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The Structure of Area-Minimizing Double Bubbles 

By Michael Hutchings 

ABSTRACT. We show that the least area required to enclose two volumes in R n or S n 
for n > 3 is a strictly concave function of the two volumes. We deduce that minimal 
double bubbles in Rn have no empty chambers, and we show that the enclosed regions 

are connected in some cases. We give consequences for the structure of minimal double 

bubbles in ~n. We also prove a general symmetry theorem for minimal enclosures ofm 

volumes in R n , based on an idea due to Brian White. 

1. I n t r o d u c t i o n  

I . I .  The soap bubble problem. In nature, soap bubble clusters tend to enclose fixed 

volumes of  air with the least possible surface area. This motivates us to ask the following mathematical 

question: given prescribed volumes Vl . . . . .  Vm, what is the set B C/1~ n of  smallest area such that 

there exist disjoint sets Rl . . . . .  gin, each a union of  connected components of/I~ n - B, with 

vol(Ri) = vi ? By "area" and "volume" we mean (n - 1)- and n-dimensional Hausdorff measure, 

respectively. We assume n > 2. 

For m = 1, the answer is a sphere, by the classical isoperimetric theorem. J. Foisy, M. Alfaro, 

J. Brock, N. Hodges, and J. Zimba have proved in [10] that for m = 2 and n = 2, the unique 

solution is the "standard double bubble," consisting of  three arcs of  circles or line segments meeting 

at 120 ~ angles. No further answers are known, except for recent progress in the case m = 2, n = 3 
by Hass and Schlafly [ 12], [ 14], [ 13] using the results in this paper. It is natural to make the following 

conjecture, as Foisy [9] does for n ---- 3: 

Conjecture 1.1. The least-area way to enclose and separate two prescribed volumes in R n is 
the "standard double bubble," consisting of three pieces of (n -- 1 )-dimensional spheres intersecting 

in an (n-2)-dimensional sphere at 120 ~ angles. (For the case of two equal volumes, the middle 

"sphere" is a flat disc.) 
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Figure 1. (a) The standard double bubble is the shortest enclosure of two prescribed volumes in ]t~ 2. (b) A 
double bubble with an empty chamber. 

(Frank Morgan has shown me a simple proof that there is a unique standard double bubble in l~ n 

enclosing two given volumes. The idea is that if we fix the curvature of  one of  the spherical caps and 

vary the curvature of  the other, while requiring the three pieces of  spheres to meet at 120 ~ angles, 

then we will achieve each ratio of  volumes exactly once.) 

In general, the soap bubble problem is complicated by the fact that the Ri's may be disconnected. 

Moreover, the "exterior" region 

can be disconnected. In other words, a minimal cluster may accidentally enclose some extra regions, 

called "empty chambers," which do not contribute to any of  the volumes we are trying to enclose. 

One might wish to first consider the simpler problem in which we require that the Ri's be 

connected. However, when n > 3, a solution to the latter problem exists only if some solution to 

the former problem has connected Ri's. This is because when n > 3, the area of  a cluster with 

disconnected Ri's is approached by the areas of  clusters in which the gi's are connected by very 
thin tubes. Hence the infimum of area for clusters with connected regions equals the infimum of  area 

for clusters with arbitrary regions. So an area minimizer for the connected regions problem, should 

it exist, is also a mimimizer for the arbitrary regions problem. Thus we have to allow disconnected 

regions from the outset. (When n = 2, the situation is different; in this case minimizers for the 

connected regions problem always exist, if we allow the Ri's to "bump" and count the boundaries 

with multiplicity (see [16]). Cox et al. show in [7] that for m ---- 3, no bumping occurs and the 

minimizer is, as had been expected, a complete graph on four vertices whose edges have constant 

curvature and meet at 120 ~ angles.) 

1.2. Concavity and applications to connectedness. In this paper we develop tools to 

prove connectedness in some cases. To state our main theorem, let An (vl . . . . .  Urn) denote the least 

area required to enclose and separate volumes vl . . . . .  Vm in R n. (For simplicity of  notation we often 

write v = (vl, v2) and An(v) = An(v1, v2).) Our central result is: 
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Theorem 3.2 (Concavity). For each n > 3, the function A,  (1)1, 1)2) is strictly concave on 
every line in [0, cx~) 2. In other words, if1), w E [0, oo) 2 are two pairs of nonnegative volumes, and 
if O < t < 1, then 

A . ( t v  + (1 - t )w)  > tAn(v)  + (1 - t ) A . ( w ) .  

We quickly deduce that A. (v l ,  v2) is strictly increasing in each 1)i, and in turn that minimal 

double bubbles in R" have no empty chambers (Theorem 3.4). It is also easy to deduce that if 

vl > 2v2, then Rl is connected (Theorem 3.5). 

In some cases we can show that all Ri's are connected. For example, Corollary 4.4 shows that 

this is true for an area minimizing enclosure of two equal or almost equal volumes in I~ 3. This is 

a corollary of Theorem 4.2, a general estimate which uses concavity to show that the connected 

components of Ri cannot be too small. 

The basic idea behind the concavity theorem is as follows. Suppose B is a minimal cluster 

enclosing two prescribed volumes. Let H be a hyperplane through B. Let V and W be the open 
half-spaces of ]1~ n on either side of H ,  and let 

1)i : 2vol(Ri n V),  wi ---- 2voI(Ri n W). 

If we replace B n W with the reflection of B n V across H ,  we obtain a cluster enclosing volumes 

vi and 1)2 whose area is 2area(B n V) + area(B N H) ,  so 

A . ( v l ,  1)2) _~< 2area(B N V) + area(B n H) .  

Similarly, 

An(w1, w2) < 2area(B n W) + area(B N H) .  

Adding these inequalities and dividing by two, we get 

An(l l ,  1)2) --F A . ( w l ,  w2) 

2 
- < a r e a ( B ) : A n (  vlq-wl2 , v2+w2)2  " 

If we could find hyperplanes dividing the volumes of the gi's into any proportions we wish, or even 
any nearly equal proportions we wish, we would have a proof of (nonstrict) concavity. This might 
not be possible. However, we show that if concavity fails, then there is a minimal double bubble 
that is symmetric about a point, i.e., a union of concentric spheres, and this gives a contradiction. A 

key technique is to study the topology of the "volume map," which sends a hyperplane to the pair of 

volumes into which it divides the gi 's. 

Along the way, we flesh out an idea due to Brian White to prove another interesting result: 

Theorem 2.6 (Symmetry Theorem). Let B be a minimal enclosure of m volumes in ~n. 
Assume m <_ n -- 1. Then B is symmetric about some (m - 1)-plane A (i.e., B is invariant under 
any isometry of ]~ n that fixes the points of A ). 
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Example of a possible nonstandard double bubble. 

For instance, if m = 1, we get a proof of the classical isoperimetric theorem, and if m : 2 

(and n > 3), we find that every area minimizing double bubble in I~ n is a hypersurface of revolution 
about some line. The case n = 2, m = 3 was originally written up by Joel Foisy in [9]. 

1.3. Outline and conclusions. In Section 2 we prove the Symmetry Theorem (2.6). This is 

the most technical part of the paper, because regularity (or lack thereof) of area-minimizing clusters 
is heavily involved. In Section 3 we use this result to prove the concavity theorem and the immediate 

corollaries described above. We also give generalizations to m > 2 and to clusters in spheres or 

hyperbolic space (3.6-3.10). In Section 4, we give more applications of concavity to connectedness 
of the enclosed regions. 

In Section 5, we investigate the implications of symmetry and no empty chambers for the 
topological structure of minimal double bubbles in ~n. We prove: 

Theorem 5.1 (S t ruc tu r e  T h e o r e m ) .  Any minimal double bubble in ]~n that is not the 

standard double bubble is a surface of revolution about some line, and consists of a topological 

sphere with a tree of annular bands attached. (See Figure 2.) The two caps are pieces of spheres, 

and the root of the tree has just one branch. 

This result, together with our topological complexity bounds, reduces the double bubble problem 
for a given n and a given pair of volumes to a finite dimensional optimization problem. For example, 
combining Theorem 5.1 with Corollary 4.4, we see that the least-area enclosure of two equal or 
almost equal volumes in R 3 is either the standard double bubble or a topological sphere with a single 

annular band attached. Computer experiments at the Geometry Center using a program by John 

Sullivan have convinced me that no cluster of the latter type in stable equilibrium exists, although 

this has not been proved. (There are families of unstable equilibria.) 

More recently, Hass and Schlafly [14] (see also [13], [18]) have used our results, together with 

numerical computations, to complete the proof of the double bubble conjecture for equal volumes in 
~3. An interesting feature of their work is that a computer is used to rigorously prove a "continuous" 
result. 
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1.4. Existence and regular i ty .  The work of Almgren [ 1 ] tells us that an area-minimizing 
cluster B enclosing regions of volumes vl . . . . .  Vm in ~n exists. If we discard unnecessary points 
from B (and we will always do this), then B is compact and regular (locally a smooth hypersurface) 
on a dense subset Breg whose complement has area zero. In fact, the regular set is real analytic since 
it has locally constant mean curvature. In a ball meeting only two Ri's, B is regular except on a set of 
Hansdorff dimension at most n - 8. The boundary of each Ri is a cycle representable by integration; 
this means that ORi is determined by the integrals of differential forms on it, and any exact form 

integrates to zero. 

(When n = 3, regularity is stronger. Plateau observed experimentally, and Jean Taylor finally 
proved in [ 19], that B consists of finitely many smooth surfaces which meet in threes at 120 ~ angles 
along smooth curves and in sixes at vertices whose tangent cones are the cone over the regular 
tetrahedron. Our arguments in Section 5 give this improved regularity for arbitrary n when m = 2 

(and the tetrahedral singularity is impossible in this case).) 

Acknowledgments. I am extremely grateful to Frank Morgan for introducing me to the 
problem, for many helpful conversations and for reading many drafts of this paper. I also wish to 
thank Joel Hass and John Sullivan for additional helpful conversations and editorial comments. This 
work began in the Geometry Group of the SMALL Undergraduate Research Project, Summer 1992, 
a National Science Foundation site for Research Experiences for Undergraduates (REU) (see [6], [7], 
[17]). I also wish to thank the Geometry Center for their hospitality. The conclusion of this project 
was supported by a National Science Foundation Graduate Fellowship. 

2. Rotational symmetry 

In this section we prove a general symmetry theorem for area minimizing clusters, which says 
in particular that any minimal double bubble is a hypersurface of revolution about some line. This 
fact is the starting point for the structure of double bubbles in R n (Theorem 5.1), and we also need 
it to prove strict concavity of the least-area function (Theorem 3.2). For nonstrict concavity, we do 
not need anything in this section past Lemma 2.3; see Theorem 3.6. 

Lemma 2.1 (Bisectors Orthogona l ) .  Let B be a minimal enclosure of  volumes vl . . . . .  1)m 

in ]~n, and let H C R n be a hyperplane. Suppose H bisects each Ri. Then H and Breg are orthogonal 

wherever they intersect. 

Proof .  Let B~ and B2 be the halves of B on either side of H.  We can make a new cluster B' 
enclosing regions R~ with volumes Vl . . . . .  Vm by replacing B2 with the reflection of Bl across H.  

Since B is minimal, area(B') >__ area(B), so area(B1) _ area(BE). Similarly area(BE) >__ area(Bl), 

so area(B') = area(B). 

In particular, B' is minimal. Because of this, the tangent spaces to those regular points of B 

contained in H are either orthogonal or parallel to H;  otherwise B' can be smoothed so as to decrease 
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area. To complete the proof, we show that if B is tangent to H at a regular point p ,  then B '  can be 

modified so as to decrease area. 

Identify R ~ with H x R. The cluster B is regular in D x [ - e ,  e], where D is a closed ball 

of  radius r about p in H .  Since B is tangent to H at p ,  we can choose r sufficiently small that 

B fq O(D x I - e ,  e]) C (OD) x [ - e ,  el, e << 1 and the points of  D x { - e }  and D x {e} 

are in the same R~. Now remove from B '  its entire intersection with D x I - e ,  e], and add back 

(OD) x [ - e ,  el. This causes an area decrease on the order of  r~- l ;  the volumes of  the R~'s may 

change, but at most on the order of  er ~-~. By a standard first variation argument, we can restore 

the volumes by adjusting the cluster elsewhere, with an area increase on the order of  ern-l; this is 

smaller than the initial decrease, if r is sufficiently small. [ ]  

Let A C R ~ be an affine subspace. We can decompose the tangent bundle of/l~ n \ A as follows: 

T ( R  ~ \ A)  = A u ~ A ~ ~ A r, 

where A II consists of  vectors parallel to A, A ~ is the one-dimensional subbundle generated by rays 

radiating orthogonally from A, and A r consists of  "directions of  rotation" about A; these are the 

vectors generated by one-parameter families of  rotations of  R n that fix the points of  A. We say that 

B is symmetric about A if B is invariant under all isometries of  R n that fix the points of  A. 

Lemma 2.2 (Infinitesimal Symmetry Implies Global Symmetry). Let B be a minimal 
cluster in R n and A C R n an affine subspace with dim(A) _< n - 2. Suppose that for almost every 

p e Breg \ A, 

A t ( p )  C TpB. 

Then B is symmetric about A. 

P r o o f .  By the assumption on dimension, invariance under reflections about A follows from 
invariance under rotations about A. 

Let $ be a rotation about A; we will show that dd.ORi = ORi for each i. There is a one- 

parameter group {St } of  rotations about A with $ = q~l- These induce a vector field X on R n. Let 
o9 be an (n - 1)-form on Rn; we need to show that 

(a Ri, o9) = (dp, O Ri, 09). 

The right-hand side is equal to (ORi, ~b*w), so we want 

d t=o (ORi, ~to9) = O. 
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The left side of this is 

(ORi, (dtx + txd)w) = (ORi, txdw), 

since 0 Ri is a cycle. By almost everywhere regularity, it is enough to show that (t x dw (p) ,  A n- l Tp B) 
= 0 for almost every p ~ Breg n OR i. This vanishing certainly occurs if X(p)  ~ TpB. We are 
done because X(p)  E At(p)  for all p r A, and by hypothesis Ar(p) C TpB for almost all 

p ~ Breg \ A. [ ]  

Lemma 2.3 (Symmetry about Intersections). Let B be a minimal enclosure of m 

volumes in ]~n. Assume k > 1, and let Ha . . . . .  Ilk be mutually orthogonal hyperplanes. Suppose 
B is symmetric about each Hi. Then B is symmetric about A = nHi. 

Proof .  B is invariant under the composition of the reflections across the Hi's, which is 
reflection across A. In particular, every hyperplane containing A bisects R1 . . . . .  Rm. By Lemma 2.1, 
Breg is orthogonal to each such hyperplane. But the orthogonal directions to these hyperplanes are 
exactly the directions of rotation about A. Therefore B is symmetric about A, by Lemma 2.2. [ ]  

We now want to understand how symmetries in subsets of a cluster may combine to give 
symmetries of the whole cluster. 

Lemma 2.4 (Linear Algebra). If A l, A2 C R n are affine subspaces with nonempty 
intersection, then 

(A~ n A2)r(p) = A~(p) ~ Ar2(p) 

whenever p q~ span(Al, A2). 

Proof. The right side of this equation is always contained in the left hand side, because any 
rotation fixing A1 or A2 fixes Al n A2. Now suppose equality does not hold. Counting dimensions, 
we find that 

dim A~(p) n Ar2(p) > n - dim span(Al, A2) - 1. 

Since A~l(p) n AS(p) is the orthogonal complement of AI(p)  �9 A~(p) ~9 a~(p) �9 A~(p) 
and dim(Al(p)  ~ A~(p)) = dimspan(a~, A2), we have A~(p) C a l (p )  ~ a~(p). Since 

A~(p) I Al(p)  , A~(p) C A~(p), which implies p E span(Al, A2). [ ]  

Lemma 2.5 (Assembly). Let B be an area-minimizing enclosure of m volumes in R n. 
Let H C •n be a hyperplane and let B1, B2 be the two symmetrizations of B about H. Suppose 
Bl and B2 minimize area for the volumes they enclose. (For instance, this is true when H bisects 
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Rl . . . . .  Rm.) Let A 1, A2 C H be nonempty affine subspaces of dimension at most n - 2. Suppose 
Bi is symmetric about Ai. 

Then A1 0 A2 5~ 0 and B is symmetric about AIf-) A2. 

Proof .  First note that B f3 H is symmetric about Al and A2 in H .  If Al f) A2 = ~, then 
B is not compact, a contradiction. To prove symmetry, by Lemma 2.2 it is enough to show that for 
almost every p E Breg \ (Al fq A2), (AI f )  A2)r(p)  C TpB. 

We begin by showing that for almost every p E B f-) H \ (Al U A2) (with respect to (n - 2)- 
dimensional Hausdorff measure), B, B1, and BE are regular at p, and (A l 0 A2) r (p)  C Tp B. (Note 
that B f) H cannot have dimension greater than n - 2, or else B would have dimension greater than 
n - l, by our assumption of rotational symmetry.) 

Since Bi is regular almost everywhere and symmetric about Ai, almost every point of Bi f') H \ A i 
is regular. Hence almost every point of B fq H \ (A l LI A2) is a regular point of both B1 and B2. Let 
p be such a point. By Lemma 2.1, B1 and B2 are orthogonal to H at p, since H bisects the volumes 
enclosed by ni. Thus a small ball around p meets only two of the Ri's for B, so B is regular in 
this ball except on a set of Hausdorff dimension at most n -- 8. It follows that almost every point of 
B fq H \ (Al LI A2) is a regular point of Bl, B2, and B. If U is a regular neighborhood of such a 
point, then by uniqueness of analytic continuation, U fq B = U fq BI = U fq B2. It follows that 
Arl(p), A~(p)  C TpB for all p E U \ (A~ t_J A2). By Lemma 2.4, (Al N A2)r(p)  C TpB for all 
p E U \ H.  By continuity, this is true for all p E U. 

We can now complete the proof except for sets /(1 and /(2 defined as follows. Let Wi be 
the closed half-space from which Bi is formed. In W2, le t / ( l  be the union of those orbits under 
rotation about A2 whose intersection with H is contained in Al. (Note that /(l is half of a k- 
plane with k < dim(Al) q- 1.) Define/(2 similarly. By the previous paragraph, for almost every 
p E B N WI \ / (2  (now with respect to (n -- 1)-dimensional measure), there exists a rotation ~b about 
A1 such that ~b (p)  ~ H,  B and B1 are regular at ~ (p) ,  and (A1 fq A2) r (dp (p ) )  C T~<p) B. Since BI 
is invariant under ~b and ~b is a rotation about A l fq A2, B is regular at p and (Al fq A2) r (p)  C Tp B. 

Likewise, this is true for almost every p E B fq W2 \ P~l. 

Finally, suppose p E nreg f") /(i- Either some regular neighborhood U of p in B is contained 

in / ( i ,  or p is a limit of regular points of B not in/( i  whose tangent spaces contain the directions 
of rotation about A1 fq A2. In the latter case it follows by continuity that (Al fq A2)r(p)  C TpB. 
In the former case, using rotation invariance of both Bl and B2 we find that the points in R n on 
either side of U lie in the same Ri, so U can be removed to decrease area, contradicting minimality 
of B. [ ]  

Theorem 2.6 (Symmetry Theorem). Let B be a minimal enclosure of m volumes in ~n. 
Assume m < n -- 1. Then B is symmetric about some (m - 1)-plane. 

Proof .  Since B is compact, we can apply the ham sandwich theorem to produce a hyperplane 
Hi that bisects RI . . . . .  Rm. By Lemma 2.5, it is enough to show that each of the symmetrizations of 
B across Hi is symmetric about an (m - 1)-plane in Hi. Let Bl be one of the two symmetrizations. 
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By the Borsuk-Ulam theorem, as used to prove the ham sandwich theorem in R~-l (see, e.g., [5]), 
there is a hyperplane H2, orthogonal to Hi,  that bisects R1 . . . . .  Rm. By Lemma 2.5 again, it is 
enough to show that each of the symmetrizations of B1 across/-/2 is symmetric about an (m--  1)-plane 

in H1 fq HE. Let B2 be one of the two symmetrizations, and continue this process. 

Eventually we obtain orthogonal hyperplanes Hi . . . . .  H~-m+l and a minimal cluster nn_m+ 1 

symmetric about each Hi. We need to show that nn-m+l is symmetric about the (m - 1)-plane 

A = AHi. We are done by Lemma 2.3. [ ]  

Remark 2.7. When m = n, the ham sandwich theorem and symmetrization show that for 

every set of m volumes, there exists a minimizer that is symmetric about a hyperplane. It is not clear 
whether all minimizers must have this property. 

Corollary 2.8 (Classical Isoperimetric Theorem). The unique area-minimizing enclo- 

sure of a single volume in ~n is a sphere. 

Proof .  By Almgren's work [ 1 ], a minimizer exists. By Theorem 2.6, any area minimizer is a 
union of concentric spheres. Suppose there is more than one sphere. The cluster has finite area (since 

a cluster consisting of a single sphere is a competitor), so the radii of the spheres are discrete. Hence 
we can move one of the spheres to violate symmetry, which is a contradiction. [ ]  

Lemma 2.9 (Axis of Symmetry). If  n > 3, any minimal double bubble in l~ n is symmetric 

about some line. 

For n = 2 this is immediate from the main theorem in [10]. 

In Section 3 we need a slight variation on the proof of Theorem 2.6, so we state it here for 

convenience. 

Lemma 2.10 (Axis in H y p e r p l a n e ) .  Let B be a minimal double bubble in Rn, n >_ 3, and 

let H C R ~ be a hyperplane. Suppose each symmetrization of B across H is area minimizing for 

the volumes it encloses. Then B is symmetric about a line in H. 

Proof .  By Lemma 2.5, it is enough to show that each symmetrization is symmetric about a 

line in H .  For each symmetrization, use the proof of Theorem 2.6, starting with Hi = H .  [ ]  

R e m a r k s .  We personally prefer Knothe's proof of the isoperimetric theorem, which shows 

directly why a sphere has less area than any other smooth surface enclosing the same volume, without 

appealing to difficult existence and regularity theorems. See for instance the article by Gromov [ 11 ]. 
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Similar symmetry arguments can be applied to other variational problems in R n, and examples 

abound in the literature. For instance, the above arguments easily show that an area-minimizing 

surface enclosing a given volume between two fixed parallel hyperplanes is symmetric about a line 
orthogonal to the hyperplanes, and an area-minimizing surface enclosing a given volume inside the 

unit ball is symmetric about a diameter. In fact, work of Athanassenas [3] and Vogel [20] shows that 

the minimizer for the first problem is either a hemisphere or a cylinder. Bokowski and Spemer [4] 

and Almgren [2] have shown that the minimizer for the second problem is a piece of  a sphere. For a 

survey of some other such problems, see [8, pp. 52-56]. 

3. Concavity of the least-area function 

In this section we prove that the least area required to enclose two volumes in R n is a strictly 

concave function of the volumes, and we give generalizations to m > 2 and to minimal clusters 

in round spheres or hyperbolic space. We give the simplest applications to connectivity of  the gi 's; 

more examples are given in Section 4. 

Lemma 3.1 ( C o n t i n u i t y ) .  For any m and n, the least-area function A.(Vl  . . . . .  Vm) is 

continuous. 

P r o o f .  For simplicity, we just prove continuity along a line with v2 . . . . .  1) m constant; the 

general proof is similar. Given an enclosure of  volumes vl . . . . .  Vm, we can increase vl by 3, 
with a controlled increase in area, by creating a sphere away from the cluster with volume 3 and 

incorporating this volume into Rl.  To decrease vl, we can scale the entire cluster down so that Rl 

has volume l) 1 - -  ~ and then add spheres to restore the volumes of RE . . . . .  Rm to v2 . . . . .  Vm. The 

resulting area increase will be controlled uniformly for Vl in some neighborhood. We can cover the 

positive real line with such neighborhoods, and this implies continuity in Vl for Vl > 0. We also 

have continuity at vl = 0 because 

A,,(0 . . . . .  l/m) < A,,(8 . . . . .  l)m) < An(0 . . . . .  l)m) + An(8).  [] 

T h e o r e m 3 . 2 ( S t r i c t C o n c a v i t y ) .  l f  n >_ 3, if v, w E [0, 00) 2 are two pairs of  nonnegative 

volumes, and if O < t < 1, then 

An( tv  + (1 - t ) w )  > tAn(v)  + (1 - t )An(w) .  

Proof. Suppose not. By continuity, the function 

f ( t )  = An(to  + (1 - t )w)  - tAn(o)  - (1 - t ) A n ( w )  

takes its minimum on [0, l] at some to E (0, 1). Let B be a minimal cluster enclosing volumes 

too + (1 - to)W. By Corollary 2.9, B is symmetric about a line L. 
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We can parameterize the set of  oriented hyperplanes in ~n by S n- l x ~ ;  each oriented hyperplane 

is determined by a normal direction and a distance from the origin in that direction. Define the volume 
map g: S n- l x ~ ~ R 2 by sending an oriented hyperplane to (vol (Rl n U) ,  vol (R2 n U)) ,  where U 

is the upper half-space determined by the oriented hyperplane. Since B is compact, g is continuous. 

Let us take the origin of  R n to lie in L. Choose x E S "-  l orthogonal to L,  so that the hyperplane 

described by (x, r)  contains L if r = 0 and is parallel to L otherwise. By symmetry of B we have 

g(x ,  r) + g(x ,  - r )  = toy + (1 - to)W 

for all r E ~.  Consider the line segment in the volume plane 

tv + (1 - t ) w  } 
K =  t, 2 t o - t E ( O ,  1) C R  2. 

2 

Either g(x ,  r) E K for some r :~ 0, or else by continuity and the symmetry observation above, 

g(y  x R) hits K for every y E S ~-1 close to x.  In both cases, we can find a hyperplane H ,  not 

containing L, with g ( H )  = (tv  + (1 - t ) w ) / 2  ~ K.  

Let U and V be the upper and lower half-spaces determined by H ;  let a0 = area(B n H) ,  

al  = area(B N U),  and a2 = area(B N V). Replacing B n V with the reflection of  B N U across 

H ,  we find that 

ao + 2al > An(tv  -Jr (1 - t ) w )  

= f ( t )  + tAn(v)  + (1 - t )A n (w)  

> f ( to )  + tAn(v)  + (1 - t )An (w)  

= A,(toV + (1 - to)W) + (t - to)An(v) + (to - t ) A , ( w ) .  

If we symmetrize in the other direction instead, we get 

a0 + 2a2 > An(toO + (1 - to)W) + ((2t0 - t) - to)An(v) q- (to - (2t0 - t ) )An(w) .  

Adding, we obtain 

2(a0 + al + a2) > 2An(toy + (1 - to)W). 

We know that this is an equality, so all the above inequalities are equalities. In particular, each 

symmetrization of  B across H is area minimizing for the volumes it encloses. 

By Lemma 2.10, B is symmetric about a line L '  C H .  Since B is compact, L and L '  must 

intersect. But L -~ L' ,  so by applying Lemma 2.5 to a hyperplane containing L and L '  (or by a 

simpler argument), we get that B is a union of concentric spheres. Then B must contain only one 
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sphere, or else we can move one of the spheres and violate the symmetry we just established. So B 

encloses only one volume, and v and w both lie on one of the coordinate axes of  I~ 2. Now An is 
strictly concave along any line through the origin, since by scaling 

An()~vl , . . . ,  'k1)m) = ~.(n-l)/n An(1)l . . . . .  1)rn). 

But we assumed that An is not strictly concave along this line, which is a contradiction. [ ]  

Our methods also give nonstrict concavity for n = 2; see Theorem 3.6. (Strict concavity in the 

case n = 2 holds by [10].) 

Corollary 3.3 (S t r i c t l y  I n c r e a s i n g ) .  For a fixed n, the function An(v1, vz) is strictly 
increasing in each 1)i. 

(Foisy et al. have proved this for n = 2 and m = 2 in [10]. For the connected regions problem 

in the plane, Cox et al. have obtained an analogous result when m < 4, in [6].) 

Proof. Suppose v2 < v~ and An(Vl, 1)2) >-~ An(1)l, v'z). Then, by concavity, An(v1, v' 2) > 
An(vl ,  w) for all w > v~. But by the isoperimetric theorem, An(Vl, w)  > An(w)  ~ oo as 

w --> cx~, which is a contradiction, since there exist clusters enclosing volumes 1)1 and v~ with finite 

area. [ ]  

Theorem 3.4 (No Empty Chambers). Minimal double bubbles in ]~n never have empty 

chambers. 

P r o o f .  If  a minimal double bubble contains an empty chamber, we can declare the empty 

chamber to be part of  Rl,  thereby obtaining a bubble in which 1)1 is larger but the total area is the 
same. This contradicts Corollary 3.3. [ ]  

Theorem 3.5 ( B a l a n c i n g ) .  If  vl > 2v2, then in any least-area enclosure of volumes vl 
and v2 in R n, Rl is connected. 

P r o o f ,  I f n  > 3, then since A,  is strictly concave along the line Vl + 1)2 = C and An (vi ,  1)2) = 

An (1)2, vl) ,  we see that if vl + 1)2 is held constant and Vl and 1)2 are brought closer together, then An 

increases. Now suppose that Rl is disconnected in a minimal double bubble enclosing volumes Vl 

and 1)2- We can find a nonempty union Q of connected components of  R1 whose volume is at most 
1)1/2 < vl - 1)2. If  we declare Q to be part of  R2, we obtain a cluster with the same area whose 
volumes are more balanced, which is a contradiction. 
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When n = 2, we know by [16] that a minimal cluster is a union of finitely many arcs of circles 
and line segments meeting at 120 ~ angles. Then we see that Q must have an edge in common with 

R2. (Otherwise 0 Q has no vertices and Q is floating in the middle of R0. We can then move Q 

until it first touches the rest of the cluster, creating an illegal singularity.) If we remove this edge and 
declare Q to be part of R2, then length decreases, contradicting concavity. [ ]  

For n = 2, we already knew this by the main theorem in [10]. (But we obtain a new result along 

these lines in Corollary 3.10.) 

We can also say something about the least-area function for general m. The following theorem 

is equivalent to nonstrict concavity for rn = 2, and weaker than concavity for m > 2. 

Theorem 3.6 (A Strong M i n i m u m  Principle) ,  Assume m < n. Let T: ~m _.._> ]~ be any 

linear function, and let K C ~m be any hyperplane; then An d- T satisfies the minimum principle 
on K. That is, for any (m -- l)-dimensional flat disk D C [0, oo) m, the restriction of An d- T to 
D achieves its minimum on ~ D. 

Proof .  Let v ~ D be a point in D on which An + T takes its minimum, and that is as far 

from the center of D as possible. Suppose v E Int(D).  Let D '  be a ball in D, centered at v. Let B 

be a minimal cluster enclosing volumes v. Since m < n, we can use the ham sandwich theorem to 

make B symmetric about orthogonal hyperplanes Hi . . . .  , Hn-m+l. 

We have a continuous volume map g: S n-I x ]~ ~ R m as before. Now i f g ( H )  ~ D'/2,  then 

g ( H )  = v/2.  To see this, suppose g ( H )  = w / 2  E D'/2.  Let w'  = 2v - w. By considering the 

two symmetrizations of B about H and using the fact that B is minimal, we have as before that 

2An(v) > An(w)  + An(w').  

Since T is linear, 2T(v )  = T ( w )  + T(w ' ) ,  so 

2JAn + T l (v )  > [An + T](w)  + JAn + T l (w ' ) .  

Since An d- T takes its minimum on D at v, it must take that same value at w and w'. But if w and 
w' are distinct, then either w or w'  is farther from the center of D than v is (since disks are convex!), 

contradicting our choice of v. 

If x E S n-I is orthogonal to MHi, then by symmetry of B the path g(x ,  .) goes through 

and is symmetric about v/2. By basic topology (roughly, the principle that a threaded needle stays 

threaded), it follows that for every y E S n-I, the path g(y ,  .) hits v/2.  In particular, there exists a 

hyperplane H ,  orthogonal to HI . . . . .  Hn-m+l, that bisects R1 and R2. 

Symmetrize B about H ,  and repeat this procedure until we get B to be symmetric about n 

orthogonal hyperplanes. By Lemma 2.3, B is a union of concentric spheres, so B is a single sphere 



298 Michael Hutchings 

and v lies on one of  the coordinate axes. I fm  > 2 this is an immediate contradiction since v ~ Int(D), 

and if m = 2 this is a contradiction as explained in the proof of  Theorem 3.2. [ ]  

Remark 3.7 (Dichotomy Between Concavity and Excess Symmetry). Conversations 

with John Sullivan suggest that by using more topology one might show that more generally, either 

An + T satisfies the minimum principle on all (m -- k - 1)-dimensional disks in ]]~m for all T, 

or else there is a minimal enclosure of  m nonzero volumes in R n symmetric about a k-plane. For 

example, when m = 3, this would say that when n _> 3, either the least-area function is concave, or 

else there is a minimal triple bubble with symmetry about a line (which seems unlikely). However 

we have not worked out the details. In any case we know extremely little about the soap bubble 

problem for m > 2. 

Remark 3.8 (Hyperbolic Space). As Joel Hass points out, the above results and their 

proofs carry over, with minor rewording, to hyperbolic space ]HI n. One needs to check that the least 

area function for one volume is concave; this is an easy exercise. 

We also have an analogue of  Theorem 3.2 in the round n-sphere S n. First note that the results 

of  Section 2 carry over from R n to S ~ with essentially the same proofs, provided we interpret 
"hyperplane" to mean "equatorial S n-l , ' '  etc. Then: 

Theorem 3.9 (Concavity in Spheres). For every n > 3, the least area required to partition 

the sphere S n into three volumes is strictly concave on every line in the simplex 

{V 1 "-]- U 2 "-{- O 3 = vol(Sn)}. 

For n = 2 there is concavity but it might not be strict. 

Proo f .  For n > 3, this is a straightforward rewording of  the proof of  Theorem 3.2. A slight 

difference is that oriented hyperplanes in S n are parameterized by S ~ and instead of  looking at paths 

of  the form g ( x  x •), we look at the images under g of  geodesics. Note that we have strict concavity 
along an edge of  the simplex because in a minimal sphere dividing S ~ into two volumes, the pressure 

difference between the two regions decreases as the volumes become more equal. For n = 2, adapt 

the proof of  Theorem 3.6. [ ]  

We immediately get an analogue of  Theorem 3.5: 

Corollary 3.10 (Balancing in Spheres). /f Vl > 2v2, then in any area-minimizing 

partition o f  S n into volumes v l ,  rE, vol( S n) - vl - rE, we have RI connected. 

Proo f .  Same proof as Theorem 3.5. [ ]  
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4. Examples of connectivity 

We now give some slightly more involved examples of how concavity may be used to get at 

connectedness of the enclosed regions. We show for instance that a minimal enclosure of two equal 

or almost equal volumes in IR 3 has all regions connected. The idea is to remove various parts of the 
cluster and apply concavity to place lower bounds on the area of what remains. By combining these 
inequalities, we can bound the area of the entire cluster. 

Our most useful decomposition is encapsulated in the following lemma, adapted from [6]. 

Lemma 4.1 (Decomposition). Suppose that in a minimal enclosure of volumes vl, v2 in 
~n, R2 has a connected component with volume x. Then 

2An(vl, v2) > An(x) + An(Vl, U2 - -  X )  .3f- An(Vl + x,  v2 - x) .  

Proof .  We can think of this cluster as an enclosure of regions R1, R2, and R3 with volumes 

vl, x, and v2 - x, respectively. Let Sij = ORi N ORj, and let aij = area(Si~). Note that a23 = 0; 
otherwise a neighborhood of a regular point in $23 can be removed to decrease area. Also any two 
Sij's intersect in a set of area zero, by almost everywhere regularity. We then have 

2An(v1, 02) = (a02 + a12) + (aol + al2 -]- a13 + a03) + (aol + ao2 + a03 + a13) 

= area(0R2) + area(0Rl LI OR3) -I- area(0(Rl LI R2) LI OR3) 

> A , ( x )  + An(l)l, U 2 - -  X )  "dl- An(vl + x,  v2 -- x) .  [] 

Figure 3 gives a schematic for the above proof. 

Figure 3. The proof of Lemma 4.1. 
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This lower bound is well suited to ruling out small components because it is sharp when x = 0 
and rapidly increasing when x is small. The simpler lower bound 

2 A , ( v l ,  1)2) >_~ A.(Vl) + An(x)  + A. (v2  - x )  + A . ( v l  + 1)2) 

(under the same hypotheses as above) is useful for ruling out large components, but we do not need 
it here. We mention, however, that this can be used to weaken the hypothesis in Theorem 3.5. 

We now apply concavity to show that the last two terms in Lemma 4. l do not decrease too fast 
when x is small. We have 

A n ( V l ,  u2 - -  x )  > 

A.(Vl  + x ,  1) 2 - -  X )  >> 

1) 2 

1) 2 - -  X 

I) 2 - -  X X 
- - A n ( v l ,  v2) + - -An(v1) ,  

U2 

X 
- - A . ( v l ,  1)2) -~- - - A n ( Y  1 "Jr O2). 

1)2 1)2 

In each of these estimates we use concavity of A, restricted to a line segment connecting the line 
{ (~,vl, ~,v2)} to the axis (one volume zero). One can get slightly stronger bounds using different such 
segments (together with the fact that A, (~.vl,)~v2) = ~. ~~ A, (Vl, v2) by scaling), but the estimates 
above are fairly good and easy to compute with. Putting these into Lemma 4.1, simplifying, and 

n - I  

using the fact that A, 0.)  = L 7 A, (1), we obtain: 

Theorem 4.2 (Basic Estimate). Suppose that in a minimal enclosure of  volumes vl , v2 in 

~ ' ,  R2 has a connected component with volume x > O. Then 

2A. (v] ,  i)2) 

An(l)  

n-_.21 n-I 
>> V2 x - l [ n  + VI" + (Vl + 132) 7 .  

This lower bound goes to infinity as x --> 0. Hence: 

Coro l l a ry  4.3 (Finiteness).  A minimal enclosure of two volumes in R n separates l~" into 

finitely many components. 

Similar arguments show that this is also true in S ' .  

Coro l l a ry  4.4 (Equal  Volumes Connected). In any least-area enclosure of  two equal or 

almost equal volumes in ]R 3, all Ri 's are connected. 

Proof .  By Theorem 3.4, R0 is connected. Suppose that in a minimal enclosure of two unit 
volumes, one of the enclosed regions has a connected component with volume 0 < x < 1/2. 
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The basic estimate gives 

2A3(1, 1) 

A3(1) 
X -1/3 "Jr 1 d- ~/4. 

By calculating the volume of the standard double enclosing two equal volumes, we find that 

2A3(1, 1)/A3(1 ) < 3~/~, so 

x - ' /3  _< 1 -  

This is false for x : 1/2, and hence for all smaller x, giving a contradiction. Since the estimates 
we used are continuous, and not sharp in this case, the theorem is true when the volumes are almost 
equal. [ ]  

Many more calculations of this type can be carried out, although we do not know how to prove 
connectedness in all cases. We sketch two more examples below. 

Example  4.5 ( E x t r e m e  Double  Bubbles  in I~3). Suppose v > 1. One can show by 
construction that 

A3(v, 1) 

A3(1) 
- -  < (v + 1) 2/3 + ,~/5-/16. 

If in a minimal enclosure of volumes v and 1, R2 has a connected component with volume x, then 

combining this with the basic estimate we get a lower bound on x which tends to 2/5 as x --+ o0. 

So in a minimal enclosure of two disparate volumes in R 3, the exterior is connected, the region with 
larger volume is connected, and the region with smaller volume has at most two components. If the 

region with smaller volume is disconnected, Theorem 5.1 tells us that the cluster looks like a sphere 

with a narrow tube connecting the north and south poles and a thin band around some latitude line. 

In fact Joel Hass [12] has used this result to prove the double bubble conjecture in ~3 when the 

ratio between the two volumes is large. [ ]  

Example  4.6 (Double /Tr ip le  Bubb le s  in $2). The proof of [ 10, Lemma 2.4] carries over 
to S 2 to show that in a minimal partition of S 2 into three volumes, if any one Ri is connected then 
all three are. By Corollary 3.10, a minimal partition into a triple of volumes near the boundary of 

the 2-simplex has all regions connected. Since a minimal double bubble consists of curves meeting 
in threes, the graph consists of two vertices with three edges joining them. For three equal volumes 

the S 2 analogue of the basic estimate easily implies that all regions are connected. The edges have 

constant curvature and meet at 120 ~ angles, and in the equal-volume case a simple argument using 

the Gauss-Bonnet theorem shows that the edges are longitude lines. 

In fact, Joe Masters has shown by computer [ 15] that our estimate rules out disconnected regions 

for all other triples of volumes. Thus the double bubble conjecture is proved for S 2. [] 
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5. The structure of minimal double bubbles in R n 

Let B be a minimal double bubble in ll{ n. Corollary 2.9 tells us that B is described by a subset 

of the upper half-plane H. We can use symmetry to enhance regularity. Area and volume in R n 

correspond to area and volume in H, multiplied by a smoothly varying "density" function on H 
that depends on the distance from the axis of symmetry. (The density at distance r from the axis is 
rn-2vol(S~-2) . )  One can adapt the theory of soap bubbles in surfaces, as given in [ 16], to conclude 

that B (q H consists of smooth curves meeting in threes at 120 ~ angles. One might worry that there 
could be singularities along the axis, where the density degenerates to zero and the topology becomes 

infinitely complicated. However this cannot happen because of Corollary 4.3. 

With axis singularities ruled out, we can show that any curve meeting the axis must be a circle 

or line orthogonal to the axis. This is because given a disc D C ~3 and a real number v > 0, the 

least area surface S with 0S --  0D such that D and S together enclose volume v is a piece of a 

sphere (or D if v ---- 0). The case v = 0 is true because if S 5~ D, orthogonal projection of S to 
the hyperplane of D is onto D and decreases area. If v > 0, there exists a piece So of a sphere 

with OS0 ---- OD such that So and D enclose volume v. Let S' be the rest of the sphere, and let 
v'  be the volume enclosed by D and S'. Given any S satisfying the above requirements, S and S' 
together enclose volume v + v', so by the isoperimetric theorem area(S t3 S') > area(S0 t2 S'), i.e., 

area(S) > area(S0), with equality if and only if S = So. 

An argument given by Foisy in [9] shows that B must intersect the axis. If not, we can contract 

the bubble toward the axis in a volume-preserving way so as to decrease area. To do this, choose a 
small e > 0, and at each point of the cluster replace the distance r from the axis by (r n-1 - ~) ~-~. 
Areas of surfaces orthogonal to the direction of the axis are preserved, while areas of surfaces parallel 

to the axis decrease. 

It is also easy to see that B is connected. If not we can slide two components along the axis 
until they first touch, creating an illegal singularity (surfaces meeting in fours), so that area can be 

decreased. 

I claim next that if B is not a standard double bubble, then B intersects the axis exactly twice. 
Clearly B cannot intersect the axis only once, or else the surface intersecting the axis would have R0 
on either side and could be removed. Now suppose that B is nonstandard and intersects its axis more 
than twice. Since B is connected and has no empty chambers, some surface So of B must intersect 
the axis with Rl and R2 on either side. Since B is connected and encloses more than one region, 

So must meet two surfaces S1 and $2. Since B has no empty chambers, removal of part of either Sl 

or $2 would disconnect B. It follows that Sl and $2 are pieces of spheres. (A slight variation on an 

argument above shows that the least-area surface enclosing a given volume between two free discs 

is a piece of a sphere.) Since B is nonstandard, either $1 or $2, say Sl, must meet some hypersurface 

other than So, $1, and $2. One can then roll the two pieces of B \ $1 around the sphere containing 
Sl until they first touch. (See Figure 4.) The resulting singularity will be illegal; even if the surfaces 

somehow manage to meet along a curve in R n, they will meet in fours. Since this rolling process 

does not change area or volume, B is not minimal; this is the desired contradiction. 

Since B has no empty chambers, we easily deduce: 



The Structure ~f Area-Minimizing Double Bubbles 303 

2 

(a) (b) 

Figure 4. (a) A hypothetical  minimal  double  bubble  B in cross-section.  $1 is a piece of  a sphere. (b) After  
roll ing the left side of  the bubble  around this sphere, we obtain an illegal singularity, so B is not  minimal .  The 
example  shown here does not have rotational symmetry  after rolling. 

Theorem 5.1 (Structure Theorem). Any minimal double bubble in ]~n that is not the 

standard double bubble is a surface of  revolution about some line, and consists of  a topological 

sphere with a tree of annular bands attached. (See Figure 2.) The two caps are pieces of spheres, 

and the root of  the tree has just one branch. 

The last clause of this theorem follows from the rolling argument above. 

References 

[1] EJ. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with 
constraints, Memoirs A.M.S. 4( 165 ) (1976), i-  199. 

[2] F.J. Almgren, Jr., Spherical symmetrization, Supplemento ai Rend. Circ. Mat. di Palermo, Serie II, numero 15 (1987), 
11-25. 

[3] M. Athanassenas, A variational problem for constant mean curvature surfaces with free boundary, J. Reine Angew. 
Math. 377 (1987), 97-107. 

[4] J. Bokowski and E. Sperner, Zedegung konvexer Koerper durch minimale Trennflaechen, J. Reine. Angew. Math. 
311/312 (1979), 80-110. 

[5] G. Bredon, Topology and Geometry, Springer-Verlag, 1993. 
[6] C. Cox, L. Harrison, M. Hutchings, S. Kim, J. Light, A. Mauer, and M. Tilton, The standard triple bubble type is 

the least perimeter way to enclose three connected areas, NSF "SMALL" Undergraduate Research Geometry Group, 
Williams College, 1992. 

[7] C. Cox, L. Harrison, M. Hutchings, S. Kim, J. Light, A. Mauer, and M. Tilton, The shortest enclosure of three 
connected areas in R 2, Real Analysis Exchange 20 ( 1 ) ( 1994/95 ), 313-335. 

[8] R. Finn, Capillary Surfaces: A Partially Historical Survey, Symposia Mathematica, vol. XXX (Cortona, 1988), 
pp. 45-71. Academic Press, London, 1989. 

[9] J. Foisy, Soap Bubble Clusters in R 2 and R 3, undergraduate thesis, Williams College, 1991. 
[ 10] J. Foisy, M. Alfaro, J. Brock, N. Hodges, and J. Zimba, The standard double soap bubble in R 2 uniquely minimizes 

perimeter, Pacific J. Math. 159 (1993), 47-59. 
[11] M. Gromov, lsoperimetric Inequalities in Riemannian Manifolds, Appendix I to Lecture Notes in Mathematics 

No. 1200. Springer-Verlag, 1986. 
[12] J. Hass, Correspondence, 1994. 
[13] J. Hass, M. Hutchings, and R. Schlafly, The double bubble conjecture, Electron. Res. Announc. Amer. Math. Soc. 1 

(1995) (3), 98-102. 
[14] J. Hass and R. Schlafly, Double bubbles minimize, preprint, 1995. 
[151 J. Masters, Area-minimizing double bubbles in S 2, preprint, 1994. 
[16] F. Morgan, Soap bubbles in R 2 and in surfaces, Pacific J. Math. 165 (2) (1994), 347-361. 
[171 E Morgan, Mathematicians, including undergraduates, look at soap bubbles, Amer. Math. Monthly 104 (1994), 

343-351. 



304 

[181 
I191 

[201 

Michael Hutchings 

E Morgan, The double bubble conjecture, FOCUS, Math. Assoc. Amer., Dec. 1995. 
J. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. Math. 103 
(1976), 489-539. 
T. I. Vogel, Stability of a liquid drop trapped between two parallel planes, SlAM J. Appl. Math. 47 (1987), 516-525. 

Received July 7, 1994 

Department of Mathematics, Harvard University, Cambridge, MA 02138 


