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A Characterization of Complex Projective
Space up to Biholomorphic Isometry

By Robert Molzon! and Karen Pinney Mortensen®

1. Introduction

Obata [3] gave a characterization up to isometry of the standard sphere S” in terms of the
Hessian operator on a complete Riemannian manifold. With the convention Hess u = Vgrad u, his
result says that if M is a complete Riemannian manifold which admits a nondegenerate function u
such that Hessu = —u -Id then M is isometric to the standard sphere. Obata goes on to prove related
results in conformal geometry which take advantage of the existence of a function whose Hessian
has a special form. Other authors have also obtained strong geometric properties of a Riemannian
manifold by exploiting the existence of a function # with Hess u = f - Id for some function f. In
particular, this last equation implies that M is a warped product. For a proof and related results, see,
for example, Osgood and Stowe [5].

In the complex case, a characterization of C" up to isometry was given by Stoll [6] via the
complex Monge—Ampére operator. Stoll’s result says that if M is a complex manifold which ad-
mits a strictly plurisubharmonic exhaustion 7: M — [0, 0o) such that (dd“log )" = 0, then
(M, 1) ~ (C" |z|*). In other words M, with hermitian metric given by the Kihler form dd‘r,
is biholomorphically isometric to C”. Obata also showed that a complete, connected and simply
connected Kihler manifold is isometric to the complex projective space P” if and only if it admits
a solution to a certain linear system of third order differential equations [4]. Blair [1] subsequently
showed that in some cases this characterization of IP" follows from a corresponding result for Rie-
mannian manifolds and indicated that one would not expect a characterization of P" by a Hessian
equation analogous to that which Obata used to characterize S”.

In this paper we give a complex analog of Obata’s theorem [3]. We characterize complex
projective space up to biholomorphic isometry by the existence of a solution to a system of second
order equations. Since P" with the Fubini-Study metric is not a warped product, there does not exist
anontrivial function u on P" whose Hessian is a multiple of the identity. However, P" with one point
deleted is the hyperplane section bundle over P"~! and the fibers of this bundle are totally geodesic
complex lines. Thus, there is a relationship between the natural metric structure and the line bundle
structure of P”. This relationship provides the motivation for the construction of a function # on P

Acknowledgements and Notes.
11 would like to thank the National Science Foundation for partial support of this research.

2Partially supported by NSF grant DMS-9102976.

© 1997 The Journal of Geometric Analysis
ISSN 1050-6926



612 Robert Molzon and Karen Pinney Mortensen

whose Hessian satisfies an equation similar to Obata’s equation. We are then able to show that this
second order equation characterizes P up to holomorphic isometry.

The relationship between the metric structure and the fiber bundle structure we consider in this
paper generalizes, in a sense, a warped product structure on a Riemannian manifold. The product
structure is replaced by the “twisted product” structure of a bundle and the metric varies uniformly
in the fiber direction with a correction factor to compensate for the twist. The complex manifolds
C" and B"C = {Z € C": |Z| < 1} with the Euclidean metric and the complex hyperbolic metric,
respectively, are other examples of this structure. Complex Euclidean space has the usual warped
product structure while complex hyperbolic space has a structure analogous to the structure on P".
We hope to return to these topics with additional examples in subsequent work.

2. Preliminaries and notation

Let M be a complex manifold. 7M denotes the real tangent bundle, T®M the complexified
tangent bundle . The complex structure is given by the operator J: T°M - TCM . We let T"M
denotes the i-eigenspace of J, T"M the (—i)-eigenspace. Then TM ~ T"M @ T"M.

Suppose M is endowed with a hermitian metric g. For a vector V € TCM, ny will denote
orthogonal projection onto the complex subspace of TCM spanned by V; 7y (X) = (g(V, V)"l g
X, V) V.

Let u be a real-valued C? function on M. Let grad u denote the real vector field on M which
is uniquely determined by
du(t) = g(¢, gradu)

for all real vectors {. We write gradu = grad;, u+ grad;u, where grad,u € ThM, gradju € ThM ,
grad; u = grad, u. One may verify that grad;, u is the unique T" M-valued vector field with the
property that forall V e TM, g(V, grad, u) = ou(V).

Let V denote the canonical complex metric connection on M associated to g. The complex
Hessian of u is the section of End (TCM) which is defined for all V € TM by Hess u(V) =
Vv grad u. The complex Hessian is the complex linear extension of the real Hessian.

Henceforth assume that g is a Kihler metric and that dimgM = n. We will calculate grad, u
and Hess u in terms of local holomorphic coordinates (z1, ..., z,).

Letg;; = g(a—%, %) and define g/* by
i 0if i £k
D e =tu=1 Dy
j=1

Letu; = gzl,- andu; = g_;i‘ Christoffel symbols are denoted by l"lkj Fromthe equationg(a%, grad,u) =
u;, we obtain the expression
n
0
rad, u = u; gl — .
g h Z i8 sz
i,j=1

To calculate Hess u, we write

n

j d i 0 . P . P
Hessu= Y (a/dzi @ - +bldzi® — +cldzi @ — +dldzi® — | .
u ijZZI ( [iatd azj ; A ® aZI ¢ az; ® sz + ;T ® az]
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Since u is real-valued, d/ = a; and ¢/ = b]. One computes a;/ as follows:

a9
Hessu(a—Zi>=V% gradu:V% gradhu+V5% grad; u = j ’Bz +Z Z
Therefore,
Zaji = V. grad, u
— ! 9zJ i h
J
= V, 2:14-3'121i
3z .k dz;
k.j
S (e + .22 2 4 YT
= u;z uj — 0 —
oy ik8 K8z | 8z 68 Y9z
i 0
- oki T
ulkg azj

The last equality follows from the fact that for a Kédhler manifold,

n

Z il Bg,m _ Zgjm

Zi

To compute bj we first note that V 4 az, = O forall i and j. Therefore,
dz

th 5%, = VaaT,» grad; u
= V, X:Ltkgjki
2l \ 4 0z
J
d ) 0
= - jk .
o (D) o
J k

As an immediate consequence of this calculation we obtain the following lemma.

Lemma 2.1, bl-j =0 for alli and j if and only if grad, u is a holomorphic vector field, that is, if
and only if the coefficients of grad, u are holomorphic.

To summarize,

P 0 0 0
Hessu = Z Zui,;gkjdzi ® —+ Z — (ukgfk) dz; ® —
3Zj Z 3Zi 3

k

8 /;_] _ 3 Tk_ 3
Y (uzgh )z @ — + Y upgtdz @ — | .
’ 97 (ukg ) Z’®3Zj+ Z k8 Zl®82-

J



614 Robert Molzon and Karen Pinney Mortensen
3. Main theorem

We now state our main theorem, which may be thought of as a complex version of Obata’s
theorem characterizing the sphere.

Theorem. Let M be a complex manifold of dimension n > 2, g a complete Kahler metric
on M. Then M is biholomorphically isometric to complex projective space P" with the Fubini-
Study metric if and only if there is a nonconstant real-valued function u € C*(M) such that on

{p € M: gradu(p) # 0}
Hessu = —u Id + %(u —1)Id —7), 3.1)

where m = wgrqq, u + Tgrad; u-
The operator 7 is the projection onto the complex subspace in TI‘,CM spanned by grad,, u and

gradj, u, or, equivalently, by grad u and J grad u. In local coordinates, equation (x) is a system of
2n? equations: for all i, j,

(Z u,;ulglzl> (Zuij -+ 1)5’,’]) = (I- u)uiuj_'

D wly

u,-j

4. Proof of necessity

OnP" let Z = [2Zy: Zy : --- : Z,] represent the homogeneous coordinates. Let Z
(2o, Z1, ..., Zy) be alocal holomorphic choice of representative. The Kéhler form of the Fubini-
Study metric on P" is

w = —4idd log (IZOI2 4+ 4 |Zn|2>

and the corresponding hermitian metric is given by g(X, ¥Y) = w(J X, Y).

OnUpy = {Z € P": Zy # 0} we use the usual inhomogeneous holomorphic coordinates z; = %
fori =1,...,n Letz]> =37, |z/%

In these coordinates,

gj = —2—(5"(1+lz|2)—z<2') and
T )N ”

: 1+ |z a

gk = 2|Z| (8k +zjzk)

Define u(Z) = \LL—Z——1Z”  op g0 w(z) = =2 One may check directly that
= \ZoPHZ\ I ZalE 0, u) = T Y y

{gradu # 0} = Up \ {[1:0:---: 0]} and that on this set  satisfies equation (3.1).

Note that for n = 1, u is the “height function” on § 2 ~ P! and satisfies Obata’s theorem [3].
While S” is the most natural generalization of S in the context of real manifolds, P" is the appropriate
complex generalization. One should think of u as extending the idea of the height function to P".
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5. Geometric properties of the foliations associated to grad « and grad;, u

We now begin the proof of sufficiency for the main theorem. Let M, g, and u be as in the
theorem. We use the notation § = grad u and X = grad, u#. From & one obtains a foliation of
{¢ # 0} by real curves, the integral curves of £, and from X one obtains a foliation by complex
curves. Equation (3.1) imposes strong geometric properties of these foliations.

We first show that the integral curves of &, when reparametrized by arc length, are geodesics.
Let f = |£|and where £ # 0,lett = éé, sothat g(z,7) = 1and & = fr. We will show V.7 = 0.
Calculate:

Vet = 2V (15) —Leprr Ly
CTFE\F) TS F2E

By equation (3.1), Ve& = Hess u(§) = —ué. Thus, V; 7 is a multiple of &, hence, a multiple of 7.
However, since 7 is of constant length, 0 = t(g(z, 7)) = 2g(V,1,7),50 V, 7 = 0.

We next show that each leaf of the foliation associated to X is totally geodesic. Observe that
the lemma combined with equation (3.1) implies that X is a holomorphic vector field.

Letp € M, X, # 0, L the leaf through p of the foliation defined by X. To show that L is
totally geodesic, it suffices to show that the second fundamental form of L vanishes. A real vector ¢
is tangent to L if and only if %(; —1iJ¢), which will be denoted by py,(¢), is a complex multiple of X.
Therefore, we must show that if { € 7, M and 7 is a real vector field near p such that p,(§) = A X,
pr(t) = ¢ X, then py(V, 7) is a multiple of X.

Observethat{ = AX +AX, T = X +@X. Since X is holomorphic, Vx X = 0 and V3 X = 0.
Thus,

Vit = Vigyix (09X +6X)
AX(D)X +2pVxX + 21X (8) X + A X ($)X
+AX(¢) X +1pVyX .

Now V,-()_( = Vx X and from equation (3.1) we obtain Vx X = Vx(X +X) = Vyé = Hessu(X) =
—uX. Therefore,

Vet = [AX(@) — Apu + AX (@)X
+[rX (¢) + AX ($) — Agu] X and
pr (Vi) = [AX($) — Agu+AX(@)]X,

which is a multiple of X.

6. Calculation of u

We will first calculate u along an integral curve of &. Let p € M be a point at which &, # 0.
Let y: R — M be the unique geodesic with y(0) = p, y(0) = l%' Since the metric is complete,
y(t) is defined for all + € R. We denote &, by &, u(y(t)) by u(t) and y (u) by u’. Because the
integral curves of £ are geodesics, we may write y (1) = % when & # 0.

It will be useful to compute |&|. We have g(§, y) = du(y) = y(u) = v’. Also g§,y) =
[€lg(y, y) = |€|. Thus, |§] =/, and & = u'(1)y: wherever & # 0. Since g(&, 1) = u'(t) holds
for all ¢, we see that & = 0if and only if u/(t) = 0,50 & = u'(t)y, forall t € R.
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We now use equation (3.1) to compute u(¢). For & # 0,

Ve& = Hessu(€) = —ué .

Thus,
g (Vi€ €) = —ug(&,8).
Now
8.6 =) gy =)
and
2 (Vet. §) = £e(6. ) =& ((0)°) = w7 (W)*) =2 ()*w".
Therefore, (u')?u" = —u(u')? and we obtain

W' () +u@) =0 6.1)

for all ¢ such that & # 0. The general solution to (6.1) is u(¢#) = Acost + Bsint, A,B € R. In
fact (6.1) holds for all ¢, as shown by the following lemma.

Lemma 6.2. Along the geodesic y, & = 0 only at isolated points.

Proof. Suppose not. Then there is a limit point fy of {z: & = 0} which is also a limit point of
{t: & # 0). Since uis C2, u'(tp) = u”(ty) = 0. But u(t) = Acost + Bsint on {t: & # 0}, soit
is impossible for #'(¢) and u”(¢) to simultaneously approach zero at #y unless A = B = 0. But this
is not the case; if it were, then & would vanish at all points in a neighborhood of #;. L]

By continuity, then, u(¢t) = Acost + Bsint for all t+ € R. Therefore, u achieves a positive
maximum and a negative minimum along y. Suppose u(f) attains its maximum at a point #9. For
convenience, we reparametrize y so that fp = 0 and denote the point y (0) by P.

P is a critical point of u since £p = 0. We will show that it is an isolated critical point for 1 on
M. To do this, we will show that Hess u(P) is nonsingular.

For ¢ near 0, t # 0, we have & # 0and Hessu(%,) = —u(¢)&;. Thus, Hessu(y,) = —u(¢)y: by
linearity. By continuity, this equation holds for ¢ = 0 also. One may show in an analogous fashion
that Hess u(J yp) = —u(0)J yp. Let ¢, be any continuous real vector field along y with ¢; orthogonal
to 7 and to Jy;. Then Hess u(&) = —ué + %(u - g = ——%(u + 1)¢; for t near 0. Again by
continuity, the equation holds for ¢t = 0 also. Since u(P) > 0, we see that Hess u(P) is negative
definite, so P is an isolated critical point of u.

We next show that u(P) = 1. For points in a neighborhood of P but notequal to P, equation (3.1)
holds: Hessu + u Id = %(u — 1)(Ad — ). The left hand side is defined and continuous at P, so it
provides a continuous extension of the right side to P. However, since P is an isolated maximum,
& always “points toward” P near P, so there can be no continuous extension of Id — & to P when
n > 2. Therefore, u(P) = 1 must hold.

We can now calculate u along y. Since u(0) = 1 and u’(0) = 0, u(t) = cos .

The integral curve of & through any point near P passes through P. Thus, every geodesic y
through P is tangent to &; that is, £ = |£|y. The above analysis of u then shows that u(y (¢)) = cos?
for any unit speed geodesic y with y(0) = P. Because the metric is complete, every point of M lies
on such a geodesic; u(p) = cos(disty (p, P))

We next show that P is the unique maximum point of u on M. Let L be aleafof X, & = u|L.
Since L is totally geodesic, equation (3.1) becomes Hessz = — iz Id when restrictedto L \ {§ = 0}.
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By continuity, this equation holds on all of L. By Obata’s theorem [3], L is isometric to P! with the
Fubini-Study metric. (One may instead compute the holomorphic sectional curvature of L to show
that L is isometric to ]P’l; a similar curvature computation is carried out in Section 7.)

From this we see that u has a unique maximum on each leaf at P, so P is the unique maximum
of uon M.

Leaves of X can intersect only at points where & = 0. Therefore,
expp: ITpM - M

is a diffeomorphism when restricted to the open ball of radius 7 and maps the closed ball of radius
7 onto M.

7. Definition of ¥: P? - M

Using the information we have obtained concerning the geometry of M, we now define a map
from P" to M.

Let Po=[1:0:---:0] € P*". The hyperplane {Z: Zy = 0} C P” will be denoted by Hp.
Let
Nz =1Zi P = = | Z

ug(Z) = ,
1Zol® +1Z\ P + - +1Zal?

& = gradug, Xo = grady ug .

Observe that expp, is a diffeomorphism when restricted to the open ball of radius 7 in Tp, P". We
denote the inverse of this restriction by exp;ol.

Fix once and for all a complex linear isometric identification «: Tp,P* — TpM. This iden-
tification will sometimes be used without explicit mention. Let H C M be the set of all points of
distance 7 from P. Observe that H = {p € M: u(p) = —1}.

Define a diffeomorphism ¥: P" \ Hy — M \ H by
V¥ =exppot oexp;o1 .

Note that u o W = ug and ¥, & = &, so ¥ maps leaves of &; to leaves of &.

We extend W to a map from P” to M (also called W) as follows. For Z € Hy, let {Z"} be a
sequence of points in a leaf of & through Z (that is, in a geodesic containing Z and Pp) such that
Z' & Hyand lim,,_, o, Z¥ = Z. Let ¥(Z) = limy_, o W(Z"). Since W maps leaves of & to leaves
of £, W(Z) is well-defined; it is the unique point of the corresponding leaf of £ which lies in H. We
will show that W is biholomorphic and isometric.

8. Proof of the main theorem
To prove the theorem, we must show that W is a biholomorphism and an isometry. We first
show that W|p~\ y, has these properties.
Step 1: W|pr\ g, is biholomorphic.

We will show that M \ H is Stein and that W, (Jo&y) = J&. Then the argument in [2, p. 359]
implies that W |p\ g, is bitholomorphic.
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On M\ H,let¢p = . Then ¢ is a C* exhaustion function for M \ H.

1
u+1

d0¢

=W [ + 1)30u + 20u A 0u] .

For W e T"M,
d0u (W, W) = g (Hess u(W), W) ,
(3u A 3u) (W, W) = |g (W, X)|* .
We write W = aX + Y, with g(X, Y) = 0. Then

. _ 1
30 (W, W) = T

+ lal*g (X, X) ((u + Du +2g (X, X))} :

B(u +1)%g (7, Y)

Now g(X, X) = 38, &) = $(u')> = 1 sin’1, where t(p) = disty (p, P). Therefore, 2g(X, X) +
(u+1)u = 1+cost, which s positive for0 < ¢ < 7. Since (u+1) > Oon M\ H, 33¢(W, W) > 0
for all W # 0. Thus, ¢ is strongly plurisubharmonic and M \ H is Stein.

To show that W, (Jo&p) = J&, we use an argument similar to that of Burns [2, p. 359-360].

Let yp be aunit speed geodesic in P" with y(0) = Py. Then we know that §y(¢) = —(sin ) y9(z).
Letp(?) = exp;()1 (yo(1)) be the corresponding ray in Tp,P" andlet y (¢) = W(p(¢)). Theny(0) = P
and y is a unit speed geodesic with £(¢) = —(sin?) v ().

Fix s € (0, 7). To calculate W, (Jo&y(s)), we first calculate (exp;ol)*(loso). To do this, we
seek the Jacobi field Vy(¢) along yp with Vp(0) = 0 and Vo (s) = Jp&o(s). Since Jyyyp is parallel
along ygy, Vp is of the form

Vo(t) = fo() Joyo(t) .

Also note that Vj satisfies the Jacobi equation
Vi VioVo+ R (Vo, vo) vo = 0.

Since the leaves of Xy are totally geodesic and since the holomorphic sectional curvature of the
Fubini-Study metric on P” is identically 1, R(Vy, y0)vo = Vo = foJoyo. Furthermore Vi Vi Vo =
(Nl = f(;, Jovo. The Jacobi equation reduces to f(;/(t) 4+ fo(r) = 0. The initial
conditions on Vo become fo(0) = 0 and fy(s) = —sins. Therefore, fo(t) = —sint and
Vo(2) = —sint Joyo(t). From this we obtain (V;, Vo)(0) = —Jpy(0).

Identify Tp,(Tp,P") with Tp)P" and consider —Joy(0) € Tp,(Tp,P"). Parallel transport
—Joyo(0) along p(r) and let Y(z) = —¢ Jyyp(0) along p(¢). Then (exp;ol)*(JO&o(s)) =Y(s) =
—s Joyo(0).

Under the identification ¢, t,(—s Joyp(0)) = —sJy(0). We follow a similar procedure to
calculate (expp)«(—s Jy (0)). We seek a Jacobi field of the form V (t) = f(¢)Jy(¢) along y with
V(0) = 0 and (V;V)(0) = Y'(0) = —Jy(0). As shown in Section 5, each leaf of X is totally
geodesic and has constant curvature 1. Therefore, R(V, y)y = V = fJy and the Jacobi equation
becomes f + f = 0, with initial conditions f(0) = 0, f'(0) = —1. Then f(f) = —sint and
V(t) = —sint Jy(¢). Finally,

i (oo(s) = (expp), i (exp7 ) (Joko(s))
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= (expp)* (—s Jy(0)
= V(s) = —sins Jyp(s) = JE(5) .

Step 2: W|pn\ g, is an isometry.

Wenow know W&y = & and W, Jo§g = J£&. Since the metric is hermitian, we have go (&g, J&) =

g(&, J&) = 0 and go(£0, £0) = go(Joo, Joko) = sin’t = g(&, &) = g(J&, JE). Where &, #0, &
and J& span the leaf of X through p, so W is an isometry on the leaves of X.

Now let ¢y € T(P" \ Hp) be orthogonal to & and to Jo&p. In order to show that go(Zo, &o) =
g(W,20, Wilo), we use an argument analogous to that of Step 1 to calculate W, gg.

Suppose ¢y € TzP". Let y be the unit speed geodesic from Py to Z with y(0) = Py, vo(s) =
Z, 0 <5 < m. Let gy(¢) denote the parallel translate of ¢y along yg to yo(¢). Then £o(#) is orthogonal
to &y (t) and to Jo&p(2).

We seek a Jacobi ﬁ/?ld Vo(t) = fo(t)Zo(t) such that Vy(0) = 0 and Vp(s) = &o(s). Since &y is
parallel, Vy, V;, Vo = f; {o. To calculate R(Vp, y0)yo we use the definition of the curvature operator

R, equation (), and the fact that 7x ({o(¢)) = w5 ({o(¢)) = 0, so that Hess ug({o) = —%(uo + 1)¢o.
We could instead use our explicit knowledge of the Fubini-Study metric, but we prefer this apparently
more general calculation because it will also apply to the manifold M. For convenience, we write

C . 1 1 0
R(Vo,y0)vo=R (fo(o, —,—SO) —& = f,—zR (%o, &0) &o -
Uy Uy (ug)
We also observe that Vg &g = Vu/ 2 ¢o = Osince ¢y is parallel and that ¢o(ug) = go(&o, ¢o) = 0. By
0
definition,

R (g()’ ‘EO) ;7:0 = VC() VE()SO - V§0 V{'()EO - V[{o,&o]g() .

Now
Vo Vesbo = Vi, (Hess ug (80))
= —uoVgbo
= %uo (uo + 1 %o .
Also

1
Vi, Vo 6o Ve, (—5 (o +1) Co)

1
—3 [0 (10) S0l
1/ /\2
= () 5.

To calculate Vg, g,160, notice that [¢o, &] = Vo — Vg lo = —%(uo + 1)¢o, since the metric is
torsion-free. Therefore,

1 1
Vigo.&160 = —75 (o +1) Vobo = 7 (o + )¢ .
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Adding the three terms, we obtain

1 1732 1
RGo ek = (Fu0o+1D+ 5 (uo) ——(uo+1)2)co

1 1
= <§cost(cost+1)+§sm t——(cost+1))
! n t

—si

1 o

=4()§°

Thus, R(Vy, Yo)vo = h 2 %o and the Jacobi equation becomes f0 + 7 Jo _ 0. The initial conditions on
Vo imply fo(0) =0 and fo(s) = 1,50 fo(t) = (csc 5)(sin 2) and Vo(t) = (csc 3)(sin 2)Q)(t)

As before, we identify the vector (V,,Vp)(0) = z(csc 5);‘0(0) € Tp,P" with a vector in
Tp,(Tp,P") and parallel translate it along p(¢) = exp;O] (yo(1)). Define Y (¢) = %(csc %)t o along
p(1). Then (expp )« (%0(s)) = Y (s).

We again identify Tp,P" and Tp M using ¢, set { = 1({o(0)), and calculate (expp)+(Y (s)) =
(expP)*(%(csc %)s{o(O)). Let y(¢t) = expp(p(r)) and let ¢(¢) be the parallel translate of ¢ along
v. We set V(r) = f(¢)¢(¢) and find a function f such that V is a Jacobi field with V(0) = 0 and

(VpVI(0) =Y (0) = %(csc %){0 (0). Since (x) holds on M, one follows a calculation similar to the
one above to show that f(¢) = (csc %)(sin %){0(1). Thus, W, (Zo(s)) = V{(s) = &(s).

Since ¢g and ¢ are parallel along y and y, respectively, go(o(s), ¢o(s)) = g0(£o(0), {o(0)) and
g(L(s), t{s)) = g(¢£(0), £{0)). The identification : was chosen to be an isometry, so g(£(0), £(0)) =
20(£0(0), £o(0)) and W is an isometry.

Step 3: W: P" — M is a biholomorphic isometry.

It is clear from the definition of W that it is surjective. To see that it is injective, suppose
Z,Z € P", W (Z) = W(Z). By the definition of W, there exist sequences

(2", {ZV} C P"\ Hy with limyoe0 Z° = Z, limyeo 2" = Z ,
limy oo W (Z°) = W(Z), limy_ o W (Z") - (Z) ‘

Since each complex leaf of the foliation associated to X intersects H at exactly one point,

distpn, 7 (Q1, Q2) = disty(Q1, @2) forall O, 0> € M \ H. Furthermore, distpr\ y,(Q1, Q2) =
distpr (Q1, Q) for all Q1, Q> € P" \ Hy. Since W is an isometry on P” \ Hy,

dist (2.2) = lim dist (2°,2") = lim dist (¥(2").¥(2"))

V—=>00 V—=>00

dist (\I/(Z), v (z)) —0.

W is a homeomorphism. In fact, the above argument shows that for all

Therefore, Z = Z.

7.7 € P, dist (lll(Z), v (z)) = dist (z, z) :

so W is continuous. It follows from the compactness of P* that W is an open map, so ¥~ ! is also
continuous.
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To show that W is a diffeomorphism, fix Z € Hy. We will find a neighborhood U of Z and
construct a diffeomorphism ®: U — ®(U) C M. We will show that ¥ = ® on a dense subset of
U, which implies that W = & on U.

To construct @, fix W € P* \ Hj close enough to Z so that there is an open set U containing
Z which is the diffeomorphic image under expy, of an open set in TwP” and so that W (U) is
the diffeomorphic image under expy,y, of an open set in Tyw)M. For §y € TwP", let 7y €
Tp,P" be its parallel translation to Py along the unique minimizing geodesic yp from W to Py. Let
. Tp,P" — TpM be as previously defined, T = t(v9) € TpM, and ¢ € Tyw)M be the parallel
translation of t along the geodesic ¥ o ¥y to W(W). Let tw(£o) = ¢ and define ®: U — ¥ (U) by
@ = expy ) olw © exp{vl. Then & is a diffeomorphism.

Since W is an isometry on P" \ Hy, ¥ = & on a dense subset of U, namely on the set of all
Q € U such that the minimal geodesic from W to Q does not intersect Hy. By continuity of ¥,
¥ = ® on U, so ¥ is a diffeomorphism on U. Therefore, ¥: P" — M is diffeomorphic.

By the continuity of W, and the fact that W is holomorphic and isometric on P\ Hy, we conclude
that ¥: P" — M is a holomorphic isometry, which completes the proof of the main theorem.
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