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Approximation by Spherical Waves in LP-Spaces 

By Mark Agranovsky, Carlos Berenstein, and Peter Kuchment 

ABSTRACT. The paper is devoted to the following problem. Consider the set of all radial functions with 
centers at the points of a closed surface in R ~. Are such functions complete in the space L q (Rn)? It is 
shown that the answer is positive if and only if q is not less than 2n/(n + 1). A similar question is also 
answered for Riemannian symmetric spaces of rank 1. Relations of this problem with the wave and heat 
equations are also discussed. 

Introduction 

The following question was posed by Lin and Pinkus [LPI, LP2]: describe sets I" C R n, n > 2, 

such that the system of shifted radial functions (spherical waves) 

~P(lx - a l) ,  a c F, ~ i s  a function of one variable, (1) 

is complete in different spaces of functions of n variables. 

In [AQ1, AQ2] a complete solution of this problem was given for the space C(R  2) of all 

continuous functions in the plane, equipped with the topology of uniform convergence on compact 
sets. It was proved that a set F C R 2 provides completeness if and only if F ~ EN t3 F,  where F 

is a finite set and E~v is a union of finite number of straight lines through one point, invariant under 
a finite Coxeter reflection group. 

In particular, it follows that any closed curve 1-' C R 2 generates a complete system of spherical 
waves (1) in C(R2). This partial result can be extended to higher dimensions and some other 
function spaces. In fact, completeness of the system (1) in C(R  n) is equivalent to the statement that 
any measure/z with compact support that annihilates all functions of the form (1) is equal to zero. 
Consider the spectral projection of such/.t onto the eigenspaces of the Laplace operator [S]: 

~(x)  = ( ~ ) ( x )  = [ q)~(Ix yl) d lz(y), 
dR n 
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where r (r)  = (2rr) ~ ~. ~ r 1- ~ J~_ l (3.r), Jk is the Bessel function of order k. Then A lpx = _ ~ 2  l~r~. 

and, since tpx(lx - y]) is of the form (1) when x E 17, we have ~xlr  = 0. If 17 is the boundary of 

a bounded domain f2 C R1/, then the discreteness of the spectrum of the Dirichlet problem in f2 for 

the Laplacian implies that lpx ---- 0 except for a discrete set of 3. and therefore Ix ---- 0. 

2It Let us now consider a function f E Lq(R 1/) with 1 _< q < ~-~ and introduce the measure 

tx = f d x .  Then ~z can be defined as above and the same argument shows that f = 0. Thus we 
obtain completeness of the system (1) corresponding to the boundary 17 of a bounded domain in the 

2n predual spaces: L ~ ( R  n) with the weak*-topology and LP(R 1/) with p > (-';~S-t)" Taking f in the 
Schwartz space S(R1/) of rapidly decaying functions, we get completeness in the space of functions 
(or distributions) of tempered growth. 

For p < 2n / (n  -- 1) the spectral projections ~x cannot be defined directly. The reason is that 
the Fourier transform of ~0x is the g-function on the sphere S(0, ~,) of center 0 and radius 3., and the 

Fourier transform of f E L q (R1/), 1 /p  + 1/q = 1, is, generally speaking, a distribution so that its 

restriction to S(0, ~,) is not necessarily well defined. 

For that reason we apply a different argument, which however has spectral projections behind 
it. The approach we use is based on the wave equation and it allows us to get a complete answer 
for LP-spaces when 17 is the boundary of a bounded domain. This method was first used by the 
third author in order to solve the Lin-Pinkus's problem for C(R 2) in the case of closed curves. The 
problem was later solved for C(R  2) in full generality in [AQ1, AQ2] by a different method. 

Our main result can be formulated as follows: the boundary 17 of any bounded domain ~ C R1/ 
generates a complete system of spherical waves (1) in the space L p (R1/) as long as p >_ 2n / (n  + 1). 
This property fails for p < 2n/ (n  + 1). 

Thus, the estimate p > 2n/ (n  - 1) found above is not sharp and, in fact, completeness holds 

for p starting with p = 2n/ (n  + 1). 

The critical index q = 2 n / ( n - -  1), conjugate to p = 2n / (n + 1), is the exponent ofintegrability 
of the spherical functions in R1/ and naturally appears as a bound in uniqueness theorems for the 
Pompeiu transform [RS]. 

The authors would like to thank Professor S. Helgason for his many remarks. 

1. Main results 

1.1. We consider the space LP(R1/), n > 2, 1 < p < o0. Given a point a E R1/we denote 

by Wa,p the linear subspace of LP(R 1/) of all functions of the form 

~P(Ix - a l l  ~P 6 LP(R+, r1/-ldr), R+ = (0, oo). 

For any set F C R n we consider the linear span Wp(F) generated by all W~,p with a ~ F. We 
are interested in the density of Wp(F) in LP(R1/). 
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Theorem 1. Let F be the boundary of a bounded domain in R n. Then the subspace Wp(F) 
is dense in the space LP(R n) with p > 2n / (n  + 1). If  p < 2n / (n  + 1), then this statement fails, 
for instance for I" = S n-l. 

In the particular case I" = S n- l  this result was proved earlier in [V]. If 1-" is a sphere, one can 
use harmonic analysis on the group S 0 (n), which of course is not applicable when F has no group 
symmetries. 

1 1 1.2. Denote by W~ (F) the annihilator of Wp (I-') in the dual space L q (Rn), p + q : 1. The 

space W~(F)  consist of all f E Lq(R ") such that 

( 4  * f ) ( a )  = f ~(Lx - a l ) f ( x ) d x  = 0 (2) 
dR n 

for all a ~ F and all ~p ~ LP(R, r" - ldr ) .  

The condition (2) is preserved if we replace f by the convolution tp,  f with any radial function 
q9 E C~(Rn).  The invariance of Wp~(l TM) with respect to convolutions with radial functions implies 

that W~-(I') f) C ~ ( R  n) is dense in Wp~ (I'). 

We will need the following simple result. 

L e m m a  1.1. Let g ~ Lq(R ") and d? c C~(Rn). Then for any bounded domain U c__ R n 

and any integer k > O, the convolution 

f = ~ b , g  

satisfies the following condition: the function 

F (x ,  y) = f ( x  - y), 

as a function of x with values in the space of functions of y, belongs to the space 

L q ( R  n , Hk(U)) ,  

where H k ( u )  is the Sobolev space of order k in the domain U. In particular, any derivative of f 

belongs to L q (R") fq L~(R") .  

Proof of the lemma.  Since derivations of the function f can be carried on q~, it is sufficient 
to prove that F belongs to the space L q (R n , L ~ ( U ) ) .  Let the support of q~ be a subset of a ball B 
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in R ". Then 

Thus, 
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f ( x -  y) = f g ( x -  (y + z))dp(z)dz = f g ( x -  z)dp(z- y)dz. 
B B+y 

I q f maxlf(x-y)lqdxy~U < fmaXyeu [ g ( x - z ) [ [ d p ( Z - y ) [ d z  dx. 

Applying the Hrlder inequality, we conclude that this quantity can be estimated from above by 

f max~,ev f ]g(x - Z)I q d z  ]I~)(Z -- y) l p dz dx 
B+y 

< c f f Ig(x -- Z)[ q d z d x .  
R" B+U 

Switching the order of integration and using the boundedness of B + U, we estimate this from above 

by 

C~llg , 

which proves the first statement of the lemma. Any derivative D of order j of the function f can be 
expressed as (-1) lit Dy F y=0, so the inclusion Df ~ L q (R n) follows from the first statement. Let 
us now divide the space R n into cubes Uj, then the sequence 

belongs to the space ~q, and hence it is bounded. Using the Sobolev embedding theorems we conclude 
that any derivative of f is bounded. [ ]  

Let from now on f E Lq(R n) (3 C ~ ( R  ~) satisfy the conclusion of the Lemma 1.1. It follows 
from (2) that f E W~(1-') if and only if 

Rf(x, t) = 0 for all (x, t) E F • R+, 

where R is the spherical mean operator 

Rf(x, t) = f~ f(x + ty) dA(y), 
A=I 
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and d A  is the normalized area measure on S ~-l . We say that 1" is a set ofinjectivity for the operator 
R in L q ( R  n) if 

R f ir•  = 0 f o r  f E Lq(R  ") implies f = 0. 

Due to the Hahn-Banach theorem, Wp(F)  is dense in LP(R") ,  I < p < oo, if and only if F 
is a set of injectivity for the operator R in L q (Rn), 1 / p  + 1/q = 1. This shows that Theorem 1 is 
equivalent to the following theorem. 

T h e o r e m  2. The bounda~ F of  any bounded domain ~ C R ~ is a set o f  injectivity for  

the spherical mean operator R in Lq(R  n) as long as q < 2 n / ( n  - 1). The property fails for  

q > 2 n / ( n  -- 1). 

Let us comment  on the last assertion. Consider the following example suggested by L. Zalcman: 
let 

~o(x) = Ixl~-~ J~_~(~lxl),  

where ~ is a zero of the Bessel function J~_ 1. Then q9 is an eigenfunction of the operator R, namely, 

Rqg(x, t) = c~p(t)~p(x) 

and therefore Rq9 (x,  t) = 0 if Ix I = 1. Since ~p E L q (R n) for any q > 2 n / ( n  - 1), the injectivity 

fails on this range of values of q when F' is the unit sphere. 

1.3. Let us now relate the previous problem to the wave equation. We consider the Cauchy 
problem for the wave equation in R n for u = u ( x ,  t) ,  x C R n, and t > 0: 

utt ~- AU,  

u(x ,  O) = o, 

u , ( x ,  O) = f ( x ) .  (3) 

One can extend the solution u uniquely to the whole time axis by assuming that u ( x , - - t )  = 

- - u ( x ,  t) for all t E R. 

The initial velocity f is supposed to belong to L q ( R  n) f) C(Rn).  Using convolutions with 

smooth compactly supported radial functions one can reduce all subsequent considerations to the 
case where f belongs to L q (R n) N C ~ (R n) and satisfies the conclusions of Lemma 1.1. The key 

point is the following lemma. 

L e m m a  1.2. I f  R f ir•  = O, then Ulr• = O. 
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It follows from the Kirchhoff-Poisson formula that 

u(x,  t) = const(Ot)n-2 F(x ,  t) (4) 

F(x ,  t) 

Q(x ,  r) 

l 

= f ( t  - r 2 ) ( n - 3 ) / 2 r Q ( x ,  r)dr, 
o 

- -  f s(x + ry) da(y). 
lyl=l 

Now, one just needs to note that fo rx  E 1-" the values F(x ,  t) and u(x,  t) can be expressed in terms 

of  R f i r •  [ ]  

In fact, one can also show that the converse of  the statement in Lemma 1.2 is also true, although 

we will not use this. The proof employs the inversion of  the Abel transform. 

Lemma 1.2 says that Theorem 1 and Theorem 2 follow from (and, in fact, are equivalent to) the 

next statement. 

T h e o r e m  3. Let I ~ be the boundary of a bounded domain in R n, n _> 2. Suppose that the 
solution u (x, t) of the Cauchy problem (3) with initial data f E L q (R n) satisfies the condition 

u (x, t) ---- 0 for all x E F at any time t > 0. 

Then u =-- 0 as long as q < 2n / (n -- 1). This theorem fails for q > 2n / (n -- 1). 

R e m a r k .  For n = 2, Theorem 3 can be interpreted as follows: an oscillating infinite 
membrane cannot remain stationary on a closed curve as long as the initial velocity satisfies 

f I f ( x ) l q d x  < ~x~withq < 4 .  
2 

I fq  > 4, then closed curves (for instance, circles) can remain stationary. An example is the following 
solution of  the wave equation 

u(x,  t) = sin()~t)Jo()~klxl), with Jo()~kr) = O. 

This effect can be qualitatively described as follows: I fa  closed curve remains fixed, this means 

that the energy stays constant in this region. If  the initial energy distribution dies out at infinity fast 

enough, then the energy must decay locally, which is a contradiction. On the other hand, if the decay 
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of the initial energy distribution at infinity is not fast enough, then sufficient energy can come from 

the regions located far away to support a fixed energy in our bounded region. 

Another interpretation of our result is that for the values of q described in the Theorem 3, one 

can observe the motion of the membrane over any closed curve, and the obtained data uniquely 

determines the motion of the whole membrane. The observations, however, must be made for all 

values of time t > 0. (This is in the spirit of [E].) 

A result similar to the Theorem 3 holds also for the heat equation. 

Let us mention that if f has compact support, then it is proved in [AQ1, AQ2] that the conditions 

to be satisfied by the nodal sets are more restrictive. Namely, not only closed curves but any nonlinear 
curve cannot remain stationary in this case. We do not know what is the general answer for the case 

when f e: L p. 

2. Wave equation 

In this section we prove Theorem 3 which, as we have shown, implies (and is in fact equivalent 

to) Theorems 1 and 2. 

Let us consider the Cauchy problem (3) with initial data f E L q, q < 2n / (n  - 1). After 
convolution with a radial function we can assume by Lemma 1.1 that f E Z q ( R  n) N C~176 n) and 

f ( x  -- y) E t q (R n , H k (U)) for any nonnegative integer k and any bounded region U. We extend 

the solution u(x,  t) for t < 0 by u(x ,  - t )  = - u ( x ,  t). 

Let F be a closed hypersurface in R" for which u(x,  t) = 0, x E F, for any t E R. 

Lemma 2.1. For any bounded domain U in R ~ and any nonnegative integer k, the solution 
u(x ,  t) of (3) has polynomial growth in t as a function with values in H k ( u ) .  In particular, 
u E S'(R,  Hk(U)) .  Forany h ~ S(R) the function 

(h *t u ) (x ,  t) = fa  h(t  - s )u (x ,  s) ds 

belongs to L q (R n) for any fixed t. 

Proof. Polynomial growth in the variable t follows from the Kirchhoff-Poisson formula (4) 

since F is bounded in U along with all its derivatives. 

It is sufficient to prove the second assertion for t = 0. The t-derivatives in (4) can be carried 

on h, so we disregard them. Now, 

I[Q(x,r)[ILq(R.~) <_ C f IIflIL, d A ( y ) = C l l f l l L q ,  

lyl=l 
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l 

liE(x, t)llLo(~!:) _< f (t - rZ)~n-3)/2r dr, 
o 

II(h * F)(O, ")IIL~ f (Ih(s)l + [h(-s)l)llF(x, s)llLq<R~)ds 
o 

OG S 

< Cllf[[c~ fOh(s)l + I h ( - s ) l ) f ( s ~ - r 2 ) t n - 3 ) / a r d r d s  

o 0 

_< C~ IlfllLq. [] 

Lemma 2.2. Let b(x ,  t) be a solution to the wave equation 

b t t :  Ab,  x E R ~, t > O, 

b(x ,  O) = O, bt(x,  O) = f (x),  

where f (x - y) E L q (R", H k (U) ) for any k > 0 and any bounded open set U. l f  there exists an 
open ball B(xo, e) such that u(x ,  t) = O, for x C B(xo, e) and all t > O, then u(x ,  t) =- 0 and 

correspondingly f (x) =~ O. 

Proof .  The proof of this statement is actually contained in the Section 17, Chapter VI of 
[CH]. We will provide a brief sketch of a proof different from the one in [CH]. Extend b to R n • R 

as a solution u of the wave equation which is odd in t. We can take the Fourier transform ~(x,  )Q 
of u(x ,  t) with respect to t in the sense of tempered distributions because of Lemma 2.1. Thus 
fi(x, ~.) C S ' (R,  Hk(U))  for any bounded U. Since u(x,  t) satisfies the wave equation, we obtain 

( - A  - ~.2)fi(x, Z) = 0. 

Moreover, t~(x, )Q = 0 for x E B(x0, ~). Now the local uniqueness theorem for the last equation 
shows that t~ (x, ~.) ~ 0. [ ]  

Proof of  Theorem 3. Denote by Q the domain in R n bounded by F. The negative part of the 

theorem was discussed already at the end of Section 1. So we assume q < 2n / (n  - 1). We can also 

assume that the initial data f satisfies the conclusions of Lemma 1. I. We want to conclude that if u 
vanishes on 17 x R, then u ----- 0. First of all, let us notice that the Dirichlet Laplacian in f2 generates 
a self-adjoint operator D in L2(f2) with the discrete spectrum {--~.~} (see Theorem 1.4 in Chapter 

VI of [EE]). Besides, due to smoothness and zero conditions, u(., t) belongs to the domain of D for 

any t. Let now {~k}k%l be the corresponding orthonormal basis in L2(f2) of eigenfunctions of D. 
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For any fixed t decompose u ( x ,  t)  into a L2-convergent series 

u ( x ,  t )  = 
k=O 

Since u belongs to the domain of D, we have 

o o  

A u ( x ,  t) = Z ( - - X ~ ) C k ( I ) I ] , t k ( X ) .  
k=O 

On the other hand, since u ~ S ' (R,  H k ( u ) ) ,  we conclude that 

u ; ; ( x , t )  = ~ c ; ( t ) ~ k ( X ) .  
k=0 

Hence, 

Therefore, 

t !  

c k ( t )  = - -X~c  k ( l ) .  

373 

r.+oiXkt - --ikkt Ck(t) = ~k ~ + C k e (5) 

+ since u is odd with respect to t. and c[  = --c  k 

Let us fix an arbitrary index k. Choose a real-valued function h E S(R)  with the following 
properties: 

(a) h ( - t )  = h( t ) .  

(b) The Fourier transform h belongs to C ~  (R) and for some small e > 0 we have 

supph C (Xk - E,)~k + ~) 0 (--Xk -- e, --Xk + ~). 

(c)  (Xk) = = 1. 

(d) supp/~ does not contain any of the points -t-Xj for j ~ k. 

Due to Lemma 2.1, the convolution 

v - ~  h * t u  

is well defined and v(., t) E Lq(R ~) for any fixed t E R. Now 

(o, = f o(x,t),l,j(x)dx -- f. ( f  h(t-s)u(x,s)ds)  j(x)dx 
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: f R h ( t - s ) ( f  u(x,s)~pj(x)dx)  d s =  f R h ( t - s ) c j ( s ) d s  

-~- c /  ~l(~.j )e izJ -}- c /  ~l(--~.j )e-i~J '" 

Due to the choice of  h, we conclude that 

v(x, t) = (c+ e izkt -q- ck e-iXkt)~k(X ) f o r x  E f2 and t E R. (6) 

Let us fix a point x0 E f2 and consider the "radialization" v # of v with respect to x0, namely, XO 

V#xo (x, t) = fs v (Xo + cr (x - Xo), t) do. 
O(n) 

We can apply a translation and assume for the sake of simplicity that x0 = 0. Note that 

radialization preserves conditions of  the type "v belongs to LP. '' Set v # = v~. 

Let e > 0 be such that the ball B(0,  e) is contained in f2. Then (6) implies that 

v# (x, t) (r+ ~ -- --i)~kt # = ,~k~ +cke  ) •k (x)  f o r x  E B(0,  e).  (7) 

Here ~k # is the radialization of ffk. Let us denote the right-hand side of  (7) by �9 (x,  t).  The function 
~#k # is a radial eigenfunction of the Laplace operator in B(0,  e) with no singularities at x = 0, and 
hence it is a solution of the corresponding Bessel equation. Therefore 

~ ( x )  = const .  Ix l l-~ J~_l (~-k IX I) (8) 

in B(0,  ~), and thus the function ~ ( x ,  t) extends to a global solution of the wave equation in R n. 

On the other hand, v#(x, t) is also a global solution of the wave equation, namely, 

Vt#t = A v  #, 

and it satisfies the initial condition 

since 

v#(x, 0) = 0  

v#(x, O) = fR h(-s)u#(x '  s) ds = 0 

because u is odd in the variable s and h is even. The other initial condition is 

v~(x, O) = fR h'(-s)u#(x'  s) ds. 
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b :=  v # -- 0,1 
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satisfies the hypotheses of Lemrna 2.2 and we conclude that 

v#(x , t )  = ~ ( x , t ) ,  for a l l ( x , t )  E R "  •  

As we said earlier, since v(-,  t) E Lq(R  ") then v#( ., t) E Lq(R  ") for any fixed t. However, the 

asymptotic expansion of the Bessel function yields 

~O~#(x) "-~ const ,  cos ( I x  l 

and 

cos xl 2 

Jr n - 2 ~ Ix 1,7_2, 
2 2 / 

n-2) 
~ Ixl ~- r Lq(R n) 

when q < 2n / (n -- 1), which is exactly our situation. We must conclude that the constant factor in (8) 

is equal to zero, and hence v # ----- 0. This implies in turn that V(Xo, t) = 0 for any t. Since the center 

x0 E f2 used for averaging had been chosen arbitrarily, this implies u (x,  t) = 0 for x E ~ ,  t E R. 

+ = c k = 0, and due to arbitrariness of the index k we have u (x,  t) ----- 0. [ ]  Therefore, c k 

R e m a r k .  In the definition (1), we can restrict ourselves to functions ~ = ek, where e,  is any 
basis in LP(R, rn- ldr) ,  in order to get a dense subspace in the space spanned by (1). For instance, 

choosing ek ( r )  = e -kr2 we obtain the following result. 

C o r o l l a r y  I .  The system of  Gaussian functions 

ek,,(X) = e -klx-al2, k E N +  

where a runs over the points of the boundary I" of an arbitrary bounded domain, is complete in 
LP(R n) as long as p >_ 2n / (n  + 1), but itmay be incomplete if p < 2n / (n  + 1). 

3. The case of L2(R n) 

3.1. We want to make use of  the fact that for functions in L2(R ") the spectral projections on 

eigenspaces of the Laplace operator can be constructed explicitly. This section is based on the results 

of  Strichartz IS]. 
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If f E LZ(Rn), then the spectral projections appear if we write the Fourier inversion formula 
in polar coordinates: 

fo ~176 f ( x )  = ( P z f )  (x) d)~, (9) 

where 

79~f(x) : (27r)-")~ "-1 [ f()~u)e ixx'u du (10) 
,Is n I 

is defined for almost every )~ 6 (0, (x~). 

Suppose f is continuous and (go * f ) ( x )  : 0 for all x E 1-', where 1-' is a fixed set in R", and 
go E LZ(R ") is any radial function. Then 

T'~(go �9 f )  = ~(X)T'zf, 

with the obvious abuse of language for ~, and from (9) we have 

fo ~ ~o()~)T9~f(x) d~. 0 for all 1-'. x E 

This implies that P x f ( x )  = 0, x E F, for almost every ~ E (0, oo). Conversely, the last 
identity implies that go * f i r  = 0 for any radial go E L2(Rn). 

The spectral projections f~ = "P~f of functions f E LZ(R ") were completely characterized 
by Strichartz [S, Th. 3.3]. Besides, the completeness of the system (I) in L 2 (R n) is equivalent to the 
triviality of its orthogonal complement. Thus we have 

Theorem 4. Let F be a subset o fR  n. The system 

lP(ix -- aI), a E 1", ~ E L2(R+, rn-ldr)  

is incomplete in L 2 (R") if and only if there exists a nonzero measurable function f ~ ( x ) on (0, ~ ) • 
R ~ such that 

(a) Af~ : - ) f l f ~  for a.e. )~. 

(b) supz,t f o  I 12 2 fx-zl<,lfz(x) dxd)~ < (x). 

(c) f~ E C(R") for a.e. ~ and f~(x)  : 0 for all x E F. 

If F is the boundary of a bounded domain, then f~ : 0 for a.e. ~. due to the discreteness of the 
spectrum of the Laplace operator and we get completeness in accordance with Theorem 3. 
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In order to obtain a more constructive description of the sets F corresponding to complete 

systems of spherical waves, we have to characterize in explicit terms sets [ '  satisfying the conditions 
(a), (b), (c), which seems to be a difficult problem. 

2n 3.2, We know from Theorem 3 that any function f ~ L p (R~), p > ~ can be approximated 

by linear combinations of functions %k(lx - a l) ,  ~P ~ L2((0, c~), r"- ldr) ,  where a belongs to 
the boundary 1" of a bounded domain f2 C R ~. 

In the case of p ---- 2 the approximating functions ~ can be obtained from f by averaging. 

For any a E R" denote by So the averaging operator 

S~ f ( x )  = f f ( a  + u(x - a ) )du ,  
Js O(n) 

which is related to the spherical mean operator R by S~ f ( x )  ---- R f ( a ,  Ix - a I). 

Clearly S~f  ~ L2(R ") if f E L2(R ") and the function S a f ( x )  depends only on the distance 
to the point a. 

P ropos i t ion  3.1. Let f E L2(R ") and let I" be the boundary, of a bounded domain in 
R ~. Then f E X ( [ ' )  = cl span {So~ - . .  Sam f ,  a E r ,  m E N}--the smallest closed subspace in 
L2(R), containing the function f and invariant with respect to the operators Sa, a E F. 

Proof. Let f = f l  q- f2 be the orthogonal decomposition, f l  E X(1-'), f2 E X ( [ ' )  j-. 
Since S , f ,  S~fl E X ( F ) w e  have Saf2 E X ( r ) , a  E r .  Then Ilaof21[ 2 = (Sof2, S~f2) = 
{f2, S, f2} = 0. Hence Rf2(a, t) = 0 for all (a, t) E r x R+ and Theorem 2 implies f2 = 0. 

[] 

It is worthwhile to note that such kind of approximation is possible not in all spaces. Let 

us consider, for example, the space H ( R " )  of all harmonic functions. Then S a f ( x )  -- f ( a )  
for each f E H ( R  n) and all a E R ~ and therefore H ( R  n) is not spanned by its projections 
So~ . . .  Sam ( H  (R n)) (which consists of constants) even if aj are arbitrary points in R ". 

3.3. As it has been established in Theorem 2, the spherical mean operator 

R: L2(R n) f) C (R  n) ~ C ( F  x R+), 

R: f ( x )  --+ R f ( a , t )  

is injective if r is the boundary of a bounded domain in R ' .  
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The natural question arises: What is the range of the operator R and how to reconstruct f from 

R f ?  

4. Symmetric spaces 

Now we want to study the analogous problem in non-Euclidean spaces, specifically, symmetric 

spaces of noncompact type. 

Let X = G / K  be a symmetric space, where G is a real semisimple Lie group, and K is a 

maximal compact subgroup in G. Denote by d x  the G-invariant volume on X, o = e K  the origin 

in X. 

Denote by A the Cartan subgroup of G, ,4 the Cartan subalgebra of  the Lie algebra G, ,.4* 

the dual space, .,4 + a Weyl chamber, E+ the set of  positive roots, M the centralizer of A in K,  

r = dim .,4 the rank of  X. 

Let F = K �9 xo be a K-orbit of  some point xo E X .  The orbit I-' is generic if it has maximal 

possible dimension dim 1-" = dim X - r. The decomposition X = K A  + �9 o, A + = exp,A, ([He], 

Prop. 1.4), shows that the orbit F is generic if the point xo is regular. The latter means that xo is in 

the open Weyl chamber A § after applying an appropriate element from K,  i.e., xo = ka  �9 o, for 

some k E K,  a E A +. Degenerate orbits correspond to points on the boundary A + \ A + of  the 

Weyl chamber. 

Given a point a E X we denote by W~.p the linear space in L e ( X )  = L P ( X ,  d x )  consisting 

of shifted K-invariant functions 

f a ( x )  = ~o(g~tx),  

qg(kx) = qg(x) for all k E K and g,~ ~ G is such that g~(o) = a (clearly, f does not depend on 
the choice of  ga). 

For any set F C X we denote Wp(U) the linear span of  all W~,.p with a E F. 

Theorem 5. Let F = K �9 Xo be a generic K-orbit in X (i.e., xo is a regular point), l Then 

Wp( I ' )  is dense in L P ( X )  i f  p > 2. The property fai ls  to be true f o r  p < 2. 

When the symmetric space X has rank = 1 we are able to avoid requiring K-symmetry for 1-': 

Theorem 6. Let rank X = 1. Then the boundary 1 ~ o f  any bounded domain generates a 

complete system Wp( I ' )  as long as p > 2. This is not true when p < 2. 

i The authors thank Prof. S. Helgason, who pointed out to them the necessity of the regularity condition. 
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4.1. The reason for p = 2 to be the critical index for the denseness Wp(l?) in LP(X) is the 
fact that, in contrast with the Euclidean case, spherical functions belong to L q (X) for any q > 2. 
Let us comment  on this assertion. 

The following inequality is a particular case of  the Harish-Chandra inequality (cf. [He], p. 485): 

I~ox(a �9 o)[ _ CLe -p(l~ a E .4, (11) 

1 ~ m,~ot, m~ is the multiplicity of  or. w h e r e p =  ~a + 

Then the "polar decomposition" of  integration on X ([He], Theorem 5.8, p. 186) yields 

f l~ox(x)l q dx = const f Iqgz(a �9 o)lqr(a)da, 
X A + 

where 

~ ( e x p H )  = 1-I (s inh~ H E .4+. 

Thus 

f ltpx(x)[ q dX < constf e -qp(l~ I - I  (eC~( l~  - -  e-C~(l~ da 
aE~: + 

X A + 

and the fight-hand side is finite if q > 2. 

On the other hand, 

Ilgo~llL2 = f ~ o ~ ( x ) ~ o ~ ( x ) d x  = o0 
X 

since the integral coincides with the value of the spherical Fourier transform of ~ox at the point 3., 
i.e., with oo. Since for ~. ~ .4* the functions tpx are bounded, ~o~ q~ Z q for any q < 2. 

Now the last (i.e., the negative) assertion in Theorem 5 and Theorem 6 follows from the duality 
discussed in Section 2. Indeed, if a K-spherical  function qgz ~ 0 vanishes on a K-orbi t  1-', then 
~ox ~ W ~ ( F )  for any p < 2, and hence Wp(F)  is not dense in L2(X). 

End of the proofs of Theorems 5 and 6. Let p >_ 2 and f E WpZ(I ") C Lq(x), 1/p + 
l/q = 1. Using convolutions with K-invariant functions we can assume f to be bounded and 

therefore f E L2(X). For the same reason f can also be assumed to be continuous. Dealing with 

L g ( X )  allows us to avoid considering the wave equation and directly use the following restatement 
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of Helgason's Fourier inversion formula as given in [S, (4.33) and (4.34)]: 

f ( x )  = f Q~,(x)d/z 
.a*+ 

where 

(12) 

f 
Qu(x) = cu [ f(y)~ou(x, y )dy  (13) 

x 

is a measurable function in the/z-variable, which is a joint eigenfunction for the G-invariant differ- 

ential operators D E D(G/K)  in the x-variable. 

The functions tp~ and Qu are defined for all/z E ,4* so that tpw ~ = ~0u and Qwu = Qu for 
any w in the Weyl group W. 

The function tpu (x, y) can be given by the formula 

qgu(x, Y) : f 
e(i,u+p)(A(x,b)) e-(i#+p)(A(y,b)) db, 

K/M 

due to the symmetries of the spherical functions ]He, Theorem 1.1 ]. Here A (g K, kM) : A (k-l g) 
is the component in the Iwasawa representation k-l g : n exp A(k-l  g)u, n E N, u E K. The 

function qgu(x, y) has the property ~ou(x, gy) : ~ou(x, y) whenever g E G satisfies gx : x. 
Therefore tp~ (x, y) : ~ u ( g x l y ) ,  where gx �9 o : x, for an appropriate K-invariant function ~u. 

Let K denote the set of equivalence classes of unitary irreducible representations of K.  Fix a 

representation 3 E K and let V~ be the vector space in which the representation 6 is realized. Define 

= (3 �9 Qu)(x) = Qu(k-lx)S(k) dk, (14) bu,~(x) 

which is a C ~ map from X to Horn (V~, V~). 

Since f E W~ (1-') and ~b u is a shift of K-invariant function ~u, the right-hand side of (13) is 
zero whenever x E 1-', by the definition of the space Wp(l-'), and we have 

Qu(x) = 0 for a l lx  ~ F and a.e./z E ,4*. (15) 

Since 1 ~ is a K-orbit, we obtain from (14) fo rx  E 1~: 

bu,a(x) = 0 fora .e . /z  ~ .4*. 

However, the function Qu is a joint eigenfunction for operators in D(G/K)  and it follows from (14) 
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bu,~(kx) = 6(k)bll,~(x), k E K. 

Therefore the function b~,,~ is proportional to a generalized spherical function ([He], p, 233), namely 
to 

�9 ~,~(x) = f e(iU+p)(A(x,kM) ~ (k ) dk,  

i.e., 

bu,~(x) = c(lz, 3)cbu,~(x) (16) 

for all x E X and a constant c(/z, 8) ~ C. 

Now we consider the map/z --+ Trace ~u,~ (Xo) from A* to C. It is real analytic and hence 
either 

(i) Trace qb~,~(Xo) 5~ 0 for almost every # C ,A*, or 

(ii) Trace ~u,~(xo) = 0 for all s ~ ,A*. 

However the following proposition shows that the case (ii) is impossible due to regularity of 
the point Xo. The proposition and its proof was kindly suggested to us by Prof. S. Helgason. 

Propos i t ion  4.1 (S. Helgason). If  xo E X is a point where Trace ~i,,~ vanishes for all 
E ,A* and L is the subgroup o f K  whichfixes xo, then the operators 6 (1), l E L, have no common 

nonzero fixed vector in Va. 

In particular, the Trace dPu,~, # E .A*, have no regular common zero in X. 

Proof .  Let D (X) be the space of C ~ functions on X of compact support, and D~ the subspace 

of K-finite functions in D ( X )  of type 5, where ~ is the contragredient representation. 

The inversion formula for 8-spherical transform, [He, Theorem 5.16]: 

g ( x ) = c o n s t ' T r [ f ~ , ~ ( x ) g , ( Z ) ' c ( ) O '  -2d)~ 

yields g(xo) = 0 for every g c D~. 

If h is an arbitrary function from D ( X )  then the convolution 

g = x ~ * h  
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f xa(k)h(k-lxo) dk = g(Xo) = O. 
K 

Due to arbitrariness of h this immediately implies 

f x~(lk) dl = 0 

L 

for all k E K. 

However this amounts to Trace (6(k)E) = 0, for all k ~ K, where E is the projection on the 

fixed point space of the operators ~ (1), 1 E L. Hence E = 0 and Proposition 4.1 is proved. [ ]  

Now we are able to complete the proof of Theorem 5. We know from Proposition 4.1 that 

Trace qbu,a(Xo ) -7?: 0 for a.e./z E ,,4*. But Trace bu,a(xo) = 0 for a.e./z and we obtain from (16) 
that the constants cu,a = 0 for a.e./z and hence Trace bu, ~ =-- 0 for a.e. # E ,,4*. 

The irreducible representation ~ E K is chosen to be abitrary and the definition (14) of bu,a 
shows that restriction of the functions Qu to any K-orbit is orthogonal to all characters X~ ----- Trace 3. 

Then the Peter-Weyl theorem implies that Qu --- 0 for a.e./z. 

Finally, we conclude from (12) that f ---- 0 and therefore W~ = 0. This completes the proof 

of Theorem 5. [ ]  

In the case rank X = 1 (Theorem 6), we can replace a K-orbit by the boundary F' of an arbitrary 
bounded domain since in this situation we can use the discreteness of the spectrum of the Laplace 

operator with Dirichlet conditions on F in order to conclude that the Qu =- 0 for all/z except a 
discrete set. Then (12) gives f = 0. [] 

R e m a r k .  One can show that Theorem 5 fails for degenerate (nongeneric) orbits F. 

In order to drop the K-invariance condition in Theorem 5 it would be sufficient to understand 

what closed submanifolds of codim < r can be contained in the set of common zeros of the joint 

eigenfunctions Q~. We were not able to do this yet. [ ]  
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