 
arguments in [A4, w and 4] again, to arrive at the same conclusion. [ ]  

Proof of  Theorem 4.3(b).  Let N = supxca u (x, 0), or N = 5, whichever choice leads to 

the biggest number. It follows from the horizontal graph equation (or by comparing with a shrinking 
cylinder) that u ( x ,  t)  < N for 0 < t < T,  a ( t )  < x < b( t ) .  

We construct a special solution of the horizontal graph equation. Choose a function r/ E C ~ (R) 
such that 

0 fo r t  < N +  1, 

t/(t) = - 1  fo r t  > N + 2 ,  

while r/ '(t) < 0 for all t ~ R, and r/ '(t) < 0 for N + 1 < t < N + 2. Let F be the hypersurface 
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F =  {(x, y, . . . . .  y , )  E R n + I ' x  = - o ( r ) } ,  

and denote the corresponding solution to the mean curvature flow equation by F ( t ) .  Since the initial 

surface F is the graph of a smooth Lipschitz function, it follows from the results in [EHI] (or even 
from those in [LUS]) that each F ( t )  is also a graph of the form 

x = w(r,  t) 

where w is a smooth solution of the vertical graph equation with initial data w(r,  0) ----- - - r / ( r )  and 

boundary condition ~Ur(O , t) = O. 

By the maximum principle we have 0 < - -w(r ,  t)  < l for all r, t > 0. In addition, wr > 0 

is bounded, and supr>_0 Wr(r, t) is nonincreasing in time. It follows from classical estimates for 
parabolic PDEs that all derivatives of  w are uniformly bounded for r, t > 0. 

By differentiating the vertical graph equation with respect to r,  one finds that p (r, t)  = llflr (r, t)  
satisfies a linear parabolic equation 

p, = a(r,  t)Prr + b(r, t )pr  + c(r, t ) p .  

The coefficients a ,  b, and c of  this equation are smooth functions of  r, t > 0. Since p(r,  0) is 

positive in N + 1 < r < N + 2, it follows that for each 3 > 0 there is a constant A~ < e~ such 
that 

p(r,  t) > e -A~/t (4.3) 

for a l l3  < r  < N a n d a l l O < t  < T. 

Let F~ (t)  denote the translate along the x-axis  of  F ( t )  given by 

x = w(r,  t) + ~. 

Since w r > 0 for all t > 0 we can also represent F , ( t )  by r = v(x  - ~, t) for some function 
v(x, t). 

Consider some 0 < to < T and a(to) < Xo < b(to). Then there is a unique ~ E R with 

V(Xo - s e, to) = u(x0, to). 

By the Sturmian Theorem the graphs of u (x,  t) and v(x  - ~, t) cannot have less intersections 
when t < to than they have when t = to. 

As t ,[. 0 the graph of v(x  - ~, t), i.e., F~ (t)  converges to F~ (0); this hypersurface intersects 
the graph of u (x,  0) exactly once so that the graphs of v (x - ~, to) and u (x,  to) also intersect once. 
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This implies that 

u~(xo, to) > -vx(Xo, to), (4.4) 

for if this were not the case, then v(x, t) "~ cx~ as x I" ~ and v(x, t) $ 0 as x $ w(0, t), together 

with u(a(t),  t) = 0 would imply that the graphs of  u(x, to) and x(x  - ~, to) intersect at least 
twice. 

Observing that vx = 1/Wr we now conclude from (4.3) and (4.4) that 

( A ~ )  
ux (x0, to) > exp 

By considering the reflections 1 ~ = {(x, y )  : x = r/(r)} instead of  F one obtains the same bound 

for -u~(xo, to). [] 

Proof of T h e o r e m  4.2. Let 77 > 0 be given. By the moving caps lemma we know that 

a ' ( r )  > 0. Near the point ( a ( r ) ,  0) we can represent F(77) as a graph x = w(r, t), where w(r, t) 
satisfies the vertical graph equation. 

Since F ( t )  evolves by its mean curvature we have 0 < a ' ( r )  = H~,t~.0) = n �9 W r r ( 0  , r ) .  

The continuity of  wr~ implies that wrr(r, r )  > 0 for 0 < r < p, for some constant p > 0. 

The same arguments applied to the other endpoint of I ' ( t ) ,  (b(t) ,  0), show that F ( t )  can be 

represented by ag raphx  = ~ ( r ,  t) near (b(t), 0), andthat wrr(r,  r )  < 0 f o r 0  < r < p, provided 

p > 0 is small enough; ~ also satisfies the vertical graph equation. 

We assume that p has been chosen so small that the only points on F ( r )  with r < p are 

contained in the two caps x = w(r, t) and x = t~(r, t); in other words, we assume that F ( r )  is a 

p-domain. 
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Figure 4.4. Proving monotonicity near the axis. 

X 

Define 

M = sup{lux(x,  r ) l  " u(x,  r )  > p} ,  

~" = (1 q-- M 2) l / 2 ( n - � 9 1  , 

U ~ , , ( x ) = 6 L / n ( f ~ )  f o r 3 > 0 , ~ E R ,  c ( r ) = w ( p , r ) ,  d ( r )  = ~ ( p ,  r ) .  

L e m m a 4 , 5 .  IfO < ~ < epthenthegraphsoflA~.~andu(., r)haveatmosttwointersections. 

Proo f .  If 3 < ep then it follows from (4.2) that whenever L/~.~ > p we have 

u ~ , ~ ( x )  2 = - 1 > ~ j  - 1 = M 2. ( 4 . 5 )  

From this it follows that the two branches of/g~.~ (x) to the left and right of  its symmetry point can 
intersect the graph of  u(. ,  r )  at most once in the region c < x < d. Thus if the graph of  b/~.~ does 

not intersect the two caps 

{r = u(x,  t) : a ( r )  < x < c ( r )  or d ( r )  < x < b ( r )}  

then it has at most two intersections with the graph of u(-,  r ) .  

So consider the case in which the graph of  L/~,~ intersects one of  the caps, say "the one on the 

left," containing ( a ( r ) ,  0). 

Since L/a,~ is convex and u(. ,  r )  is concave on the interval ( a ( r ) ,  c ( r ) ) ,  L/~,~ can intersect the 

left cap at most twice. If it has two intersections with the left cap, say at a ( r )  < xl < x2 < c ( r ) ,  
then 

Ll~.~(x) > u(x,  r.) forx2 < x < c( 'c) 



Mean Curvature Flow Through Singularities for Surfaces of Rotation 3 2 3  

and 

H~,~(x) > M > lux(x,  r ) l  for c ( r )  _< x <_ d ( r ) ,  

so that H~.; > u(. ,  r ) f o r  x2 < x 5 d ( r ) ;  when x > d ( r ) w e  have u(x ,  r )  _< p < H~,;(x). 
In this case we may therefore conclude that Ha.~ and u (., r )  intersect at most twice. (Note: if n > 3 
then/g~,~ (x) may not be defined for all x <_ d ( r ) ,  but the conclusion remains.) 

We must consider one other possibility, namely that L/~.~ intersects the left cap exactly once, 
say in xl C ( a ( r ) ,  c ( r ) ) .  

Then b/6.~(x) > u(x ,  r )  f o r x  < xj ,  andb/~,;(xj) < Ux(Xl, r ) .  First assume that/d~,~(xi) < 
u~(xl ,  r ) ,  and hence that there is at least one other point at which b/~.; and u(. ,  r )  coincide. Using 
the convexity of L/~,;, (4.5) and the concavity of the two caps one can show that b/6,; and u(. ,  r )  

intersect at most once when x~ < x < b ( r ) ,  so that they intersect at most twice in total. 

lf/./~,; (xl)  = Ux (xl ,  r )  then convexity of  L/6,; and concavity of the left cap imply that/g6,~ (x)  > 
u(x ,  r )  for xl < x < c ( r ) .  For x > c ( r )  one uses (4,5) to obtain the same conclusion. In this 
case we therefore also have at most two intersections. [ ]  

We can now complete the proof of Theorem 4.2. Let (x0, to) be given, with to > r ,  a ( r )  < 

Xo < b ( r )  and U(Xo, to) < 6p. 

Choose ~, 3 so that 

u~.~(xo) = u(xo, to), G,~(xo)  = ux(xo, to), 

i.e., so that the graphs of/g~,~ and u(. ,  to) are tangent at (x0, u(x0, to)). It then follows from (4.2) 
that 

2x-l/2(n-I) 
= u (1 + ux)~x,,,,,, ~ < 6/9. 

Hence we have just proved that the graphs of L/g.; and u (., r )  intersect at most twice. By the theorem 
on intersections the same is true for the graphs of L/~.; and u(. ,  to). 

This implies that L/~'~(Xo) > ux~(Xo, to), for if L/~'~(Xo) < Uxx(Xo, to), then L/a.;(x) < 
u(x ,  to) in a small neighborhood of Xo, while Ha.a (x) > u (x ,  to) for x sufficiently far away from 
Xo; this would force the graphs of/./a,a and u (., to) to have at least three intersections. 

Finally, it follows from the tangency of the graphs of L/~,~ and u (., to) that L/~'; (Xo) > 
uxx (Xo, to) implies 

Uxx n -- 1 

| "]- (Ux) 2 U 

< n -  l 

0. 

u , ( x o ,  to) - 
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By differentiating the horizontal graph equation with respect to time, one obtains a linear parabolic 

PDE for ut (with smooth coefficients) for a( t )  < x < b( t ) ,  r < t < T. An application of the 

maximum principle yields ut (xo, to) < 0 whenever u (x0, to) < ep. Therefore the mean curvature 

at r = u (x0, to) satisfies 

(xo.to) 

> 0 .  [ ]  

C o r o l l a r y  4.6. If  u(xo, to) <_ ep, andS,  ~ are such that Lt~.~(Xo) = U(Xo, to), L/~.~(Xo) = 
Ux (Xo, to), then u (x, to) < lg6.~ ( x ),]'or all x at which both sides of the inequality are defined. 

In other words, if u(xo, to) < ep, then the graph y of u(. ,  to) lies below the graph of the 

(generalized) catenoid tangent to ?' at (x0, u (x0, to)). 

The corollary follows directly from the previous lemma: Since the graphs of u(. ,  to) and U~,~ 

are tangent, they have a double intersection, and they cannot have any other intersections. Thus either 

u(x ,  to) < Lt~.~(x) for all x,  or u(x ,  to) > l,t6.~(x). The second situation does not occur since u is 

bounded and/g6.e is not. 

The necks of an evolving domain. Let D C [0, o<~) • R ''+~ be an inner evolution 

such that OD(t)  = F ( t )  is a smooth hypersurface for 0 < t < T of  the form r = u(x ,  t), 
a( t )  < x < b( t ) ,  for certain smooth functions a,  b : [0, T)  -+  R. 

Let k ( t )  be the number of local minima of  u(t ,  x )  as a function of x E (a ( t ) ,  b(t)) .  Note that 

since u vanishes at the endpoints of (a (t),  b( t ) ) ,  the number of local maxima is k( t )  + 1. 

L e m m a  4.7. k( t )  is a finite nonincreasingfunction o f t ,  0 <_ t < T. 

Proo f .  Since F ( t )  is a smooth hypersurface, we have 

lim ux(x ,  t) = oc ,  lim ux(x ,  t) = - - e c  (4.6) 
x {a(t) x'fb(t) 

for 0 < t < T. As the boundary F ( t )  evolves by mean curvature, the function u(x ,  t) is a solution 

of  the horizontal graph equation on the domain 

~2 = { ( x , t )  "a(t) < x < b ( O , O  < t < T } .  
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By differentiating the horizontal graph equation with respect to x,  one finds that Ux solves the linear 

parabolic equation 

v, --  + 2 v, (4.7) 
1 q-- (ux) 2 ~ 1 q- (u~)2/  ] 

on ~2. Hence, by the Sturmian Theorem the number of sign changes of ux is finite for any t > 0 and 

does not increase. Since this number is 2k(t)  + 1, we are done. [ ]  

5. Format ion  of  a s ingularity 

A final s e g m e n t  o f  a smooth  evolution.  In this section we consider a smooth classical 

solution F (t), 0 < t < T, of  the mean curvature flow, which becomes singular at t = T. We assume 

that F (t) is rotationally symmetric, and F (t) can be represented as a horizontal graph r = u (x, t), 

a(t)  < x < b( t ) ,  0 < t < T. As we showed in the previous section, the number of necks of 

F ( t )  is a finite nonincreasing function of time. It follows that, after a while, the number of necks 
remains constant. After discarding an initial section of the solution we may even assume that each 

hypersurface F ( t )  has m >_ 0 necks. In particular, x ~-~ u(x,  t) will have m local minima and 

m + 1 local maxima. Let these minima and maxima be located at {~j(t)}l<_j<_ m and {r]j(t)}o<_j<_ m 
respectively; order the ~j and rij SO that 

a( t )  < Oo(t) < ~l(t) < ril(t) < " ' "  < ~m(t) < rim(t) < b(t) .  (5.1) 

Since the number of critical points of u (., t) drops whenever u (., t) has a degenerate critical point, 
the minima and maxima of u (., t) are all nondegenerate. By the implicit function theorem the ~j (t) 

and rij (t) are therefore smooth functions of time. 

Converging Necks  L e m m a  5.1. The limits 

l im~j(t)  = ~j(T) and lim Oj(t) = 0j(T) 
t tT  t?T 

exist. 

Not only do the necks converge as t 1" T, the endpoints (a ( t ) ,  0) and (b( t ) ,  0) also converge 

to certain points (a (T) ,  0) and (b (T) ,  0) on the x-axis. This follows directly from the moving 

caps lemma which says that a (t) and b(t)  are monotone increasing and decreasing functions of  t, 

respectively. 

The proof that the ~j (t) and rij (t) converge uses a trick of  Matano and X. Y. Chen [CM]. 
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P r o o f .  Assume that ~j (t) does not converge as t 1" T. Then 

l iminf~ j ( t )  < l imsup~j ( t ) ,  
t tT t~?T 

and we can choose an xl C (lim inft,~r ~j( t ) ,  lim supt t r  ~j(t)). Since ~j(t) is continuous, there is 
an infinite sequence of times tk 1' T at which ~j(tk) = xi and at which therefore u~(xl, tk) = 0 
holds. 

Consider the family ofhypersurfaces 1 ~ (t) obtained by reflecting 1-' ( t)  in the hyperplane x = xl.  

This family also evolves by its mean curvature, and the number of intersections of  F ( t )  with l~(t) 
is a finite nonincreasing function of time; moreover, this number drops whenever F'(t)  and l~(t) 
intersect nontransversally. It follows that there is a t, < T such that F(t)  is transverse to [ ' ( t )  for 

t, < t < T. But if F ( t )  and l~(t) are transverse, then ux(xl,  t) ~: 0; so we see that Ux(Xl ,  t) 5~ 0 
for t. < t < T, which contradicts ux(xl,  tk) = 0 for tk 1" T. We must therefore conclude that 

~j ( t)  converges after all. 

The same argument also shows that the r/j ( t )s  converge. [ ]  

X. Y. Chen has also proved a stronger version of the following lemma; since the proof of  our 

lemma is so simple, we include it anyway. 

Single-Point  P i n c h i n g  L e m m a  5.2. I f  ?~j_ 1 (T) < ~j(T), then u(x,  t) is bounded from 
below uniformly in t C (O,T), for all x E (Oj_I(T) ,~j(T));  i .e . , f  or any compact interval 
[c, d] C ( t l j - i (T) ,  ~j(T)) there exists a ~ > 0 such that u(x,  t) > ~ for x E [c, d],  t E (0, T). 

Similarly, if lTj(T ) > ~j(T) (or a (T )  < Oo(T), or Om(T) < b(T)),  then u(x,  t) is bounded 
from below, uniformly in t, for any x E (~j(T), oj(T)  ) (or (a(T) ,  r/0(T)), or (qo(T), b(T))).  

P r o o f .  We prove the first case. Let [a, b] C (~j (T ) ,  r/j (T ) )  be any compact interval; then the 
converging necks lemma implies that there is a tl < T such that u~ > 0 on [a, b] for all tl < t < T. 

Define 0 = arctanu~(x, t). A simple calculation shows that u(x,  t) satisfies ut = O~ -- (n -- l ) /u ,  
and hence 

0 ~  n -  1 
Ot --  - - s i n O c o s O  > 0 .  1 + (ux): u 2 

On the other hand, for any e > 0 the function 

qg(x, t)  = ee  -x2' sin(X(x - a ) ) ,  ~ =def b - a 

satisfies the heat equation ~o, = ~o~x; using ~o~ < 0 on the interval (a ,  b) one derives from this that 

~o~ (ux) 2 

1 + ( U x )  2 - -  I -~- (blx) ~(Pxx < O. 
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If one chooses e small enough, then ~0(x, tl) < O(x, tt) for all x E [a, b], and since ~p(x, t) 
vanishes when x = a or x = b, we can apply the classical maximum principle to conclude that 

O(x , t )  > ~ ( x , t )  foralla < x < b, tl < t < T. 

This implies that ux(x, t) = tan O(x, t) is bounded from below by ee -z-~r sin(,k(x - a)) ,  for 

all t < T and x c (a,  b); if we integrate this we find that 

u(x, t) > e _e_~2T (1 - cos)~ (x - a ) )  - X  (a < x  < b,O < t < T) .  

Given the interval [c, d] C (Oj-I(T), ~j(T)) ,  we choose [a, b] C (r / j_j(T),  ~j(T)) to be a 

slightly larger interval. The lower bound for u(x,  t) on (a, b) which we have just derived then 

implies the desired strict lower bound for u on [c, d]. [ ]  

In [DK], Dzuik and Kawohl prove that the surface will pinch at a single point. They assume 

various conditions on the symmetry and the mean curvature of the surface. In their situation, only 

one neck is forming. 

From here on we extend u to a function on R x (0, T),  by defining u(x,  t) = 0 i f x  < a(t)  
o r x  > b(t). 

L i m i t  Sur face  L e m m a  5.3. limtl-r u(x,  t) = u(x,  T) exists, and u(x,  t) converges 
uniformly to u(x,  T)  as t "~ T. The function u is smooth at (x, t) C R • (0, T] provided that 
u ( x , t )  > o. 

Proof .  We begin with the observation that u(x,  t) is uniformly bounded from below on any 
closed interval [c, d] C (~j_I(T), ~j(T)).  This implies, by Theorem 4.3, that ux is uniformly 

bounded on any compact subinterval, which in turn implies that all higher derivatives O~u(x, t) are 

bounded on any compact subinterval of  (c, d).  In particular ut (x, t) is uniformly bounded on such 

intervals, so that u(. ,  t) converges uniformly on any such interval. 

The same considerations apply to any compact interval [c, d] C ( a ( T ) ,  sel (T) ) ,  or [c, d] C 

(~m(T), b(T)) ,  or, in case I ' ( t )  has no necks at all, [c, d] C (a(T) ,  b(T)) .  

The conclusion is that u (x, t) converges pointwise for every x, except possibly at a (T) ,  b( T ) 
or the ~j (T)s. The convergence is uniform on any compact interval that does not contain any of 
these points. 

To complete the proof of  the lemma, we observe that the functions u(. ,  t) with T/2  < t < T 
are equicontinuous. This, together with the pointwise convergence on a dense subset of R, implies 

that they converge uniformly as t 1" T. 

To prove the equicontinuity, we let e > 0 be given, and we show that for some 3 = 3(e)  > 0 

one has ]u(xl, t) - u(x2, t)l < e, whenever Ix1 - x2l < 3. 
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To be definite we assume that xj < x2, and since u vanishes outside (a ( t ) ,  b( t ) ) ,  we may also 

assume that the xi have been chosen in this interval. 

Suppose that [H(Xl, t) -- u(x2, t)l ~ e. Then either u(xl, t) > e, or u(x2, t) > e, or both; 

we assume the former. 

It follows from Theorem 4.3(b) that luxl < a ( e / 2 ,  T/2) whenever u(x, t) > e / 2  and 

T/2  < t < T. Thus, if U > e / 2  on (xl, x2), then one has 

X 2 - - X l  
cr (e /2 ,  T/2) 

On the other hand, if u(x, t) < e / 2  somewhere in the interval (xl, X2), then there is a smallest 

x3 > xl at which u(x3, t) < e/2.  On the interval (xj, x3) we then have u > e /2 ,  so that 

x 2 - x l  ~ x 3 - x j  
e - e / 2  e 

or(e/2,  T/2) 2ty(e/2,  T/2) 

Hence 6 ( t )  : t / 2 ty  @/2,  T/2) is a modulus of  continuity for u (., t). 

The second statement follows from a priori estimates for ux in Theorem 4.3.b and hence (see 

[LUS]) for all higher derivatives of u in the interior of  the region u > 0. [ ]  

The next lemma is a refinement of  the moving caps lemma. It will be used to study the caps of 

a smooth solution as it becomes singular. 

L e m m a 5 . 4 .  Suppose that u(tlo(T), T) > O. Then a(T) < r/o(T), and there exist s, M > 
Osuchthate < a'(t) < M forO < t < T. 

Proof.  Put 6 = inf0<,<r u(r/o(t),  t) > 0 and consider 

w(y, . . . . .  y,,,t) = v ( v / y ~ + . . . + y , 2 , , t  ) .  

This function is a solution of  the full graph equation, wt = gi j (Vw)ViVjw,  and it is defined 

for [y[ < 6, 0 < t < T. Clearly w is uniformly bounded, so the Evans-Spruck estimates imply 

that V w  as well as all higher space derivatives VJw are uniformly bounded on the region Q : 

{(y, t) : lYl < 6/2,  T/2  < t < T}. 

In particular w, will be bounded on Q, so that w(y,  t) converges uniformly in lyl ~ 6/2  as 

t 1' T; since all space derivatives of w are bounded, they must also converge uniformly�9 We denote 
the limit by w(y,  T). 

Since w(y,  t) = v([y[,  t) this shows that v(r, t) --+ v(r, T) uniformly in 0 < r < 6 /2  as 

t 1" T. We have also shown that vt(r, t) is uniformly bounded for 0 < r < 6/2, T /2  < t < T. In 

view o f a ( t )  = v(0, t) = w(0 . . . . .  0, t) this means that we have found an upper bound for a'(t). 



Mean Curvature Flow Through Singularities for Surfaces of Rotation 329 

From the fact that v(r, t) satisfies the vertical graph equation, one derives by differentiation a 

linear parabolic PDE for 1) r (r, t): 

OVr (~)r)rr {~  -- 1 2VrVr~ ~ n --1 
at  l + v  r r (l -t- U2)2/ (vr)r r 2 1) r . 

Using the maximum principle one then easily shows that v~ (r, T)  > 0 for 0 < r < 3/2.  Hence 

v(0, T) < v(3/2 ,  T),  and a(T)  < r/0(T), as claimed. 

Finally, to complete the proof we must find a lower bound for a'(t) as t 1' T. We obtain 

such a lower bound by first extending w(y ,  t) to a smooth solution of the full graph equation on 

Q~ = {(y, t) : ly[ < 3/2,  T/2  < t < T + e} for some small e > 0; then we can apply the 

moving caps lemma to the resulting hypersurface x = w(y ,  t) to bound a'(t) from below. 

Perhaps the simplest way to construct an extension of  w to Q~ is to let go be the solution of the 

initial-boundary value problem 

got = gij  ( 7 g o ) g o y  ~ 

go(y, t) = w(y ,  T) 

go(y, T)  = w(y ,  T) 

for lyl < 3/2,  T < t < T + e ,  

when [Yl = 3/2,  

when [Yl < 3/2.  

In other words, we try to solve the full graph equation while prescribing w(. ,  T)  as initial data, and 

while keeping the boundary values of  go constant. Since the full graph equation is quasilinear, and since 

the initial and boundary values are C ~,  a solution exists if e > 0 is sufficiently small. This solution 

will be C ~ up to its initial value at t = T, so we can extend w by defining w(y ,  t) = go(y, t) for 

t > T .  

Denote the ensuing family of  hypersurfaces, defined by x = w(y ,  t) for (y, t) E Q~, by 
r*(t) .  

Uniqueness of the solution implies that w is rotationally symmetric, i.e., of  the form w(y ,  t) = 
v(lYl, t) where v satisfies the vertical graph equation. The prescribed boundary values for go are 
constant, so the maximum principle implies that w(y ,  t) < v(3/2, T) for lyl < 3/2, T < t < 

T + e. This in turn implies that vr(6/2, t) >_ 0 for T < t < T + e, and by applying the maximum 

principle to the equation for or we find that Vr > 0 for 0 < r < 3/2,  0 < t < T + e (we already 
knew this for t < T.) 

Thus we may apply the arguments in the moving caps lemma to the family of  hypersurfaces 

[ '*( t) ,  and we conclude that wt(0, t) > 0 fo r0  < t < T + e. Since wt is continuous it follows 

that w,(0, t) and hence a ' ( t )  are bounded from below for 0 < t < T. [ ]  

Domains without necks. The lemmas that we have developed so far in this section can be 

illustrated by considering a family of hypersurfaces F (t) without necks, i.e., for which m = O. Such 

a family may be represented by a horizontal graph r = u(x,  t), a(t)  < x < b(t),  0 < t < T, 
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Figure 5.1. A domain without necks. 

where u(. ,  t)  attains a unique local maximum at x = r/0(t). In general, the domains enclosed by 

F ( t )  need not be convex, but they are always starshaped with respect to the point (r/0(t), 0). 

Assume that the F'(t)  evolve by their mean curvature, and they form a maximal classical 

solution. 

If  l-'t,, is convex for some to then Huisken's by now classical result says that the F(t)  remain 
convex for t > to, and they shrink to a "round point," i.e., they shrink to a point, and their asymptotic 
shape is a sphere. 

It seems reasonable to conjecture that a family of  surfaces "without necks" will eventually 

become convex and shrink to a round point, by Huisken's theorem. We do not have a proof of this, 
but we can show the following. 

L e m m a  5.5. Let {1-'(t) : 0 < t < T} be a maximal classical solution of mean curvature 

flow without necks. Then r ' ( t )  shrinks to a point as t ~ T. 

P r o o f .  We show that u(r /0(T) ,  T)  = 0, and a ( T )  = b(T) .  

If  u( r /0(T) ,  T )  > 0, then Lemma 5.4 would imply a ( T )  < Oo(T) < b(T) .  Moreover, the 
left and right caps of  F ( t )  would remain uniformly smooth as t i' T, as would the middle part of  
F ( t ) ,  i.e., the part contained in a ( T )  + e < x < b ( T )  - e, for any e > 0. Thus the curvatures of  
F ( t )  would remain uniformly bounded as t ~" T,  which is impossible, since F ( t )  becomes singular 

a t t  = T. 

I f a ( T )  < b ( T ) ,  then either a ( T )  < r/0(T ) or o0(T)  < b(T) .  In both cases the single-point 
pinching lemma would imply that U(Oo(T), T)  > 0. But we have just seen that this cannot be true, 
so we must conclude that a (T )  = b(T) .  [] 

A necessary condition for formation of a singularity. The arguments above allow one 
to prove the following lemma. 
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Lemma 5.6. I f  {l-'(t) �9 0 < t < T} is a maximal  smooth solution o f  the mean curvature 

flow, which f o r  T - ~ < t < T has m > 1 necks, f o r  some ~ > O, then there is a 1 < j < m such 

that u ( ~ j ( T ) ,  T )  =- O. 

In other words, unless a solution eventually loses its necks, it can only become singular if one of 

its necks shrinks to the axis. In particular, if the inside of  F ( t )  remains a &domain, for some 6 > 0 

and for all 0 < t < T, then the solution extends to a smooth solution on a larger time interval. 

Asymptotics of a shrinking neck .  We continue our investigation of  the maximal classical 

solution F ( t )  given by r = u ( x ,  t ) .  As before we assume that F ( t )  has m > 0 necks, located at 
x = sej (t). 

Let 

p j ( t )  = u ( ~ j ( t ) ,  t )  ( j  = 1 . . . . .  m )  

denote the radius of  the j th  neck. Since u(. ,  t) attains a local minimum at x = sej(t), we have 

ux = 0, uxx > 0 at the neck, and hence, by the horizontal graph equation, 

p j ( t )  = u t ( ~ j ( t ) ,  t )  > - - - -  
n - - I  

pj( t )  

If  pj (T)  = 0, then integration of  this inequality shows that 

p j ( t )  <_ x/2(n - I ) ( T  - t ) .  

The example of  the shrinking cylinder shows that this estimate is in general optimal. It turns out that 

the reverse inequality is also true, up to a constant factor. 

Contraction Rate Theorem 5.7. There exist  cons tants /9 ,  ~ > 0, depending on the fami l y  

o fhypersur faces  {F(t)  : 0 < t < T}, such that 

pj ( t )  > x/23(n - I ) ( T  - t) 

holds whenever  p j ( t )  < p and p ~ ( T )  = O. 

We prove this theorem by adapting the arguments of Huisken in [HI, H2]. As Huisken does in 

that paper, we make essential use of the fact that the quantity Z = I A / H  12 satisfies a nice parabolic 

differential equation, for any smooth family of hypersurfaces {F( t )  �9 0 < t < T} evolving by its 

mean curvature. Here A denotes the second fundamental form of the surface F (t). 
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In terms of  the principal curvatures tcj . . . .  , x .  of the hypersurface, the quantity Z can be 

written as 

2 
Z =  x~ + . . . + x .  

(K'I "-I- " ' "  "-I- K n )  2" 

The equation it satisfies is 

~ Z  A 2 
Ot A r t t ) Z -  B �9 V Z  = - 2  V ~  < 0, (5.2) 

with A r<t) the Laplace-Beltrami operator on the hypersurface F (t) and B the vector field V (log H2).  

This equation is valid wherever H :fi O, i.e., wherever Z is well defined. 

The time derivative is taken with respect to a normal parametrization of the family F ( t ) :  i.e., 

one parametrizes a neighborhood of  a point (P ,  t) E F ( t )  x {t} C R n+l x [0, e~) by a family 

of  immersions X : O • (to, tl) ~ R n+l for some open subset O C R n, and one arranges that the 

immersions X( . ,  t) evolve via 

OX 
- - = H - N ,  
Ot 

where N is a unit normal vector field to F( t ) .  The differential geometric quantities A, H ,  and Z 

then become functions on O x (to, tl) which is where the equation (5.2) must be interpreted. We 

refer to [HI,  Lemma 5.2] for more details and a derivation of  this equation. 

The principal use of (5.2) is that it implies that Z does not attain an interior maximum, due to 

the maximum principle. If  H r 0 on all of  F( t ) ,  then this leads to an upper bound for Z, which in 

turn allows one to estimate all the principal curvatures in terms of  the mean curvature. 

Since we are not assuming that H > 0 on all of I" (t), Z is not necessarily defined everywhere, 

and we cannot bound Z as easily. Fortunately we are only interested in the behavior of  l-'(t) near 
the axis, where the attracting axis lemma guarantees that H > 0. 

Let/9 > 0 be so small that H > 0 at any point on 1-'(t) with r < 2p, and define Zt C F'(t) 

to consist of  all points with r < p. Then we have the following lemma. 

Lemma 5.8. For any to > O, Z is uniformly bounded on ]~,, for to < t < T. 

Proof. By the maximum principle it will suffice to show that Z is uniformly bounded on ~,o, 

and o n 0 E t f o r t 0 _ < t  < T. 

The estimate on }:to is easy: Zt,, is smooth and H is bounded away from zero on Er,,, so 
Z = I A / H [  2 is certainly bounded on Zt,,. 
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The boundaries 0Er  consist of all points (x,  y)  E R • R n with lYl : u ( x ,  t) = p. Let 

S = {(x, t )  ~ R • [to, T] : u ( x ,  t)  : p } .  

Then S is closed in R • [to, T], and there is an g neighborhood of S, which we denote by S~, on 

which u ( x ,  t) >_ p /2 .  On S~ u will be a smooth solution of the horizontal graph equation, whose 
derivatives are uniformly bounded on the smaller neighborhood S~/2 of S. 

By differentiating the horizontal graph equation with respect to time, one obtains a linear 

parabolic PDE for ut, on S~/2. The coefficients in this equation are smooth on S~/2, so one can apply 
the maximum principle, and conclude that ut, and therefore 

- -U t 
n - -  - -  

2 X/I + u x 

are bounded away from zero on S~/2. Consequently we have found that Z is indeed uniformly 

bounded on the 0 E t s. [ ]  

Proof of the Contraction Rate Theorem. 
r _< p.  Then from 

Choose C < o~ so that Z < C 2 whenever 

2 n - - 1  
I A I  2 _ Uxx + 

(1 + u 2 )  3 U 2(1 + u  2) 

we find that 

2 
Uxx < [AI2 < C2H2 = C2 Uxx 

2\3/2 (1 + 3 - - ( l  + . x )  

n - - I  )2  

2xl/2 
u ( l  + U x )  

2 and extracting square roots, Using H > 0 on Et we get, after multiplying both sides with 1 + u x 

uxx 2 (n ,  xx)2 
l + u  x u l + u  x 

< 
C n - I  

C + I  u 

Hence, if we define 3 = (1 + C ) -  l, 

Ou Uxx n -  1 3 ( n -  1) 
2 Ot 1 + u x u u 

(5.3) 
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For the width of  the j th  neck, pg (t) we therefore find that 

6(n - 1) 
p~(t) < - -  

- p j ( t )  ' 

which, after integration leads to the desired estimate. [ ]  

One can use the inequality (5.3) to prove something a little more general, namely 

u ( x ,  t) > ~ /u (x ,  T )  2 + 26(n - 1)(T - t) ,  

which holds as long as the right-hand side does not exceed p. 

We have found no application for this more general estimate, but one could use it to turn a lower 

bound for u ( x ,  T )  near x = ~j (T)  into an estimate for the rate at which ~j (t) converges to sej (T) .  

For example, X. Y. Chen has proved that there exist constants C~ < ~ such that 

u(x ,  _ Ix -  j(T)I 

forany e > 0. Henceu(~j ( t ) ,  T)  2 < u(~ j ( t ) ,  t ) 2 - 2 ~ ( n  - 1 ) ( T - t )  < 2 ( 1 - ~ ) ( n - l ) ( T - t ) ,  

and we see that X. Y. Chen's estimate implies 

- _ <  C:(T - t) '-~ 

for any g > 0. 

Cylindrical Blow-up Theorem 5.9. l f  the j t h  neck pinches at t = T, i.e., i f  p j ( T )  = O, 

and i f  a ( T )  < ~ j ( T )  < b ( T ) ,  then 

u (~ j (T)  + z ~ / 2 ( T  - t ) ,  t) 
lim = ~ - 1. 

- t) 

The convergence is uniform in Z on any bounded interval IZ[ < M. 

This type of  asymptotics of  blow-up was first proved in [GK] for semilinear heat equations. For 

n ---- 2 and under the assumption that H > 0, Huisken [H2] obtained the same asymptotic formula. 

The proof in [H2] does not seem to generalize to the higher dimensional case. 

The following corollary of  this blow-up result will be crucial for our line of  reasoning in 

Section 7. It is a pleasure to thank Tom Ilmanen for telling us about this nice observation. 
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C o r o l l a r y  ( I l m a n e n )  5.10.  The singular necks of  the limit surface are flat, i.e., i f  pj ( T ) = O, 

and a ( T )  < ~ j ( T )  < b ( T ) ,  then for  any e > 0 there is a Ize > 0 such that 

u ( x ,  T )  < e lx  - - se j (T) l  

for  Ix - ~i(T)I < #~. 

Proof of t h e  c o r o l l a r y .  Given E > 0, put M = 2q~-n - 1/& By the cylindrical blow-up 

theorem there is a t~ < T for which 

u + z , / 2 ( r  - t ) ,  t )  _< 2v/2(n - l ) ( r  - t)  (5.4) 

for ]Z[ < M and g < t < T. We may assume that t~, is so close to T that 

2x/2(n - 1) (T - t , )  < p ,  

so that ut < 0 for [z[ < M and t, < t < T,  by the attracting axis lemma. 

Let bt~ = M (2(T  - t , ) )  1/2. Then any x -7 k ~ j (T )  with Ix --  sej(T)[ < / z ,  can be written as 

x = ~ j (T)  4- M (2(T  - t ) )  1/2, for some t C (&, T) .  Using u, < 0 and (5.4) we therefore find 

that 

u ( x ,  T )  < u ( x ,  t) < 2~/2(n - 1)(T - t)  

< 2~/-~Z--  ( x -  ~ j (T )  

- M 

_< e I x - 

as claimed. The inequality is obviously true when x = ~j (T) .  []  

Before we prove the blow-up theorem we must recall Huisken's  Monotonicity Formula, since 

finding a Lyapunov function will play a prominent role in our proof. 

Consider the new time variable r ,  which is related to t via 

r = --  log V ~  --  t ,  t = T - e  -2~. 

For each r > - log ~ we let I~(r )  be the hypersurface obtained by magnifying the surface F ( t )  

by a factor (2 (T  - t ) )  -U2, and translating it along the x-axis  so that the point (sej(T), 0) gets 

moved to the origin: i.e., 

l~('r) = dP , (F ( t ) ) ,  where ~ , ( x )  - -  
x - e j  

~ / 2 ( T  - t ) '  

and Pj = (,~j (T) ,  0 . . . . .  0). 
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The normalized surfaces 1 ~ ( r )  move by their mean curvature "plus a lower order term." Their 

normal velocity V at a point Y E I~(r)  is given by 

V = / 2 / +  (Y, N ) ,  

with N the unit normal to I~(r)  at Y, and/2 / the  mean curvature of l~(r)  at Y. 

If  F ( t )  is given by the horizontal graph r ----- u(x,  t), (a(t) < x < b(t)),  then l~(r)  is also 

given by a horizontal graph, r = U(z,  r ) ,  where 

U(z, r )  = 
u (~j (t) + z~/2(T - t ) ,  t) 

x / 2 ( T  - t) 

A short computation reveals that U(z,  r )  satisfies 

OU Uz~ n -- 1 
- -  z U ~  + U - - -  (5.5) 

0l" 1 + U~ U 

for A ( r )  < z < B ( r ) ,  where 

a(t)  - ~j(T) b(t) - ~j(T) 
A ( r )  - -  , B ( r )  - -  

~ / 2 ( r  - t)  ~ / 2 ( r  - t)  

Our assumption a(T )  < ~j(T) < b(T)  implies that B ( r )  --~ c~ and A ( r )  ~ - 0 0  as r --+ 00, 
so that U( . ,  r )  is defined on an ever-increasing interval. 

In terms of the rescaled surfaces 1 ~ ( r )  Huisken's monotonicity formula [H2] may be stated as 

follows: 

d 
- ~ r f ( ~ ) e - l r l 2 / 2 d y ) " = - f ~ ) e - l V ' 2 / 2 ( [ - I  + (Y, N ) ) 2 d ~  ", (5.6) 

where d.~ n denotes the n-dimensional Hausdorff measure on l~(r) .  

If  we denote the graph of U( . ,  r )  by y ( r )  (so that y ( r )  is a curve in the upper half-plane 
whose endpoints are on the x-axis), then the monotonicity formula (5.6) may be written as 

d i e - (X2+r2) /2rn - ' d s=-  i e - ( X 2 + r 9 / 2 r n - I ( k + K ( x , r , O ) ) 2 d s .  
(r) (r) 

(5.7) 

Here ds denotes Euclidean arc length along Y ( r ) ,  

-- Uzz 
k --  (l + U -'3/2'~z) 0 = arctan Uz 
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are the curvature and tangent-angle of  V ( r ) ,  and the function K : R • R + • R/27r Z ~ R is given 

by 

K ( x ,  r, O) = - r cos sin0.  
r 

The relevance of  this function for our discussion lies in the following: If U (z, r )  satisfies (5.5), then 

its graph y ( r )  evolves with normal velocity k + K (x, r, 0). 

Proof of the b l o w - u p  t h e o r e m .  The monotonicity formula shows that the length of  F ( r )  

in the metric 

Xn = (ds)  2 = e -(x2+r2)r2(n-l) ( (dx)  2 q- (d r )  2) 

on the upper half-plane is nonincreasing. If  the family of  curves { V (r)} is compact, in some sense, 

then the monotonicity formula also suggests that the limit y,  of any convergent sequence y (rk) will 

be a geodesic of the metric X,, i.e., it will satisfy 

k + K ( x , r , O ) = O .  

Equivalently, y,  will be the graph of  some function U, on some open subset of  R, which satisfies 

u " ( z )  n - 1 
z U ' ( z )  + U , ( z )  - O. (5.8) 

1 + U ' ( z F  U , ( z )  

G. Huisken [H3] has shown that the only possible solutions of this equation, with H > 0, are the 

"cylindric solution" U,(z)  ~ ~ - 1 and the "spherical solution" U(z)  = ~ - z 2. 

Below we show that one can indeed extract convergent subsequences from F ( r ) ,  and they all 
converge to the cylindric solution U,(z)  = ~ - 1. We conclude from this that the whole family 

y ( r )  converges to the straight line r = ~ - 1. 

There are two ways in which a sequence y ( rk )  conceivably could fail to have a convergent 
subsequence: The sequence could loose regularity, i.e., its curvature could blow up, or the sequence 

could wander off to  infinity, so that for any R > 0 the sequence y ( rk )  would eventually lie outside 

the region IZ] < R, r < R. The following two lemmas show that neither of  these two situations 

can occur. 

L e m m a  5.11. For any t < T the surface F ( t ) intersects the ball B ( Pj , ~/2n ( T - t ) ), and 

the surface l~(r) intersects the ball [~ (0, ~/-n). Here Pj denotes the point (~j (T ) ,  0). 

Proof .  The two statements are equivalent, so we only have to prove the first one. 
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Suppose that for some tj < T the closed ball 

and the surface I ' ( h )  are disjoint. Since l~(h) is compact, F'(tl)  will also be disjoint from a slightly 
larger ball. We write the radius of  this ball as ( 2 n ( T '  - t l))  1/2, where T '  is slightly larger than T. 

the separation theorem it follows that I ' ( T )  and/~ (P j ,  (2n ( T '  - T ) ) , /2 )  will be By disjoint; 
/ 

but this is not possible, since both B (P j ,  ( 2 n ( T '  - T) )  '/2) and 1-'(T) contain Pj. [] 

5.1. L e m m a  5.12. For any R > 0 there exist rR, MR < cX~ such that [k[ < MR at any 

point (z, r) on y ( r )  with [zl < R,  r < R and r > zR. 

The proof will consist of  two steps. In the first we establish a bound for Uz in the relevant region; 

in the second we show how one can use interior estimates for the renormalized graph equation (5.5) 
to bound the curvature of  V ( r ) .  

Let p > 0 b e  as in the attracting axis lemma, i.e. if u (x ,  t) < p,  then ut (x ,  t) < O. 

L e m m a  5.13. / fu (x0 ,  to) < p, and rlo(to) < Xo < rim(to), then 

( u( o, )"-' 
lu~(xo, to)] _< \~ , /23(n  - I ) ( T  - t) " 

P r o o f .  Assumefordefinitenessthatux(Xo, to) > 0 .Thenu( . ,  to )mus ta t ta ina loca lmin imum 

between r/0(to) and Xo. Let ~i(to) be the largest sek(to) < Xo. 

Since u (Xo, to) < p we have u (x,  to) 
attracting axis lemma, ut (x, to) < O, i.e., 

< p for ~i(t0) < x < x0, and therefore, by the 

Uxx n -  1 
2 - -  l + u  x u 

After multiplying both sides with ux and integrating from sei (to) to Xo one obtains 

(ux(x0,t0  2 < ( u(xo.to  1 
- \ u (~i (to) ,  to) ,/ 

The desired inequality now follows from the contraction rate theorem which gives a bound on 

u(~i(to), to) from below by ~/2~(n - I ) ( T  - t).  [ ]  
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After rescaling, this proposition has the following implication for Uz (z r ) :  

U(z,r) ~" J 
U~(z,r)l_< ~ - ] ) /  ' 

whenever U(z,  r )  < pe r and ~0(r)  < z < ~m(r), where by definition 

~k(r) = 
0k(t)  - ~ ( T )  

, /T - t  

339 

It follows from the single-point pinching lemma that our assumption a ( T )  < ~j(T) < b (T )  

implies qo(T)  < ~j(T)  < Om(T), and thus that ~o(r)  --+ - -e~  and ~m(r) --+ ~ as r --+ cx~. 

Choose rR SO large that 

e ~k-1 > 2R, 

~0(r)  < - 2 R ,  and ~m(r) > 2R f o r t  > rR -- 1. 

[Uzl < R =def  LR 

Then we have just shown that 

whenever U < R, Izl < 2R and r > rR -- 1. This is the estimate for Uz that we said we would 
find. Next, we turn to the curvature of F ( r ) .  

As U satisfies the renormalized graph equation, the bound for I Uz I implies interior estimates 
for all higher derivatives of U. Thus to estimate, say, Uz~ at some point (z0, to) we must find a 

neighborhood of this point on which U is defined and bounded by 2R. The interior estimates for 

quasilinear parabolic PDEs (see [LUS]) then give us a bound for Uzz(Zo, r0), and hence for the 

curvature of F (r0) at the point (z0, U (z0, r0)). 

With this motivation in mind we set out to prove the next lemma. 

L e m m a  5.14. Assume that U(zo, r0) < R and Iz01 ~ R,  r > rR. Then there exist 
e = e(8, R)  > O a n d ~  = ~(8, R) > Osuchthat  U(z , z ' )  < 2R fo r  I Z - Z o l  _< ~" and 
r o - - e  < r  < t o .  

Furthermore, there exist constants Cj,R < ~ ( j  > 1), such that IOJ U (zo, r0)l _< Cj, R. 

Proof. As we explained above, the second part of the lemma follows from the bound 

-- 1) < U < 2R in conjunction with the estimate for IUzl and the classical results in 

[LUS]. Thus we only have to verify the first statement. 
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We claim that there is an M < oc  such that y ( r )  intersects the disk with radius x / M ( r o  - r )  

centered at (Zo, U (zo, to)) ,  for all r 6 (to --  1, to).  Indeed, (Zo, U (Zo, to))  lies on ~, ( to) ,  so F (to) 

contains the point 

P = + , / 2 ( r -  , / 2 ( r -  ,oW(zo,  o)e) 

where e E R" is any unit vector. By the separation theorem F ( t )  must intersect the closed ball 

centered at P ,  with radius ~/2n (to - t ) ,  for all t < to; hence F ( r )  must intersect the disk determined 

by 

to --  t 
(z - Zo) 2 + (r -- U(zo,  To)) 2 _~ 2n 

2 (T  - to) 

= n (e 2(~"-~) - 1) 

< e2n(ro -- r ) ,  

as long as ro --  1 < r < to. From this we see that we may even take M = e2n. 

that 

Thus for each r E (z0 - e, r0) there is a z~ with Iz~ - z01 < ~ / M ( r 0  - r )  < ~ such 

3R 
U(z~, r )  < U(z0,  r0) + ~ / M e  < - - ,  

- 2 

provided e is chosen small enough (e < R 2 / 4 M ) .  

Since [U,.I ~ LR as long as U < 2R,  we have U(z ,  r )  < 2R for all (z, r )  with Iz --  z~l 
R / 2 L R  and r0 --  e < r < r0. 

If we choose e so small that 

]z -- ZoF < R / 4 L R  and r0 --  e _< 7: < r0. 

< R / 4 L R ,  then we get U < 2R for all ( z , r )  with 
[ ]  

Finally we can show that the y ( r )  converge to the straight line r = ~ --  1. 

We prove that for any sequence r) ]" o c  there is a subsequence of  rj~ for which y (rj~) converges 

to the line r = ~ --  1. Thus the only possible limit of the 2 / ( r ) s  is the straight line, and it follows 

that the whole family y ( r )  converges to this line. 

Consider  therefore a sequence rj  ]" oc .  Lemmas 5.11-14 imply that there is a subsequence, 

which we again denote by r j ,  such that the sequence of  families of curves 

{ g ( r j  + r )  - - 1  < r  < 1} 

will converge in C a ,  in bounded domains to a limiting family { g * ( r )  - - 1  < r < 1}, which also 

evolves with normal velocity v = k + K (x,  r, 0).  In fact, since the ~ / ( r ) s  are graphs, the limit F* ( r )  

must be a graph r U*(z,  r ) , w i t h  U* a solution of(5.5)  on someopen  subset O C R •  ( - 1 ,  1). 
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It follows from (5.7) that 

f ~  fx~R+l (~)e-(X2+r2)/2rn-'(k+K(x'r'O))2dsdr <e~, 

and hence that 
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f rj+l fx e-(X2+r2)/2rn-~(k + K(x, r, O))Zdsdr lira = 0 
j---~oc dri_ 1 (r) 

so that k + K(x, r, 0) = 0 on y * ( r ) .  Thus the y * ( r )  are independent of r ,  and are geodesics of 

the metric X, in the upper half-plane. 

Equivalently, the function U*(z, r )  is independent of  r (so we may write it as U*(z)) and it 

satisfies (5.8) on its domain of  definition. 

The problem now is to prove that U* must in fact he constant. We know that it satisfies 

U*(z) > v/~n - 1) (5.9) 

and by combining H > 0 with equation (5.8) we find 

zU~(z) - U*(z) <_ O. (5.10) 

Furthermore, if (a,  b) C R is a component of the domain of  U*, then it follows from Lemmas 5.11- 

14 that 

(*) eithera = --cx~, orelse U*(z) ~ ~ as z $ a;  likewise eitherb = cx~, or U*(z) ~ 
a sz  l"b.  

P r o p o s i t i o n  5.15. The only solution of(5.8-10) that satisfies the condition (.) is the constant 
U*(z)  - ~ -  1. 

This proposition completes the proof of  the blow-up theorem. We have a proof of  this theorem, 

but we do not present it here, since it is rather tedious, and Huisken [H3] has proved a much more 
general result: his result implies that any embedded hypersurface with H > 0 obtained in a blow-up 
procedure either is a sphere S n, a product of a sphere and a flat subspace S k x R n-k. In particular, 

Huisken's result does not assume any kind of  symmetry. 

Our proof of  the proposition runs along the following lines. In [H2] Huisken showed that the 

only compact selfsimilar solution to the mean curvature flow with positive mean curvature is the 

sphere. His proof consists of two parts: In the first he derives an equation similar to (5.2) for the 

quantity Z = ]A/H 12, and using the compactness of the hypersurface he concludes from the strong 

maximum principle that Z must be constant. Then, a purely local analysis of the fact that Z is 
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constant shows that the hypersurface either must be a sphere S", or the product of S k and R "-k, or 

else the product of  an Abresch-Langer curve with R" -  ~. 

This second and third alternatives are ruled out in [H2] since Huisken assumes his hypersurface 

to be compact. Our blown-up hypersurface is noncompact, and if we could modify Huisken's proof 

so it would apply to our situation, then we could rule out the first alternative (because it leads to 

a compact blow-up), as well as the third (which is not embedded). Hence we would find that the 

blow-up is a cylinder S j • R "- I ,  i.e., that the function U* is constant. 

The only time where Huisken uses the compactness of the blow-up in [H2] is when he applies 

the maximum principle to the equation for Z. The tedious part of  the proof which we have omitted 
consists of  an asymptotic analysis of  Z as z ---> a or z ---> b: we find that Z ~ (n - 1)-1/2; we 

also find points z E (a, b) at which Z > (n - 1) -1/2. Thus, Z must either be constant, or attain an 

interior maximum. But the maximum principle precludes the latter from occurring, so that Z must 

be constant, and Huisken's arguments may be used to conclude that the blow-up must be a cylinder. 

The inner evolution at t ime  t : T.  So far we have studied the behavior of  the smooth 

hypersurfaces V(t)  as t 1" T. We conclude this section by taking a look at the corresponding inner 

and outer evolutions. 

Let D be a rotationally symmetric inner evolution with OD(O) ----- 1-'(0) smooth and compact. 

We assume that D is connected, but if D has more than one component then the following may be 

applied to each of  those components. 

Given D, let E be the outer evolution with E(0)  = D(0) ,  and put 1-" = E \ D. Denote the 

smallest t > 0 at which OD(t) fails to be smooth by T > 0. As we pointed out in the beginning 

of  this section, a Tl < T exists such that the number of  necks of  V(t)  is constant, say m, for 

/'1 < t < T. For Ti < t < T we can define a ( t ) ,  b(t), ~j(t), Oj(t)as before. F o r 0  < t < T 

the domain D(t) is given by {(x, y)  �9 lY[ < u(x, t)}. By the limit surface lemma the function u 
extends to a continuous function on R • [0, T]. Define 

D ,  = {(x, y)  " lY[ < u(x, T) ,x  ~ R},  

E ,  = {(x, y)  " lyl ~< u(x, T) ,a(T)  < x < b ( T ) } .  

L e m m a  5.16. D(T) = D, and E(T) = E ,  

Proo f .  The Continuity Lemma 3.6 implies that E(t) converges to E(T) in the Hausdorff 

metric, as t 1" T. But the continuity of  u(x, t) at t = T implies that E(t) also converges to E , .  

Hence E(T) = E,. 

The dual argument leads to D(T) = D,. [] 

It may happen that D(T) is empty: in this case a(T) = b (T) ,  and E(T) consists of  one point. 
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If D ( T )  is not empty then a ( T )  < b ( T ) ,  and F ( t )  must have had at least one neck during 

(TI, T) ,  i.e., m > 1 (we may conclude this from Lemma 5.6.) 

Choose a maximal sequence 1 < j l  < j2 < " ' "  < jk < m w i t h u ( ~ j , ( T ) , T )  = 0 a n d  

a ( T )  < ~j , (T)  < . . .  < ~j~(T) < b ( T ) .  Put 

x l = s e j , ( T )  f o r l  < 1  < k  

Xo = a ( T ) ,  Xk+l = b ( T )  

U / =  {(x, y )  ' lY[ < u ( x ,  T ) , x l _ l  < x < x t} ,  l = 1 , 2  . . . . .  k + l .  

The number of  singularities h of D ( T )  is the number of points {~j ( T )  } such that u (sej (T ) ,  T)  = 

0. N o t e t h a t k < h  < k + 2 .  

Lemma 5.17.  D ( T )  = UI tA �9 �9 �9 tA Uk+l, and each Ut is an a-domain for  some a > O. I f  

OUI has mt necks, then Y~ml < m - h and h < k. 

P r o o f .  It is clear that D ( T )  may be written as the union of  the U/s. Choose a > 0 so small 

that u ( ~ j ( T ) ,  T) > a for any j = 1, 2 . . . . .  m with u ( ~ j ( T ) ,  T) > 0. Then u(- ,  T )  is smooth 

on (x / - l ,  x/) and ux(x ,  T )  5~ 0 whenever 0 < u ( x ,  T) < a :  hence U / i s  an a -domain .  [ ]  

Thus we have shown that at the time of  singularity the inner evolution D ( T )  is the union of  a 

finite number k + 1 of a -domains ,  for some a > 0; this number k + 1 is bounded by m + 1, where 

m is the number of necks of  OD(t) ,  for t sufficiently close to T ( t  < T) .  

6. After the singularity 

I n s t a n t  s m o o t h n e s s .  The main result of  this section states that a -domains  that are smooth 

away from the x-axis,  but may have singularities on the x-axis ,  become smooth immediately as they 

evolve by their mean curvature. 

Theorem 6.1. I f  U is an a-domain, and D C [0, ~ )  • R n+l is the corresponding inner 

evolution by mean curvature, then there is a T > 0 such that O D ( t )  is a smooth hypersurface for  

0 < t < T .  

In fact, the second fundamental form and all its covariant derivatives are uniformly bounded 

on any time interval [3, T] with 3 > O. 

Away from the axis the hypersurfaces O D ( t )  are uniformly smooth up to t = 0, in the sense 

that for  any p > O, the second fundamental form and its derivatives are uniformly bounded as long 
a s r  > p , O < t  < T. 
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One may interpret this theorem as a local existence theorem for a classical solution where the 

prescribed initial datum is singular. Since the normal velocity v of the surface 0 D(t)  coincides with 

its mean curvature, the theorem implies that its covariant derivatives ~TJ (U) are uniformly bounded 

for any j > 0 on any time interval [3, T] with 6 > 0. One concludes from this that the (n + l)- 
dimensional hypersurface in (0, T)  x R ' '+l given by D r : D N (0, T)  x R n+l actually is smooth, 

and that it may also be written as 

Dr  = U {t} x OD(t). (6.1) 
0<t<T  

To prove the instant smoothness theorem, we first approximate U by a nondecreasing sequence 
OG 

{ U r }j=j of  smoothly bounded ot-domains, obtained by smoothing U near the axis. If  the D r are the 

inner solutions with initial data Uj, then it was shown in Section 3 that the sequence Dj approximates 

D from the inside, i.e., Dj f D. 

We then show that for some to > 0 and 0 < fl < o~ the Dr(t) are r -domains  for t 6 (0, to). 
This is a crucial step in the proof, and we rely on the Sturmian theorem to establish it. 

Using the Evans-Spruck estimates, one can prove that the ODr(t) are uniformly smooth for 

0 < t < to near the axis of rotation and conclude the smoothness of their limit OD(t). We wrap up 

the proof by showing that OD(t) is also smooth away from the axis, which actually turns out to be 

easier to prove than the smoothness near the axis. 

Lemma 6.2. Let U be an or-domain in R "+l. There is a sequence of  smoothly bounded 
or-domains {gj }j=l represented by uj e C ( R )  such that Vj ,17 U. 

Proof of  Lemma 6.2. 
of a-domains given in Section 2. We set 

and 

Let a i ,  a2 be the endpoints of  U and choose 31, 3 2 as in the definition 

~1 ~2 
a l , j  : a l  -~- 2 j ,  a 2 , j  : a 2  2j 

u0(x) 
u r (x )  = 0 

i f a l . j  < x < a2. j ,  

i f x  < a l . j +  1 o r x  > a2. j+l .  

uj E C ( R )  u 2 < Uo, uj ~ C ~ ((al.j+l, a2. j+j)) ,  
/ 

Ug > 0 on (al.j+l, al,2) 
! 

u 2 < 0 on (a2,j, a2j+l) 

On the intervals (al,j+l, al,j) and (a2.j, a2,j+l) we choose uj so that 
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and that Uj = {(x, y)  c Rn+l; r < uj(x)}  has smooth boundary. (This is, of  course, possible.) 

By the definition o f u j  w e  see uj < uj+l and l i m j _ ~  uj = Uo, which implies Uj /7 U. One easily 

sees that the Uj are a-domains. [ ]  

Denote the cylinder {(x, y)  : [y] < p} by Cp. At time t > 0, the inner evolution of  such a 

cylinder is given by Cr(t.p), for t < t , (p ) ;  it is empty for t > t , (p) .  Here 

p2 
t , ( p ) -  2(,-t)' 

r( t ,  p) = ~/p2 _ 2(n - 1)t. 

For any a-domain V with 0 V smooth let D be the inner evolution with D(0)  = V, and define 

Tv to be the smallest t > 0 at which OD(t) is no longer smooth. By the local existence theorem for 

smooth solutions of  the mean curvaure flow, Tv > O. 

L e m m a 6 . 3 .  T h e r e e x i s t s a t ~  C (0 ,  Tv]suchthat D( t )  i sana( t ) -domainforal lO < t < 

t~, where a ( t )  = .~/a 2 -- 2(n -- l)t .  

~ In particular, If  W ~ V is another smoothly bounded a-domain then we can choose t w > t v. 
it follows that Tw > t v. 

Proof .  Since V is not contained in the cylinder C'~, there is a small ball B~(P) contained in 

V but disjoint from C'~. The inclusion property for inner evolutions implies that D(t )  contains the 
ball Be(t) (P)for0 < t < e2/2n, where e(t)  = ~/e 2 - 2 n t .  

We define 

t v = m i n  2 n '  2 ( n - -  1) " 

If W is a larger a-domain then the same ball B~ ( P )  will be contained in W \ C~ so that the following 

arguments apply to W in the same way as they are stated for V, provided we choose t~v = t~. Thus 
it will suffice to prove that the first part of  the lemma holds with this choice of  t~. 

We first show that D(t )  is an a ( t ) -domain  for 0 < t < min [Tv, t~}. As long as t < Tv 
bolds, the first two conditions in the definition of  an a-domain are clearly fulfilled, so all we have to 

show is that OD(to) intersects each Cp with 0 < p < a( t0)  exactly twice if to < rain {Tv, t~}. 

Let 0 < p < a( to)  and 0 < to < min {T v, t~ } be given, and define 

p( t )  = ~/p2 _ 2(n - l ) ( t  - to) = r(t  - to, p).  

Since D(t )  contains the ball B~(o(P ), and since this ball lies outside of  the cylinder C~, OD(t)  
C/ must intersect each OCp with 0 < p < a at least twice, for any 0 < t < t v. 
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On the other hand, OD(t) and OCp(t) are smooth families of  hypersurfaces evolving by their 

mean curvature, so the number of their intersections does not increase with time; moreover, whenever 

they have a nontransverse intersection this number will decrease. At t = 0 we have p(t) < ot so 

OV = OD(O) and OCp(o) intersect exactly twice, because V is an a-domain. At t = to OD(t) and 

OCp(t) therefore intersect at most twice. 

We therefore find that OD(to) and OCpu,, ) intersect exactly twice. By the same arguments the 

number of  intersections is two for all t near to, so that it does not decrease at t = to; hence these 

intersections must be transverse. 

So far we have established that D(t) is an ot (t)-domain for t < rain {t~, Tv }. It remains to be 

shown that Tv >__ t~. 

Assume that Tv < t~. Then OD(t) does not shrink to a point, for D(t) contains the ball 

B~(n (P) .  By Lemmas 5.5 and 5.6 one of  the necks of  OD(t) must therefore collapse. This cannot 

happen either, since D(t) is an ot(t)-domain for 0 < t < Tv, and or(t) > ot(Tv) > 0, by virtue 

of  our assumption Tv < t~. This assumption must therefore be incorrect. [ ]  

Consider the Ujs again, and let Dj be the inner evolutions with Dj(O) = Uj. By the foregoing 

lemma there exist to, ~ > 0 such that all Dj(t) are g-domains with smooth boundaries, for j > 

1 , 0 < t  < t 0 .  

L e m m a  6.4. There is a t~ E (0, to) such that for any t2 E (0, t l )  the second fundamental 
form of O Dj (t) and all its derivatives are uniformly bounded for j > 1, t2 < t < tl. 

P r o o f .  Let D(t) and Dj(t) be obtained by rotating the graphs of  r = u(x, t), and r = 

uj(x, t) about the x-axis. Choose p ,  q ~ R, p < q so that u(p, O) = u(q, 0) = or/2, and 
consider the points 

P = (p,  0 . . . . .  0), Q = ( q , 0 , . . . ,  0), 

P '  = (p ,  ot . . . . .  0), Q '  = (q, et . . . . .  0). 

Then P ,  Q ~ D ( 0 ) a n d  P ' ,  Q '  E / ~ ( 0 )  c, so for some e ~ (0, 8 ) w e  even have B~(P)U B~(Q) C 
D(0)  and B~(P') U B~(Q') C D(0)  r By the comparison and separation theorems we get 

B~(,)(P) U B~u)(Q ) C D(t) (6.2) 

B~(n(P') U B~(t)(Q') C D ( t )  c (6.3) 

fo r0  < t < rain(t0, e2/2n), where E(t) 2 = 82 --2nt.  

Since Dj ~ D, we may assume, after discarding a finite number of  Djs if necessary, that (6.2) 

and (6.3) also hold with D(t) replaced by Dj(t), for any j .  
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Let tj = rain(t0, eZ/4n). Then s(t) > s/v/-2 for 0 < t < tl, and it follows from (6.2) applied 

to Dr(t)thatuj(x, t) > e/~v/2 for 0 < t < tl and Ix - - P l  < e/V/-~or I x -  ql < s/V/-~. Since 

the Dj (t)s are all 6-domains, and 6 > e, we find that 

uj(x ,  t) >__ s l J 2  o n  ~ = (p - s l , / 5 ,  q + sly/'2) x (0, t,). 

The uj satisfy the horizontal graph equation on f2, so by the interior estimates from Theorem 4.3(b) 

uj,x and all higher derivatives of  the uj are uniformly bounded on any subdomain f2' = [p, q] x 

[t2, h]  C f2. This implies that for any 0 < t2 < tj the second fundamental forms of the ODj(t) 
and their derivatives are uniformly bounded for t2 < t < tl and p _< x < q. 

For a complete proof we must also provide such an estimate in the regions where x < p or 

x > q. We only consider the region x < p,  the other situation being similar. 

It follows from (6.3) that all Dj (t)s are 3-domains for 0 < t < to, and our choice of  tl that 

6 
uj(x ,  t) <_ ~ -- - ~  f o r x  < p ,  0 < t  < f t .  

Thus for 0 < t < tl the part of  0 Dj (t) on which x _< p is contained in the left 3-cap of 0 Dj (t), i.e., 

one of the two components of ODj(t) A {(x, y)  : lYl < 3}. We may represent this left cap as a full 

graph x = wj(y, t), with wj : Br(0) • [0, tl] --+ R a smooth solution of the full graph equation. 

The Evans-Spruck estimates then imply that all derivatives Vkwj (y, t) are uniformly bounded on 

Ba_~/~(O) • [t2, tl] for any t2 > 0. This implies that the second fundamental form of 0 Dj (t) and 

its derivatives are uniformly bounded when x < p ,  t2 _< t < tl. [ ]  

Proof of Theorem 6.1. The smoothness of D in (0, tl) follows from Lemma 6.4. It remains 

to prove the smoothness of D in [0, II ) away from the x-axis. Note that the interior gradient estimate 

(Theorem 4.3.b) is valid up to the initial value provided that the initial derivatives are bounded. 

Using the higher derivative estimates (Lemma 2.4 (ii)), we observe that the second fundamental 

form of ODj(t) and all its derivatives are uniformly bounded away from the axis for 0 < t < tl in 

Lemma 6.4. This proves the smoothness of D away from the axis. [ ]  

Corollary 6.5. 

(i) The set D(t) in Theorem6.1 isa~-domainwithsome ~ > OforO < t < T. 

(ii) O D(t ) is a continuous function oft E [0, T] with respect to the Hausdorff metric. 

Proof. (i) By Lemma 6.4 all Dj (t) are ~-domains for j > 1 ,0  _< t < to if to and S are 

chosen sufficiently small. By Lemma 6.4 this property is inherited by D(t). Since D(t) is smooth 

for 0 < t < T, part (i) now follows by choosing 3 sufficiently small. 

(ii) By Lemma 6.4 we only need to prove that OD(t) moves continuously as t ~, 0 near 

singularities of D(0) .  We may assume that the caps of  D ( t ) ,  Dj(t) (resp.) are expressed as x = 
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v(r, t ) ,  x = vj(r, t)(resp.)for r < 3, 0 < t < to where to > 0, 3 > 0 are independent of j .  We 

consider only right caps because the proof for left caps is similar. 

All  we have to prove is the continuity of  v at (0, 0). The monotonicity of  vj in r and the moving 

cap lemma yields 

v:(r, t) < v:(O, t) < vj(O, O) 

for t > 0, r > 0. Letting j --+ ~ yields 

v(r, t) < v(O, 0). 

By the continuity of o i at (0, O) and vj < v, we see 

v~(0, o) = lim vi(r, t)  < lim i n f v ( r , t )  
t,l,O r$O t,l,O r$O 

lim sup v(r, t) < v(O, 0). 
t,~O r,~O 

Letting j ---> 0 yields 

v(O,O) = lim v(r , t ) .  [ ]  
t.lO r$O 

The complete inner evolution. Let D be a rotationally symmetric inner evolution, with 

D(0)  smooth and connected. Denote the first time at which OD(t) is nonsmooth by tl > 0. Choose 

some small t E (0, t j):  at this time 0 D(t) will have a finite number of  necks, say m > 0. 

If D(tl) is not empty then, by Lemma 5.17 we may write D ( t l )  as a disjoint union o f k  + 1 

a -domains  Ul . . . . .  Uk+l, each of  which has at most m --  k necks. By the Separation Theorem 3.5 

the inner evolution D after t = tl is the disjoint union of  the inner evolutions corresponding to the 

U/. We have just  shown that these are smooth on some short time interval (fi ,  tj + ej ). Therefore we 

may apply the same arguments to these inner evolutions, and by induction on the number of  necks 

we find that D is singular at at most m t i m e s 0  < t~ < t2 < . . -  < t m ,  and that 0 D  is indeed 

smooth away from the x-axis.  

7. Inner and outer evolutions coincide 

In this section we show that /9 = E for any pair of  inner and outer evolutions D and E 

w i t h / )  (0) = E (0), and with 0 D (0) smooth compact  and rotationally symmetric. We have already 

shown that OD(t) is smooth, except at finitely many times 0 < tj < t2 < . . .  < tin. Suppose 

t ha t / 9  = E in [0, T] for some tj < T < t j+l.  Then OD(T) = OE(T) is smooth and it follows 

that D = E in [0, tj+~]. If  in this situation we could show that for some small e > 0 we also have 
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b = E in [0, tj+l + el, then we would be in the previous situation, and an induction argument 
would lead to D = E for all time. 

Thus the problem is to show that if D(0)  is the union of a finite number of  a-domains,  one 

may conclude t ha t / )  = E for 0 < t < ~, for some e > 0. In what follows we first show that such 

a conclusion is indeed warranted if D(0)  consists of one a-domain, and then we use the Technical 

Regularity Lemma 3.11 to deal with the general case. 

Short time regularity for a-domains.  Let U = {(x, y)  : lY[ < u(x)} be an a-domain, 

with inner and outer evolutions D and E,  respectively. 

Lemma 7.1. For some e > 0 we have D = E in [0, el. 

We begin the proof by observing that OU is homeomorphic to a sphere. If OU were smooth, 

then we could use the tubular neighborhood theorem to represent any hypersurface C i close to O U 

by a graph over OU. Since OU is not smooth we must resort to a slightly different construction, in 

order to achieve a similar representation of hypersurfaces "close" to O U. 

Choose a smooth vector field X : R n+l ~ R n + l  such that 

(i) At any point P E O U not on the x-axis one has ( X ( P ) , n ( P ) )  < 0, where n ( P )  is the 

inward unit normal at P; 

(ii) Near the two endpoints o fOU,  X is constant, with X ~ + %  = (4-1 ,0  . . . . .  0). 

One can construct such a vector field from the unit normal n and the constant vector fields 4-e0 
by using a partition of unity. 

Since X :/: 0 on the compact set O U, there is an open neighborhood V D ~U on which 

I X l > _ 3 > 0 f o r s o m e 3 > 0 .  

Proposition 7.2. For small enough p > 0 there exists a hypersurface E C V with 

(i) X ( P )  f[ T p E  atall  P E E, i.e., }2 is transverse to the vectorfield X;  

(ii) E = O U  in {(x, y) : lyl >__ 2p}; 

(iii) E N {(x, Y) : lY[ < P} consists o f  two flat disks Aa = {(a, Y) : lYl < P} and Ab = 

{(b, y)  : lYl -< p } f o r s o m e a  < b. 

Proof. See Figure 7.1. [ ]  
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Figure 7.1. The vector field and the hypersurface. 

The construction of  E is similar to that of  the inner approximations Uj C U of lemma 6.2. 

The only difference is that we have added the hypothesis that ~] is fiat near the x-axis. 

If ~b r �9 R n+j ~ R n+j (t c R) denotes the flow generated by the vector field X on R "+l, then 

we define a �9 ~] • R --~ R "+l by 

a ( P , s )  = ~bs(P). 

It follows from proposition 7.2(i) that a is a diffeomorphism onto its image. 

For any C i function u : E --+ R the image of  the graph of u under a is a C 1 hypersurface 
in R "+l, parametrized by P ~ or(P, u (P) ) .  Conversely, any hypersurface that is C I close to 

can be obtained in this way. Although 0 U is not smooth, our construction is such that it can still be 

represented by the graph of  a continuous function u : Z ~ R, i.e., a -j  (OU) is the graph of  u. 

Indeed, near the axis u ( P )  is simply the horizontal distance from the point P on E to the nearest 

point P '  on O U which has the same distance to the x-axis (see Figure 7.1). 

Suppose l-'(t) (0 < t < T) are smooth hypersurfaces with a - j  (F ( t ) )  the graph of  u(-, t), for 

some smooth function u �9 E • (0, T)  --+ R. Let zl . . . . .  zn be local coordinates on an open subset 

of  0 U. Then in these coordinates mean curvature flow is equivalent to the following quasilinear PDE 

Ou O2u 
at a' l(z,  u, V u ) ~  + b(z, u, Vu) .  (7.1) 

Here a ij and b are smooth functions of  their arguments (cf. [A3, Section 3]). These functions depend 

on the particular choice of  coordinates z~ . . . .  , z,,. Nevertheless, the a ij a r e  always positive definite 

so that (7.1) is a parabolic equation. 
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Near the x-axis E is flat, so on the two disks A~,b the Euclidean coordinates yl . . . . .  Yn form 
a local coordinate system on E.  Since X ---- 4-e0 when r < p, the map cr is simply given by 

( a + s ,  yl . . . . .  y,)  o n A , ,  

(r(yl . . . . .  Yn, s) = (b - s, y~ . . . . .  y,)  on Ab. 

In these coordinates equation (7.1) reduces to the full graph equation ut = gij (Vu)Vi  Vj u. 

P r o p o s i t i o n  7.3. Let Fl ( t ) ,  F2(t)  (0 < t < T) be two families ofhypersurfaces with 
(7 -1 (Fj (t)) the graph of uj (., t ) for certain uj E C ~  x [0, T)).  Assume that the uj are smooth 
on ]E • (0, T) as well as on ( ~  \ A ,  U Ab) • [0, T). Then gf the l-'j(t) evolve by their mean 

curvature and if Fl (0) ---- 1-'2(0), one has F 1 ( t )  = I~2(t) for 0 < t < T. 

Proof .  Consider v (P ,  t) = ul (P ,  t) - u2(P, t). Our assumptions imply that v E C ~  • 

[0, T))  and that v is smooth on (E  \ A a U Ab) • [0, T) ,  as well as E x (0, T).  Moreover 

v(P ,  O) - O. 

Definem(t)  = m a x { v ( P ,  t) : P 6 E } ( 0  < t < T) and for each 0 < t < T w i t h m ( t )  > 0 
choose a Pt E E with u(Pt,  t) = m(t ) .  We now show that m'(t)  < Cm( t )  for some constant 

C < e c .  

Case 1. Suppose that P, E m a U mb, in fact, for definiteness assume Pt c Aa. Then in 

the Yl . . . . .  Yn coordinates the uj satisfy the full graph equation, which is of  the form ut ---- 

F ( V u ,  V2u). Hence v = ul -- u2 satisfies a linear parabolic equation vt = aij(y,  t ) V i V j v  + 

bi (y, t)Vi v where Vi = ~ .  At Ptv( . ,  t) attains its maximum, so Vi v (Pr, t) = 0 and Vi Vj v(Pt t) ayi 
is nonpositive. It follows that vt < 0 and hence m'(t)  < O. 

Case 2. Assume that Pt E E \ m a U mb. Then we can choose coordinates Zl . . . . .  zn on 
some neighborhood of Pt and compute the corresponding functions a ij (Z, u ,  V u ) ,  b(z, u, V u )  for 

which u~ and u2 satisfy (7.1). We may write this equation as ut = F(Z, u, Vu ,  V2u). Subtracting 

the equations for ul and u2 we find that v = ul -- u2 is a solution of  a linear parabolic equation 

vt = aij(z, t) Vi Vjv  + bi(z, t ) Viv  + c(z, t )v where c(z, t) is given by 

fo 
c(z, t) = F,(Z, u ~ Vu  ~ V2u ~ dO, with u ~ = (1 -- O)uo + Oul. 

Outside of  the disks Aa~ b the function u is smooth up to t = 0, so the coefficient c(z,  t) is bounded, 

say by [c(z, t)l _< M < oo. The constant M may depend on the coordinate system zl . . . . .  z,  

we have chosen, but E is compact, so we can cover E \ Aa U Ab with a finite number of  such 

coordinate neighborhoods: If  we choose M large enough, then the bound [c] < M will hold in each 

of  these coordinate neighborhoods. 
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We again have 7 i v ( P t ,  t )  = 0, and ViVjv(Pt ,  t) < O, so we find that 

vt(Pt, t) < c(P1, t )v(Pt ,  t) < c(P~, t )m( t )  < M m ( t ) .  

Combining these two cases we come to the conclusion that vt < M m ( t )  at any point P, where 

v(Pt, t) = m( t )  > 0; hence we also find that m'( t )  < M m ( t )  for 0 < t < T. Finally, since 

m(0 )  = 0 we see that m(t )  < O, i.e., v(P ,  t) < 0 for all P c E ,  t ~ [0, T) .  

Reversing the roles of  u j and u2 we also get v > 0, so that v ----- 0 and u i ~ u2. [ ]  

Consider an a -domain  U,  its inner evolution D,  and the outer evolution E of/.T/. We have shown 

in Section 6 that OD(t) is smooth on some short time interval 0 < t < T. The same arguments may 

be used to show that OE(t) is also smooth during a short enough time interval (0, T) .  Indeed, instead 

of  approximating U from the inside one constructs a sequence of  smoothly bounded or-domains Un 

with 0n $ 0 and uses Lemma 6.3 to show that their corresponding outer evolutions are uniformly 

smooth on a short time interval (0, T) .  

Thus we have two families of smooth hypersurfaces, 0 D(t )  and 0 E ( t) ,  which are smooth for 

0 < t < T,  which evolve by their mean curvatures, and which coincide for t = 0. Moreover, 

both OD(t)  and OE(t)  bound 3-domains for some small 3 > 0 and for 0 < t < T. This implies 

that both hypersurfaces OD(t) and OE(t)  are images of graphs under or, at least on a shorter time 

interval 0 < t < T ' ,  with 0 < T '  < T. We may therefore apply our proposition and conclude that 

OD(t)  = OE(t),  and h e n c e / )  = E in [0, T) .  So we have proved Lemma 7.1. 

We now direct our attention to domains that are finite disjoint unions of  or-domains. 

Let 0 < u E C ~  have compact support. Put U = {(x, y )  : ly[ < u(x)}. Assume that 

there are se0 < sel < . .  �9 < ~,,,+l such that 

{X E R : /~(X) > O} = (~0, ~l) U (~l, ~2) U - . .  (..3 (~m, ~,'n+l), 

u [ (~j, ~j+l) is smooth for j = 0, 1, 2 . . . . .  m,  

l i m x ~ j  "(~) - - 0  j = 1 , m .  Ix-~il . . . .  

(7.2) 

(7.3) 

(7.4) 

Denote the inner and outer evolutions of U and/Q by D and E ,  respectively; let Pg be the point 

(sej, 0 . . . . .  0). It should be noted that any inner evolution D with D(0 )  an or-domain satisfies 

(7.2-7.4) at any of  its singular moments. 

L e m m a  7.4. Pj 9( E ( t ) f o r a n y t  > O, 1 ~ j < m. 

Proof. In [A5] it was shown that there exists a closed curve Y in the x r - u p p e r  half-plane 

such that F ( t )  = {()~(t)x, k ( t ) y )  : (x, lyl) e y} with ~.(t) = ~ is a smooth solution of the 

mean curvature flow for t < 0. In R 3 it represents a torus-like surface that shrinks to the origin as 

t l ' 0  
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Put e = inf{r/lx] " (x, r) C y}. Since y is compact and r > 0 on y ,  e is positive. 

Choose 3 > 0 so small that u(x)  < ~[x -- ~j[ for [x --  ~jl < 3, j = 1 . . . . .  m. 

For any r > 0 we define an outer evolution Fr, j : 
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{(sej + ~ . ( t  --  r ) x ,  ~.(t --  r ) y )  ( x ,  ly l)  c },] i fO < t < r ,  

F~4( t )  = 0 when t > r .  

If r is small then F~._; (0) will be contained in the region where Ix --  sej] < 6 and l Y[ > e Ix --  sejl, 

so that F~.j(O) and U are disjoint. By the separation theorem E ( r )  and F ~ 4 ( r  ) = {Pj]  are also 

disjoint. The lemma is therefore true if t is small enough. But if Pj q~ E(to) for some to > 0, then 

compactness of E implies that E(to) is disjoint from the strip {(x, y )  : Ix --  ~j[ < p} for small 

enough p > 0. By the separation theorem this will continue to hold for all t > to, so that E(t )  does 

not contain Pj for any t > to either. [ ]  

L e m m a  7.5. If D, E, and U are as above, then for some e > 0 one has D = E for 
O _ < t < e .  

P r o o f .  Let Uj be the j t h  component of  U, i.e., 

U j ~ { ( x , y )  G U ' ~ j _ I < X < ~ ) ] ,  0 < j < m + l .  

We have just shown that the Ujs, being t~-domains, are regular on some short enough time interval 

0 < t < e. We now construct a sequence Ud of  open sets and a double sequence of  times t~.l > 0 

to which the Second Regularity Lemma 3.11 may be applied. 

By Lemma 7.4 E(t )  does not intersect any of  the hyperplanes x = ~: for j = 1 . . . . .  m. Since 

E(t )  is compact,  there even is a 3, > 0 such that E(t )  C Wt where PC', = Wt I U. �9 �9 U W: "+l, with 

Wt J (~o, r - a , )  x R" 

f o r j  = 2 . . . . .  m;  

f o r j  = 1; 

f o r j  = m + l .  

We may assume that 6t is a continuous and increasing function of  t >_ 0. 

It follows from the continuity in time theorem that E(t )  is contained in a ~ neighborhood 

of E (0 )  = U,  so we have 

E(t )  C Vt I U . . .  U 1,1, m+l where Vt j = W / n  H 
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U~ j = U vz~,, 
t>_,~ 

tl.~ = rain(2 -t ,  2 ~). 

Then the U~ are pairwise disjoint; they satisfy U j C U~ whi le / JJ  $ u J  as ot t cx~; they also 

satisfy E(tz,~) C U2 U . . .  U 11 m+l_~ . Since these are precisely the conditions of  Lemma 3.11, it 

follows that the inner evolution D is regular on a short enough time interval. [ ]  

We may now prove the results which are claimed in the introduction. 

Proof of main results in the Introduction. By Corollary 5.10 and Lemma 7.5 we see D 

is an outer evolution so that r = D \ D .  The picture of the complete inner evolution D presented 

in Section 6 now yields Theorem 1.1 and also the estimates of  the number of  singular times in 

Corollary 1.3. Theorem 1.2 is obtained by a combination of  the single point pinching lemma, the 

limit surface lemma, and Lemmas 5.16-5.17. [ ]  

8. Hamilton's incredibly shrinking dumbbell 

Consider the one-parameter family of inner evolutions D z C [0, cx~) x R "+l whose initial 

domain DZ(0) is the inside of the smooth hypersurface F z C R "+l, where F z is defined by the 

equation 

r :  = (1 - -  x : ) ( l  - -  Z + Z x : ) : .  (8.1) 

For ~. = 0 the surface I "x is a sphere, so that D O represents a shrinking sphere. For ~. close to O, F x 

will be convex, and Huisken's theorem ensures that DZ(t)  is a convex domain that shrinks to a point 

and becomes asymptotically spherical. 

The surface r~ with 3. = 1 is not smooth: it consists of  two tear shaped parts, and it has an 

isolated singularity at the origin. The domain DZ(0) with ~ = 1 has two components, as do all later 
domains D j (t) in the evolution D j. 

Each of the surfaces r ~ is smooth and has at most one neck, for 3. < 1, so that the boundary 
of  the inner evolution will be smooth for some time. Let T~, denote the first time at which OD(t)  is 
not a smooth hypersurface. 

Theorem 8.1. 

(i) Assume that n > 2. There is acr E (0, 1) such that the solution to the mean curvature 

flow r ~ (t) with initial data r ~ (0) remains a smooth hypersurface with one neck until it shrinks to 

a point at time t = T~. In particular, l T M  (t) remains nonconvexfor t < T, .  

(ii) Assume that n --= 1. Then the inner evolution D 1 is not regular. 



Mean Curvature Flow Through Singularities for Surfaces of Rotation 355 

Proof .  Denote the set )~ E [0, 1] for which I ' ) ' ( t)  has no necks for some time t < Tz by J l .  

Denote the set of X E [0, 1 ] for which F ~ (t) has two components for some t > 0 by J2- Note that 

0 E  J l a n d l  E J2. 

(i) Lemma 5.5, on the evolution of hypersurfaces without necks, implies that JI and J2 are 

disjoint. That is, once an inner evolution has no necks, it can no longer split into two parts. 

If  l"Z(t) loses its only neck, then it follows from the continuous dependence of  the classical 

solution (and its curvatures) on the parameter X that Jl is open in [0, 1 ]. 

If DZ(t) has two components for some t > 0, Dz( t )  also has two components for some 

t > Tz. This follows from the moving cap lemma and the instantaneous smoothing of the solutions. 

We have observed that the evolution DZ(t) is regular for 0 < ,k < 1. The Regularity Lemma 7.5 

also implies that D 1 is regular since F l (0) has a singularity of the form r = x 2 at the origin. Thus, 

/)z is the outer evolution for all X E [0, 1]. Since DZ(0) increases as X decreases, the monotone 

convergence theorem now implies that D j~ (t) also has two components for /z  close to ,k. In other 

words, J2 is open. 

Since Jl and J2 are disjoint, nonempty sets, the set 

= [0, II \ (Jl  U J2) C (0, 1) 

is nonempty. For ~r E E ,  we observe that D"  (t) always has a neck for t < T~. 

It remains to prove that F ~ (t) shrinks to a point at t = T~. By symmetry with respect to the 

x = 0 hyperplane the neck must tend to the origin as t "1" T~. If D ~ (T~) were nonempty, symmetry 

and the single-point pinching argument would imply that D ~ (T~) had two components. This would 

contradict c r r  J2. so D"  (T~) must be empty. As shown in Section 5, we now conclude that F ~ (t) 
shrinks to a point at t = T~. This completes the proof of  (i). 

(ii) Throughout the paper, we have assumed that n > 2. However, the reader may wish to 

prove for himself that the monotone convergence theorem does not need this assumption. The work 
of  Grayson, Gage, and Hamilton [Grl], [GH] implies that Jj = [0, 1). If D l were regular, the 

monotone convergence theorem would imply that D ~ (t) also had two components for /z  close to 1. 

This would contradict Ji = [0, 1), so D 1 cannot be a regular evolution. [ ]  

T h e o r e m  8.2. Assume that n > 2. Let I ~ (t) be as in the above theorem. I f  

M ( t )  = sup{lA(P,  t)] : P E F" ( t )}  

then 

lim sup M(t ) v@ ~ - t = cx~. (8.2) 
t~T~ 
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P r o o f .  Since F" (t) shrinks to a point, the attracting axis theorem implies that the mean 
curvature H of F ~ (t)  is always nonnegative for t close to T, .  If  (8.2) were false, then F"  (t) would 
be contained in a ball of  radius C(T~ - t)J/2. Thus, the Huisken blow-up limit would be compact 
and have nonnegative mean curvature. By Huisken's classification of the limit, it would have to be 

a sphere. However, this would mean that F"  (t) became strictly convex at some time close to T, 
which is a contradiction. [ ]  

Remark 8.3. 

(1) Theorem 8.1 (ii) provides a new example of  nonregular motion with a rigorous proof. In 
[ES 1 ] there is an example of  the "figure-8" given without a proof. 

(2) This theorem shows that there do exist surfaces that undergo "type II" blow up. Never- 
theless the radius of the neck of such a solution tends to zero like (Tz. - t)J/2 

We next construct an asymmetric barbell that remains connected after it experiences a singularity. 
Let 1-'4(0) be defined as in (8.1). Assume that n > 2. As observed before, F~( t )  consists of two 

components for times t > Tz provided that t is sufficiently close to Tzand that X is close to I. Since 
Ti = 0, the monotone convergence theorem implies that Tz $ 0 as ~. 1' 1. Let B be a ball in 

D J (0) f-) {x < 0} and let T > 0 be the extinction time of B. Now, take X0 < 1 close enough to 1 

so that 0 < Tz,, < T and that FZ"(t) consists of  two seperate pieces when t > Tz,, is sufficiently 
close to T~,,. 

Consider the one-parameter family of  inner evolutions D u C [0, oo)  x R n+l whose initial 
domain D u (0) is the inside of the C 3 hypersurface I 'u (0) C R ''+l where Fu (0) is defined by the 
equation 

r 2 =  [ ( I - X 0 + X 0 # x 2 )  2 ( l - x  2) f o r x  > 0 

I (1 - - Z o + Z o X 2 )  2(1 - - x  2) f o r x  < 0 .  

Note that the surface Fi (0) agrees with Fz"(0) and F0(0) has no neck. 

T h e o r e m  8.4. Assume that n >_ 2. Then 3v  E (0, 1) such that the generalized solution 

Fv( t  ) with initial data F~(O) experiences only one singularity at time t = tl but remains connected 

until it shrinks to a point at t = t,  > tl.  l-',,(t) is homeomorphic to a sphere f o r  0 < t < t, .  

Proof. We again appeal to a topological argument. Denote by Jl the set /z  c [0, ! ] for which 

Du (t) has no necks for some time t before it becomes singular at t ---- t~,. Denote by J2 the set 

# E [0, 1] for which D u ( t )  has two components for some t > 0. As before, the complement E of 
Jl U J2 is a nonempty set in (0, 1). 

Since D , ( 0 )  D B, the set D u ( t )  is not empty for t < T. Since 0 < t~ < Tz,, < T, the 

evolution F~ for v E E becomes singular at time t ----- t,, < T but remains connected until it 
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disappears at time t, > T. Since FI,(0) has only one neck, F,,(t) becomes singular only at time 
t = tv and Fv(t~) has its only singularity on the x-axis. The singularity is located at the right cap of 

l"~(t~) since D~(t~) is connected. Thus, F~(t~) is homeomorphic to a sphere for 0 < t < t,. Since 
F~(t) has no necks for t > t,, it shrinks to a point at t = t.. [ ]  
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