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Area Minimizing Sets Subject to a Volume 
Constraint in a Convex Set 

B y  E d w a r d  Stredul insky and  Will iam P. Z i e m e r  

ABSTRACT. For a given convex subset f2 o f  Euclidean n-space, we consider the problem of  minimizing the 

perimeter of  subsets off2 subject to a volume constraint. The problem is to determine whether in general a 

minimizer is also convex. Although this problem is unresolved, we show that if  ~2 satisfies a "great circle" 

condition, then any minimizer is convex. We say that f2 satisfies a great circle condition if  the largest closed 

ball B contained in f2 has a great circle that is contained in the boundary of  ~2. A great circle o f  B is defined 

as the intersection of  the boundary of  B with a hyperplane passing through the center o f  B. 

1. Introduction 

In this paper we consider the problem of  minimizing area subject to a volume constraint in a 
given convex set. In precise terms we have the following. Let s C N n be a bounded convex set. 
Thus, If21 < ~ where 1~21 denotes Lebesgue measure. For a number 0 < v < If21, let E C 
denote a set with [E I = v such that 

P ( E )  < P ( F )  

for all sets F C f2 with IFI = v, where P ( E )  denotes the perimeter of  E. The main question we 
will investigate is whether E is convex. 

It should be emphasized that the perimeter of  a competitor F is taken relative to N n, or what 
is the same, the perimeter is taken relative to the closure of  f2 since F is assumed to be a subset 
of  f2. This problem is considerably different from minimizing the perimeter relative to the interior 
of  f2. This was considered in [5] where it was shown that a minimizer is regular and intersects 0f2 
orthogonally. 

The question of  existence of  a solution to our problem is resolved immediately in the context of  
sets of  finite perimeter. Regularity questions have been considered by other authors. Tamanini [10] 
has shown that an area minimizing set E subject to a volume constraint has the property that OE N f2 
is real analytic except for a closed set whose Hausdorff dimension does not exceed n - 8. Also,  
under the assumption that 0f2 ~ C 1, it was shown in [4] that OE is an (n -- 1) manifold of  class 
C 1 in some neighborhood of  each point in OE 0 Of 2. In R 2, and in R n, n > 2 under an additional 
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condition on f2, we are able to obtain regularity results and ultimately establish that a minimizer E 
is convex. Assuming only that ~2 is bounded and convex, the convexity of E is an open question in 
~ n , n > 2 .  

The additional condition we impose on f2 if n > 2 is the following. 

We assume that a largest closed ball, B~, contained in f2 has a great 
circle that is a subset of  O f2. A great circle of B~ is defined as the 

(1.1) 
intersection of  8B~ with a hyperplane, Tse, passing through the center 
of  B~. The equatorial "disk" is defined as Dee = Ten A B~. 

Also, assuming initially that 8~2 ~ C e and strictly convex, we invoke a result of  [1] to conclude 
that 8E ~ C t,1 at points near 8f2. We then show, Theorem 3.24, that E is convex. Finally, through 
an approximation procedure, we show that E is convex with C l' l boundary assuming only that f2 
satisfies a great circle condition. Clearly, there is no uniqueness if v is too small. However, with H~ 
denoting the union of  all largest balls in f2, if I H~ I < v < If21, then E is unique. In addition for such 
v we show that perimeter minimizers E are nested as a function of  v. In general, for nonconvex f2, 
one can expect neither uniqueness nor nestedness as indicated by examples in [3]. 

The nestedness of  perimeter minimizers allows one to rearrange level sets of  functions to 
create test functions useful in studying minimizers to certain variational problems. For domains ~2 
having certain symmetries, it is frequently possible to apply symmetrization to gain information on 
minimizers of  functionals such as 

over appropriate function classes,  where u* is the decreasing rearrangement of  u. However, this 
greatly restricts the collection of  domains that can be considered. In Section 4 for the case p = 1 we 
construct a rearrangement which retains various useful properties of  symmetrization while allowing 
a much larger class of  domains to be considered, namely those convex domains described above. 
This rearrangement is useful when one has a boundary condition of  the form u = 0 on 0 f2 and when it 
can be established, for instance using truncation, that u > 0 in f2. Since this rearrangement produces 
functions of  bounded variation, it is more accurate to replace f I Vul in the functional above by the 
BV norm. The results of Section 3 allow one to deduce certain regularity properties for minimizers 
u from regularity properties of  u*. In addition, they establish the convexity of  the sets {u > t}. 
Results in [7] show that one cannot hope for similar results if p > 1. 

2. Notation and preliminaries 

The Lebesgue measure of  a set E C R n will be denoted by I EI and H a (E), ot > 0, will denote 
its u-dimensional Hausdorff measure. If  f2 C R n is an open set, the class of  functions u 6 L 1 (f2) 
whose partial derivatives in the sense of  distributions are measures with finite total variation in f2 
is denoted by BV(f2) and is called the space of functions of bounded variation in g2. The space 
B V(f2) is endowed with the norm 

Ilullsv(~) = Ilull~:~ § IlVull (~)  (2.1) 

where Ilu II1:~ denotes the L 1-norm of u on f2 and where II Vu II is the total variation of  the vector- 
valued measure Vu. 

A Borel set E C ~n is said to havefinite perimeter in ~2 provided the characteristic function 
of  E,  X E, is a function of  bounded variation in f2. Thus, the partial derivatives of X E are Radon 
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measures on f2 and the perimeter of E in f2 is defined as 

655 

P ( E ,  f2) = IIVXEII (~). (2.2) 

A set E is said to be of  locally finite perimeter if P (E, f2) < oc for every bounded open set f2 C R n. 

The definition implies that sets of  finite perimeter are defined only up to sets of  measure 0. In 
other words, each set determines an equivalence class of  sets of  finite perimeter. In order to avoid this 
ambiguity, whenever a set E of  finite perimeter is considered we shall always employ the measure 
theoretic closure as the set to represent E. Thus, with this convention, we have 

IE n B (x , r ) l  
x 6 E if and only if lim sup > 0 .  (2.3) 

r--,o IB(x, r)l 

One of  the fundamental results of  the theory of  sets of  finite perimeter is that they possess a 
measure-theoretic exterior normal which is suitably general to ensure the validity of  the Gauss-Green 
theorem. A unit vector v is defined as the exterior normal to E at x provided 

lim r -n IB(x, r) N {y : ( y - x ) .  v < O, y r E}I = 0 
r---~0 

and 

lim r -n [B(x , r )  n {y : ( y -  x ) .  v > O, y c E}I = 0 ,  
r---~0 

(2.4) 

where B(x,  r) denotes the open ball of  radius r centered at x. The measure-theoretic normal of  E 
at x will be denoted by v(x, E) and we define 

O* E = {x : v(x, E)  exists}. (2.5) 

Clearly, O*E C OE, where OE denotes the topological boundary of E. 

A set E of finite perimeter is said to be an area minimizing in an open set f2 if 

IIVXEII (K2) ~ IIVXFII (K2) (2.6) 

for every set F with F A E  c c  g2. Here F A E  denotes the symmetric difference. 

The regularity of  OE will play a crucial role in our development. Suppose OE is an area 
minimizing in U and for convenience of  notation, suppose 0 E U O OE. For each r > 0, let 
Er = ~ n  n {X : rx ~ E}. It is known (cf. [9, w [8, w that for each sequence {ri}  ~ 0 
there exists a subsequence (denoted by the full sequence) such that X Eri converges in L~oc(IRn) to 
Xc, where C is a set of  locally finite perimeter. In fact, OC is an area minimizing and is called the 
tangent cone to E at 0. Although it is not immediate, C is a cone and therefore the union of  half-lines 
issuing from 0. It follows from [9, w that if C is contained in H where H is any half-space in 
R n with 0 ~ OH, then OE is regular at 0. That is, there exists r > 0 such that 

B(O, r) O OE is a real analytic hypersurface. (2.7) 

Furthermore, OE is regular at all points of  O*E and 

H c ~ ( ( O E - O * E )  N U ) = O  for a l l o t > n - 8 ,  (2.8) 

cf. [6, Theorem 11.8]. 
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The notion of  excess plays a critical role in the theory of minimal boundaries. It measures how 
far a set E is from being an area minimizing in a ball. Formally, it is defined by 

~(x ,  r) = IIVZEII (n (x ,  r)) - inf{llVXFl[ (n (x ,  r)) : F A E  CC B(x,  r)} . 

Thus, ~p -- 0 when E is area minimizing. If  E is an arbitrary set 0f finite perimeter and ~(x ,  r) < 
Cr  n-l+2~ for some x ~ 3E and all 0 < r < R with given constants C, R, and 0 < c~ < 1, then it 
follows from a result of  Tamanini [10] that there is an area minimizing tangent cone to OE at x. 

Definition 2.9. Let M denote a k-dimensional C l submanifold of  R n , 0 < k < n, and let 
f :  M ~ R be an arbitrary function. We will say that f is differentiable at x0 ~ M if f is the 
restriction to M of a function f :  U ~ ~ where is U C R n is some open set containing x0 and where 
f is differentiable at x0. 

Lemma 2.10. Let  M be an n - 1 -dimensional C 1 submanifold of l~ ~ and let f :  M ~ I~ be a 
Lipschitz function. Then f is differentiable at H n-  l almost all points o f  M. 

Proof. The manifold M near any of  its points x0 can be represented as the graph of a function 
defined on some open n - 1-bail B'  C N ~-l .  Thus, there is an open n-cylinder C of  the form 
C = B I x (a, b) such that C - M consists of  two nonempty connected, open sets and that each 
projection of  M n C onto the top and bottom of C is a homeomorphism. Let points x 6 C be denoted 
by x = (x I, y) where x ~ ~ B ~ and y ~ (a, b) and define f :  C --+ N by f ( x  t, y) = f ( x  ~, YM) 
where (x I, YM) is that unique point on M n C that is the projection of  (x ~, y). It is easy to verify 
that f :  C ~ N is Lipschitz and therefore, by Rademacher's theorem, that f is differentiable at 
(Lebesgue) almost all points of  C. Let N denote those points at which f is not differentiable. 
Clearly, if f is differentiable at a point (x t, yl ), then it is differentiable at any other point of  the form 
(x', y2). Now define d: C -+ R by d(x' ,  y)  = ]y - YMI. Note that d is Lipschitz and that d - l ( t )  
consists of  two copies of  M n C, one is a vertical distance of t units above M n C and the other is a 
vertical distance of  t units below M n C. Now employ the co-area formula to obtain 

L f$ 0 - -  ]gdl d x =  H n - l [ d - l ( t )  n N ] d t .  

Thus, for almost every t ~ (a, b), f is differentiable at H ~-1 almost all points of  d -1 (t). Conse- 
quently, f is differentiable at the corresponding points of  d -  l (0) ----- M n C; that is, f is differentiable 
at H n-  1 almost all points of  M n C, as required. [ ]  

In view of  the preceding lemma, we can define the directional derivative of  f relative to M at 
H n-l-almost  all x c M in the usual manner. Given a vector r in the tangent space to M at x, let 
y:  ( - 1 ,  1) ~ M be any C 1 curve with y(0) = x and yt(0) = r. Define 

D r f ( x )  = ( f o  y) ' (0)  

where it is understood that f is differentiable at x. Observe that this definition is independent of  the 
extension f .  

I f  we are given a Lipschitz vector field X: M ~ R n, by using usual methods, it now becomes 
clear how to define the divergence of  X relative to M, denoted by divMX. 

If the closure M of M is a C l manifold with boundary OM = -M - M and if X: R n ~ R n is 
a C 1 vector field with the property that for each x ~ M, X ( x )  is an element of  the tangent space to 
M at x, then the classical divergence theorem states 

fMd iVMX d H n - l  = fa (2.11) 
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where O is the outward pointing unit co-normal of  OM. That is, [O] = 1, tl is normal to OM, and 
tangent to M. 

D e f i n i t i o n  2.12.  Let M be an oriented n - l -dimensional  submanifold of  R n of  class C 1, ] ; that is, 
M is of  class C l and its unit normal v is Lipschitz. From Lemma 2.10, we have that the components of  
v are differentiable at n n- 1 almost all points of  M. Thus, divM v is defined n n- 1 almost everywhere 
on M. At  such points, we define the mean curvature of M at x as 

~ '~M(X)  = d i V M V ( X )  . 

If X: ~n ~ ]I~n is a C 1 vector field, consider its decomposit ion into its tangent and normal parts 

relative to M, 
X = X T + X • 

where 
X • = ( X .  v ) v .  

Then, at H n- ! almost all points in M, it follows that 

Hence, 

divMX • = (X �9 v)diVM v .  

divMX • = 7-IMX �9 v .  

On the other hand, from (2.11) we have 

fMdiVMXT d H n - l =  f 

Since divMX = divMX T + divMX • we obtain 

fMdivMXdH'-I=fM~MX'vdH'-'+fM X"TdHn-2" (2.13) 

3. Main results 

In this section we consider the following situation. 

I 

Let f2 be a bounded, convex domain in ]I~ n , n > 2. Let E C f2 denote 
a set which minimizes perimeter in the closure of  f2 subject to a volume 

constraint I EI  = v < 1~21. Thus ,  
P ( E , N  n) < P ( F , N  n) 

for all sets F C f2 with I F I = v. 

(3.1) 

We will first establish boundary regularity and curvature properties for such perimeter mini- 
mizers under the assumption that f2 is strictly convex and that Of2 c C 2. Convexity, nestedness, and 
uniqueness results will then be established under the further assumption that 

n = 2 or ~ satisfies a great circle condition. 

The assumption of  strict convexity and C 2 regularity will then be dispensed with in part through an 

approximation argument. 
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Associated with (3.1) is some further notation. We let H denote the convex hull of  a minimizer 
E of  (3.1), and we denote by H + that part of  H that lies "above" the equatorial disk Ds~ of  B~ as 
defined in (1.1). Since P divides H into two parts, we arbitrarily call one of them the part that lies 
"above" P .  

Next, we recall some facts concerning area minimizing sets with a volume constraint. The main 
result of  [3] is that if  E is area minimizing with a volume constraint, then 

~ ( x ,  r) < Cr  ~ (3.2) 

for each x ~ OE and for all sufficiently small r > 0. Consequently, it follows from work of 
Tamanini [10] that an area minimizing set E with a volume constraint possesses an area minimizing 
tangent cone at each point of  (O E) M f2. From this it follows that (0 E)  M f2 enjoys the same regularity 
properties as an area minimizing set; that is, (OE) N ~2 is real analytic except for a closed singular set 
S whose Hausdorff  dimension does not exceed n - 8. Furthermore, it was established in [4, Theorem 
3] that OE is an (n - 1) manifold of  class C 1 in some neighborhood of each point x ~ OE fq ~ 2 .  

The object of this section is to prove that E is convex and we begin by proving C 1, l, regularity 
of  OE near Of 2. For this we will need the following result of Br6zis and Kinderlehrer [1]. 

Theorem 3,3. Le t  a: R n -  1 __+ A n -  1 be a C 2 vector field satisfying the condition that for  each 

compact  C C ~ n - 1 ,  there exists a constant v = v (C)  > 0 such that 

(a (p )  - a (q ) )  . (p  - q)  >_ v [ p -  ql 2 

for  all p ,  q ~ C. Le t  U C R n -  1 be an open connected set and let  fl ~ C2(U) satisfy [3 <_ 0 on 0 U. 

Le t  f ~ C I ( U ) .  With K=K~ denoting the convex set o f  Lipschi tz  functions v satisfying v > [3 in 
U and v = 0 on OU, let u E K be a solution o f  

fu a ( V u )  �9 V(v -- u) dx  > f u  f ( v  - u) dx  

for  all v ~ K.  Then u ~ C I ' I ( v )  on ally domain V with V c U. 

P r o o f .  We now apply this result to obtain C l, 1 regularity of  the boundary of  a minimizer E of  the 
variational problem (3.1) near 0 f2. Since 0 E is an (n - 1) manifold of  class C 1 in some neighborhood 
of  each point x c OE fq 0f2, it follows that near such a point x, we may represent both 0E and 0f2 
as graphs of  functions u and r ,  respectively, defined on an open set U I ~ •n-1 containing x I where 
x = (x' ,  y") ,  y"  ~ R.  We will assume u and fl chosen in such a way that u > r ,  u = 0 on OU ~ 
and fl < 0 on 0U' .  Using the convexity of  g2, this can be accomplished by considering a hyperplane 
P0 passing through E and parallel  to the tangent plane to 8 E at x. By taking P0 sufficiently close to 
the tangent plane, U t can be defined as P0 M E. Now select v E K and for 0 < e < 1, define ue on 

U ~ as ue = u + e(v  - u). We will  assume e chosen small enough so that the graph of  uE remains in 
~2. Note that ue E K. Select a point z E (0E)  M fl  at which 0E is regular. Thus, 0E is real analytic 
near z and its mean curvature is a constant K there. In a neighborhood of z, we can represent 0E 
as the graph of  a function w defined on some open set W C R n-1 containing z t where z = (z r, z"). 

The neighborhoods about x and z where 0E is represented as a graph are taken to be disjoint. Let 
r E C ~ ( W )  denote a function with the property that 

f v '  ~o d H  n- I  = f u  (v - u) d H  n-1 , (3.4) 
! 
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and define we = w - e~o. The graphs of  the functions ue and we produce a perturbation of  the set 

E, say Ee. Because of  (3.4), we have that IEI = IEel. With 

= fu + + fv + ,woe, , 
the minimizing property of  0 E implies that F (0 )  < F ( e )  for all small e and therefore that F ' ( 0 )  > 0. 
Thus, 

f u  V u  " v(1) - u) - f v  Vw "V~~ 
' ~/1 + [Vul 2 ' ~/1 + IVwl 2 - 

Since w has a constant mean curvature K,  we obtain 

fv , V/1 + I V w l  2 , , , ' 

and therefore 

f u  Vu �9 V(v - u) > - K / u  (v - u) . (3.5) 
' ~/1 + IVul 2 - ' 

[ ]  

If  r / e  C ~ ( U  ~) denotes an arbitrary nonnegative test function, then with v - u = 17, (3.5) states 

that u is a weak solution of  7-t~E < K.  This combined with the C 1'1- regularity of  u implies that 
Notr < K pointwise almost everywhere in a neighborhood of  8~ .  Since 7-[oE = K in OE M (f2 \ S) 
with H n-1 (S) = 0 we have the following result. 

Theorem 3.6. Assume  that [2 is bounded, convex and has a C 2 boundary. I f  E is a minimizer  
of(3.1),  then 8 E ~ C 1'1 in some neighborhood o f  Of~. and T-loE < K Hn- l -a lmos t  everywhere on 

8E.  

We now will exploit Theorem 3.6 to establish both regularity and a mean curvature estimate for 

the boundary of  the convex hull of  E.  

Theorem 3.7. Assume  that f2 is bounded, strictly convex, and has a C 2 boundary. I f  E is a 
minimizer of(3.1)  with convex hull H,  then OH ~ C 1'1 and T-gaH <_ K Hn- l -a lmos t  everywhere 
on OH. 

P r o o f .  Note that the singular set S in 8E is a closed subset of  ~2 and thus separated from 0~2, in 
fact it is contained in the interior of  H ,  for i f  x ~ OE fq OH N ~2, then the tangent cone to 8E at x 
must be a hyperplane because E C H and H is convex. Consequently 8 E is regular at x. Let  N be 
an open neighborhood of  S with compact  closure in the interior of  H.  Thus, by Theorem 3.6 and 
the analyticity of  OE in f2 \ S we see that 0E is C 1' 1 at points in G : =  OE \ N .  Therefore, for some 

C we have 
Iv(x) -- v(Z)[ < Clx - zl x ,  z E G (3.8) 

where v(x)  is the outward unit normal to OE at x. Also since 8E is C 1 at points in G, there exists 

an e such that for a l l x  ~ G a n d z  ~ O E M B ( x , e )  wehave  

Iv (x ) .  (x - z)l < 1/2Ix - zl �9 (3.9) 

Choose x ~ 0E N 0 H  C G and let 0 < ot < 1/2. Then define 

1 
d = ot min{e, d is t (0H,  N) ,  ~-~, d iam E } .  
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Let y = x - d r ( x )  and observe that y is in the interior of  E since 0E  cannot intersect the line 
segment ~ at a point z # x due to (3.9). Let r = dist(y,  0E)  and note that 0 < r < d. Now 
choose any z ~ OE such that lY - zl = r .  Note that z ~ G, for otherwise we would have z ~ N and 

since Ix - zl < Ix - Yl + lY - zl, it would follow that 

d 
2d > Ix - z l  > dis t (0H,  N)  > - > 2 d ,  

0t 

a contradiction. Then, Ix - zl < Ix - Yl + lY - zl < 2d < e and both (3.8) and (3.9) hold. Thus, 
since x = y + d r ( x )  and z = y + rv ( z ) ,  we have [d - r[ < Iv(x) .  (x - z)[ and 

Ix - zl = I(d - r ) v ( x )  + r ( v ( x )  - v(z))[ < (1/2 --}- C r) l x  - z[ <_ 3/4Ix - zl , 

(since r < d < ot/(2c) < 1/(4c))  which implies that x = z and therefore r = d. This implies that 
for every x ~ 0E M 0 H  there exists a ball Bx C E of radius d containing x. 

Given any p ~ 0 H  we claim that p is a convex combination of  points {xi} in 0E  tq OH. To see 
this, note that if  C is a convex set with E C C, then E C C since i f  x ~ E then either x ~ C or 
x ~ OC; in the later case, x lies in a support plane of  C so i f x  ~ ~2, regularity theory implies that 
x ~ E C C, and i f x  E 0f2 then x is not in the singular set S of  E (since S is a compact  subset of  f2) 
so again x ~ E C C. Consequently from the definition of  convex hull H of  E as the intersection of  
all convex sets containing E, we see that E C H.  Moreover, H is the convex hull of  E from which 
we conclude by a well-known result that H is closed since E is a compact  subset of  ] i  n. Note that 
the set of  finite convex combinations of  points from E is convex, contains E,  and is contained in any 
convex set that contains E and so equals H.  Thus, if  p ~ OH we have p ~ H,  since H is closed, 
and consequently p = ) ' - ~ k  1 )~iXi for xi E E and ~ k _ l  ~,i = 1, )~i ~ O, i = 1 . . . k .  I f w e  take k to 
be as small as possible, then either k = 1 and p ~ E and the claim is trivially true, or p lies in the 
k dimensional  interior of  the convex hull M of  {xi } in which case no xi can lie in the interior of  H 
since then the same would be true of  p .  Consequently xi ~ O E fq O H,  i = 1 . . .  k, as claimed. 

Taking the convex hull of  U~_lBxi we see that there exists a ball Bp C H of radius d containing 

p,  i.e., H satisfies a uniform interior sphere condition. We claim that this implies OH is C 1,1. To 
see this, consider the problem of  prescribing unit vectors vl,  v2 ~ ]R n, and finding a convex set H ,  
satisfying the interior sphere condition noted above, and points x, y ~ 0 H  with v (x )  = Vl, v (y )  = 
v2, such that Ix - y[ is minimized. It is clear that x, y must lie in a two-dimensional plane orthogonal 
to the intersection of  two hyperplanes having vl, v2 as normals, i.e., one need only consider the 
two-dimensional  case where it is easy to see that one must have Bx ---- By.  Taking the center of  this 
ball  to be the origin, then v (x )  = x / d ,  v (y )  = y / d  and we trivially have 

I v ( x ) -  v(y)l  < l l x  - Yl- 

Since this is the case when Ix - y[ is smallest for fixed v(x),  v(y)  we have established that v (x )  is 
Lipschitz in general. 

We now prove that ~t~on < K H n - l - a l m o s t  everywhere in OH. Note that HOB = HOE H n - l -  

almost  everywhere on OE fq OH by Theorem 3.6. Thus we need only consider points p ~ OH \ OE. 

In fact since OH is C 1'1 we need only consider p ~ OH \ OE at which OH is classically twice 

differentiable. As above, any such p lies in the k-dimensional interior of  the convex hull M of  
certain points pi E OE, i = 1 . . . . .  k. Note that k ~ 1 due to p ~ OE. Choose a coordinate system 
such that points in ~ n  a r e  represented as (x, y, z),  x ~ IR k, y ~ ]I{ n - k - l ,  z E ]I~, with Z = 0 the 

tangent plane to 0 H  at p, Pi = (xi, O, 0), i = 1 . . . . .  k, and z > 0 in H.  We will construct an 
analytic function g whose graph does not lie below O H,  contains M, and has mean curvature bounded 
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above by K + 8 (for any 8 > O) in a small neighborhood of  p. This will lead to the conclusion that 
7-I~H < K at p. 

Let OE be represented as z = f ( x ,  y) for f defined in a neighborhood in l~ k x ]R n-k-1 of  
l-J(Xi, 0). Thus,  

(Xi, y, f (x i ,  y)) E OE C H 

for small [Y I, and consequently 

k k 

E~. i (Xi ,  y, f ( x i ,  y)) E H i f  E ~ . i  = 1, ~'i ~ 0 (3.10) 
i=1 i=1 

for small lYl. For any given x in N, where N is the convex hull of  the points xi, i = 1 . . . . .  k, let 
~. = Z(x) = (~.l(X) . . . . .  )~k (x)) be the unique vector such that 

k k 

X = E ~ i ( X ) X i ,  ~ " ~ i ( X )  = 1, 
i=l  i=1 

~.i(X) >__ O . 

Thus, if we define 
k 

g(x, y) = E )~i(x)f(xi, y) 
i=1 

we see from (3.10) for x e N and small [y[ that 

(x, y, g(x, y)) ~ H ,  

and so the surface z = g(x, y) does not lie below OH at such (x, y). 

Note that M fl 0f2 = O, for otherwise the plane z = 0, which contains M, would be a tangent 
plane to Of 2, thus contradicting the strict convexity of  0f2. Also M does not intersect the singular 
set of  OE since M C OH. Thus, OE is analytic at each Pi and therefore both f (xi,  y)  and g(x, y) 
are smooth for small lYl. Furthermore, 

0 < A y f ( X i ,  O) < A f ( x i ,  O) < K 

since Vf ( x i ,  O) = O, 7"LOE equals A f  at points where the gradient is zero, and the second derivatives 
of  f are nonnegative at (xi, 0) due to the fact that f > O, f ( x i ,  0) = 0 for all i. Hence, for any e > 0, 
Ay f (Xi, y) < (K -[- 8) for small enough ly[ so Ayg(X, y) < ( g  -[- 8) as well. However Axg = 0 
and so Ag < (K + e) for small lYl. Recall that OH is trapped between {z = 0} and the graph o f g  
over a region which contains p in its interior. Since g(p) = 0 and OH is twice differentiable at p 
we conclude that ~ a H ( P )  __ K as required. [ ]  

T h e o r e m  3.11. Assume that f2 is bounded, strictly convex and satisfies a great circle condition. 
I f  E is a minimizer of(3.1) with [Bill _< [El, then 

B ~ C E  

where B~ is the largest ball in f2. 

P r o o f .  If  I EI = I B~ I, then clearly E must be a ball. Since there is only one largest ball in f2 
due to strict convexity, we have E = Bf~. Otherwise I B~I < I EI. In this case, translate the upper 
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and lower hemispheres of Bf2 by a distance d in opposite directions orthogonal to TB~ until H,  the 
convex hull of the two translated hemispheres, intersects E in a set of measure I Bf2[, i.e., 

I n  N Et = IB~I.  (3.12) 

This is possible because of the great circle condition and because [2 is bounded and convex. Now 
translate the hemispheres back to their original positions while rigidly carrying along the parts of E 
lying in the exterior of  H. Let/~ be the union of the translated parts of E with B~. Note that 

I/~l = IEI and therefore e(/~) > P ( E ) .  (3.13) 

Using a standard inequality, cf. [8], we have 

P(E)  + e ( n )  >__ P (E  n H) + P(E  U H) 

where P(S)  denotes P(S, ~n). For brevity, write D = Den- Observe that 

P(H)  = 2dnn-2(OD) + P(B~),  P(E  U H) = P(E)  + 2dnn-2(OD) 

and thus 

P(E)  + P(B~)  >_ P (E  n H) + P(E)  . 

In view of (3.13 ) it follows that P (E O H)  _< P (Ba). But then the isoperimetric inequality and (3.12) 
imply that E O H is a ball. However, f2 contains only one largest ball and so we must have 
E A H = B~, i.e., B~ C E. [ ]  

Suppose M is an oriented (n - 1)-dimensional C 1 submanifold of R n and f :  M ~ ]~n-1 

a C 1 mapping. Let J f ( x )  denote the Jacobian of f at x and note that the sign of the Jacobian 
depends on the orientation of M. We recall the following result, cf. [2, Theorem 3.2.20]: For any 
H n- l_measurable set E C M and any H n- l_measurable function ~0, 

o[f  (x)] IJ f (x)[  d H n - l ( x )  = f ~o(y)N(f, E, y) dy (3.14) 

where N ( f ,  E, y) denotes the number (possibly infinite) of points in f - 1  (y) n E. Here equality is 
understood in the sense that if one side is finite, then so is the other. In our application (3.18) below, 
we will know the left side is finite, therefore ensuring that N( f ,  E, y) is finite for almost all y. 

Lemma 3.15. There is a constant C = C(n) such that for each x ~ (O E) n ~2 we have 

Hn-I((OE) O B(x, r)) 

for almost all sufficiently small r > O. 

rn-1 
_<C 

Proof. It follows from (3.2) that we may as well assume 0E is area minimizing. In this case, the 
result follows immediately from the fact that 

Hn-I((OE) n B(x, r)) 

rn-1 

is nondecreasing in r, for r > 0 sufficiently small, cf. [2, Theorem 3.4.3]. [ ]  
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L e m m a  3.16. For every e > O and any open set V C R n contalning the singular set S o f  O E,  
there exists an open set W and a Lipschitz function f such that 

S C W C { f  = I }  

spt f C V 

f0 [Vfl d H  n-1 e . < 
E 

Proof .  Let V be any open set containing S and let 8 = 1/2(dist S, IR n - V). Since Hn-7 (S )  = 0 
and S is compact, there is a finite collection of open balls {B(xi,  ri)}m_l such that 2ri < 8, B(xi ,  r i )O 
S ~ f3, S C Om=lB(Xi, ri) and 

m 

S,  n-7 r < C '  
i = 1  

C as in Lemma 3.15. We will assume that each ball B(xi ,  ri) has been chosen so that ri < 1 and 
that 2ri satisfies Lemma 3.15. Let W denote the union of these balls and define f / b y  

1 if Ix - x i ]  ~ ri 
f i ( x )  = 2 - Ix-xi______2 if ri < Ix - -  xil < 2ri 

i- i - -  - -  
0 if 2ri < Ix - -  x i [  �9 

In view of Lemma 3.15, it follows that 

fB  [V3~[ dHn-1  < Crn-2  < Crn-7 " 
( x i , r i ) n a E  

Now let f := maxl<i<m j~. Then f is Lipschitz, W C {f  = 1}, spt f C V and 

fOE IVfl d H  n-1 ~ f B  I V f i l d H n - 1  
i = 1  ( x i ' r i ) n O E  

m 

< C ~ [ , r  < e .  
i 

i = 1  

[] 

L e m m a  3.17. Let  T denote the (n - D-rectifiable current determined by ( O E)  +, the part o f  O E 
that lies above the equatorial disk D := D s~ o f  Bf~. Then 0 T is the n - 2-sphere given by 0 T = O D. 

Proof. Clearly, the support of 0 T contains the (n - 2) sphere, but we must rule out the possibility of 
it containing points of S as well For this purpose, choose x ~ S and let ~o be any smooth differential 
form supported in some neighborhood o fx  that does not meet (OE) + O OD. It suffices to show that 
T(dtp) = 0. Let/z denote H n-I  restricted to (OE) +. Appealing to Lemma 3.16, we can produce a 
sequence of Lipschitz functions {o9i } such that 

o9i --~ 1/z a.e. 

I V~oi[ ~ 0/z  a.e. 

wi vanishes in a neighborhood of S 

SO [Vo)i[ d/~ ~ O. 
E)+ 
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Thus, we obtain 

0 = T(d(~oogi)) = T(d~o A r -}- T(~O A dogi) 

E)+ E)+ 

The first integral tends to 

f(o d~o = T(d~o) 
E)+ 

while the second tends to 0. Thus, T(d~o) = O. [] 

Let E denote a minimizer of  (3.1), where f2 is strictly convex with C 2 boundary. Since 0E is 
locally an n - 1-manifold of  class C 1 except for a singular set S whose Hausdorff dimension does 
not exceed n - 8, it follows that 0 E can be regarded as an oriented n - 1 integral current whose 
boundary is 0; i.e., an oriented n - 1 integral cycle. 

Let T denote the n - 1 integral current represented by (0E) n H +. Since 0E is of  class C 1,1 
in a neighborhood of  each point of  (0E) n (0f2), it follows that the tangent cone to 0E at such 
points is in fact a tangent plane. Consequently, 0E is analytic near such points and therefore the 
singular set S of  0 E lies in the interior of  (0 E) n H +. We know from Lemma 3.17 that the boundary 
of  T is the n - 2-sphere determined by 0DB~, the equator of  B~. Let p: ]I~ n ~ TBf 2 denote the 
orthogonal projection and consider the current R :=  p#(T). Note that OR = p#(OT) = ODB~. 

Furthermore, DB~ is the unique current in TB~ whose boundary is 0 DB, and, therefore, we conclude 
that R ----- Ds~.  Let us consider the action of  R operating on an n - 1-form ~o. For this we will 
let or(x) denote the Grassman (n - 1)-vector of  norm one that is in the tangent plane orthogonal to 
v(E, x), the exterior normal to E at x. or(x) is chosen in such a way that a(x) A v(E, x) forms the 
Grassman unit n-vector that induces a positive orientation of  ]R n. Also, we let dp(a(x)) denote the 
value of  the differential of  p operating on a(x). Then, with the help of  (3.14), we have 

R(~o) = T(p#~o) 

(OE)AH+ p#~o �9 Ot 

= f tp[p(x)],  dp(ot(x)) d H n - l ( x )  
E)OH + 

[ tp(y)[N+(p, OE, y) - N - ( p ,  OE, y)] dy 
dD B~ 

where N+(p, OE, y) denotes the number of  points of  p - l ( y )  O OE at which Jp is positive and 
similarly, N - ( p ,  OE, y) denotes the number of  points of  p - l ( y )  O OE at which Jp is negative. 
Since R = DB, ,  we conclude that 

N+ (p, OE, y) - N -  (p, OE, y) ---- 1 (3.18) 

for almost all y ~ DBf2. 

Lemma 3.19.  Assume that ~2 is bounded, strictly convex, has a C 2 boundary, and satisfies a great 
circle condition. Let H denote the convex hull for any minimizer E of the variational problem (3.1). 
Then there is a constant K such that 7~OH = K at H n-1 almost all points of(OH) n ~2. 

P r o o f .  First, we recall that 0 E O ~ is C1 at all of  its points except for a singular set S C 0 E n f2 
whose Hausdorff dimension does not exceed n - 8. Furthermore, we know that 0E  n f2 is real 
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analytic at all points away from S and that OH is C 1,1. Finally, we know that E contains Bf~. Let 
(OE) + and (OH) + denote the parts of  OE and OH respectively that lie above the equatorial plane 
P of  Bf~. Let p: •n __+ p denote the orthogonal projection. The mean curvature of  OE is equal 
to a constant K at all points of  OE O (32 - S). Let X denote the vertical unit vector. We wish to 
apply (2.13) with (OE) + replacing M. Referring to the proof of  Lemma 3.17, we see that this can 
be done in spite of  the singular set S ~ (0 E)+.  Thus, applying (2.13), we obtain 

fO T-l~l-IX" vH dHn- l  = f o  T-loEX " vE E)+ (3.20) 

where VH and VE denote the unit exterior normals to H and E, respectively. Let 

a = (OE) + n (OH) + 

B = ((OH) + - A) n {x : ~ a n ( x )  < K} 

C = ((OH) + - A) n {x : 7-/all(X) = K} .  

Since ~OH <-- K Hn-l-a.e. in (OH) + O f2, it suffices to prove that 

H n-l (B) = 0 .  (3.21) 

Observe that both B and C are subsets of  OH +. Note also that A, B, and C are mutually disjoint 
subsets of  (OH) + with H n-1 [ (OH)  + - (A U B U C)] = 0. Thus, p(A), p(B), and p(C) are mutually 
disjoint and their union occupies almost all of  DBn. Clearly, VE and vn as well as N o n  and 7-/0E 
agree H n- 1 almost everywhere on A. Therefore, 

fAT-[oHX" VH dHn-I  = fAT-[oEX. VE dHn-1 .  (3.22) 

Since X �9 VH is the Jacobian of  the mapping p: OH + --+ DB~, it follows from (3.14) that 

f B  ~ X "  YH < , 
dHn-1 KHn-I[p(B)]  

fC ~ dH n-1 KHn-I[p(C)] " 

Now let 

A* = ((OE) + ) N p - l [ p ( A ) ] ,  

B* = ((OE) + ) N p - l [ p ( B ) ]  , 

C* = ((OE) + ) N p - l [ p ( C ) ] .  

Next, observe that both B* and C* are subsets of  f2. To see this, consider x ~ B*. If  it were 
true that x E B* n 032, then x ~ (OH) + and thus x ~ A. This is impossible since p(A) and p(B) 
are disjoint. A similar argument holds for C*. Referring to (3.14) and (3.18), we obtain 

fB* " ve 
dHn-1 7-toEX 

fB fB X " vE dHn-1 = K �9 X �9 VE dH n-1 + K *n{x:X.ve(x)<O} 
n{x:X.vE(x)>O} 

= K fp(B,)N+(p,  OE, y) - N - ( p ,  OE, y) dHn- l (y )  

= KHn-I[p(B*)] 

= KHn-I[p(B)] .  
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c* 7"IoEX. VE dH n-1 = KHn-I[p(C*)] = KHn-I[p(C)] 

and 
A* K X  . VE dH n-1 = KHn-I(p(A)) �9 

Finally, in view ofthe fact that A C (OH) + and therefore that N + ( p ,  A, y) = 1 andN-(p,  A, y) = 0 
for Hn- l - a lmos t  all y ~ p(A), we obtain 

A K X "  VE d H  n-I  = K H n - I ( p ( A ) )  �9 

Now, using the facts that A* - A C ~ and ~ a E  = K on A* - A - S, we obtain 

A* ~L[oEX" I)E d H n - 1  

= fA, K X ' v E  dH~-I + fA,(7~aE--K)X'v~ dH~-I 

= fA, KX" vE dHn-I + fA(7-[oE -- K)X" vE dHn-1 

= KHn-I(p(A)) - KHn-I(p(A)) + fA 7taEX �9 VE dH n-1 

= L 7-laEX" VE dH n-1 �9 

Under the assumption Hn-l(B) > 0, we would obtain 

fa ~aHX'vlldHn-I < fA 7-IOHX'vHdHn-I +KHn-I[p(B)]+KHn-I[p(C)] 
H) + 

= fAT~OEX �9 1)E dH n-1 + KHn-I[p(B*)] + KHn-I[p(C*)] 

= fA* 7-[aEX" VE dH n-t + KHn-I[p(B*)] + KHn-l[p(C*)] 

= fA, 7-IOEX'vEdHn-I+fB,  7-IoEX'vEdHn-' 

+ fc* 7"[oEX. VE d H  n-1 

= fA*UB*UC* 7-[oEX �9 VE d H  n-1 

< f(o 7-[aEX" VE dH n-1 , 
E)+ 

where we have used that A*, B*, and C* are mutually disjoint. This would contradict (3.20), thus 
establishing (3.21). [ ]  

A function u ~ C 1 (W) is called a weak subsolution (supersolution) of the equation of constant 
K mean curvature if 

fw Vu �9 Vtp Mu(~o) = ~ /~_- i~u l  2 K~odx < 0 (> O) 
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whenever ~0 e Co l (W), ~0 >_ O. 

We note that if u ~ C 1,1 and classically satisfies the equation of  constant mean curvature 
equation almost everywhere, then u is a weak solution. 

The following result will be stated in the context of  R n-1 because of  its applications in the 
subsequent development. 

L e m m a  3.23. Suppose W is an open subset of  R n-1. I f  ul, u2 E CI (W) are, respectively, weak 
super and subsolutions of the equation of constant mean curvature in W and i f  ul (xo) = u2(xo) for 
somexo ~ W whileul(x) >__ u 2 ( x ) f o r a l l x  E W, then 

Ul(X ) = U2(X ) 

for all x in some closed baU contained in W centered at xo. 

P r o o f .  Define 

ut = tUl + (1 -- t)u2 for t 6 [0, 1],  

tO = Ul - - U 2  , 

f aiJ (x) 
J0 \~/1  + IVutl 2 ] 

f o i l (  Diut(x)Djut(x)  a dt . 
= x/1 + iVutl2 ~ i j  - -  (1 + IVutl 2) ,] 

Since both Ul and u2 are continuously differentiable in W, for each open set V C C  W containing 
xo there exists M > 0 such that IVut(x)l <_ M for all x ~ V and all t ~ [0, 1]. Hence, 

aiJ(x)~i~j > 

Z aij (x)2 --< 

i,j 

~o ~ C~ (W), ~o _> 0, we For have 

0 < 

1 
[~12, for all ~ 6 R n - l , x  E V ,  

(1 q- M 2 ) l / 2  

C, f o r a l l x  ~ V .  

Mul (~o) -- Mu2(~0) 

1 d (Vut(x). V~o(x)~ d t d x  ff 
JwJo -~ \ ~/1 +-IVut[ - - - ~  ,] 

L = a ~j (x)Dj w(x)Di~o(x) dx . 

Thus, w is a weak supersolution of  the equation 

Di(aiJ ojllo) = 0 

and since w > 0, the weak Harnack inequality yields 

(r-nfB(xo,2r) lW(x) lPdx)  1/p 

whenever 1 < n < n/(n - 2) and B(x0, 4r)  C W. 

< C  inf w = 0  
B(xo,r) 

[]  
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Theorem 3.24.  Suppose f2 is a bounded, strictly convex domain with C 2 boundary that satisfies 
a great circle condition. Then any minimizer E o f  the variationalproblem (3.1) is convex. 

R e m a r k  3.25.  Later we show that neither smoothness of  0 f2 nor strict convexity are required. In 
addition, the great circle condition is unnecessary in ~2. The same applies to the uniqueness result 
below. [ ]  

Proof. It suffices to show that H = E where H denotes the convex hull of  E. Assume OH r OE 
so there exists x ~ OH \ OE. Thus, as in the proof of  the mean curvature inequality in Theorem 3.7, 
we see that x lies in the convex hull M of  distinct points Pi E OH OOE,  i = 1 . . . . .  k, k > 1. 
Furthermore, each Pi is an element of  f2 due to the fact that they all lie in a single support plane 
of  H ;  hence, if one Pi were to lie in 0 ~ then they all would, thus contradicting strict convexity. 
Referring to Lemma 3.23, we see that OH and OE agree in a neighborhood of  the points pi. Since 
M is connected, it follows again from Lemma 3.23 that M C 0E n OH, which contradicts x r 0E. 
Consequently, OH C OE and thus P ( H )  < P ( E ) .  However, E C H so [E[ _< [HI. Assume 
[El < [HI. Dilate H to obtain/-) C f2 satisfying I/-)[ = IE[. But then P(/-)) < P ( H )  < P ( E ) ,  
which contradicts the minimality of  E. Thus, [El = [HI so that E and H have the same measure 
theoretic closure. Hence, due to our convention concerning distinguished representatives for sets of  
finite perimeter, E = H and E is convex. [ ]  

Theorem 3.26.  / f  g2 is as in Theorem 3.24, then perimeter minimizers with measure exceeding 
IB~I are nested and unique. That is, i f  E and F are perimeter minimizers, then 

In~l ~ IFI < IEI ~ E C F (3.26.1) 

and 

In~l ~ IFI = IEI ====~ F = E .  

In addition, perimeter minimizers have disjoint boundaries relative to [2 in the sense that 

(3.26.2) 

IB~I _ IFI < IEI '~ OF OOE C Of 2. 

R e m a r k  3.27.  Note that the assumption of  convexity can be relaxed. It is only required that the 
intersection of  f2 with any vertical line is an interval. In addition, 0f2 must not contain vertical line 
segments. [ ]  

Proof. To prove (3.26.1) we argue by contradiction. If  E and F are perimeter minimizers satisfying 
[B~I < IFI < IEI, then assume F is not a subset of  E. From Theorems 3.11 and 3.24 we see that 
E and F are convex and contain B~. Since F is not a subset of  E,  one can employ the proof of  
Theorem 3.11, with F playing the role of  B~, to prove that there is a second perimeter minimizer E* 
which contains F and satisfies ]E* I = I EI. Let H be the analog of  H in the proof of  Theorem 3.11 
and let D ~ denote the interior of  D :=  DB~. 

We will use the properties of  perimeter minimizers to show that OH and 0 (H  U E) are analytic 
and coincide on some open set. By connectedness, this will show they are identical, thus establishing 
the desired contradiction. 

Let O be the interior of  OH \ (H U E) ~ relative to OH, and 0 0  represent the boundary of  O 
relative to OH. Assume there exists a point 

x E O O A p - I ( D ~  
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Note that x E 0 H n 0 E n 0 ( H  u E) O p -  1(DO). Let y be the point on 0 F O 0 E* which was translated 
(as in the definition of H )  to x. Since 0 0  has positive H n 2 measure ( 0 0  n p - 1  (D o) r O) we can 
assume y ~ S, S being the singular set for E*. 

Since x E 0E C f2, y lies in f2 and consequently 0 H  is analytic in a neighborhood o f x  since 
0 F is analytic in a neighborhood of y. Similarly H U E inherits analyticity (in a neighborhood of  
x) from 0E* since x ~ 0 ( H  U E) and y r S. However, OH N O C 0 ( H  U E)  so OH and 0 ( H  U E) 
coincide on open (relative to OH) subsets of  any neighborhood of x so by analyticity OH coincides 
with 0 (H  U E)  in some neighborhood of x. But this contradicts x ~ 0 0  so 0 0  N p -  1 (D o) is empty. 

Note that (OH \ E)  n p -  1 ( D  ~ ) contains points lying both above and below D since 82 is strictly 
convex and H is the hull of  the translated halves of  F (which contain the hemispheres of  the largest 
ball B~). Thus, the same is true of  O O p - 1  (DO). Combined with 0 0  N p - 1  (D o) = O, this implies 
OH O p - 1  (D o) O E ~ = O, i.e., E C H.  Of  course this is absurd because IEI > IFI = IHI. Thus, 
the assumption that F is not contained in E is false, i.e., F C E as required. 

Now assume that IBf21 < IFI = IEI = v. Choosing a sequence of  perimeter minimizers F/ 
of  measure vi ~ v, it follows from (3.26.1) that Fi C E O F. Consequently, IE n FI = v and so 
E = F .  

To prove that minimizers are strictly nested in the sense defined above, assume that IB~I < 
[FI < IE[ and so F C E. Assume in addition that G :-- (OF n OE O f2) ~ is not empty. Since 
F, E are analytic in f2 and nested, it is clear that HOF > 7-/0E at points in G. Given that 7-/0F, 7-L0e 
are constants, say kf ,  ke, in ~2 and equal almost everywhere on 0 F n 0 E N 0 f2, we may derive a 
contradiction from k f  > ke through the use of  (2.13). In fact, we obtain 

f o ~ t O F d H n - l = H n - 2 ( O D ) = f D T ( O e d H  n-1 (3.28) 

t X where 7-l~F(X) := 7-L~F(p-I(x) n OF) and 7-/0~( ) :=  7toe(p -~ (x) N OE). However, with A := 
OF n 082 and B := OF N 82, we see that 

fD 7-~tOE d H n - l  = fp(A) 7"[toF dHn- t  -l- fp(B, 7"ZtoE dHn-1 

< - f p  (A) 7"LtoF dHn- l  q- fp(B) 7-[toF dHn-1 (3.29) 

fD ,~! n--1 = OF d H  , 

and thus we have equality due to (3.28). Therefore, 7-/~E = ke = k f  • "]"LtOF on p(B).  However, 
�9 l I since 7-/08 = 7-/aF almost everywhere on p(A),  we obtain 

~'[tO E • ke = k f = ~'~tO F H n - l - a l m o s t  everywhere on D .  

Thus, for x ~ OF O OE, apply Lemma 3.23 to conclude that OF and OE coincide in a neighborhood 
of  x. Thus, p(OF n OE) is both open and closed relative to D ~ and therefore contains D ~ a 
contradiction since I FI < [EI. [ ]  

We now dispense with the assumptions of  strict convexity and smoothness of  0f2. When the 
assumption of  strict convexity is dropped, complications arise because there is no longer a unique 
largest bail in f2. Eliminating the smoothness assumption on the boundary forces us to take limits of  
perimeter minimizers, and to establish convexity of  all perimeter minimizers through a uniqueness 
theorem. 
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One interesting observation is that a perimeter minimizer can be thought of  as a smooth ap- 
proximation of  f2, especially when its measure is close to that of  f2. This is due to the fact that even 
after we have dispensed with the smoothness assumption on 0f~, perimeter minimizers still have 
C1' 1 boundaries. 

For the proof of  Theorem 3.31, we need the following lemma. 

L e n u n a  3.30,  Let  a < c < b and let 11, I2 denote the closed intervals [a, c] and [c, b], respec- 
tively. Le t  f l  and f 2 be functions such that f i ~ C 2 ( I i ) , i = 1, 2, with f l ( c ) = f 2 ( c ). Furthermore, 
assume there are constants Cl , c2, and c3 such that 

(i) fitt < c l  < O o n l i ,  i = 1 , 2 ,  

(ii) f (  _> c2 > 0 on 11 and f~ < c3 < 0 on/2 .  

Then, there exists a C 2, s~ ic@ concave function g on [a, b] such that g is uniformly close to f on 
[a, b] and that g = f on the complement  o f  any given open interval containing c. 

P r o o f .  A given open interval containing c in turn contains an open interval I = (d ,  b ~) with c e I 
determined by the constants cl, c2, and c3 such that the following three conditions hold: 

(i) There are points x1, x2 E I with x1 < c < x2 such that f l ( x l )  = f2(x2). 

(ii) There are polynomials Pi of degree 2 (i=1,2) such that p i ( x i )  = f i ( x i )  and such that the 
functions 

f l (x )  f o r a < x < x l  h a ( x ) : =  pz (x )  
hi (x ) :=  pl(x) forxl < x  < c  

are C 2 and strictly concave on Ii. 

(iii) There is a point c '  ~ I such that hl (c  t) = h2(c'). 

for x 2 < x < b 
for c < x < x 2 

Thus, the function 
{h~ o n [ a , c ' ]  

h : =  h2 o n [ c  t ,b] 

is strictly concave on [a, b]. We will now mollify h restricted to I by using a smooth mollifying 
kernel ~o with the property that 

tp~ . p (x )  = p (x )  

whenever p is a polynomial of  degree 2, e > 0, and x ~ •, cf. [11, Lemma 3.5.6]. Thus, for 
sufficiently small e > 0, ~0~. h(x)  = h(x) ,  fo rx  ~ (a r + e, c t - e) t3 (c' + e, b p - e). Also, ~0~ �9 h 
is strictly concave since h is. Thus, our desired function g is defined by 

h(x) f o r a  < x < a t + e  
g ( x ) =  ~oe . h (x )  for a' + e < x < c' - e 

h(x)  for c '  - e < x < b. 

[] 

We define H~ to be the union of  all largest balls in [2. Thus, Hf2 is the convex hull of  the two 
largest balls which are furthest apart. H~ essentially plays the role of  B~. 

T h e o r e m  3.31.  Suppose [2 is a bounded, convex domain that satisfies a great circle condition. 
Given v, IH~J < v < I[2J there is a unique minimizer E with JE I = v o f  the variational problem(3.1). 
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E is convex with C 1'1 boundary. Such minimizers are nested with disjoint boundaries relative to ~2 
as in Theorem 3.26. I f]B~[ < v < [Hf~[, then any minimizer E is the convex hull o f  two largest 
balls (clearly uniqueness is lost for v < [H~[). 

Proof. We first smooth [2 and then establish the existence of  a nested family of  convex perimeter 
minimizers by taking limits. We finish by adapting the uniqueness result of  Theorem 3.26 and the 
proof of  disjointness of  boundaries. 

Let TB, be the hyperplane which intersects orthogonally the midpoint of  the line segment 
joining the centers of  the two largest balls whose hull forms Ha.  Think of  the "vertical" axis as 
coinciding with this line segment and take the origin of  our coordinate system to be the midpoint just 
mentioned. As defined previously, p is orthogonal projection onto Tse. Let B~ be the largest ball in 
f2 with equatorial plane in TB,. Let Ds~ = p([2) so Ds~ is an (n - 1)-ball. Let C be the interior of  
the union of  a closed right circular cone with base DB,  with its reflection across TB~. Let B be the 
largest ball in C and note that C \ B has three components (four in ~2). Let Co denote the component 
(or union of  two components in ]~2) which intersects DB~ and consider the set Cl = C \ C--t0. 

First we show that f2 can be approximated arbitrarily closely by strictly convex sets satisfying 
a great circle condition, then we will approximate the latter by sets with C 2 boundary of  the same 
type. Note that f2 fq C1 is convex and satisfies a great circle condition with B being the largest ball. 
Also O(f2 fq C1) consists of  the union of  the graphs of  functions 3~, i = 1, 2, f l  --> 0, f2 --< 0. Let 
g2 ~ be the set whose boundary is the union of  the graphs of  f~ + eb, f2 - eb where e > 0 and b is 
the function whose graph is the upper hemisphere of  B. Note that f2' is strictly convex and satisfies 
a great circle condition. Also, as e --+ 0, C approaches a cylinder, and fl '  --+ fl in the Hausdorff 
sense. 

We now may assume without loss of  generality that [2 is strictly convex. Consider G -- f2 fq C. 
Note that 0G is the union of  graphs of  3~ : DB~ ~ R, i = 1, 2 with f l  > 0, f2 < O. Given r > 0 
let Br be the ball of  radius r concentric to B~, Dr ---- DS~ fq Br,and R the radius of  B~. Also let 
be the distance from 0B2 tq 0C to the vertical axis. 

Consider e, 0 < e < < R. For a smooth radially symmetric approximate identity r/e supported 
in Be let fe = f l  * 0e. Thus, fe is defined in DR-~ and is a surface of  revolution in A~ = DR-~ \ D~+e 

Now consider ~ > 0 such that ~ < R - 8 but 0BR-~ does not intersect 0C. Take e small 
enough that the graph of  fe does not intersect 0BR-~. Let ge : [~ + e, R -- e] ~ 1~ be the function 
the rotation of  whose graph around the vertical axis produces the graph of  f~ over Ae. In the r, z 
plane let C2 be a circle of  radius s > > R with center on the negative r axis which passes through 
(R - ~, 0). Let c : [T + e, R - e] ~ ~ be the function whose graph lies in the upper half of  C2 and 
define he = min(ge, c) on [~ + e, R - 8]. Note that h~ is a strictly concave function and is smooth 
except at the point q of  intersection of  the graphs of  ge and c (which exists if s is large enough). 
Now employ Lemma 3.30 to alter he in a small neighborhood of  q to produce a C 2 function which 
is still strictly concave. 

Consider the surface obtained by taking the union of  the surface of  revolution formed by rotating 
the graph of  the smoothed he with the graph of  fe over DT+e. This is a C 2 surface and when combined 
with a similarly constructed surface for f2 produces the boundary of  a strictly convex set f2e. Note 
that 0f2e is C 2 and that f2e satisfies a great circle condition with BR-~ being the largest ball. Also, 
as C approaches a cylinder and 3, e ~ 0 we have ~2e --+ f2 in the Hausdorff sense as required. To 
make the process of  taking limits easier in the following we can dilate the sets g28 a small amount 
so they contain f2. 

Thus, there exists a sequence of  C 2 strictly convex sets f2n which contain g2, satisfy a great circle 
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condition, and which converge to f2 in the Hausdorff sense. For v, IBal < v _ IS21 (and n large 
enough so IBan I < v) let En(v) be the unique perimeter minimizer in [2n of  measure v. It is easy 
to see that for a dense set of  vis we can, by repeatedly extracting subsequences and diagonalizing, 
construct a subsequence of  En such that for all i, En(vi) converges (on the subsequence) to E(vi), 
a subset of  f2, in the Hausdorff sense. Nestedness and convexity are clearly inherited. Thus taking 
intersections of  appropriate E(vi) we extend the definition of  E(v) to all v, IBal < v < If21. 
Nestedness allows us to extend convergence to all such v. 

We claim that the sets E(v) are perimeter minimizers relative to f2. To see this note that given 
any set F C f2 with [FI -- v we have F C [2n since [2 C f2n; consequently by lower semicontinuity 
of  perimeter we have 

e(E(v))  < l iminf  e(En(v)) < P(F) 

(with the liminf taken over the subsequence), i.e., E(v) is a perimeter minimizer. 

For v, 0 < v < I Hal  we can characterize perimeter minimizers. Assume E is a perimeter 
minimizer of  measure v. If  0 < v < I Ba I, then E is clearly a ball. If  I Ba I < v < I H a  I, we claim 
that E is the convex hull of  two largest balls in [2. In proving this we will also prove for v > [Ha[ 
that any perimeter minimizer E satisfies H a  C E. Assume IBal < v. Consider the following 
extension of  the proof of  Theorem 3.11. As it stands, the proof of  Theorem 3.11 implies that E 
contains a largest (in f2) ball. In fact one can conclude much more. Let B1, Be be the closed balls 
whose convex hull is Ha ,  let e be the line through their centers, and consider any set H which is the 
convex hull of  two translates of  B1 with centers on e such that IH n El = IBll and H fq H a  contains 
a translate of  B1. A mild variation in the proof of  Theorem 3.11 shows that H fq E is a translate of  
B1. We claim that this implies that E fq H a  is the convex hull of  two translates of  B1. To see this 
let B3, B4 C E be distinct translates of  B1 with x being the midpoint between their centers. Since 
the hull of  B3, B4 has measure larger than [Bl I, construct H as above using translates of  B1 placed 
symmetrically with respect to x. However, H fq E is a translate of  Bl. Thus there is a translate of  
B1 contained in E lying strictly between two such balls. Therefore, the centers of  such balls form 
an interval in s 

Now take ~ to be the vertical axis with B1 lying above Be, let Bu, BI be the uppermost and 
lowest translates of  B1 in E, and Eu, E1 the parts of  E strictly above and below Bu, Bt, respectively. 
Assume Eu is not empty so IEu I ~ 0. If  Bu ~ B1, construct H as above by translating hemispheres 
of  B1 so that H contains subsets of  positive measure from both E fq H a  and Eu. However, this is 
a contradiction since by the above E f3 H is a translate of  B1 which cannot possibly intersect Eu. 
Thus, E~ not empty implies Bu = B1. Similarly El not empty implies Bl : B2. This establishes 
the claim. 

Moreover, one can conclude that v > IHfzl implies Ha  C E. To see this note if v > IHal then 
at least one of  Eu, El is nonempty. If  both are nonempty, then Ha  C E as claimed. If  only one is 
nonempty, say Eu, then translate E as far down as possible while remaining in f2 to form a set E* 
which contains Be (El is empty). Note that E* is also a perimeter minimizer of  measure v. Thus, 
E* nonempty, i.e., E* = E with Ha  C E as required. 

Now that we have characterized perimeter minimizers for v, 0 < v < I Hal  we can redefine 
E (v) so that E (v) is the convex hull of  two translates of  B1, symmetrically placed in H~, if I Bll < 
v < I H a  I, and E (v) is a symmetrically placed ball i f0  < v < I B1 I. Thus, we have a nested collection 
of  convex perimeter minimizers which can be used to establish uniqueness. Given ~, Ina l  < ~, 
assume that E is a perimeter minimizer with measure ~. Recall from above that Ha  C E. Before 
proceeding we define an auxiliary collection {H (v) : I Hal _< v _< ~}, H(v)  defined analogously to 
H in Theorem 3.11 by translating the halves of  E(v) the least possible amount such that the resultant 
hull H(v) satisfies IH(v)AEI = v. Note that the sets H(v) arenested sinceif [H~I < v < w andone 
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translates the halves of  E (w) the same distance as for E (v) in the definition of  H (v), and calls the hull 
of  the translated halves/-), then [ H \ H ( v ) [ = w - v so [ H n E ] = [ ( / t  \ H ( v )) n E [ + [ H ( v ) O E [ < 
(w - v) + v = w, i.e., H(v) C 151 C H(w)  as required. 

Let v0 = sup{v : E(v) C E}. If  v0 = [El, then E = E(vo), otherwise v0 < [El so E~ 
not empty. Let B be a closed ball of  positive radius in E ~ \ E(vo), Vl = sup{v : H(v)  O B is empty }, 
and v2 = inf{v : B C H(v)}. Clearly/3 2 = IH(v2) n El ___ I n ( v l )  n El + IBI = 131 "[- [BI so 
choosing v, vl < v < v2 we see that B contains points in H(v) and its complement. Consequently, 
OH(v) intersects B. One can now proceed as in the proof of  Theorem 3.26 with H replaced by H(v) 
with the following modifications. In proving that (OH(v) \ E) n p-1 (DOse) is not empty, one uses 
the fact proved above that H~ C F so that H(v) contains a convex hull of  "largest balls" which is 
larger than H~ and thus must intersect the complement of  ~2. Finally we see that the conclusion 
OH(v) O p - l ( D ~ n )  n E ~ = O is absurd due to our construction in which OH(v) intersects E ~ 
Thus, the assumption that v0 < IEI must be false and consequently E = E(IEI)  as required. 

It remains only to prove the disjointness result. The proof is identical to that in Theorem 3.26 
once we have established that minimizers have C l, 1 boundaries and satisfy the same mean curvature 
properties as before. Assume IH~I _ v < If21. Let En(v) be as above and note that kn, the 
constant mean curvature associated with OEn (v), is bounded uniformly in n since as in the proof of  
Theorem 3.26 we have 

H n - I ( O D B ~ )  = f _  ~'ffOEn > k n H n - l ( P  (OEn(v)  n ~ o ) )  
d lA Bf2 

where H n-1 (p(OEn (v) n ~o)) is uniformly bounded from zero (on a subsequence) for geometrical 
reasons since En (v) is convex, contains B~, and converges (on a subsequence) to E (v). Consequently 
0 < HOE,, < kn < M almost everywhere and we see that OEn(v) is uniformly C Ll from which we 
see that E (v) is C 1,1 as well. Note that tangent planes converge almost everywhere so that locally first 
derivatives converge almost everywhere and consequently one can take limits in the weak definition 
of  mean curvature to show that ifkn -+ k (on a subsequence), then OE(v) has mean curvature k in 
the interior of  ~2, and that HoE < k as required. [ ]  

T h e o r e m  3.32. I f  n = 2, and ~2 is as in Theorem 3.31, except that the great circle condition is 
not assumed, then the results of  Theorem 3.31 still hold. Furthermore, 

m 

(i) i f  l H~ t ~ [El < [ f2 l, then a perimeter minimizer E is the union of  all balls in f2 of  curvature 
equal to the curvature of  O E n [2, 

(ii) i f lB~l  < IEI < IH~I, then E is the union of  two largest balls in [2, 

(iii) ifO < IE[ _< IB~I, then E is a ball. 

Proof. Smooth 0 s as before but without requiring the great circle condition. The same regularity 
properties hold as before for perimeter minimizers En in the smoothed domains [2n. Note that there 
is no singular set since n = 2. Also 0 En O [2 consists of  circular arcs. Thus if x e ~2 is a limit point 
of  points Xn ~ OEn, then it is easy to see geometrically that the curvatures of  the circular arcs in 
0 En O [2 must be uniformly bounded in n. Regularity and curvature results for the limiting perimeter 
minimizer follows as before. 

We claim that any perimeter minimizer E must be convex. First note that E cannot have an 
infinite number of  components since otherwise 0E would contain a limit point of  points in the 
boundaries of  distinct components of  E which would violate the regularity of  OE. In addition, each 
component must be simply connected because otherwise one could add a bounded component of  
the complement of  E to E which would reduce the perimeter of  E and increase its measure. Thus, 
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a scaling argument as in the proof of  Theorem 3.24 would violate the fact that E is a perimeter 
minimizer. 

Also each component must be convex. To see this note that locally OE is a graph of  a C 1,1 
function f .  Thus f~ is Lipschitz continuous, monotone increasing (if axes are chosen properly) on 
f - 1  (OE f3 0f2), and monotone increasing on each component of  f - 1  (0E fq f2) from which the claim 
easily follows. 

Finally, given two components considering the two unique lines which are support lines for 
both components one sees that one of  the components can be translated without leaving ~2 until it 
first touches another component. This translation does not change the measure of  the overall set and 
does not increase perimeter so a new perimeter minimizer is created. Due to the regularity of  0 E 
the point of  contact lies in ~2. However, this contradicts the fact that the boundary of  a perimeter 
minimizer must be a circular arc locally in f2. Consequently, there must be only one component 
which we have already shown to be convex so E is convex as claimed. 

To establish the uniqueness and nestedness properties, it is sufficient to characterize perimeter 
minimizers. In fact we claim that if E is a perimeter minimizer with I H~ I -< I E I < I ~21, then it is 
the union of  all balls in f2 of  curvature given by the curvature of  0E f3 ~2. We prove the claim in 
two parts. We first establish that if a point x lies in E, then x lies in a ball contained in ~2 whose 
boundary has the same curvature as 0E N ~2. We finish by proving that if IH~I _ IEI < If21, then 
E contains all balls with the same curvature as 0E fq f2. 

Assume x e E and let d = dist(x, 0E),  r = 1 where k is the curvature of  0E  N f2. I f d  > r, 

then x is clearly in a ball of  radius r contained in ~2 as claimed. I f d  < r, then choose a point y ~ 0E 
closest to x. Choose axes so that y is the origin, x lies on the positive horizontal axis, and the vertical 
axis is tangent to 0E at y. Let C be the upper half of  the circle of  radius r containing y with center 
on the positive horizontal axis. Let (0, a) be the largest subinterval of  (0, 2r) over which the part 
of  0E  lying above the horizontal axis is a graph. Let f : (0, a) ~ 1~ be the function having such a 
graph. Let g : [0, 2r] :---~ I~ be the function with C as its graph. Integrating the divergence form 
for curvature over (e, t) for t < a, e > 0 and then letting e ~ 0, one obtains 

f0 t f0 t f0 t 1 - J ( f ' ( t ) )  = - [ J ( f ' ( s ) ) ] ' d s  < k d s  = - [ J ( g ' ( s ) ) ] ' d s  = 1 - J ( g ' ( t ) )  

where J ( x )  = x / ( ~ / 1  + x 2) since i f (0)  = gt(0) = c~ (recall 0E is cl'l). Since J ( x )  is monotone 
increasing, this implies that gt( t )  < i f ( t )  on (0, a). However, 0 = g(0) < l ims~0 f ( s )  so 
g( t )  < f ( t )  on (0, a). From the estimate on f~ and the convexity of  E we see that a = 2r. A 
similar argument shows that the part of  0E  lying below the horizontal axis in fact lies below the 
other half of  the circle of  radius r mentioned above. Thus from the convexity of  E we see that this 
circle lies in E as claimed. Consequently E lies in the union of  all balls of  radius r which lie in f2. 

To prove our second claim let B be a ball of  radius r contained in E (such a ball exists by the 
above argument). Let D be any other ball of  radius r contained in f2 and let H be the convex hull 
of  B, D. Assume that D is not a subset of  E so there exists x e D \ E. Thus 0E separates x from 
B. However H ~ the interior of  H,  lies in ~ so OE t3 H ~ is locally a circular arc of  radius r. The 
only way a circular arc of  radius r can separate x from B is if it is a half circle C tangent at its end 
points to the line segments in OH. In such a case OE must contain C and the (possibly empty) line 
segments in OH with endpoints in C and OB. Since x ~ E one can translate E towards x while 
remaining in ~2 due to the geometrical relationship between E and H. The translated set is thus still 
a perimeter minimizer with end opposite D lying in f2. Thus the end opposite D is a circular arc 
and E is the convex hull of  two (possibly identical) balls of  radius r. 
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If  IEI ___ Inal  then clearly E is a ball. I f  IBal < IEI _< IHal, then g2 satisfies a great circle 
condition since the line segments in OH must lie in 0f2. Thus we can use the characterization of  E 
in Theorem 3.31 as the convex hull of  two largest balls in fL If IHal < IEI, then E cannot be a ball 
or a hull of  two balls in f2 as concluded in the last paragraph. Consequently the assumption that D 
was not a subset of  E is false and D C E. Since D was an arbitrary ball of  radius r, we see that the 
union of all such balls lies in E. Combining this with our earlier conclusion we see that E is in fact 
equal to the union of all such balls. 

The disjointness property for boundaries of  perimeter minimizers follows from nestedness of  
minimizers and the fact that the curvature of  the boundary of  a perimeter minimizer in f2 strictly 
increases as a function of  the measure v of  the minimizer if I Ha  I < v, a fact which follows directly 
from the characterization of  minimizers. If  E, F are minimizers with E C F,  and 0 E Cl 0 F f3 f2 
is not empty, then geometrically the curvature of  OF N f2 cannot be larger than the curvature of  
0 E Cl f2. However, this contradicts the monotonicity of  curvature as a function of  measure mentioned 
above. [ ]  

4. Eqimeasurable convex rearrangement 

Various standard symmetrizations have the useful property of  rearranging functions in an 
equimeasurable fashion while reducing various norms such as 11 u II/~, (a> + II Vu II/~ <a> and II u II 8 v<a~ 
(see (2.1)). However, they alter ~2, the domain of  definition of  u, unless f2 has appropriate sym- 
metries. This is unfortunate from the point of  view of  studying minimizers to certain variational 
problems. Using the results of  Section 2 we introduce an equimeasurable rearrangement which 
preserves convex domains, reduces Ilu II BY(a), and creates level sets which are boundaries of  con- 
vex sets, when u E BV(R  n) with u > 0 and u = 0 in R \ f2. Results of  [7] imply that such 
a rearrangement cannot exist for the norm IlullLp(a) + IIVullLp(a~, p > 1. Any equimeasurable 
rearrangement clearly fixes the first term in the BV norm (2.1). From the co-area formula we will 
see that a rearrangement which minimizes the perimeter of sets {u > t} will minimize the BV norm 
over an appropriate class of  equimeasurable functions. 

In minimizing functionals such as 

f a  f0 lal Ilullsv(a) -t- F(u) + G(u*, u *r) (4.1) 

over appropriate function classes, where u* is the decreasing rearrangement of  u, u*(v) = sup{t : 
I{u > t}l _> v}, it is sometimes straightforward to derive regularity estimates for u*. Assuming 
continuity of  u*, the results of  Theorem 4.2 imply continuity for minimizers of  (4.1) in f2 \ Ha,  
using the continuity and uniqueness properties of  ft. Of course to apply Theorem 4.2 it is necessary 
that u = 0 on ~2 is a boundary condition for the variational problem and that one can establish u > 0 
in f2 for minimizers, for instance, by using a truncation argument. Behavior in Ha  is also highly 
constrained by the characterization of  level sets up to translation. It is fairly straightforward but 
more delicate to prove partial regularity results for Vu if ~2 C R e by analyzing interactions between 
boundaries of perimeter minimizers and OS2. However, in higher dimensions, this is a difficult open 
problem. 

Assume that f2 is a bounded convex set in R n. In addition assume that n = 2, or [2 satisfies a 
great circle condition. Thus, from Section 2 we have a family of  convex nested perimeter minimizers 
E(v) defined as follows. If  Ba is a largest ball in f2 and Ha  is the union of  all such balls, then if 
0 < v < I Ba I let E (v) be a ball of  measure v centered symmetrically in Ha,  if [Ba I < v < I Ha  I (in 
which case f2 satisfies a great circle condition) then let E(v) be the convex hull of  two largest balls 
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symmetrical ly centered in Hf2 and of  measure v, finally if  In, z1 < v < I~t let E(v)  be the unique 
perimeter minimizer  of measure v shown to exist in Section 2. 

Define 
BV+(f2)  = {u ~ B V ( R  n) : u >_ O, u -----Oin~ n \ f2}  

and define the convex rearrangement of a function u ~ BV+(~2) by 

~(x) = inf{s > 0 : x ~ E(l{u > s}l)} �9 

T h e o r e m  4.2. l f  f2 is as above and u E B V+ ( f2 ), then ft is upper semicontinuous in R n, contin- 

uous in S2 i f  u* is continuous (equivalently I{u > t}[ is strictly increasing), ?~ ~ B V + (f2), 

[{~ > t}l = I{u > t}[ 

for all t, and 

II~IIBv(R n) --< IlulIBv(R% �9 (4.2.1) 

I f  there is equality in (4.2. I), then ~ = u in R n \ H~ in the B V sense, and in H~ the sets ~* { f, > t } 
are translations o f  ~{u > t}. 

R e m a r k  4.3. From the remark after Theorem 3.26 one sees that it is possible to create a rear- 
rangement even if  the convexity assumption is relaxed. However, it is unclear that one can in this 
context establish qualitative information analogous to convexity of  {~ > t}. [ ]  

P r o o f .  Semicontinuity and continuity results are clear from the definition of  ~ and the disjointness 
results on boundaries of perimeter minimizers in f2. It is also clear that ~ ~ BV+(~2). Due to the 
convexity and nestedness (which is strict in f2) of  the sets E(v)  we see that 

thUS, 

and 

E~ > t}l) c {~ > t} C E(l{u > t}l) ; 

I{u > t}l = IE(l{u > t}l)l = I{u > t}l 

P({~ > t}) = P(E(I{u  > t}l)) _< P({u > t ) ) .  

The result on BV norms then follows from the co-area formula. 

If  one has equality in the BV norm expression, then from the co-area formula and the minimiza- 
tion property of  the sets E(v)  it is clear that P({~ > t}) = P({u > t}), and consequently {~ > t} 
is a perimeter  minimizer for almost all t. Let to = sup{t : I{~ > t}l > Inf21} so applying the 
uniqueness result for perimeter minimizers we see that {~ > t} and {u > t} have the same measure 
theoretic closure for almost every t, 0 < t < to. For t > to we have 1{~ > t}[ < IHf2I so this is true 
only up to translation within H~2 in which case O*{~ > t} is a translation of  O{u > t} (recall {u > t} 
is convex) as claimed. This is easily justified for all t, t > to by a limit argument. 

Returning to the case 0 < t < to let E be an arbitrary measurable subset of  f2 and d #  = X E dx 
where dx represents Lebesgue measure. From Fubini 's  theorem we see that 

fo '~ fro t~ /z({u > t } )d t  = X{u>t}dtdlz --  min(u, to) �9 

Using the fact that {fi > t} and {u > t} have the same measure theoretic closure for almost every 
t, 0 < t < to we conclude that min(u, to) = min(fi, to) almost everywhere. Recalling that {u > t} 
and the set theoretic closure of  {u > t} are subsets of  H~ for t > to, it is clear that fi = u almost 
everywhere in ]~ \ H~. [ ]  
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