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V. 
Polynomial Diffeomorphisms of C2: 

Critical Points and Lyapunov Exponents 
By E r i c  B e d f o r d  a n d  J o h n  S m i l l i e  

ABSTRACT. There is an invariant measure I.t, which is the pluri-complex version of the harmonic measure 

of the Julia set for polynomial maps of C. In this paper we give an integral formula for the Lyapunov exponents 

of a polynomial automorphism with respect to #, analogous to the Brolin-Manning formula polynomial maps 

of C. Our formula relates the Lyapunov exponents to the value of a Green function at a type of critieal point 
which we define in this paper. We show that these the critical points have a natural dynamical interpretation. 

0. Introduction 

This paper deals with the dynamics of polynomial diffeomorphisms f : C 2 --~ C 2. To exclude 
trivial cases we make the standing assumption that the dynamical degree d = d ( f )  is greater than 
one (see Section 1 for a definition). It is often quite useful in dynamics to focus attention on 
invariant objects. A natural invariant set to consider is K = K / ,  the set of points with bounded 
orbits. Pluripotential theory allows us to associate to this set the harmonic measure, ~ = # f  of K f .  

For polynomial diffeomorphisms this measure is finite and invariant, and we normalize it to have 
total mass one. In previous papers we have shown that this measure has considerable dynamical 
significance. We have shown that/~ is ergodic [BS3] and that the support of/~ is the closure of the 
set of periodic saddle orbits [BLS1]. Further, # is the unique measure of maximal entropy [BLS1], 
and/~ describes the distribution of periodic points [BLS2]. 

To any measure we can associate Lyapunov exponents. The rate of expansion and contraction 
of tangent vectors at a point p by f is measured by a pair of Lyapunov exponents, ~+(p)  and 
3.-(p). In the presence of an ergodic invariant measure such as/~, these exponents are constant 
almost everywhere and we denote them by ~.+ (/~) and ~-(/~). By [BS3] the (complex) Lyapunov 
exponents of/~ satisfy ~ -  (#) < 0 < ~.+ (/~). This condition is known as (nonuniform) hyperbolicity 
of the measure/~. Nonuniform hyperbolicity implies that at/~ almost every point p there is a spitting 
of the tangent space into complex one-dimensional subspaces E u (p) and E s (p )  so that for v ~ E u (p )  

we have I I D f " ( v ) l [  ~ exp(n~+)llvll and for v ~ E S ( p )  we have I I D f n ( v ) l l  ~ exp(n~.-)llv[I. In 
this paper we will prove an integral formula for the Lyapunov exponents. In many ways our formula 
is analogous to the Brolin-Manning formula for Lyapunov exponents with respect to harmonic 
measure for polynomial maps of C, which we now describe. 
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Let g be a polynomial map of C. We let Kg denote the set of points with bounded orbits. We 
denote by/z =/Zg the harmonic mensure of Kg. There is a single Lyapunov exponent X(#) which 
gives the average rate of expansion along the orbit/z almost everywhere. The Green function of K 
is given by the following formula: 

G(z) = lim d -n log + Ign(z)l , 
n - - +  o o  

which relates it to the superexponential rate at which an orbit escapes to infinity. The following 
Brolin-Manning formula relates the Lyapunov exponents to the critical cj points of the map: 

X(#) = logd + Z G (cj) . (0.1) 

The above formula was obtained in the case without critical points by Manning [Mn]; the present 
formulation appears in Przytycki [Pr] and Sibony [Si]. 

Formula (0.1) takes an especially simple form in the quadratic case, g (z) = z 2 + c. If we write 
Gc for the Green function of the Julia set of g(z) = z 2 + c, we have 

X(/z) = log2 + Gc(O) �9 

Douady and Hubbard [DH] observed that Gc(O) = �89 where h(c) is the Green function of the 
Mandelbrot set. Thus, the Lyapunov exponent is connected to the potential theory of the parameter 
space. The idea of understanding the parameter space by means of potential theory sparked our 
interest in Lyapunov exponents. Some properties of the function A ( f )  = X+(/x) as a function on 
the parameter space of polynomial diffeomorphisms were studied in [BS3]. 

In this paper we do two things. First we define a notion of critical point and critical point 
measure for polynomial diffeomorphisms of C 2 and explore the dynamical significance of these 
objects. Second, we use this measure to prove an integral formula which is the analog of (0.1). 

One ingredient in our integral formula is a Green function. The function G has two analogs in 
C2: 

G+(x, y) = lim d -n log + If:~n(x, y)] . 
n - - ~  o o  

We write K • C C 2 for the set of points in C 2 bounded in forward/backward time and we define 
U + to be the complement of K +. The functions G :~ are zero on K =~ and pluriharmonic on U + and 
serve as Green functions. The function G + which describes the forward rate of escape is the analog 
of G. 

The function f is a diffeomorphism and hence has no critical points in the usual sense of the 
word. For maps in one variable critical points of g with unbounded orbits are associated to critical 
points of the Green function G. This suggests that we look for critical points of G +. Since VG + is 
non-zero at every point of U +, G + has no critical points in the usual sense. In many situations the 
best analog of the set C for polynomial maps is not all of C 2 but is rather the set K -  of points with 
bounded backward orbits. This suggests that we should look for critical points of G + restricted to 
K - .  We could make sense of this concept if K -  were a manifold. Now K -  is a rather wild set and 
in particular it is not a manifold. On the other hand, for # almost every point in J the set W u (p) is a 
manifold and this manifold is contained in J -  C K - .  We define our set of unstable critical points, 
C u, to be the set of critical points of the restrictions G+IW u (p). 

These critical points have an interesting dynamical interpretation which does not make explicit 
reference to the function G +. In the region U + points escape to infinity in forward time. In fact they 
escape at a super-exponential rate. In U + there is a plane field r + such that for v ~ r +, Dfn(v )  
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decreases super-exponentially as n --+ 4-c~ (Lemma 1.2). We will show that a critical point in 
WU(p) as defined above is a point at which the tangent space of WU(p) concides with r +. In [HO] a 
holomorphic foliation G + of U • was constructed. We will show in Proposition B.1 that the tangent 
space to a leaf of this foliaton is given by r +, and the global leaves of G + are super-stable/-unstable 
manifolds. Thus, critical points are points at which unstable manifolds W u (p) and super-stable 
manifolds intersect tangentially and we can think of such a critical point as a type of heteroclinic 
tangency. 

The next ingredient in our integral formula is a critical measure/z c supported on the set of 
1 ddCG + The critical points. In order to define this measure, we use the unstable current/z- = ~- 

unstable current # - ,  in some sense, serves as the current of integration on the unstable lamination 
]/V". Locally, # -  may be thought of as follows. There is a (pairwise disjoint) family of unstable 
disks Dt and a transversal measure on the space of parameters t; and # -  is given locally as the 
current of integration o v e r  Dt,  integrated with respect to the transverse measure. We construct the 
critical measure #~- by replacing the current of integration o v e r  D t by the sum of the point masses 
at the critical points of G + IDt. 

Another way to approach the critical measure is to fix (arbitrarily) a vector ot and a covector/3. 
The variety 

Zk(~,/3) = I x : / 3 .  D f ~ ( o t ) : 0 }  

is the set of points x where Dfx k maps the vector t~ to the kernel of/3. If M C U + is a Riemann 
surface such that G+IM is not locally constant, then by Lemma 5.2, Zk(ot,/3) N M converges to the 
set of critical points of G+IM as k ~ o0. The slice of the current/z- by the variety f J  Zk (t~, fl) is 
given by the wedge product/z-  A [fJ Zk (or,/3)]. We show (Theorem 5.9) that the average (over ct) 
of these slices gives the critical measure: 

/ % =  J-~lim f~r(a) iz-A[fJZk(~, /3)]  . 
k - i ~  

The set C s of critical points in J +  and the measure/z + can be defined in an analogous way. 

The main result in this paper (see Theorem 6.1 and Corollary 6.6) is a formula for the Lyapunov 
exponents of harmonic measure: 

Main Theorem. 

~.+(/z) = logd + fl_<C+<d/ G+/Zc 

X-(/z) = - l o g d -  [ G - # c  + b 

.I{ 1 <_G <d} 
(0.2) 

[]  

(We omit the conventional "d" from in front of the measure in the integral in order to reduce 
confusion with the exterior derivative operator and with the degree.) The condition {1 < G + < d} 
in the formula for )~+ has the effect of choosing a fundamental domain for the action of f on the set 
C u. This ensures that each orbit of critical points contributes only once. Other choices of fundamental 
domains work equally well. This is a consequence of the fact that the integrand G+/z - is invariant 
under f .  The invariance of the integrand occurs because G + multiplies by a factor of d, and /z -  
multiplies by a factor of d - l  under f .  A geometrically appealing way of finding a fundamental 
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domain arises naturally when f generates a real horseshoe mapping, and in this case the formula 
may be given in a particularly simple form; see Appendix A. 

We will briefly describe some of the connections between Lyapunov exponents, dimension of 
harmonic measure, and connectivity for polynomial maps and polynomial diffeomorphisms. 

The Hausdorff dimension of a measure is, by definition, the infimum of the Hausdorff dimen- 
sions of Borel sets with full measure. Let J be the Julia set of a polynomial map g of the complex 
plane. The Lyapunov exponent of g with respect to harmonic measure/zj  is related to the Hausdorff 
dimension of # j  by the formula ~.(/z)HD(/z) = log d. Formula (0.1) has the consequence that the 
Hausdorff dimension of the harmonic measure of the Julia set is at most one and is equal to one 
if and only if aH critical points have bounded orbits. Thus, the Julia set is connected if and only 
if the harmonic measure has Hausdorff dimension one. (It is a general result of Makarov that the 
Hausdorff dimension of the harmonic measure of any connected set is one.) 

For polynomial diffeomorphisms there is also a connection between exponents and certain 
planar sets. Let f be a polynomial diffeomorphism of C 2, and let /z  denote the corresponding 
harmonic measure. For/z almost every point p stable and unstable manifolds W s/u (p) exist and 
are complex manifolds conformally equivalent to C. Given such a p we can consider the sets 
W u (p) N K + and W s (p) A K -  (which can be viewed as subsets of the complex plane.) The "slice 
measures" iZ~lw~/u(p) play the role of harmonic measures for the sets K • C W u/s. In [BLS1] the 
slice measures were shown to satisfy the Ledrappier-Young [LY] formula 

Z+(# ) = logd 
, z - ( # )  = 

HI) /x- ,c(P~ 

log d 

We explore the relation between exponents, critical points, and connectivity for polynomial diffeo- 
morphisms in [BS6]. 

Critical points play an important role in the dynamical study of polynomial maps. We have 
defined two sets of "critical points" namely C s and C u, but there are other possible definitions that 
could be made. The critical points in C s and C" are points at which there is a vector v with the 
property that D f "  (v) decreases in both forward and backward time. If  we take this condition to 
be a characteristic of critical points, we can also ask about the set C of "critical points" for which 
both the forward and backward orbits are unbounded. These are points in U + N U -  at which the 
super-stable and super-unstable foliations are tangent. (Such points of tangency were first considered 
by Hubbard.) For a given polynomial diffeomorphism f ,  either of the sets C s or C u may be empty, 
but we show in Proposition B.3 that the set C is never empty. In this paper we do not discuss the 
remaining case of "critical points" with bounded forward and backward orbits, which is more difficult 
(see [BC] and [BY]). 

A question that arises for diffeomorphisms of C 2 is the relation between stable and unstable 
critical points. The integral formula allows us to deduce (Propostion 6.9) that if f is dissipative, 
then C s ~ 0, which by [BS6] is seen to have topological consequences. 

Section 1 contains introductory material and an analysis of the growth of tangent vectors in 
U +. In Section 2 we develop the laminarity o f / z  + using elementary methods. We show that 
for any algebraic variety X, the convergence of c d - n [ f n x ]  to /z- induces the geometry of the 
laminar structure. In Section 3 we introduce results from Pesin theory concerning the stable/unstable 
manifolds with respect to the hyperbolic measure/z. We show (Lemma 3.3) that the laminarity of 
the convergence of f n x  also respects the laminar structure of the Pesin manifolds. In Section 4 we 
define alternative notions of average rates of growth and we relate these to the Lyapunov exponent. 
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In Section 5 we introduce unstable critical measure # c  and establish some of its properties. In 
Section 6 we derive the integral formula. 

1. Super-stable directions in U + 

The polynomial diffeomorphisms of C 2 were classified up to conjugacy by Friedland and 
Milnor [FM], who introduced a degree d, which we call dynamical degree, and which is defined by 
the formula d = l i m ~  ~ (deg(f  n))l/n. They showed that the mappings with interesting dynamics 
correspond to the case d > 2; and so, as in the one-dimensional case, we will consider only 
polynomial diffeomorphisms with d _ 2. 

The inverse of a polynomial diffeomorphism is again a polynomial diffeomorphism, and for this 
reason polynomial diffeomorphisms form a group and are often called polynomial automorphisms. 
Friedland and Milnor showed that a dynamically nontrivial mapping is conjugate in the group of 
polynomial diffeomorphisms to a mapping of the form f = f l  o . . .  o fro, where f j  (x, y) = 
(y, p j ( y )  - a jx )  and p j ( y )  = yaj + O(yaj-2) ,  with dj > 2. The algebraic degree of f is then 
d = d l  �9 �9 �9 and the iterates for k > 1 are given by 

f k ( x ,  y ) = ( y  a k / a ' + - . . , y a k + . . . )  . (1.1) 

Thus for maps in this standard form the algebraic degree coincides with the dynamic degree. In 
particular it is an integer greater than or equal to 2. 

Certain dynamical properties of f can be deduced simply from a consideration of the sizes of 
the coordinates. We recall the following standard notations and results. 

g + = {lyl >__ Ixl, lyl >_ e}, V -  = {lyl _< Ixl, Ixl >__ R}, g = {Ixl, lYl -< R}. (1.2) 

There is an R sufficiently large that f V  + C V +, f V  C V U V +, and that for any point (x, y) ~ V -  
the orbit fn  (x, y) can remain in V -  only for finitely many n > 0. Further, if K + is the set of points 
with bounded forward orbits, then 

~<) c<) 

U +  : C 2  - K+ : U f - n  V +, and U -  : C 2 - K -  = U f n  V - .  (1.3) 
n = 0  n = 0  

The rate of escape to infinity in forward/backward time: 

1 
G+ = nli~rn~ ~-~ l~ + If +n(x, Y)i (1.4) 

links potential theory and dynamics. The function G + is continuous and pluri-subharmonic on C 2. 
We let :rl and 7r 2 denote projections onto the first and second coordinates. So for a point (x, y) e V +, 
we have r r z f  n ~ (rrl fn)  dl as n --+ +e~. Thus Ifnl ~ Irrzfnl as n ~ +oo, and it follows that 

G + lim 1 
= n - ~  ~7 l~ IJref"(x' Y)I �9 

In the remainder of this section we will analyze the growth rates of tangent vectors at points in 
U +. For (x, y) e V +, 

7 r 2 f l ( X ,  y ) -  ydl = 0 ( ya l -2 )  + O(X) , 
\ !  
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where the O terms are uniform on V +. 
(x, y) E V+: 

~ 2 :  n+l -- (7g2fn) d < 

Thus, the following estimate is uniform in n > 0 and 

") 

O((2.r2fn)(dl-2)d2""dm).q_O((2-c2ft'l) d2"''dm ) 

For (x, y) E V + and any N, we have 

1 ~-~( 1 1 ) 
G+(x, y) = ~ log zr2f N + ~ log zr2f n+l - )-~ log 1 2fnl 

n=N 

By the estimates above, the nth term in the series is dominated by 

l 17r2fn+l I l ( 7 t : 2 f n + l - ( T r 2 f n ) )  d ) 
dn+llOg ~ < dn+llOg 1 +  ~-zr~fn-~-g 

, ( - < dn+llog 1 +  ] 

C 
< 

-- dn+l Izr2f n 12 �9 

Summing the tail of the series, we conclude that 

G + (x, 1 Y) C: y) - ~ -  log rr2fN(x, < 
-- dN ]rr2fN(x ' y)12, 

(1.5) 

holds for all N and (x, y) ~ V +. 

Remark. The rate of convergence of numerical approximations to G + and 0G + can be understood 
by (1.5) and the estimates that precede it. Suppose that f ( x ,  y) = (y, yd -I- q(y) -- ax), where 
degq _< d - 2. We set Y-1 = x, Y0 = Y, and Yn+l = ydn + q(Yn) -- ayn-1 for n > 0. We may 
approximate G + either by d -N log [YNI or by the telescoping sum 

N N 
log lYkl + Y ~ d  -n-1 log Yn+l/y d = log lYkl + Z d  -n-1 log l1 + Pnl , 

n = k  n = k  

where Pn = (q(Yn) - ayn--1)Yn d = O(yn2). 

Similarly, we set Oy-1 = dx, Oyo = dy, and OYn+l = (d �9 yd-1 + q/(yn))Oyn -- aOyn-1 for n 
n >_ 0. Thus, we may approximate OG + by (2dNyN) -10yN or by the telescoping sum 

N 

n=k 

which, after cancellation, is 

Oyk N ( ) 
2dky------s + n=kY~d-n (1 + pn) - t  --PnOYn2y_____7_ + q'Zd'(Yn)ydnOYn aOyn-12d, yd n 
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so the nth term in the summation is no larger than O ( d - n y ~ 2 ) .  

For a tangent vector v, we will use the notation 8 G �9 v for the pairing with the 1-form 8 G, and 
D f ( v )  for the action of  the differential D f .  

L e m m a  1.1. There exist  C and R suff iciently large that 

8G + 1 a (7r2f n) �9 V Clvl 

�9 v - d n in2fn]  < d ~ ifnl----------- 7 

holds for  al ln  >_ O, all (x, y) �9 V +, and all tangent vectors v �9 r(x,y)C 2. 

P r o o f .  We have estimate (1.5) in a neighborhood of  fixed radius about any point of  V +. Since 
these functions are harmonic, we may differentiate this estimate and have the same estimate also for 
the gradients. [ ]  

The following gives a dichotomy on the growth rate of  D f n ( v ) .  Either it grows super- 
exponentially to oo as n --+ oo, or it decreases to 0 super-exponentially. 

L e m m a  1.2. I f  (x, y) �9 
constants c and N such that 

f o r n  >_ N .  I f O G  + �9 v ~= O, then 

U + and v �9 T(x,y)C 2 is a vector with aG + �9 v = O, then there are 

clvl IDfn(v)] < - -  (1.6) 
- i f ~ l  

lo:n( )l- d" I : 1 1 0 G +  v l  (1.7) 

Further, i f  (xo, Yo) �9 U + and ~ > 0 are given, then there exist  small  ~ > 0 and large N such that 

In:~ _> I:I lao+ vl (1.8) 
ho lds ina~  ne ighborhoodof (xo ,  Yo) [oral ln  > N andal l tangentvec torsv  such thatlBG+.v[ >_ E Iv1. 

P r o o f .  To make estimates, we may identify D f  n with the pair (8(7r l fn ) ,  8(7r2fn)) .  By (1.1) 
and (1.5) it is sufficient to estimate O:rg2 f  n . Thus, (1.6) follows directly from Lemma 1.1. Again by 
Lemma 1.1, we estimate 

la ,,I > ,,, lao+.  , 11 2:"1 civl 
- I f " l  ' 

which yields (1.7) and (1.8). [ ]  

For (x, y) �9 U + we let r •  y) denote the subspace of T(x,y) C 2 annihilated by OG +, i.e., such 
that 8G + �9 v = 0 for all v �9 3 +. We will refer to 3 • as the forward/backward dynamical  critical 
directions. If  v r r •  then I D f  ~ �9 vl grows as n ~ -boo at the rate given in Lemma 1.2. 

1 log I O f n ( v ) l  : - o o .  C o r o l l a r y  1.3. / f v  �9 r • then limn--+•162162 ]-fit 

P r o o f .  By (1.6), 
1 

1 loglDfn(v)l < ( l og l cv l - l og l fn l )  
InN - i;i 

which tends to - o o  as n --+ -boo, since Ifn[ ~ e alnIG• [] 
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Next we consider another way to measure minimal growth of  D f  n. Let us f i xn  E Z and 
(x, y) 6 C 2 and consider the mapping 

I D f  n . tl (1.9) 
T(x,y)C 2 ~ t ~ It-----~ 

We let rn(x, y) denote the subspace of T(x,y)C 2 on which this mapping is minimized. 

Proposition 1.4. l i m n ~ + ~  rn = r + on U + a n d l i m n ~ _ ~  rn = r -  on U - .  

Proof. Let us suppose that there are vectors Vnj ~ rnj which stay at positive angle from r +. Then 
there is an E > 0 such that lOG + �9 vnjI > r I. By (1.8) of  Lemma 1.2, I D f n j l  grows as j --> ~ .  
On the other hand, if v + ~ r +, then Dfn.J v + decreases to 0 as j --~ oo. Thus for some large j ,  Vnj 
does not minimize (1.9), which is a contradiction. [ ]  

2. Laminar properties of the stable/unstable currents 

In this section and the next we will discuss the laminar properties of  the currents ft• Laminarity 
is a "natural" structure for # •  and has been the key for understanding the deeper properties of  ft• 
and ft. It will also be central to the definition of  the critical measure. In this section we describe 
an explicit approach to laminarity which will be useful in Section 5. In Section 3 we describe an 
alternate approach to laminarity via the Pesin theory. Although we will work only with f t - ,  it is 
evident that the analogous properties hold for ft+. 

Let us summarize some notation and terminology about currents. More details are given 
in [BLS1]. We let D/~ denote the set of  compactly supported k-forms (test forms). The dual space 
D~ is the set of  k-dimensional currents. A sequence {Tn} converges in the sense of  currents if 
limn-+oo Tn(~O) = T(~o) for every test form ~0 e Dk. If  X is a k-dimensional submanifold with 
locally finite k-dimensional area, then there is the current of  integration [X] ~ D~, whose action on 
a test form is given by 

f ,  

[x](~o) : =  Jx ~o. 

If  S is a discrete (0-dimensional) set, then the current of  integration 

[S] = ~ ~a 
aES 

is the sum of point masses at S. It will be useful for us to define the mass norm of a current as 

M[T]  = sup [T(~o)[, 
I~01_<l 

where k01 :=  supx k0(x)[ is the Euclidean supremum norm of a test form ~0. The mass norm of  T 
is finite if and only if T may be represented as a linear combination of  k-vectors with coefficients 
which are finite measures. 

If  ~0 is a smooth k-form, we define T t_ ~0 by (T t_ ~0) (~)  = T (~0/~ ~) .  If  S is a Borel set, T t_ S 
will denote the restriction of  T to S, i.e., T t_ Xs, where Xs is the characteristic function of  S. We 
may do this whenever the mass norm of T is locally finite. 

1 AACG • While the stable/unstable currents ft• :=  ~ - ~  are defined as positive, closed, (1,1)- 
currents, they also have special properties not enjoyed by general currents, and in fact it is these 
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properties that are the most useful for studying the dynamical properties o f / z  +. If  M is a 1- 
dimensional complex submanifold of  C 2, then/z • induce measures on M, given by 

1 
":~IM = ~ (ddC)lM (G• 

where (ddC)M is the induced operator on M. 

If v is a measure on the space A, and 7t is an integrable function on A, then we denote the 
integral of ~ with respect to v as f O(a)v(a) or f v(a)~(a). If {Ta : a ~ A} is a measurable family 
of currents, we define the (direct) integral f v(a)Ta by its action on a test form ~0 by 

(facAV(a) Ta) (~~ := f Ta(~~ �9 

A current is laminar if it can be written as a direct integral of  Ta as above, with the Ta being currents 
of integration over pairwise disjoint complex manifolds. 

Our derivation of the laminar structure o f / z -  will be based on the following characterization 
o f / z - .  Let X C C 2 be an algebraic variety of  pure dimension 1. By [BS1, Proposition 4.2] there 
are positive integers no and k such that f n  X has degree kd n-'~ for n >_ no, and 

1 
lim - -  [fnx] = / z -  (2.1) 

n--+~ kdn-no 

All the constructions in this section will depend on the variety X and the projection zr~ (x, y) = 
OtlX + ~2y for some choice of  or 6 C 2 with [~112 q- 1~2[ 2 • l. We may rotate corrdinates on C 2 so 
that zr,~(x, y) = y, and we will not include the choice of  X or ot explicitly in our notations. 

Let Qs denote the set of  squares in the plane with side d -s and with vertices on points of the 
set d-s(z  + iZ). Each square Q ~ Qs will be half-open, i.e., Q = [a, b) • [c, d), so that Qs is a 
partition of C. We choose x > 0 and let Q~s denote the set of squares Q'  which have side of  length 
(1 + 2x)d -s and which are centered about squares Q of  Qs. There is a number m(x) such that each 
point of  C is contained in at most m(x) squares of Q~. We let Q0 denote a fixed square of  Q0. 

Let Q c Q0 be any square from Qs, and let Qt ~ Q~s denote the square centered about it. A 
connected component I "~ of f n x  fq 7r -1Q~ will be said to be good if the projection Jr It '  : ['~ --+ Q~ 
is a homeomorphism. We let 

G(Q,n) = {Ft fqrr-IQ : I "~ good } . 

Let us define 
1 

. so- E2 E: it} kd n-no 
QEQ~ F ~ ( Q , n )  

For fixed Q0 6 Q0, there is a number R > 0 such that 

f n x  fq:rr-l Q10 C {[xl < R} 

for all n > no. 

(2.2) 

Lemma 2.1. There is a constant C, independent of Q c Qo, s and n, such that 

M [ ( k - l d  n~ [fnx] - Iz~,,n ) t_zr-1Q0] < C A r e a ( Q ) [ l -  k-ldn~ . (2.3) 
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P r o o f .  The number of  components of  f n x  N Jr-1Q~ is no more than kd n-n~ the degree of  f nx .  
If  F '  is not good, then the number of  branch points, counted with multiplicity, in I "t is one less than 
the mapping degree of Jr Iv,. Thus, the sum of the mapping degrees of  components that are not good 
is bounded above by (kd n-n~ - 1)m(x). 

Now we need to estimate k- ld  no-n times the area of  the components that are not good. A 
property of  analytic varieties (see Chirka [C]) is that there is a constant C depending on the R 
of (2.2) and x such that the area of  every component 1 -'~ of f nX  fq :r-1Qt is bounded by 

Area(F)  < C/z Area(Q) 

where/z  is the mapping degree of  Jr Iv'- Multiplying by d -2s the area of  Q, we estimate the mass in 
the left-hand side of  (2.3) by the total of  the mapping degrees coming from bad disks. [ ]  

For each good F '  there is an analytic function ~p : Q'  ~ C such that {(~o(y), y) : y 6 Qr} = I" .  
Let ~4(Q, n) denote the set of  all such analytic functions. 

Let us define 

S(Q, y, n) = U {(~o(y), y)} = U F fq z r - l ( y )  
~pE,A(Q,n) I" c~(Q,n) 

The measures I)Q (y, n) :=  k-ld no-n [S(Q, y, n)] are the slice measures of/XQ, n with respect to the 

projection Jr. That is, va(Y, n) is supported on zr -1 (y), and 

lZQ,nL (~dy Adf~) = fyeO/22(y) vQ(y,n) 

where 122 denotes the Lebesgue area measure on Q. Since the masses of  the currents/Za,  n are 
uniformly bounded by (2.2), we may choose a subsequence {n j} so that 

/ZQ := lim /z~ (2.4) j__+~ ~,nj 

exists. 

L e m m a  2.2. ThelimitvQ(y) := limj__.~ vQ(y, n j) existsforeveryy E Q. 

P r o o f .  Each vQ(y, n) is a positive measure of  mass at most one. If  l imj~c~ vQ(y, n j) does 

not exist, then there exist subsequences {n~)}, k = 1, 2 of  {n j}  with distinct limiting measures 

v~ ) = l i m j ~  vo(Y, nT)),  k = 1, 2. We may assume that there is a function ~0 with 

> ,  

By the Cauchy estimate and (2.2), we have I~P'(Y)I < R/K on Q for all ~p 6 G(Q, n). Thus for 

f~o (va (Yl, n) - 

any n, 

VQ (Y2, n)) _< sup { ko (al)  - ~0 (a2)l : 

lall, la2l < R, lal -a2l  < - Iyl - y2l . 
K 

(2.5) 
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Now we choose ~ such that s u p { k o ( a l ) -  go(a2)[ : lal[, [a21 ~ R, lal - a 2 1  < RS/x} < , / 2 .  Since 
the limit in (2.4) exists, we have the limit va (~) = l i m j ~  o0 va (~, n j) for almost every ~ c Q. Thus, 
we may choose ~ ~ Q such that this limit exists and such that lY - Yl < 8. It follows from (2.5) that 

f n,)) < , / 2  

for j sufficiently large. This is a contradiction, which proves the lemma. [ ]  

Let us set S (Q) := supp I)Q (CQ), and let fit(Q) denote the set of  analytic functions ~0 : Qt ~ C 
such that ~o(ca) ~ S(Q), and there is a sequence of functions ~Onj 6 fit(Q, n j) converging to ~o. 
Since distinct good components must be disjoint, we have ~01 (y) # ~o2(y) for all y c Q~, it follows 
that with the R of (2.2) 

h(y) = log (I2R1-1 kol(y) - ~o2(y)[) 

is a negative function on Q~. By the Hamack  inequality, there is a constant independent of  s, n, and 
Q such that 

h(y) < const, h (ca) f o r y E  Q ,  

where c a denotes the center of  the square Q. We conclude that there are constants R and tc (inde- 
pendent of  s, n, and Q) such that 

k01(y) - ~02(y)l < R [~01 (r -- tp2 (r (2.6) 

for all y c Q. 

The following may be interpreted as a normal families argument for sets of  functions satisfy- 
ing (2.6). 

L e m m a  2.3. fit(Q) has the following properties: 

(1) Foreach t ~ S(Q) there is a unique q9 E fit(Q) with ~O(CQ) = t. 

(2) I f  ~01, ~02 ~ fit(Q) satisfy ~ol(ca) ~ ~o2(ca), then~ol(y) ~ ~o2(y) for all y ~ Q. 

(3) For any ,  > O, there exists J and 8 > 0 such that i f j  > J, ~01, ~02 ~ fit(Q, n j) u fit(Q) 
satisfy k01(ca) - ~o2(ca)] < 8, then I1~ol - ~o211Q < , .  

P r o o f .  We will prove (1); the as sertion (2) follows from the Hurwitz Theorem, and (3) then follows 
from (2.6). Let us suppose that there are distinct functions ~01 and ~o2 E fit(Q ) with ~Ol (c Q) = q9 2 (C a ) .  
By By [BLS1, Lemma 6.4], we may move the point y = c a, if necessary, to have ~orl (ca) ~ ~o'2(ca). 
Let us write t (k) = ~o'k(ca), for k = 1, 2 and s e t ,  = It (1) - t(2)[. 

Let {n~k )} denote the subsequence of {n j}  which produced ~ok. Now by (2.6) it follows that 
there is a neighborhood U of (~Ol (ca), c O) and a large number J such that if  j > J ,  then for any 

graph F from fit(Q, nT)), the slope of F is within E/2 of t (k) at all points of  U n F. But this is a 

contradiction, for if we write/ZQ in polar form, as a tangent 2-vector times a measure, then on U the 

tangent vector must be within , / 2  of  both t (1) and t (2) . [ ]  

Passing to further subsequences, we may assume that fit(Q1) c fit(Q2) if Q1 E ~Sl, Q2 ~ ~s2, 
and 01 ~ 02. Thus, if we write/Z~s = E a e Q s / t O ,  then/z~s < /z~s+l .  

Theorem 2.4. The currents tZ ~s increase to lz- as s ~ oe. Further each tz ~ has a uniform 

laminar structure given by #~  = fa~s(a) [Fa] va (a) 
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Proof. We have already that iXO, n = faES(Q,n)[r'a] vQ(y, n) for any y 6 Q. Now as j --+ oe 
we have vQ(y, n j) --+ vO by Lemma 2.2 and .A(Q, n j) ~ A (Q)  by Lemma 2.3, and thus the 
integral representations converge. This proves that # a  has the uniform laminar structure. We know 

that k - l d n ~  converges to # -  and #O,n converges to/ZQ as n -+ e~. Thus, the inequality 

#Q,n < k-1 dno-n [fn X] yields/XQ < # -  and thus # ~ ,  < / z - .  Similarly, the estimate in Lemma 2.1 

converges to M[(/z-  - IZ~s)LrC-I Q0] < Cd-2Sm(x).  Thus, lims-+oo/z~, = # - .  [ ]  

Our derivation of laminar structure up to this point has relied on the fact that, as a current, # -  
has complex dimension 1, and thus sets of area zero inside each leaf are invisible from the point 
of view o f / x - .  For the purpose of defining the critical measure, we will need to know that this 
laminar structure actually has leaves which are "complete;' i.e., conformally equivalent to C, since 
the critical points occur on a discrete subset of the leaf. This will be done in Section 3. 

3. Pesin-theoretic properties of the stable/unstable currents 

We discuss some results from smooth ergodic theory that we will apply to the structure of the 
currents/z + and the measure #. This includes the existence of Lyapunov exponents and the Pesin 
theory for stable/unstable manifolds. These dynamical methods lead us again to "laminar" properties 
of the stable/unstable currents/z • with respect to the Pesin stable/unstable manifolds. In Lemma 3.3 
we show that almost every leaf in the laminar structure obtained in Theorem 2.4 already contains 
the Pesin unstable manifolds. 

We define Lyapunov exponents for an ergodic measure/z for a diffeomorphism in dimension 2. 
By the Oseledets Theorem, there is a measurable, f-invariant complex splitting E~ ~ E u of the 
tangent space for/x almost every point x, and there exist numbers )d < 3. u, such that the limits 

~ s =  lim -llog D f  k , [ ,  ~ u =  tim - l l o g l D f k E ,  (3.1) 
k ~ •  k E k--~+oo k 

exist. In particular, the matrix norm satisfies 

lim ~ log  Dfkx = Xu 
k---~+e~ 

for almost every x. 

In [BS3] we showed that the Lyapunov exponents of the invariant measure /z satisfy X s < 
- log d < 0 < log d < ~u; since these are nonzero,/z is a hyperbolic measure. In the following, 
we may assume more generally that/x is a hyperbolic measure of saddle type: i.e., the Lyapunov 
exponents satisfy )s < 0 < )u. 

Let us recall the set 7~ of Oseledets regular points. General references for the Oseledets Theorem 
and the Pesin Theory are Pugh and Shub [Ps] and Pollicott [Po]. A point x belongs to R if for each 
e > 0, there is a constant Yx,E > 0 such that 

),.x,S I = D f  k El < gxxek(Zs+E) (3.2) 

)~kx'u = D f - k  E"~ < Yx'~e-k(Xu-~) (3.3) 

/ (E  sf kx' EUfkx) > ,Vx,,'-l~-lkl'~ . (3.4) 
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By the Oseledets Theorem, ~ is a Borel set of  full # measure. This means that we have strict 
contraction in the inequalities (3.2) and (3.3) if E is small. 

We note that the mapping f is said to be uniformly hyperbolic if inequalities (3.2) and (3.3) 
hold for some uniform constants ye  -~c, independent of  the point x 6 J.  It follows in the uniform 
case that the angle is bounded below, independently of  k and x. In general, uniformly hyperbolic 
diffeomorphisms are quite well behaved. 

A result of  the Pesin theory is that for each regular point x c ~ the set 

WS ( x ) : {q ~ C2 :  n-~lim dist( fnq,  f n x ) = 0 }  

: { q 6 C 2 : n ~ l i m  -nllogdist(fnq, f n x ) : Z s ]  

is a 2-dimensional imbedded submanifold. In the complex case, WS(x) is a complex manifold 
(Riemann surface). For/z  almost every x 6 7~ the manifold WS(x) is conformally equivalent to C 
(see [BLS1, Proposition 2.6] or [W]). 

Let us consider a coordinate chart ~ : U ~ A 2 = {Ixl ,  [Yl < 1} for some open set U C C 2, 
and let us work on A 2. An analytic graph T = {x = g(y) : y 6 A} will be called a vertical 
transversal; we define a horizontal transversal similarly. We will define a stable box B s (with respect 
to A 2) to be a union of components F of  W ~ (x) N A 2 for x E J'~ such that I ~ is a horizontal transversal 
to A 2. Thus for any vertical transversal T C A2 there is a set E C T such that B s = UtcE I"t ~, 
where F~ is a horizontal transversal such that F] C W s (x) for some x ~ ~ ,  and the point t is defined 
by {t} = F~ M T. It follows that distinct I'~ are pairwise disjoint, and t ~ I~ " is continuous. We 
define an unstable box B u = UtcE,, F~ in a similar fashion, with the unstable disks taken to be 
vertical transversals. 

If  B s and B u are stable and unstable boxes in the same coordinate neighborhood A 2, then the 
intersection B = B s fq B u is called a Pesin box. The stable and unstable manifolds give B the 
structure of a topological product. By [BLS1, Theorem 4.7] the restriction # L B  is the product 
measure r s | r u with respect to this topological product structure. 

By the Pesin theory, 7~ may be covered, up to a set of # measure zero, by a countable family of  
Pesin boxes {B j}. Thus for a.e. x there exists e(x) > 0 such that W[oc(X, e(x)) is contained in the 

unstable box By associated with the Pesin box Bj .  We let 7~ denote the points x 6 7~ such that 

The following allows us to ignore the subset of  142 s which is not covered by stable boxes. 

Proposition 3.1. 7:4 is an f -invariant set o f  full Iz measure. Further, 

U WS(x)- [..J WS(x) 
x C'R x ~'f~ 

has zero measure For every slice measure Iz + 17". (And thus this set has zero [lz + l-measure.) 

Proof. Almost every point x is contained in a stable box B s, and there is a number r(x) such that 
the stable leaf in B s containing x is the graph over a Euclidean disk of radius r(x) and centered at x. 
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For 0 < E and C < oe, we let S(~, C) denote the set of  points x such that r (x )  >_ E and (3.2) through 
(3.4) hold for Yx,~ < C. By choosing C large and E small, we have/z(S(E, C)) > 0. By Poincar6 
recurrence, almost every x has the property that f n~x  c S(E, C) for infinitely many nj  ~ oc. Let 
x be such a point and set x j  = fnJ  (x). Without loss of generality, we may assume that E = 1. Let 
Dj  denote a copy of the unit disk, and let Xj : D j  --+ WU(xj)  be a conformal coordinate chart with 
)~j (0)  = Xj which expresses the local stable manifold as a graph over  Dj  in coordinates such that 
the graph is flat to first order over the origin. 

Now we have a family of  germs of  conformal mappings ~0j : Oj  --~ Dj+ 1 of  a neighbor- 
--1 fnj+l--nj hood of  the origin which satisfy ~oj = Xj+l o o Xj" / Thus, r = 0 and [r I = 

] O f  n j+l - ' j  IE"(xj))]. 

Given 0 < p < 1, we choose K such that tc < (1 -- p)2/2. We may pass to a subsequence of  
{n j] so that n j+! - nj  --+ o~ arbitrarily fast. By (3.3) we may assume that I~0) (0)1 < ~c for each j .  
We let Dj, o denote the disk of  radius p < 1 inside Dj .  For R > 0 sufficiently small, ~oj is defined 
on Dj,R,  and by the Distortion Theorem in one complex variable, the image ~oj (Dj,pR) is contained 
in the disk of  radius pR)p)(O)J/(1 - p)2. By the choice of  x, it follows that q)j extends to all of  

D j, o, and q)j (Dj,p)  is contained in the disk of  radius p [p)(0)I/(1 - p)2. This number is less than 
p/2 ,  and so the modulus of  the annulus D j+ l,p minus the closure o f  ~oj (Dj ,p)  is at least log 2. 

Now we define 
o~ 

W : =  U f - n J D j  C W u(x) . 
j = l  

It follows that W is the increasing union of  annuli of  moduli at least log 2, and so W is conformally 
equivalent to C. Thus, W = WS(x) .  It follows that x E 7~, and so the/Z measure ofT~ - 7~ is zero. 

The statement concerning the slice measures /Z+]T follows because bt has a local product 
structure, with the factors given by the stable slices/Z+IT' and the unstable slices #-IT". [] 

If  B s is a stable box in the bidisk A 2, and if T is a vertical transversal to A 2, then the restriction 
# + I t  t_ (T  N B s) of the induced measure to T N B s will be called a transversal measure. For two 
vertical transversals 1"1 and T2 of  A 2, there is a homeomorphism X : TI Cl B s ~ T2 N B s obtained 
by following an intersection point tl = T! f? F t along the graph of  a stratum ['t to the intersection 
point T2 fl l't. By [BLS1, Theorem 4.5], X preserves the set of transversal measures: 

(x). ( .+IF, L - -  .+IT= L (8 o r = )  (3.5) 

If  B s = {l't : t 6 E} is a stable box, then in [BLS1] the restriction of /z  + to B s was shown to be 
equal to 

= f U+(t) [Vt] (3.6) / Z + L B  s 

where/Z+ is any transversal measure. Likewise, for an unstable box B ~, we have a similar repre- 
sentation for/z-t__ B u. The transformation rule f . / z+  = d - l #  + corresponds to the fact that the 
push-forward under f .  of  a transversal measure is 1/d times another transversal measure. 

We may define a wedge product dd~U/x  T for any bounded, continuous psh function U and 
positive, closed current T, where if ~ is any test form, the product U~ is a compactly supported form 
with continuous coefficients, so we may set 

ddCU A T(~) :=  T (UddC~) 
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(see [BC] for further discussion of  this wedge operation on currents). A related operation is the 
intersection product, [Zt ] A [Z2], which gives the current of  integration over the intersection [ Z I NZ2]. 
By integration with respect to the transversal measure, we may define an intersection wedge product 
A of  a current of  the form (3.6) and a current of  integration [Z]. In [BLS1, Lemma 8.3] it was shown 
that if Z is a complex variety, and if/x + has the form (3.6), then these two notions of  wedge product 
coincide, i.e., 

( / Z + L B )  A [Z] : ] / z + ( t )  [1-" t n Z] . (3.7) 

Because of  this, we will use intersection products whenever it is convenient, but we will just use the 
notation A. 

P r o p o s i t i o n  3.2. There are countably many unstable boxes By such that the splitting E s ~ E u 

extends continuously to By, there is a constant C j such that (3.3) and (3.4) hold on By with F~,E <_ C j 

u n U j ,n= l  fnBu for x E B j ,  and such that for any complex manifold T, T ~ J J has full measure for the 

slice measure tz~-. 

P r o o f .  Let { By } be a family of  unstable boxes as in Proposition 3.1. We may choose stable boxes 

B~ such that Bj = BSj O BjU is a Pesin box, and E s/u extends continuously to By and (3.3) and (3.4) 

hold. [ ]  

Another consequence of  the Pesin theory is that there is a measurable family of  Lyapunov charts. 
This means that almost every x is the center of  a (complex) affine image L(x)  of a bidisk A 2, and 
there is a product metric on L(x) which is strictly expanded/contracted under f (see [Pr]). (We call 
L(x) a topological bidisk in [BLS2].) If  X is a complex variety, the cutoff image of  X under f ,  
i.e., f ( X  N L(x))  n L ( f x )  is stretched across L ( f x )  in the unstable direction. In fact, if X n L(x) 
intersects W[oc(X) transversally at x, then there is a number N(x)  such that if m > N(x) ,  then after 
m stretchings and cuttings-off, we have an unstable transversal to L ( fmx) ,  i.e., 

f m ( x  n L(x)) n f m - l L ( f x )  n ' "  n L ( fmx )  (3.8) 

is an unstable transversal to L ( f mx ) .  

Let us take a countable family of  Pesin boxes Bj whose union has full measure and which has 
the property that the constant Yx,E in (3.2) through (3.4) satisfies 7x,E < Cj for x ~ Bj. Further, we 
may assume that the inner radius of  L(x) is bounded below by r0 > 0 for all x e Bj. Further, we 
may assume that the axes of  the bidisk L(x) are almost constant for x c B j ,  and we may assume 
that the projection 7r is transversal to the unstable direction, i.e., J r - l (0)  makes a positive angle 
with the unstable axis of  L(x).  Shrinking Bj if necessary, we may assume that there is a square Qj 
with nj  C 7"( -1Q j ,  and such that zc - lq  n L(x) is a vertical transversal of  L(x) for all x ~ Bj and 
q ~ Oj.  Finally, Wt"oc(X) n L(x) is an unstable transversal to L(x),  so we may assume that for each 
stratum F of  By, F crosses Jr - 1 Q j  properly, i.e., the restriction of  zr from F n Jr - l  Oj to Qj is a 
homeomorphism. 

L e m m a  3.3. There are countably many Pesin boxes { B j } such that U B j has full lz measure, and 
for each B j there is a square Q j c C such that the associated unstable box BU satisfies J 

Proo f i  We take Bj and Qj as in the discussion above. We note that we may take B ~. such that J 
for each stratum F of By, F n L(x) is an unstable transversal to L(x) for all x e Bj. Let {Pj} be a 
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finite family of  disjoint Pesin boxes with a family of  disjoint open sets Vj with Vj D Pj. Further, if 
> 0 is given, we may assume that/z( u Pj)  > 1 - 6. 

For a fixed j ,  we will set B = Bj and Q = Qj and will show that they have the property 
claimed in the lemma. Let c > 0 be such that l imn~oc cd -n [f"X] = Ix-.  We may suppose that 

f (.+ L-P;)Ac[X O Vj] > ( 1 - e ) # ( P j ) ,  (3.9) 

replacing X by f nX  and c by cd- ' ,  n large, if necessary. For each m, let ~(m,  j )  denote the set of  
connected components F of fm (X N Vj) n Jr-1Q such that Jr Ir : F ~ Q is a homeomorpism. We 
let 

tZg(m,j) = cd-m E [F] (3.10) 
FE~(rn,j) 

so that 
/z~ _> lim sup E / Z ~ ( m , j )  . 

J 

The inequality arises since there are possibly good disks in fro(X) n J r - l Q  that are lost when 
fm (X - U V j) is removed. We note that since each F ~ By is a proper transversal to zr-  l Q, it will 
suffice to show that 

IXQ A (l,z+ t_B s) >_ ( tz-  t_B")  A (lx+ t._B s) = # ( B ) .  (3.11) 

In (3.11) it is the inequality that needs to be proved; the equality is just the product structure of /z  on 
B. 

Now we have 

# Z Q A ( / Z + L B  ' )  > limsup~iZ~(m,j) A ( # + i B  s) 
J 

>_ E ( 1 - 6 ) t z ( P j ) # ( B )  
J 

>_ (1-E):#(B), 
where the second inequality follows from Lemma 3.4 below. Thus we conclude that (3.11) holds, 
which completes the proof. [ ]  

L e m m a  3.4.  Let B and Pj be as above. Then 

lim f t*~(m4) A (t,+t_B s) >_ (1 --E)tz(Pj)Iz(B). 
m ---> ~ 

P r o o f .  We note that each unstable transversal F in L (x) gives rise to a unique good disk F O J r -  1 Q. 
Thus, we will consider instead the current/@(,~,j), where the sum in (3.10) is replaced by F O J r -  l Q 
for F which are unstable transversal components of  f m ( x  n Vj) n L(x) for some x e B. Since 
#~(m,j) > #V(m,j)' it suffices to prove the lemma for #~(m,j) replaced by #V(m,j)" By [BLS1, 

Lemma 6.4], we may suppose that X intersects Wfoc(X) transversally for each x c Pj. Let N(x) 
denote the measurable function on X n Vj with the property (3.8). 

We define q = f / z  + A c[X n Vj] so that q >_ (1 - E)Iz(Pj) by (3.9). We may assume 
(changing Vj slightly if  necessary) tha t / t  + Ix puts no mass on O(X n Vj). Thus, 

lim c d - m [ f m ( x n  v j ) ] = q t z  - . 
m----~ o o  
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It follows that 

re[i into f cd-m [fro (X 0 Vj)] A ( i x + i n  s) 

Thus, if we set 

it will suffice to show that 

= c, fix-,\(ix+LB s) 
= Clix(B) > (1 - E)IX (Pj) Ix(B). 

rl-(m ' j) = cd-m [fro (x f"l Vj ) ] -- ]d,~)(m,j ) 

l i m  f ~/-(m, j ) A  ( :z+t_B ~) = 0 .  

However, if we pull back to X r Vj via fm and recall the definiton of N(x) ,  we have 

fo-(m,.i) A(ix+,_Ss)= L [xnvj]:(ix+,__,';). 
(x)>m} 

Thus, the fight-hand side tends to 0 as m ----> ocz since {N(x) > m} decreases to 0. 
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[]  

4. Averaged rates of  growth  

Lyapunov exponents describe the behavior tangent vectors at/z a.e. point. This is not, however, 
the most direct way to get a hold of the value of the Lyapunov exponents. In this section we 
consider various alternative notions of  the growth rate of  vectors and we relate them to the Lyapunov 
exponent. We discuss a method of  measuring the growth of  D f  k by taking the average with respect 
to IX and all directions; and we show how it is related to a type of critical point. Finally, we give 
a formula for the averaged rate of growth by pulling back a form from projective space. This 
last formula (Proposition 4.6) is of  interest because it involves the projectivized image of the map 
x ~ Df~ ~ E(C e, C2), and thus measures the volume of the (projectivized) image rather than the 
size of  [I D f  n II. This description suggests an analogy with the definition of curvature via the Gauss 
m a p .  

There is a certain symmetry between ),+ and Z -  which can be realized by replacing f by f - 1 .  
For the sake of definiteness we focus on ),+ in this section, and our notation reflects that emphasis. 

We let or, fl denote constant, nonzero vector fields on C 2, and define the quantities 

A = lim 1 flogllD f(x) Ix(x). 
k - + ~  K J II 

' f l ' J  A(~)  = lim log Dfx (oD Ix(x) 
k---~ eo k 

A(ot, fl) : ~-->~lim k f l ~  Df•(ot)lix(x). 

The first integral arises in the proof of  the Oseledec Theorem as the first step in the proof of  the 
existence of Lyapunov exponents. From this we see that A = L + (/z). We will analyze the other two 
quantities. 

We can identify ot and fl with vectors in C 2 - {0}. It is clear that A(cct) = A(00 for any 
c E C - {0} and A(cla,  c2fl) = A(ct, t )  for Cl, c2 ~ C - {0}. Thus, when it is convenient we may 
think of identify A(.) and A(-, .) as functions on p1 and p1 x p1. On the other hand, it is sometimes 
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convenient to assume that lot[ = 1 and 1/31 = 1. We let a denote the rotation invariant measure on the 
unit ball in C 2, normalized to have total mass 1. We denote by the same letter the induced measure 
o n  p 1 .  

In the sequel, we will use the observation that if/3 = ( / 3 1 , / 3 2 )  E C 2, then 

f ~  1 (4.1) 1=1 log [el./31 a(el) = log 1/31 - 

depends only on 1/31. 

L e m m a  4.1. F o r a  a.e. /3 ~ p1, A(ot,/3) = A(a) .  

Proofi  For each x we have 

1 
f~ep 1 log f t .  Dfkx (el) a ( f l )  = log Dfkx (ot) 2 

by (4.1). Now we integrate with respect to /z(x) ,  divide by k, and then take the limit as k --~ oo to 
obtain 

f~ A(~,/3)a(/3) = A(el). 
E p  I 

On the other hand, we may assume that 1131 = 1, so A(ot) > A(el,/3). Thus the lemma follows. 
[] 

Recall from Section 3 the measurable, f- invariant  complex splitting Ex s @ E x of  the tangent 

space for /z  almost every point x. We let x ~ e~x/u be a measurable choice of  unit vectors in E s/u. 
Given a tangent vector ot =Otl 01 + elzO: (using 01 and 02 to denote a frame for the tangent space of 
C a the point x) we may split it as 

0/ ~ S S U U ~ ex q- elx ex �9 
. k,s/u 

Thus, for /z  a.e. x there are numbers ,~x such that 

Dfkx(el) -k,s  s s - - - k , u  u u ---- ~'x Otxe f k  x -t- ~'x e l x e  f k x  " 

Thus, we have represented D f  k as a diagonal matrix. 

L e m m a 4 . 2 ,  F o r a  a.e. el, w e h a v e  A(el)  = A .  

P r o o f .  The function u s in the splitting above is given by the Hermitian inner product (el, e~) on C 2. 
For x fixed, f log I(u, exS)la (u) = - 1  as above. Since the integrand is nonpositive, it follows that 
log Iots l is integrable with respect to the product measure a x /z .  Reversing the order of  integration, 
we have 

f u(x) f l~ l(~, e~)l ~(ot) = f f ~(x)log l(el, e~x)l ff(~) . 
Thus, for almost every el ~ p1 the function x ~ log IotS l is integrable with respect to/z.  Similarly, 
we may assume that log lelUl is integrable. 

Letting Yx,~ be as in (3.2) through (3.4), we define S• = {x : Fx,E < F} for fixed ~ > 0. By the 
splitting above, we have 

k,s  s s - k , u  u u 
log Dfkx(el) = log )~x elxefkx + Ax Otxefkx = log I A + BI �9 
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Given two vectors A and B, which form an angle of  opening 0, the square of  the sum has length 

IA+BI = IAI2 +lBIZ + 21AlIelcose 

= ( ] A I -  IB]) 2 - F 2 ( c o s 0 -  DIAIIBI  > 2 ( c o s 0 -  1)[AIIBP. 

For 0 small, we may estimate 2(cos 0 - 1) by 02, so we have 

~2 s-k ,s  u-k,u log D f k ( e t )  > log t~ a x ~  x Otx~ x 

Thus by (3.2)), (3.3), and (4.1), and the fact that the angle between e s fk  x and eUf~ x is bounded below 

by (3.4) and y > Fx,r for x 6 S 7 we have that the quantity 

1 k k,s ku  ~ l o g  D T  (or) > l ~ 1 7 6  ~'x )~x' [ + l ~ 1 7 6  

>_ - 2 , - ~ l o g y  + logla l -2 , -~ logy +logl Sl+logl Ul 

is bounded below by a function which is integrable with respect to ]z. 

For/z  a.e. point x such that ot~c # 0, we have 

1 
lim - log Dfkx (or) = A 

k---~ ~ k 

so by (4.1) and the dominated convergence theorem, we have 

f ' lim (A - log Df~(oO )l~(x) < 12. ( J  - S t )  (A + log M) 

The lemma follows since l i m •  - Se) = 0. [ ]  

L e m m a  4.3. For  a.e. /6 we  have 

if f / 6 D f k x ( e t )  lim - tr (a)  log �9 /z(x) = A .  
k---~ cx~ k 

Proof. This follows from Lemma 4.1, 4.2, and the bounded convergence theorem. [ ]  

Another way in which a family of  critical points arises is as follows. Let us define 

(4,2) 

as the critical points of  the scalar function x v-+ /7 �9 f with respect to the direction a~. Unlike the 
set of  unstable critical points C u, which will he defined in Section 5, this set is not invariant. On the 
other hand, it is quite explicit. 

The following computation resembles the proof of  [BS3, Theorem 3.2], except that now we 
analyze further the integral term on the right-hand side. 

Lemma 4.4. Le t  t~,/6 e C 2 be such that the second coordinates a2 ,  f12 ~ 0 a/'e nonvanishing. I f  
T = {x = 0} is the y-axis ,  then 

1 n - =  log ete/62d ~ G + 1 f log/6, oi o, ,+  ,, + f ,,  i:t l. 
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Proof. Applying (fn)* and treating fn , f ,n  as the identity transformation, we have 

f l o g  fl .  Df%t  1 c + 1 n f ( G f,, D f %t lddc ~dd A ~f: [T]---- J l o g  ," t G + A [r] 
2~ 

where we use the functional equation fn*G+ = G + o f" = dnG +. Furthermore, G + restricted 
to T is the Green function of K + N T, so that l(ddC)TG+[T is the harmonic measure, which we 

denote by #++nT' so the equation becomes 

1 n f l~ " • 1 7 6  " f: f'J = f"* (l~ " ) 

From formula (1.1) for fk ,  we observe that 

f t .  Dfk(ot) = fl2ot2dky dk-1 + . . . .  

Since #K+nT is harmonic measure, we may apply Jensen's formula [BS3, Lemma 3.1] to the monic 
polynomial (fl2ot2dk)-lfl �9 Dfk(oo (restricted to T )and  obtain 

= log f12ot2 dk -}- E dnG+(c) 

{cET:fl'Dffnc(et)=O} 

f 1 n 
fl2ot2d k + J G + [Zk(c~, fl)] A ~-~- f~ [T] log 

where the last equation comes from pushing [T] forward under f~ .  This gives the desired formula. 
D 

Corollary 4.5. I f  or2, f12 # O, then 

if A(oe, fl) = logd  + lira - G + ~  - / x  [Zk(oe, fl)l �9 
k ~  k 

P r o o f .  We take the formula given in Lemma 4.4 and let n --~ ~ .  Then we divide by k and take 
the limit as k --+ oc. [ ]  

Now we find another way to replace the explicit dependence on ot and fl by the average over all 
directions. This provides an alternative approach to critical points. 

The differential induces a mapping 

C29x~---~ Dfx E ~.(C2, C2) . 

We may identify the dual space E(C 2, C2) * ~ C 2 | (C2) *, where ot |  6 C 2 | (C2) * induces the 
functional E(C 2, C 2) 9 Z ~ fl �9 Zot. Let 

and let [(a | fl)• denote the cmrrent of integration over (a | fl)• as a subset of  E(C 2, C2). Now 
the function Vq,/~ (Z) = log I t  �9 Za[ satisfies the Poincar6-Lelong identity 

(ot @ fl).a_] = 1 c ~dd V~,~. 
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Averaging the function V~,~ with respect to ~ and fl we have 

V(Z)  := f or(or) f a( f l )  Vc~,~(Z) , (4.3) 
J~ Ep 1 .]~Ep l 

so that V(Z)  is continuous off the origin, plurisubharmonic, and logarithmically homogeneous. 
Observe that the integral on the left-hand side, as a function of Z, is invariant under the U(2) • U(2)- 
action on L;(C 2, C 2) given by (S, T) �9 Z ~ S Z T  -1. Thus, to evaluate the integral it suffices to 
consider the case where Z = diag{L1, )~2} is diagonal. 

In this case V~,~(Z) = log [Otl~.lfl 1 -r Ot2Jk2fl2], and by (4.1) the first integration inside (4.3) 
yields 

f~ 1 ( ) log  IOtl~.lfll -+- ot2~.2/321 | = ~ log Ifll)~ll 2 + 1/32)~212 + C . 

The (1,1) form 
1 

| = ~----ddC~ " (4.4) 
2zr 

on C 2• ~ Z;(C 2, C 2) represents the averaged current of  integration. (Note that we are making 
an abuse of notation, representing a current as a (1,1)-form.) By the logarithmic homogeneity, we 
may also interpret | as a form on the projectivized space s  2, C2) /C  * --- p3, and | dominates a 
multiple of  the standard K~hler form on p3. If  we use again the notation D f  k to denote the projective 
image of the differential in /2(C 2, C2) /C  *, then the averaged critical locus is the pullback of | on 
projective space: 

f~Ep l filE(p1) * a(ot)tr(fl)[Zk(Ot, fl)]=(Dfk)*| (4.5) 

Averaging the formula of  Corollary 4.5 over o~, fl E p1, we obtain: 

Proposition 4.6. 

A = l o g d +  lim 1 f G + i z _ A ( D f k ) * o .  
k--+oo g J 

5. Stable/unstable critical measures 

In this section we begin by defining the unstable critical points C u and the unstable critical 
measure/z c .  (The definition of the corresponding objects C s and/z + should be clear.) We will show 
(Theorem 5.1) that if/.t~, s is the critical measure defined starting from the laminar current/z~s,  then 

/z~, s converges to /z  c as s --+ oo. The rest of the section is devoted to showing (Theorem 5.9) that 
/z c is equal to the limit of  the intersection product o f / z -  with the average over u and fl of  the critical 

varieties fJZk(Ot, t )  as j ,  k - j --~ c~, i .e . , /z -  A f j ( D f k ) * |  -+ Iz c . 

We define the unstable critical points as 

CU = U Cri t (  G + '  W U ( x ) -  K)  , 

xET-~ 

where Crit(G +, W u (x) - K )  is the set of  critical points, with multiplicity, of  the restriction of the 
function G + to the open subset W u (x) - K of the manifold W u (x). The restriction of G + to W u (x) 
is subharmonic on WU(x) and harmonic on WU(x) - K; thus, WU(x) - K # 13. Since G + vanishes 
on WU(x) (q K (which is nonempty since it contains x), it follows that G + cannot be constant on 
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a nonempty open subset of  WU(x) - K = {y ~ WU(x) : G+(y) > 0}. Further, since x E ~ is a 
regular point, it follows from [BLS 1, Proposition 2.9] that the restriction G+lw . (x) is not everywhere 
harmonic, and so WU(x) - K ~ 0. Thus, Crit(G +, WU(x) - K) is a discrete subset of  WU(x) - K 
for each x E R.  If  f is uniformly hyperbolic, then C u is a closed subset of  U +. In the general case, 
C u is likely not to be well behaved. 

We will now define the unstable measure P c .  We start by defining its restriction to an unstable 
box B u. For a stratum rt of B u, the critical points of  G+Ir ,_K are discrete, as noted above. We 
let the current [Crit(G +, r t  - K)] denote the sum of point masses (with multiplicity) at the critical 
points of  G + l r t  - K. The mapping of  currents t ~ [Crit(G +, Ft - K)] is semicontinuous and 
may be assumed to be bounded, so we may set 

" c b B U  = f P7(t)  [Crit(  G+, Ft - K)]  . 

It is evident that this definition of  P c  is independent of  the stable box involved, since if we have 
two stable boxes, the two definitions o f / z  c agree on the overlap. This definition of  P c  may be 
considered to give almost all of  the points of  C. u, since by Proposition 3.1, we could work equally 
naturally with the set 7~, in which case every critical point would lie inside an unstable box. 

Defined this way, P c  is evidently or-finite, and in Section 6 we will see that it is locally finite 
on U +. The set C ~ is f-invariant. Since the transversal measures corresponding to # -  multiply 
by d under push-forward by f ,  and the function G + multiplies by d -1 it follows that G+p~ - is 
f-invariant: 

I ,  = 6 + p c .  

For a square Q E Qs, we let # a  = f vQ(a)[Fa] denote the laminar structure obtained in 
Theorem 2.4, in terms of  an algebraic variety X and a projection rr~. We may define the corresponding 
critical measure 

pZs = ~, fue(a)[Crit(G+,ra)]. 
QEQs 

T h e o r e m  5.1. For all but countably many values of  or, 

lira P~.s  = P c  �9 
S ---~ OO 

P r o o f .  Let us choose Pesin boxes Bj whose union has full p measure. For u ~ C 2 we let S(t~, j )  
denote the set of  points of  By where the tangent space of  the corresponding stratum is annihilated 

by 7r~. If  or' and or" define different points of  p1, then S(ot t, j )  is disjoint from S(ot' ,  j ) .  Thus, 
Pc(S(ot,  j ) )  > 0 for only countably many values of  or. Thus, except for countably many values 
of  a ,  we have/Zc(S(cq j ) )  = 0 for all j .  Now we may subdivide the Pesin boxes to obtain a new 
covering {Bj} which satisfies the hypotheses of  Lemma 3.3 with 7r = Jr~. Thus, for each Bj there 
is a Qj such that 

It follows that if s is sufficiently large that Qj is a union of  squares from Qs, then we have 

, ^u u n T r - l Q j "  It follows that l imx ,~ /z~ .~  L Y > # c  L_ Y holds for Y = Uj,n f n ~ j ,  where Bj = Bj 

As in Proposition 3.1, Y has full measure with respect to all transversals, so the theorem follows. [ ]  
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Now we start the sequence of lemmas that will lead to the proof of  Theorem 5.9. For fl �9 (C2) *, 
we consider o / ~ / 5  �9 Dfk(z)(o/)  and o~ ~ OG + �9 o~ as linear functionals acting on o/ �9 C 2. We let 
(fl �9 Dfk ( z ) )  and (OG +) denote their images in (P])*. 

L e m m a  5.2. For each compact subset Uo C U +, the sequence (ft. Dfk (z ) )  converges to (0G +) 
as k --+ oc, uniformly in z �9 Uo and fl �9 C 2 - {0}. 

P r o o f .  If  f has the form (1.1), then the coordinates fn  = ( f~) ,  f~) )  satisfy f(% = (f2 o . . . o  fm o 

fn-1)(2),  and f(~) = (f(%)d] + . .  ", so d -n log If(% I and d-~d] log If(% [ converge to G + unifonrdy 

on compact subsets of  U +. Thus, the normalizations of  the gradients 0f(~!)[0f(n) [ - l ,  i = 1, 2 both 

converge uniformly to the normalization 0G+[0G+[  -1 on compact subsets of  U +. It follows that 
on any compact subset of  U+,  the normalization of ~ (ill f(% + f12 f(%) converges to 0 G + 10 G + ] -  1 
uniformly in fl # (0, 0). Since f t .  D f  n (o/) may be identified with O(fl] f~l) + f12f(%) �9 o/, it follows 

that the projective images of these linear functionals converge uniformly. [ ]  

Let pu = U t e r  Ft be an unstable box as in Proposition 3.2. For each j > 0, we define 

(s p1 
Thus, (E s ( f  - J  Ft)) has diameter O (e -~j) .  We set 

) 2 s ( j , t ) ) =  o / � 9  o/, E s f - J F t  < 

and 12~(j, t) = p1 _ Vs(j ,  t). It follows from (3.2) through (3.4) that DfJV ~( j ,  t) lies in an 
O(e-eJ)-neighborhood of (E s ) at all x �9 Ft. 

L e m m a  5.3. Let P and VU ( j  , t) be as above, and let us suppose that G + has no critical points on 
OFt for t  �9 T. Then in terms o f  the Hausdorff distance we have 

lim d i s t ( F t N  f J z k ( o / , f l ) , C r i t ( G + , F t ) )  = 0  
j---~ oo 

k-i~ee 

with the limit being uniform in t �9 T, o~ �9 )2u(j, t), and fl �9 (P[)*. 

P r o o f .  If  j ,  k - j ~ er then there are sequences Kl(k), K2(k) ~ er such that K](k) < j < 
k - K2(k). If  ~ �9 Ft f'l fJZk(o/,  fl), then y = f - J r  satisfies fl �9 Dfyk(o/) = 0. Thus, ~ satisfies 

~ . D f ~ - J  ( f jo / )  = O. 

For 8 > 0, we may choose ~cl sufficiently large that if  j > xl,  ~ �9 Ft, and u �9 ) ;u(j ,  t), then 

diStpl (f.Jo/, (E~)) < 8. Furthermore, for K2(k) sufficiently large and j < k - K2, it follows from 

Lemma 5.2 that dist(p1). (0G +, fl �9 D f  k - j )  < 8. Thus, the distance between the sets Crit(G +, Ft) 

and {x �9 Ft : fl . D f k - J  ( f J  o/) = O} is uniformly small. [ ]  

Next we define 

X ~  (fl, t ) =  faeVs/u(j,t) if(o/) IF t CI f J Zk(o/, f l ) ] .  

The plan is to show that )~,k(fl' t) converges to the critical point measure [Crit(G +, Ft)], and thus 

the integral with respect to t will converge to the critical measure Ix c t_ P,  and then to show that 
)~},k(fl, t) converges to zero as j ,  k - j ~ cr 



372 Eric Bedford and John Smillie 

L e m m a  5.4. Foreach t c T, X~,k( fl, t) converges uniformly to [Crit(G +, Ft)] as j ,  k - j ~ oo; 
that is i f  Tt is any test function and xl,  x2 --~ oo, then 

lim max max f ~  ()~,k(fl, t)-[Crit (G +, Ft)])] =0 .  
k - - ~  ~c l(k)<_j<_k-~c2(k ) tET 

Proof. As j,  k - j --+ oo, Ft fq fJz~(ot ,  fl) converges to Crit(G +, r't) uniformly in ot~ 12u(j, t), 
t ~ T andfl  6 (p1)..  Thelemrnafol lowss ince12U(j , t )  approaches full measure as j --+ ~ .  [ ]  

L e m m a  5.5. 
compact open subset o f Y .  Let  h : F --> C 2 be a holomorphic function such that 

max Ih[ < r - C~a~cnlhl 

for some C < oo. Then there is a constant 0 < b < 1, depending only on F I, such that 

m = m a x { (  6 F ' : h ( ( ) . o t = 0 }  
otEP I 

satisfies either Cb m >_ ~/g/2 or 

f~ # { (  E r '  : h ( ( ) ' ~  2 " 
Ep  I 

Let  F be conformally equivalent to the unit disk in C, and let I "t be a relatively 

(5.1) 

(5.2) 

Proof. Without loss of  generality, we may assume that supr Ihl = C and infr  Ihl = 1. There is 
a number 0 < b < 1 depending only on F '  such that for any holomorphic function ~ on I" with m 
zeros in F' ,  

max I~Pl < bm max 17sl �9 
F '  F 

Let us fix or0 with Iot0l = 1 such that the maximum is attained in (5.1). It follows that 

max [h(() �9 ot0[ < b m C .  

If  0 ( ( )  is the angle between Ker(h(())  and oto ~ C 2, then 

Ih[ s in0( ( )  : Ih ( ( ) .  o~0l �9 

Since Ih(() I ~ 1, it follows that I sin 0 ( ( )  [ < Cbm. It follows that h ( ( ) .  ot # 0 for ( 6 F '  if the sine 
of  the angle between ot and oto is greater than Cb m. If  [ sin0[ < ~/3/2, then 0 /2  < I sin0l. Thus, 
if Cb m < ~/3/2, then 10(()1 _< 2Cb m, and so ~ w-~ #{( ~ F ~ : h �9 ot = 0} is supported in a disk of  
radius 2Cb m about oto. In this case, the integral in (5.2) is bounded by myr(2Cbm) 2. [] 

L e m m a  5.6. Let  F I C F, h, b, and C be as in Lemma 5.5. /1"12 C p1 is contained in a disk o f  
radius 8, then 

where C ~ depends only on b and C. 

Proof. Let us choose oto which maximizes m in (5.1). If  Cb m < ~ / 2 ,  then 

f~ #{( EI" :h(()'et=O} a(et)<myr82 < 
eV 

Jr log (~ /3 /2C)  6 2 . 

log b 
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If Cb m > q~/2 ,  then by Lemma 5.5 the integral is bounded by mrr(2Cbm) 2. We also have the 
trivial upper bound mzr~ 2. Thus, 

f~ # { ( ~ P ' : h ( ( ) ' ~ = O } a ( u ) < m i n ( m z r ( 2 C b m )  2 mzr~2) l~ 
~V - ' = log b 

since the minimum is attained when 2Cb m = 8. [] 

L e m m a  5.7. For Ko sufficiently large, there exists a constant C such that for k - j >_ xo, h = 

(fl o f k - j ) - l  fl o D f  k - j  : C 2 - .  C 2 satisfies 

max Ihl _ Cmin Ihl 
Ft Ft  

fora l l t  ~ T and fl ~ (p1).. 

Proof .  This is a direct consequence of Lemma 5.2. [] 

L e m m a  5.8. 
lim X~,~(fl, t) = O. 
j----~ oo 

k - j ---+ o~ 

Proof .  Let F~ C Ft be a relatively compact open subset with no critical points in the boundary. 
By Lemmas 5.5, 5.6, and 5.7, we have 

s ( 1 ( 4 - ~ )  2 l~  ~ 
)~j,k(fl, t )LF~ < max ~ log ~ j ,  logb J ]  

where t~j is chosen so that V~ (fl, t) is contained in a disk of radius 8j. The lemma now follows since 

~j ----> 0 as j ---> or and since F~ can be chosen to exhaust Ft. [ ]  

Define 

Zk(fl) = f~cp I O ' (Ot )  [Zk (Ol ,  f l ) ]  . 

T h e o r e m  5.9. As j,  k - j --+ oe the restrictions o f  tz-  A f J  Zk (fl) to U + converge to iz c in the 
sense o f  currents on U +. 

Proof. We let pu = p be an unstable box as above. We choose an unstable box P '  C P such 
that F~ is relative compact in Ft, and there are no critical points on 0F~. Further, we may assume 
that /zc(UteT OFt) = 0. By Proposition 3.1, it suffices to show that 

( /Z-A f J Z k ( f l ) )  L P  = lZc L P  . lim 
j~-oo 

k - j~oo  

Using the notation above 

/~- A f j 2 d f l ) L P  

= Zr/z~-(t) [Ft] A fJ2k(fl) 

= f~r .7 (t)f.~p, o-(o0 [rt]* fj  [z,(,~,/~)] 
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If  we break up the inner integral as p1 = V~ (/~, t) U Vj (/3, t), then we have 

It follows from Lemma 5.8, then, that the first integral on the fight-hand side converges to zero, and 
from Lemma 5.4 that the second integral converges to/z  c L P. [ ]  

We observe that as in (4.5) ( D f k ) * |  = f ~r(fl)Zk(fl), we may integrate the previous result 
with respect to/3 to obtain: 

C o r o l l a r y  5.10. Let  | be as in (4.4). Then as j ,  k - j --+ oo the restrictions o f  the currents 

# -  A f.J ( D f k ) * |  to U + converge to iz c in the sense o f  currents on U +. 

6. The integral formula 

The main goal of  this section is to prove Theorem 6.1, which gives the Main Theorem. In 
fact, Theorem 6.1 is a consequence of  Theorem 6.2, relating the rate of  expansion to the unstable 
critical measure. This may be viewed as applying Corollary 5.10 inside the integral formula of  
Proposition 4.6. 

For a set P,  we put/5 = U n c z  f n p .  We will say that a Borel set P is a fundamental domain 

for C u if P D C u and if P n f n  p = fl for all n # 0. 

Theorem 6.1. Let  P C C u be a fundamental domain for C u . Then 

X+(/z) = logd  + f G+/Zc Q 

dp 

R e m a r k .  A convenient choice for fundamental domain is { 1 < G + < d} n C u. This choice gives 
us the Main Theorem. 

For a domain P satisfying P n f n p  =. ~ for all n # 0, every point x 6 t5 may be written 
uniquely as x = f n y ,  so we have a projection zrp : /5 --+ P given by :rp(x) = y; it is evident that 
zrp is Borel measurable. 

Theorem6.2. L e t P  C J -  beaBore lse t suchthat lZc(OP)  = O, whereOP denotestheboundary 
relative to J - .  I f  P O f n  p = fl for all n # O, then 

G + / Z c W P  = k--,~lim ( ~ r p ) , ( ~ G + t z - A ( D f k ) * |  (6.1) 

R e m a r k .  Both sides of  the equation put no mass on J -  O K, so without loss of  generality we may 
assume that P C J -  - K. Indeed, the general case follows from the case where P is a fundamental 
domain. 

Proof of Theorem 6.1. 
prove 

We will show how Theorem 6.1 is deduced from Theorem 6.2. We first 

X+(/z) = logd  + f{t<_G+ <td} G+ lzc 
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for some value of  t. Forthis ,  we note that for every t > 0, Pt = {t < G + < td}AJ-isafundamental 
domain for J -  - K.  By the fact that G + is pluriharmonic, we have 0 Pt = {G + = t} tO {G + = td}, so 
that the boundaries 0 Pt are disjoint for 0 < t < d. Now since ix~- is a-finite,  we have ixc (0 Pt) = 0 
for all but countably many values of  t. So we may apply Proposition 4.6 and Theorem 6.2 to conclude 
that the formula above holds for such t. 

Now we conclude with the observation that if  the theorem holds for one choice of  Borel mea- 
surable fundamental domain, it holds for any other. Given the fundamental domain P ,  the restriction 
of  the mapping ~ p  : {t _< G + < td} AC u ~ P is one to one and onto. Since G+ixc  is f - invariant ,  
it follows that it is invariant under zre, and thus 

which completes the proof. 

fp  G+ ixc = f{t<G+ <td } G+ ixc , 

[] 

By (1 .1) , /3 .  Dfk(u)  = /32~t2dky dk-1 + . - - ,  so that if  0t2/32 ~ 0, then the total mass of  the 
intersection current is 

f i x -  A [Zk(ot, d k - 1 (6.2) /3)1 i 

Lemma 6.3, Ifx2(k) satisfies l i m k ~ ( x 2 ( k )  -- log d k) = - c o ,  then 

l im - G+IX - m  D f  k * |  
k--+~ k + <d-k+K2 } 

Proof. By (6.2), the total mass of  IX- A [Zk(ot,/3)] is d k - 1 for almost every ~,/3 e C 2 - {0}. 
Thus, 

- G+IX - A [Zk(ot,/3)] < d-k+K~dk 
k + <d-k+x2 } 

so the lemma follows from the condition on K2 after integrating with respect to ot and/3. [ ]  

For a tangent vector ot e C 2 we define 

= u + n = 0}  . 

We note that since D f  k and O G + are nonsingular Zk (or t, fl ) N Zk (or ",/3 ) = 0 and Zoo (a ' )  fq Zoo (u ") = 
13 for all ot t, or" which define distinct elements of  P].  

L e m m a  6.4. For each nonzero et e C 2 the currents [Zk(ct, fl)] converge to [Zoo(or)] as currents 
on U +, uniformly in ft. That is, i f  ~p is a test form with compact support in U +, then 

f 
l im max 1 A ( [ Z k ( O t , / 3 ) ]  - -  = 0 .  

j --+~ /3 J 

P r o o f .  Since by Lemma 5.2 the projective images of  the defining functions of  Zk (~,/3) converge 
uniformly, this gives the uniform convergence of  the currents. [ ]  

Let V+(R) = {lYl > 
follows that 

Ixl, lyl > R}. Since G+(x ,  y) = log lYl + O(lY1-1) on V+(R), it 

OG + �9 ot = - -  + O lYl - z  . (6.3) 
Y 
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Multiplying this by y2, we see that for R large and ot = (1, Or2) 

V+(R) n Z~(t~) = {cQy + Al(x, y) + ot2A2(x, y) = 0} 

where A1, A2 are bounded and holomorphic in V+(R). Thus, we have Idy/dxl ~ cly-ll on 
V+(R) n Zoo(or), and for [c~21 sufficiently small V+(R) O Z~(ot) is a complex disk {y = 9~(x) : 
x 6 Du } satisfying 

C t C tt 

< [qg~(x)[ < - -  (6.4) 
[ ~ 2 1 -  --]Otz[ �9 

Lemma 6.5. For any c > 0 

limfc G+Iz-A(Dfk)*| 
k--+ or +>c} 

G+/x - A [Z~(ot)] < ~x~. 

Proof. We will first show that for every fl 

lim f~ cr(o~)f{G G+Iz-A[Zk(Ot, fl)]=f~ f{G G + / z -  A [Z~176176 < ~176  " 
k--+ cxz Ep1 +>c} EP 1 +>c} 

Let us consider the regions {G + > c} n (lYl - R} and {G + > c} n V+(R) separately. The currents 
[Z~(ot)] put no mass on {G + = c} tO {lYl = R}. Thus, by Lemma 6.4, the integrals over the first 
region converge to the desired limit as k --+ c~. 

For the second region, we first check that the integral on the right-hand side is finite. For R 
large, Z~(ot) n V+(R) is a complex disk as in (6.4). Thus, [Z~(ot) n V+(R)]  has total mass 1. 
Thus, for ot = (1, or2) with lot21 _< E, the integral over the second region is no larger than 

f,~21< l~ ( ]-~2 ] ) a(~ < ~162 �9 

The convergence of  the integrals holds because the disks Zk(ot, fl) n V+(R) are close to the 
disks Z~o(ot) n V+(R) throughout V+(R), uniformly in k. Since this convergence as k ~ c~ holds 
uniformly in fl, we may integrate with respect to fl to complete the proof of  the lemma. [ ]  

Proof of Theorem 6.2. Let us choose P to be an unstable box for which/z c (8IP) = 0, and let 

us write Xk = G+/z - A (Dfk)*| L_ ['. Since we may exhaust the P in the hypothesis of  the theorem 
by a countable family of such stable boxes, it suffices to show that 

1 
lim (~rp),)~k = G+/z~ - t_ P 

k--+ o| k 

We may choose g2(k) as in Lemma 6.3 so that 

( I J) lim - ( z r p ) .  XkL- G + < d  -k+K2 = 0  
k-~oo k 

Now for any positive integer gl we set c = d -K~ , so by Lemma 6.5 the integrals f G+/z - A 
(Dfk)*| with k > 0, are all bounded by a number m(xl). We may define a function xl(k) to 
increase to infinity sufficiently slowly that k-lm(iq (k)) --~ 0 as k -+ oo. It follows, then, that 

1 
k~lim ~ (rrn),(LkW{G+>d-~])=O 
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Choosing Xl possibly smaller, we also have l i m k ~  k-l(tc2 + tel) = 0. Now for j = jk 
satisfying xl < j < k - x2 it follows from Theorem 5.9 that 

lim f J  (3.kt-- f - J  P )  = G+ #c  L_P . 
k--+ ~ 

Thus from the uniformity of  the convergence in Theorem 5.9 we have 

' ( / /) lim (rrp),  3.k L d -~+Ka < G + < d -K~ 
k - - ~ e o  R - -  - -  

k - x 2  

=.m' ( ) k ~ z - k  E f j  3 . k l - f - J P  = G + f ~ L P '  
j = K 1  

which completes the proof. [ ]  

Corollary 6.6. 

3 . - ( f )  = - l o g d  - fl<_C-<dl G - # +  " 

Proof. We can apply the integral formula to f - 1 .  The corresponding invariant measure is the 
same, i.e., # f  = # f - l .  Replacing f by f - 1  interchanges the role of  stable and unstable directions 

and changes the signs of  the exponents. If  we write 3 .+(f)  and 3-- ( f )  for the Lyapunov exponents 
of  f ,  then we observe that 3 - - ( f )  = -3-+ ( f - l ) .  Thus, the integral formula applied to f - 1  yields 
the formula above. [ ]  

The following characterization is a consequence of the integral formula: 

Corollary 6.7. The following are equivalent: 

1. 3.+(#) = logd.  

2. # c  = 0 .  

3. For# a.e. x, G+IWU(x)_K+ has no critical points. 

Proof. The measure # c  has all of  its mass on the set G + > 0, so by Theorem 6.1 and the remark 
following, if A , =  log d, then # c  = 0. Thus, (1) implies (2). The construction of the measure shows 
that if the measure vanishes, then G+IW,(x)_K + can have no critical points for # a . e . x .  So (2) 
implies (3). Similarly, if G+lwu(x)_r+ has no critical points, then the measure # c  is zero, so (3) 
implies (1) by Theorem 6.1 and the remark following. [ ]  

Applying Corollary 6.7 to f - 1  gives: 

Corollary 6.8. The following are equivalent: 

1. 3 . - (#)  = - log d. 

2 # +  = 0 

3. For# a.e. x, G-]WS(x)_ K- has no critical points. 

In [BS6] we will explore further the topological consequences of  the nonexistence of critical 
points. In particular we will show that if #c ~ = 0, then W u A U + is in fact a locally trivial lamination, 
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so that the critical points satisfy C s/u = 0 in a strong pointwise sense (not just on unstable manifolds 
of Pesin regular points). 

We close by noting some relations between the existence of stable and unstable critical points and 
the Jacobian determinant of f .  Recall that the Jacobian determinant of a polynomial diffeomorphism, 
det Dfp,  depends only on f and not on the point p. If I det D f l  < 1, f is said to be dissipative. If 
I det D f l  = 1, f is said to be volume preserving. 

Proposition 6.9. I f  f is dissipative, then C s r 0. I f  f is volume preserving, then C s = 0 i f  and 
only i f  C u = 0. 

Remark. When det D f  = 1, then f is conjugate to its inverse so that the equivalence of the 
conditions/z + = 0 and/z c = 0 is clear. 

Proof .  It is a general property of Lyapunov exponents that the sum of the exponents is related to 
the Jacobian determinant. We have )~+ (/z) + )~-(/z) = f log I det f ldtz = log I det f l. Combining 
this fact with the integral formulas for )~+(/z) gives: 

ft G+l~c - f l<~-<d}  G - # +  = l ~  " 
l<G+<d} 

The contribution of each integral is non-negative and is positive when the corresponding measure 
is non-zero. When f is dissipative, the right-hand side of the equation is negative. It follows that 
the value of the second integral must be non-zero; hence, the equivalent conditions of Corollary 6.8 
are all false. When f is volume preserving, then the right-hand side of the equation is zero. It 
follows that the value of the integrals are equal. Hence, the equivalent conditions of Corollary 6.7 
are equivalent to those of Corollary 6.8. [ ]  

A. Appendix: Lyapunov exponent of real horseshoes 

Let fR be a polynomial automorphism of degree d with real coefficients, so fR : R 2 --~ R 2 
has a real polynomial inverse. Let us suppose that there is a topological square D C R 2 such that 
fR maps D across itself d times. A heuristic version of the case d = 3 is shown in Figure 1; the 
horizontal lines represent stable manifolds. This situation occurs for the mapping 

f : (x, y) ~-+ (y,  yd + cd_2yd-2 + . . . + co -- ax )  

in a non-empty real parameter region, for instance, if d = 2 and - c o  >> 0 or if d = 3 and -Cl >> 
]co 12/3. In this case, f has a weak d-fold horseshoe, and if follows (see Friedland and Milnor [FM]) 
that fR is topologically conjugate on the set KR := ('~n~Z f nB to the bilateral shift on d symbols. 
In this case fR has topological entropy equal to logd, and by [BLS1] KR = Jc = Kc  C R 2, where 
Jc and Kc  denote the sets J and K for the complexified mapping f c  : C 2 -+ C 2. 

We let V1 . . . . .  Vd denote the (vertical) components of D ~ f D .  Then there are components 
B1 . . . . .  Bd-1 of f D  - J+ with the property that Bj intersects two distinct vertical components. 
These are the fundamental bends; the case d = 3 is depicted in Figure 1. We let Co,j denote the set of 
critical points lying in the j th  fundamental bend, i.e., C0,j = Bj 71C u . Thus, Co := Co, 1 U . . .  UCO,d-1 
are all the critical points that lie in the fundamental bends. The critical points of the nth image under 
f ,  n ~ Z, are defined as Cn = f'~Co. 

Lemma A.1. Let f be a d-fold real horsehoe, as above. For every x ~ J, the restriction G +]WU (x) 
has the property that every component o f  { G+ ] W u (x ) < c} is relatively compact in W u (x ). 
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P r o o f .  Let W u (p) be the unstable manifold of  a periodic point p. Since limr j G + (~) = 0, and 
since W u ( p ) n J  is aCantor set, thereis a ~-0 > 0 such that the component o f  co0 of  W u (p)N{G + < )~0} 
containing p is relatively compact. If  co is any component of  WU(p) O {G + < L}, then f -nco  C coo 
for n sufficiently large. Thus co is relatively compact. Now the result follows since f is hyperbolic, 
and J has a local product structure. [ ]  

FIGURE 1 

L e m m a  A.2.  Let E be a dosed subset o f  C, and let L j C R be disjoint, open intervals such that 
R -  E = U Lj .  Leth > 0 with h(x + iy) = h ( x -  iy) be continuous on C andharmonic on C -  E, 
and let E = {h = 0}. I f  each connected component o f  {h < c} is bounded, then for each j there 
exists a unique critical point c j ~ L j .  Further, the {c j} are all o f  the critical points o f  h. 

P r o o f .  Let w be a component of  {h < ~.}. Since co is relatively compact, it follows from the 
maximum principle that E n oJ y~ 0. Since & = {~ : a c co} is also a component of  {h < L}, and 
since 0 # & n E = co n E c R, it follows that ~b = 09. 

Now we claim that co n R is an interval. It is nonempty, and if it contains two components, then 
by the fact that co is connected and co = d~, we have that C - co contains a compact component. But 
this contradicts the maximum principle since h is subharmonic on C. 

Next suppose that there is a critical point c ~ R. Let co', co" be two components of  {h < h(c)} 
which contain c in their boundaries (possibly co' = co"). Since these sets are invariant under complex 
conjugation, it follows that ? is also in their boundaries. Thus, the complement o f J  U co" U {c, ?} in 
C contains a compact component, which violates the maximum principle. Thus, all critical points 
are real. 

Let us fix an interval Lj  = (a j ,  b j)  and let coaj (~-) (resp. co9~ (~-)) denote the component of  
{h < L} containing aj (resp. bj). For )~ > 0 sufficiently small, &aj0~) O &bj(;~) = 0. If  there 
is a critical point c 6 &b~ ()~) O L j,  then we may decrease ;~ so that c 6 acobj ()~) n Lj .  Since 
cobj (;V) = d~bj (X), there must be a distinct component co of  {h < ;~} such that c 6 0co. But Since 
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o9 (3 R is an interval, and o9 fq E ~ 0, we have aj E 09. This is a contradiction, so we have no critical 
points in L j  N (ogaj 0 ~) U ogbj ()u)) if &aj 00  M &bj (L) = 0. 

On the other hand, if )~ is the supremum of numbers such that O)aj ().) N ~Obj 0 ~) = 0, then 
~Oaj ().) N CObj ( )~) = {C j } is the unique critical point in L j.  []  

The following theorem shows that the critical points for a horseshoe are arranged in the fashion 
given schematically in Figure 2. 

C 1 
G. 

I I I  I I I I  I I I  

Oo 

FIGURE 2 

~C .  2 

C. 1 

Theorem A.3.  Let x ~ J be given, and let W~ (x ) denote the (real) unstable manifold passing 
through x. For each connected component ~, o f  W~ (x) M Bj there is a unique critical point c• for 
the complexified mapping f c. The union o f  all such critical points gives Co, and C" = Un~z C,. In 
particular, all complex critical points are real. 

P r o o f .  Let W" (x) denote the complex stable manifold through x, and let ~p : C ~ W u (x) denote 
a uniformization. Since f is real, we may replace ap(() by ~(e iO( )  so  that ~ : R ~ W~(x). Let 

h = G + o ~ and let E = ~ - l ( W U ( x )  M J) so that R - E = U L j .  Then h is a subharmonic 
function on C, and by Lemma A.1 it satisfies the hypotheses of  Lemma A.2. It follows that all of  
the critical points of  h are real, and so C" fq W" (x) c R. Thus, C" = U x e j  Cu c / w "  (x) c R. Also 
by Lemma A.2, we have that each critical point c ~ W ' ( x )  corresponds uniquely to an interval L j,  
and ~ ( L j )  corresponds to a connected component Ye of  W~(x) - W s = W~(x) - J. Now it is a 
property of  the horseshoe that for each component Yc, there is an n E Z such that f n  Yc C Bj for 
some j .  [ ]  

R e m a r k .  If  fR has the form above, then the line {x = 0} will intersect the image of  any non- 
horizontal line exactly once. Under iteration, this yields that {x = 0} will intersect each component 
of  an unstable manifold in a bend exactly once. Since the total mass of  the intersection measure 
# -  A [{x = 0}] is 1, we see by Theorem A.3 that #~- (Co,j) = 1. Further, # c  has a balanced property 
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that allows us to define it in terms of  the "generational" structure. It suffices to define/z c o n  CO,j, 
i.e., inside one of  the fundamental bends. For this, we note that Bj f'l f~D has d n-1 connected 
components. The intersection of  any of  these components with Co fq Bj has mass d -n+l, and this 
defines/z c on all Borel subsets of Co N Bj. 

Theorem A.4.  I f  f is a real horseshoe mapping as above, then the Lyapunov exponent is given 
by 

P 

= logd  + ]_  G + / z c .  A 
dC 

0 

Further, we have the estimate 

(d - 1)min G + < A - l o g d  < (d - 1) max G + . 
Co C0 

P r o o f .  The integral formula follows from Theorem 6.1 and Theorem A.3. The inequalities follow 
since/z c (Co)) = d - 1, as was remarked above. [ ]  

B. Appendix: Heteroclinic tangencies in U + N U -  

We discuss the behavior of  f on U + N U - .  Conversations with Hubbard have been helpful for 
our understanding of  the critical locus in this region. The map G + : U + --~ R + has been studied 
as a fibration in [H, HO], where it was shown that the level sets {G + = c} are foliated by complex 
manifolds which are dense and conformally equivalent to C. 

It is shown in [H, HO] that we have an analytic function ~o + on V + given by the formula 

1 

~o+(x, y) = lim (:r2 o fn(x,  y ) ) ~  , 
n ---> o ~  

where we take the dnth root so that ~o+(x, y) = y + o(1) holds on V +. It is immediate that 
~0 + o f = (~o+) d and log 1~0§ = a § hold on V +. In particular, ~o + is locally constant on the leaves 

of  ~+. 

For I~1> R, 
A~ := {p ~ v + : ~+(p)  = ~} 

is a complex disk, and f A ~  C A~d. By the trapping property of  V + the global leaf L~ of  ~+ which 
contains A~ has the form 

L~ : U f - n  A~ dn ' 
n = l  

and it is evident that L~ N V + = U L~,, where the union is taken over all ~' such that ~,~-1 is a 
dnth root of  unity. 

Proposition B.1.  The global leaves o f f  + are the super-stable manifolds o f f .  

P r o o f .  By Lemma 1.2, DfnITG+ decreases super-exponentially as n ~ + ~ .  Thus, any two 
points ( ' ,  ( "  in the same global leaf of  G+ approach each other super-exponentially .as n ~ +cx~. 
Conversely, suppose that (~, ( "  E U + are not in the same global leaf U +. Then for n > no, 
fn( t ,  fn(tr E V+,'but 

(In  ' )  = " - " ~  # " - " ~  = ( I n r  �9 
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ThUS qg+(fn(r does not tend to g)+(fn(1r), and since 9 + ~ y on V § it follows that fn(1 does not 
tend to fnfpt. [] 

The 2-form OG +/x OG- is invariant under f ,  and its zero locus defines the dynamical critical 
locus of f :  

C : = { ( x , y )  E U  + n U - : r  + = r - } = { 0 G  +/xOG-=O} . 

Thus, the critical locus consists of the points where the forward and backward critical directions 
coincide; thus, it can be thought of as the set of heteroclinic tangencies of the super-stable and 
super-unstable manifolds. 

For E > 0 there exists Re such that 

dx A dy 
(G +, G - )  ~ (log lY[, log Ix[), and OG +/x OG- ~ - -  (B.1) 

4xy 

forEIx[ < lYl < ~-llxl,  Ixl > Re, andso 

CA [elxl < lYl < 6-11x[, IxI > Re[ = 0 .  (8.2) 
[ l 

The inclusions of sets L• : U + O U -  --~ U • induce mappings on homology 

, •  H, (V • n V - , Z )  --, H, (V •  (B.3) 

Lemma B.2. The mapping (13.3) is surjective, and H1 (U + n U-,  Z) is not finitely generated. 

Proofi For R large, consider the curve y : 0 ~ (Re iO, Re•176 which is contained in V + O V-  C 
U + n U - .  Now ~0+y is approximately the circle of radius R in C - ~x, so it defines a nontrivial 
homology class, and thus y defines a nontrivial element of H1 (U • Z) in the range of L• Since the 
range is nonzero and invariant under f.k for k 6 Z, the maps t•  are onto. Finally, H1 (U + n U - ,  Z) is 
not finitely generated because its image is not. (See [HO] for these last two facts about H1 (U • Z).) 
[] 

Proposition B.3. C # 0. 

Proof i  We consider the fibration 

G----(G + , G - ) : U  + N U - - - ~ R  + x R  + ,  

which has compact fiber. By (B.1), the fiber of G over points of {Elxl < [Y] < E -1 [xl, Ixl > RE} is 
a 2-torus. IfC = 0, then dG + A dG-  # O, and the fibration is locally trivial. Since the base of the 
fibration is topologically trivial, it follows that 

HI (U+ N U- ,Z )  "~ HI (T2, Z) ~ Z 2. 

But this is not possible since, by Lemma B.2, HI(U + O U-,  Z) is not finitely generated. Thus, 
c # 0 .  [] 

Proposition B.4. ~ n  J+ n u -  # o andCn J -  n U + # 0. 

Proof .  I f C N J - A U  + = 0, then C is a closed subvariety of U +. LetC' = CA{Iyl > R, lYl > Ixl}. 
By (B.2), zr21c, : C r --* {lYl > R} is proper, so it has some degree 8. This degree multiplies by d 
under the mapping f .  But since fC = C, this degree must stay constant. Thus, we conclude that 

n J -  n u + # O. The argument to show C n J+  n U -  # 0 is the same. [ ]  
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