A Characterization of Complex Projective Space up to Biholomorphic Isometry

By Robert Molzon¹ and Karen Pinney Mortensen²

1. Introduction

Obata [3] gave a characterization up to isometry of the standard sphere S^n in terms of the Hessian operator on a complete Riemannian manifold. With the convention Hess $u = \nabla \operatorname{grad} u$, his result says that if M is a complete Riemannian manifold which admits a nondegenerate function u such that Hess $u = -u \cdot \operatorname{Id}$ then M is isometric to the standard sphere. Obata goes on to prove related results in conformal geometry which take advantage of the existence of a function whose Hessian has a special form. Other authors have also obtained strong geometric properties of a Riemannian manifold by exploiting the existence of a function u with Hess $u = f \cdot \operatorname{Id}$ for some function f. In particular, this last equation implies that M is a warped product. For a proof and related results, see, for example, Osgood and Stowe [5].

In the complex case, a characterization of \mathbb{C}^n up to isometry was given by Stoll [6] via the complex Monge-Ampère operator. Stoll's result says that if M is a complex manifold which admits a strictly plurisubharmonic exhaustion $\tau: M \to [0, \infty)$ such that $(dd^c \log \tau)^n \equiv 0$, then $(M, \tau) \simeq (\mathbb{C}^n, |z|^2)$. In other words M, with hermitian metric given by the Kähler form $dd^c \tau$, is biholomorphically isometric to \mathbb{C}^n . Obata also showed that a complete, connected and simply connected Kähler manifold is isometric to the complex projective space \mathbb{P}^n if and only if it admits a solution to a certain linear system of third order differential equations [4]. Blair [1] subsequently showed that in some cases this characterization of \mathbb{P}^n follows from a corresponding result for Riemannian manifolds and indicated that one would not expect a characterization of \mathbb{P}^n by a Hessian equation analogous to that which Obata used to characterize S^n .

In this paper we give a complex analog of Obata's theorem [3]. We characterize complex projective space up to biholomorphic isometry by the existence of a solution to a system of second order equations. Since \mathbb{P}^n with the Fubini-Study metric is not a warped product, there does not exist a nontrivial function u on \mathbb{P}^n whose Hessian is a multiple of the identity. However, \mathbb{P}^n with one point deleted is the hyperplane section bundle over \mathbb{P}^{n-1} and the fibers of this bundle are totally geodesic complex lines. Thus, there is a relationship between the natural metric structure and the line bundle structure of \mathbb{P}^n . This relationship provides the motivation for the construction of a function u on \mathbb{P}^n

Acknowledgements and Notes.

¹I would like to thank the National Science Foundation for partial support of this research.

²Partially supported by NSF grant DMS-9102976.

whose Hessian satisfies an equation similar to Obata's equation. We are then able to show that this second order equation characterizes \mathbb{P}^n up to holomorphic isometry.

The relationship between the metric structure and the fiber bundle structure we consider in this paper generalizes, in a sense, a warped product structure on a Riemannian manifold. The product structure is replaced by the "twisted product" structure of a bundle and the metric varies uniformly in the fiber direction with a correction factor to compensate for the twist. The complex manifolds \mathbb{C}^n and $B^n\mathbb{C} = \{Z \in \mathbb{C}^n : |Z| < 1\}$ with the Euclidean metric and the complex hyperbolic metric, respectively, are other examples of this structure. Complex Euclidean space has the usual warped product structure while complex hyperbolic space has a structure analogous to the structure on \mathbb{P}^n . We hope to return to these topics with additional examples in subsequent work.

2. Preliminaries and notation

Let *M* be a complex manifold. *TM* denotes the real tangent bundle, $T^{\mathbb{C}}M$ the complexified tangent bundle. The complex structure is given by the operator $J: T^{\mathbb{C}}M \to T^{\mathbb{C}}M$. We let $T^{h}M$ denotes the *i*-eigenspace of *J*, $T^{\bar{h}}M$ the (-i)-eigenspace. Then $T^{\mathbb{C}}M \simeq T^{h}M \oplus T^{\bar{h}}M$.

Suppose *M* is endowed with a hermitian metric *g*. For a vector $V \in T^{\mathbb{C}}M$, π_V will denote orthogonal projection onto the complex subspace of $T^{\mathbb{C}}M$ spanned by V; $\pi_V(X) = (g(V, \bar{V}))^{-1}g(X, \bar{V}) V$.

Let u be a real-valued C^2 function on M. Let grad u denote the real vector field on M which is uniquely determined by

$$du(\zeta) = g(\zeta, \operatorname{grad} u)$$

for all real vectors ζ . We write $\operatorname{grad}_{h} u = \operatorname{grad}_{h} u + \operatorname{grad}_{\bar{h}} u$, where $\operatorname{grad}_{h} u \in T^{h}M$, $\operatorname{grad}_{\bar{h}} u \in \overline{\operatorname{grad}_{h} u}$. One may verify that $\operatorname{grad}_{h} u$ is the unique $T^{h}M$ -valued vector field with the property that for all $V \in T^{\mathbb{C}}M$, $g(V, \operatorname{grad}_{h} u) = \overline{\partial}u(V)$.

Let ∇ denote the canonical complex metric connection on M associated to g. The complex Hessian of u is the section of End $(T^{\mathbb{C}}M)$ which is defined for all $V \in T^{\mathbb{C}}M$ by Hess $u(V) = \nabla_V \operatorname{grad} u$. The complex Hessian is the complex linear extension of the real Hessian.

Henceforth assume that g is a Kähler metric and that $\dim_{\mathbb{C}} M = n$. We will calculate $\operatorname{grad}_h u$ and Hess u in terms of local holomorphic coordinates (z_1, \ldots, z_n) .

Let $g_{i\bar{j}} = g(\frac{\partial}{\partial z_i}, \frac{\partial}{\partial z_j})$ and define $g^{\bar{j}k}$ by

$$\sum_{j=1}^{n} g_{i\bar{j}} g^{\bar{j}k} = \delta_{ik} = \begin{cases} 0 & \text{if } i \neq k \\ 1 & \text{if } i = k \end{cases}$$

Let $u_i = \frac{\partial u}{\partial z_i}$ and $u_{\bar{i}} = \frac{\partial u}{\partial \bar{z}_i}$. Christoffel symbols are denoted by Γ_{ij}^k . From the equation $g(\frac{\partial}{\partial z_i}, \operatorname{grad}_h u) = u_i$, we obtain the expression

$$\operatorname{grad}_{h} u = \sum_{i,j=1}^{n} u_{\bar{i}} g^{\bar{i}j} \frac{\partial}{\partial z_{j}}$$

To calculate Hess u, we write

$$\operatorname{Hess} u = \sum_{i,j=1}^{n} \left(a_{i}^{j} dz_{i} \otimes \frac{\partial}{\partial z_{j}} + b_{i}^{j} dz_{i} \otimes \frac{\partial}{\partial \bar{z}_{j}} + c_{i}^{j} d\bar{z}_{i} \otimes \frac{\partial}{\partial z_{j}} + d_{i}^{j} d\bar{z}_{i} \otimes \frac{\partial}{\partial \bar{z}_{j}} \right) \,.$$

Since *u* is real-valued, $d_i^j = \overline{a_i^j}$ and $c_i^j = \overline{b_i^j}$. One computes a_i^j as follows:

$$\operatorname{Hess} u\left(\frac{\partial}{\partial z_{i}}\right) = \nabla_{\frac{\partial}{\partial z_{i}}} \operatorname{grad} u = \nabla_{\frac{\partial}{\partial z_{i}}} \operatorname{grad}_{h} u + \nabla_{\frac{\partial}{\partial z_{i}}} \operatorname{grad}_{\bar{h}} u = \sum_{j} a_{i}^{j} \frac{\partial}{\partial z_{j}} + \sum_{j} b_{i}^{j} \frac{\partial}{\partial \bar{z}_{j}}.$$

Therefore,

$$\begin{split} \sum_{j} a_{i}^{j} \frac{\partial}{\partial z^{j}} &= \nabla_{\frac{\partial}{\partial z_{i}}} \operatorname{grad}_{h} u \\ &= \nabla_{\frac{\partial}{\partial z_{i}}} \left(\sum_{k,j} u_{\bar{k}} g^{\bar{k}j} \frac{\partial}{\partial z_{j}} \right) \\ &= \sum_{k,j} \left[\left(u_{i\bar{k}} g^{\bar{k}j} + u_{\bar{k}} \frac{\partial g^{\bar{k}j}}{\partial z_{i}} \right) \frac{\partial}{\partial z_{j}} + u_{\bar{k}} g^{\bar{k}j} \sum_{l} \Gamma_{ij}^{l} \frac{\partial}{\partial z_{l}} \right] \\ &= \sum_{k,j} u_{i\bar{k}} g^{\bar{k}j} \frac{\partial}{\partial z_{j}} \,. \end{split}$$

The last equality follows from the fact that for a Kähler manifold,

$$\Gamma_{ij}^{l} = \sum_{m=1}^{n} g^{\bar{m}l} \frac{\partial g_{j\bar{m}}}{\partial z_{i}} = -\sum_{m=1}^{n} g_{j\bar{m}} \frac{\partial g^{\bar{m}l}}{\partial z_{i}} \,.$$

To compute b_i^j , we first note that $\nabla_{\frac{\partial}{\partial z^i}} \frac{\partial}{\partial \bar{z}_j} = 0$ for all *i* and *j*. Therefore,

$$\sum_{j} b_{i}^{j} \frac{\partial}{\partial \bar{z}_{j}} = \nabla_{\frac{\partial}{\partial z_{i}}} \operatorname{grad}_{\bar{h}} u$$
$$= \nabla_{\frac{\partial}{\partial z^{i}}} \left(\sum_{k,j} u_{k} g^{\bar{j}k} \frac{\partial}{\partial \bar{z}_{j}} \right)$$
$$= \sum_{j} \frac{\partial}{\partial z_{i}} \left(\sum_{k} u_{k} g^{\bar{j}k} \right) \frac{\partial}{\partial \bar{z}_{j}} .$$

As an immediate consequence of this calculation we obtain the following lemma.

Lemma 2.1. $b_i^j = 0$ for all *i* and *j* if and only if $grad_h u$ is a holomorphic vector field, that is, if and only if the coefficients of $grad_h u$ are holomorphic.

To summarize,

$$Hess \, u = \sum_{i,j} \left(\sum_{k} u_{i\bar{k}} g^{\bar{k}j} dz_i \otimes \frac{\partial}{\partial z_j} + \sum_{k} \frac{\partial}{\partial z_i} \left(u_k g^{\bar{j}k} \right) dz_i \otimes \frac{\partial}{\partial \bar{z}_j} \right. \\ \left. + \sum_{k} \frac{\partial}{\partial \bar{z}_j} \left(u_{\bar{k}} g^{\bar{k}j} \right) d\bar{z}_i \otimes \frac{\partial}{\partial z_j} + \sum_{k} u_{\bar{i}k} g^{\bar{j}k} d\bar{z}_i \otimes \frac{\partial}{\partial \bar{z}_j} \right) \, .$$

3. Main theorem

We now state our main theorem, which may be thought of as a complex version of Obata's theorem characterizing the sphere.

Theorem. Let *M* be a complex manifold of dimension $n \ge 2$, *g* a complete Kähler metric on *M*. Then *M* is biholomorphically isometric to complex projective space \mathbb{P}^n with the Fubini-Study metric if and only if there is a nonconstant real-valued function $u \in C^2(M)$ such that on $\{p \in M: \text{ grad } u(p) \neq 0\}$

Hess
$$u = -u Id + \frac{1}{2}(u-1)(Id - \pi)$$
, (3.1)

where $\pi = \pi_{grad_h u} + \pi_{grad_{\bar{h}} u}$.

The operator π is the projection onto the complex subspace in $T_p^{\mathbb{C}}M$ spanned by $\operatorname{grad}_h u$ and $\operatorname{grad}_{\bar{h}} u$, or, equivalently, by $\operatorname{grad} u$ and J grad u. In local coordinates, equation (*) is a system of $2n^2$ equations: for all i, j,

$$\left(\sum u_{\bar{k}}u_{l}g^{\bar{k}l}\right)\left(2u_{i\bar{j}}-(u+1)g_{i\bar{j}}\right) = (1-u)u_{i}u_{j}$$
$$u_{ij} = \sum u_{l}\Gamma_{ij}^{l}$$

4. Proof of necessity

On \mathbb{P}^n , let $Z = [Z_0 : Z_1 : \cdots : Z_n]$ represent the homogeneous coordinates. Let $Z \mapsto (Z_0, Z_1, \ldots, Z_n)$ be a local holomorphic choice of representative. The Kähler form of the Fubini-Study metric on \mathbb{P}^n is

$$\omega = -4i\partial\bar{\partial}\log\left(|Z_0|^2 + \dots + |Z_n|^2\right)$$

and the corresponding hermitian metric is given by $g(X, Y) = \omega(JX, Y)$.

On $U_0 = \{Z \in \mathbb{P}^n : Z_0 \neq 0\}$ we use the usual inhomogeneous holomorphic coordinates $z_i = \frac{Z_i}{Z_0}$ for i = 1, ..., n. Let $|z|^2 = \sum_{i=1}^n |z_i|^2$.

In these coordinates,

$$g_{i\bar{j}} = \frac{2}{(1+|z|^2)^2} \left(\delta_{ij} (1+|z|^2) - z_j \bar{z}_i \right) \text{ and}$$

$$g^{\bar{j}k} = \frac{1+|z|^2}{2} \left(\delta_{jk} + \bar{z}_j z_k \right)$$

Define $u(Z) = \frac{|Z_0|^2 - |Z_1|^2 - \dots - |Z_n|^2}{|Z_0|^2 + |Z_1|^2 + \dots + |Z_n|^2}$. On U_0 , $u(z) = \frac{1 - |z|^2}{1 + |z|^2}$. One may check directly that $\{ \text{grad } u \neq 0 \} = U_0 \setminus \{ [1:0:\dots:0] \}$ and that on this set u satisfies equation (3.1).

Note that for n = 1, u is the "height function" on $S^2 \simeq \mathbb{P}^1$ and satisfies Obata's theorem [3]. While S^n is the most natural generalization of S^2 in the context of real manifolds, \mathbb{P}^n is the appropriate complex generalization. One should think of u as extending the idea of the height function to \mathbb{P}^n .

5. Geometric properties of the foliations associated to grad u and grad_h u

We now begin the proof of sufficiency for the main theorem. Let M, g, and u be as in the theorem. We use the notation $\xi = \text{grad } u$ and $X = \text{grad}_h u$. From ξ one obtains a foliation of $\{\xi \neq 0\}$ by real curves, the integral curves of ξ , and from X one obtains a foliation by complex curves. Equation (3.1) imposes strong geometric properties of these foliations.

We first show that the integral curves of ξ , when reparametrized by arc length, are geodesics. Let $f = |\xi|$ and where $\xi \neq 0$, let $\tau = \frac{1}{|\xi|}\xi$, so that $g(\tau, \tau) \equiv 1$ and $\xi = f\tau$. We will show $\nabla_{\tau}\tau = 0$. Calculate:

$$\nabla_{\tau}\tau = \frac{1}{f}\nabla_{\xi}\left(\frac{1}{f}\xi\right) = -\frac{1}{f^3}\xi(f)\xi + \frac{1}{f^2}\nabla_{\xi}\xi .$$

By equation (3.1), $\nabla_{\xi}\xi$ = Hess $u(\xi) = -u\xi$. Thus, $\nabla_{\tau}\tau$ is a multiple of ξ , hence, a multiple of τ . However, since τ is of constant length, $0 = \tau(g(\tau, \tau)) = 2g(\nabla_{\tau}\tau, \tau)$, so $\nabla_{\tau}\tau = 0$.

We next show that each leaf of the foliation associated to X is totally geodesic. Observe that the lemma combined with equation (3.1) implies that X is a holomorphic vector field.

Let $p \in M$, $X_p \neq 0$, L the leaf through p of the foliation defined by X. To show that L is totally geodesic, it suffices to show that the second fundamental form of L vanishes. A real vector ζ is tangent to L if and only if $\frac{1}{2}(\zeta - iJ\zeta)$, which will be denoted by $p_h(\zeta)$, is a complex multiple of X. Therefore, we must show that if $\zeta \in T_p M$ and τ is a real vector field near p such that $p_h(\zeta) = \lambda X$, $p_h(\tau) = \phi X$, then $p_h(\nabla_{\zeta} \tau)$ is a multiple of X.

Observe that $\zeta = \lambda X + \overline{\lambda}\overline{X}$, $\tau = \phi X + \overline{\phi}\overline{X}$. Since X is holomorphic, $\nabla_X \overline{X} = 0$ and $\nabla_{\overline{X}} X = 0$. Thus,

$$\begin{aligned} \nabla_{\zeta} \tau &= \nabla_{\lambda X + \bar{\lambda} \bar{X}} \left(\phi X + \bar{\phi} \bar{X} \right) \\ &= \lambda X(\phi) X + \lambda \phi \nabla_X X + \lambda X \left(\bar{\phi} \right) \bar{X} + \bar{\lambda} \bar{X}(\phi) X \\ &+ \bar{\lambda} \bar{X} \left(\bar{\phi} \right) \bar{X} + \bar{\lambda} \bar{\phi} \nabla_{\bar{X}} \bar{X} . \end{aligned}$$

Now $\nabla_{\bar{X}} \bar{X} = \overline{\nabla_X X}$ and from equation (3.1) we obtain $\nabla_X X = \nabla_X (X + \bar{X}) = \nabla_X \xi = \text{Hess } u(X) = -uX$. Therefore,

$$\nabla_{\zeta} \tau = [\lambda X(\phi) - \lambda \phi u + \bar{\lambda} \bar{X}(\phi)] X \\ + [\lambda X(\bar{\phi}) + \bar{\lambda} \bar{X}(\bar{\phi}) - \bar{\lambda} \bar{\phi} u] \bar{X} \text{ and} \\ p_h(\nabla_{\zeta} \tau) = [\lambda X(\phi) - \lambda \phi u + \bar{\lambda} \bar{X}(\phi)] X,$$

which is a multiple of X.

6. Calculation of u

We will first calculate u along an integral curve of ξ . Let $p \in M$ be a point at which $\xi_p \neq 0$. Let $\gamma: \mathbb{R} \to M$ be the unique geodesic with $\gamma(0) = p$, $\dot{\gamma}(0) = \frac{\xi_p}{|\xi_p|}$. Since the metric is complete, $\gamma(t)$ is defined for all $t \in \mathbb{R}$. We denote $\xi_{u(t)}$ by ξ_t , $u(\gamma(t))$ by u(t) and $\dot{\gamma}(u)$ by u'. Because the integral curves of ξ are geodesics, we may write $\dot{\gamma}(t) = \frac{\xi_t}{|\xi_t|}$ when $\xi_t \neq 0$.

It will be useful to compute $|\xi_t|$. We have $g(\xi, \dot{\gamma}) = du(\dot{\gamma}) = \dot{\gamma}(u) = u'$. Also $g(\xi, \dot{\gamma}) = |\xi|g(\dot{\gamma}, \dot{\gamma}) = |\xi|$. Thus, $|\xi| = u'$, and $\xi_t = u'(t)\dot{\gamma}_t$ wherever $\xi_t \neq 0$. Since $g(\xi_t, \dot{\gamma}_t) = u'(t)$ holds for all t, we see that $\xi_t = 0$ if and only if u'(t) = 0, so $\xi_t = u'(t)\dot{\gamma}_t$ for all $t \in \mathbb{R}$.

Robert Molzon and Karen Pinney Mortensen

We now use equation (3.1) to compute u(t). For $\xi_t \neq 0$,

$$\nabla_{\xi}\xi = \operatorname{Hess} u(\xi) = -u\xi$$
.

Thus,

$$g\left(\nabla_{\xi}\xi,\xi\right)=-ug(\xi,\xi)$$

Now

$$g(\xi,\xi) = \left(u'\right)^2 g\left(\dot{\gamma},\dot{\gamma}\right) = \left(u'\right)^2$$

and

$$2g\left(\nabla_{\xi}\xi,\xi\right) = \xi(g(\xi,\xi)) = \xi\left(\left(u'\right)^{2}\right) = u'\dot{\gamma}\left(\left(u'\right)^{2}\right) = 2\left(u'\right)^{2}u''.$$

Therefore, $(u')^2 u'' = -u(u')^2$ and we obtain

$$u''(t) + u(t) = 0 \tag{6.1}$$

for all t such that $\xi_t \neq 0$. The general solution to (6.1) is $u(t) = A \cos t + B \sin t$, $A, B \in \mathbb{R}$. In fact (6.1) holds for all t, as shown by the following lemma.

Lemma 6.2. Along the geodesic γ , $\xi = 0$ only at isolated points.

Proof. Suppose not. Then there is a limit point t_0 of $\{t: \xi_t = 0\}$ which is also a limit point of $\{t: \xi_t \neq 0\}$. Since u is C^2 , $u'(t_0) = u''(t_0) = 0$. But $u(t) = A \cos t + B \sin t$ on $\{t: \xi_t \neq 0\}$, so it is impossible for u'(t) and u''(t) to simultaneously approach zero at t_0 unless A = B = 0. But this is not the case; if it were, then ξ_t would vanish at all points in a neighborhood of t_0 .

By continuity, then, $u(t) = A \cos t + B \sin t$ for all $t \in \mathbb{R}$. Therefore, u achieves a positive maximum and a negative minimum along γ . Suppose u(t) attains its maximum at a point t_0 . For convenience, we reparametrize γ so that $t_0 = 0$ and denote the point $\gamma(0)$ by P.

P is a critical point of *u* since $\xi_P = 0$. We will show that it is an isolated critical point for *u* on *M*. To do this, we will show that Hess u(P) is nonsingular.

For t near 0, $t \neq 0$, we have $\xi_t \neq 0$ and $\text{Hess } u(\xi_t) = -u(t)\xi_t$. Thus, $\text{Hess } u(\dot{\gamma}_t) = -u(t)\dot{\gamma}_t$ by linearity. By continuity, this equation holds for t = 0 also. One may show in an analogous fashion that $\text{Hess } u(J\dot{\gamma}_0) = -u(0)J\dot{\gamma}_0$. Let ζ_t be any continuous real vector field along γ with ζ_t orthogonal to $\dot{\gamma}_t$ and to $J\dot{\gamma}_t$. Then $\text{Hess } u(\zeta_t) = -u\zeta_t + \frac{1}{2}(u-1)\zeta_t = -\frac{1}{2}(u+1)\zeta_t$ for t near 0. Again by continuity, the equation holds for t = 0 also. Since u(P) > 0, we see that Hess u(P) is negative definite, so P is an isolated critical point of u.

We next show that u(P) = 1. For points in a neighborhood of P but not equal to P, equation (3.1) holds: Hess u + u Id $= \frac{1}{2}(u - 1)(\text{Id} - \pi)$. The left hand side is defined and continuous at P, so it provides a continuous extension of the right side to P. However, since P is an isolated maximum, ξ always "points toward" P near P, so there can be no continuous extension of Id $-\pi$ to P when $n \ge 2$. Therefore, u(P) = 1 must hold.

We can now calculate u along γ . Since u(0) = 1 and u'(0) = 0, $u(t) = \cos t$.

The integral curve of ξ through any point near *P* passes through *P*. Thus, every geodesic γ through *P* is tangent to ξ ; that is, $\xi = |\xi|\dot{\gamma}$. The above analysis of *u* then shows that $u(\gamma(t)) = \cos t$ for any unit speed geodesic γ with $\gamma(0) = P$. Because the metric is complete, every point of *M* lies on such a geodesic; $u(p) = \cos(\operatorname{dist}_M(p, P))$

We next show that P is the unique maximum point of u on M. Let L be a leaf of X, $\tilde{u} = u|_L$. Since L is totally geodesic, equation (3.1) becomes Hess $\tilde{u} = -\tilde{u}$ Id when restricted to $L \setminus \{\xi = 0\}$.

616

By continuity, this equation holds on all of L. By Obata's theorem [3], L is isometric to \mathbb{P}^1 with the Fubini-Study metric. (One may instead compute the holomorphic sectional curvature of L to show that L is isometric to \mathbb{P}^1 ; a similar curvature computation is carried out in Section 7.)

From this we see that u has a unique maximum on each leaf at P, so P is the unique maximum of u on M.

Leaves of X can intersect only at points where $\xi = 0$. Therefore,

$$\exp_P: T_P M \to M$$

is a diffeomorphism when restricted to the open ball of radius π and maps the closed ball of radius π onto M.

7. Definition of $\Psi \colon \mathbb{P}^n \to M$

Using the information we have obtained concerning the geometry of M, we now define a map from \mathbb{P}^n to M.

Let $P_0 = [1:0:\cdots:0] \in \mathbb{P}^n$. The hyperplane $\{Z: Z_0 = 0\} \subset \mathbb{P}^n$ will be denoted by H_0 . Let

$$u_0(Z) = \frac{|Z_0|^2 - |Z_1|^2 - \dots - |Z_n|^2}{|Z_0|^2 + |Z_1|^2 + \dots + |Z_n|^2}, \quad \xi_0 = \operatorname{grad} u_0, \quad X_0 = \operatorname{grad}_h u_0.$$

Observe that \exp_{P_0} is a diffeomorphism when restricted to the open ball of radius π in $T_{P_0}\mathbb{P}^n$. We denote the inverse of this restriction by $\exp_{P_0}^{-1}$.

Fix once and for all a complex linear isometric identification $\iota: T_{P_0}\mathbb{P}^n \to T_P M$. This identification will sometimes be used without explicit mention. Let $H \subset M$ be the set of all points of distance π from P. Observe that $H = \{p \in M: u(p) = -1\}$.

Define a diffeomorphism Ψ : $\mathbb{P}^n \setminus H_0 \to M \setminus H$ by

$$\Psi = \exp_P \circ \iota \circ \exp_{P_0}^{-1} .$$

Note that $u \circ \Psi = u_0$ and $\Psi_* \xi_0 = \xi$, so Ψ maps leaves of ξ_0 to leaves of ξ .

We extend Ψ to a map from \mathbb{P}^n to M (also called Ψ) as follows. For $Z \in H_0$, let $\{Z^\nu\}$ be a sequence of points in a leaf of ξ_0 through Z (that is, in a geodesic containing Z and P_0) such that $Z^\nu \notin H_0$ and $\lim_{\nu \to \infty} Z^\nu = Z$. Let $\Psi(Z) = \lim_{\nu \to \infty} \Psi(Z^\nu)$. Since Ψ maps leaves of ξ_0 to leaves of ξ , $\Psi(Z)$ is well-defined; it is the unique point of the corresponding leaf of ξ which lies in H. We will show that Ψ is biholomorphic and isometric.

8. Proof of the main theorem

To prove the theorem, we must show that Ψ is a biholomorphism and an isometry. We first show that $\Psi|_{\mathbb{P}^n\setminus H_0}$ has these properties.

Step 1: $\Psi|_{\mathbb{P}^n \setminus H_0}$ is biholomorphic.

We will show that $M \setminus H$ is Stein and that $\Psi_*(J_0\xi_0) = J\xi$. Then the argument in [2, p. 359] implies that $\Psi|_{\mathbb{P}^n \setminus H_0}$ is biholomorphic.

Robert Molzon and Karen Pinney Mortensen

On $M \setminus H$, let $\phi = \frac{1}{u+1}$. Then ϕ is a C^{∞} exhaustion function for $M \setminus H$.

$$\partial \bar{\partial} \phi = \frac{1}{(u+1)^3} \left[-(u+1)\partial \bar{\partial} u + 2\partial u \wedge \bar{\partial} u \right] .$$

For $W \in T^h M$,

$$\partial \partial u (W, \bar{W}) = g (\text{Hess } u(W), \bar{W}) ,$$
$$(\partial u \wedge \bar{\partial} u) (W, \bar{W}) = |g (W, \bar{X})|^2 .$$

We write W = aX + Y, with $g(X, \overline{Y}) = 0$. Then

$$\partial \bar{\partial} \phi \left(W, \bar{W} \right) = \frac{1}{(u+1)^3} \left[\frac{1}{2} (u+1)^2 g \left(Y, \bar{Y} \right) \right. \\ \left. + \left. \left| a \right|^2 g \left(X, \bar{X} \right) \left((u+1)u + 2g \left(X, \bar{X} \right) \right) \right] \right]$$

Now $g(X, \bar{X}) = \frac{1}{2}g(\xi, \xi) = \frac{1}{2}(u')^2 = \frac{1}{2}\sin^2 t$, where $t(p) = \text{dist}_M(p, P)$. Therefore, $2g(X, \bar{X}) + (u+1)u = 1 + \cos t$, which is positive for $0 \le t < \pi$. Since (u+1) > 0 on $M \setminus H$, $\partial \bar{\partial} \phi(W, \bar{W}) > 0$ for all $W \ne 0$. Thus, ϕ is strongly plurisubharmonic and $M \setminus H$ is Stein.

To show that $\Psi_*(J_0\xi_0) = J\xi$, we use an argument similar to that of Burns [2, p. 359–360].

Let γ_0 be a unit speed geodesic in \mathbb{P}^n with $\gamma_0(0) = P_0$. Then we know that $\xi_0(t) = -(\sin t)\dot{\gamma}_0(t)$. Let $\rho(t) = \exp_{P_0}^{-1}(\gamma_0(t))$ be the corresponding ray in $T_{P_0}\mathbb{P}^n$ and let $\gamma(t) = \Psi(\gamma_0(t))$. Then $\gamma(0) = P$ and γ is a unit speed geodesic with $\xi(t) = -(\sin t)\dot{\gamma}(t)$.

Fix $s \in (0, \pi)$. To calculate $\Psi_*(J_0\xi_0(s))$, we first calculate $(\exp_{P_0}^{-1})_*(J_0\xi_0)$. To do this, we seek the Jacobi field $V_0(t)$ along γ_0 with $V_0(0) = 0$ and $V_0(s) = J_0\xi_0(s)$. Since $J_0\dot{\gamma}_0$ is parallel along γ_0 , V_0 is of the form

$$V_0(t) = f_0(t) J_0 \dot{\gamma}_0(t)$$
.

Also note that V_0 satisfies the Jacobi equation

$$\nabla_{\dot{\gamma}_0} \nabla_{\dot{\gamma}_0} V_0 + R (V_0, \gamma_0) \dot{\gamma}_0 = 0$$

Since the leaves of X_0 are totally geodesic and since the holomorphic sectional curvature of the Fubini-Study metric on \mathbb{P}^n is identically 1, $R(V_0, \dot{\gamma}_0)\dot{\gamma}_0 = V_0 = f_0 J_0 \dot{\gamma}_0$. Furthermore $\nabla_{\dot{\gamma}_0} \nabla_{\dot{\gamma}_0} V_0 = \dot{\gamma}_0(\dot{\gamma}_0(f))J_0\dot{\gamma}_0 = f_0^{''}J_0\dot{\gamma}_0$. The Jacobi equation reduces to $f_0^{''}(t) + f_0(t) = 0$. The initial conditions on V_0 become $f_0(0) = 0$ and $f_0(s) = -\sin s$. Therefore, $f_0(t) = -\sin t$ and $V_0(t) = -\sin t J_0\dot{\gamma}_0(t)$. From this we obtain $(\nabla_{\dot{\gamma}_0} V_0)(0) = -J_0\dot{\gamma}_0(0)$.

Identify $T_{P_0}(T_{P_0}\mathbb{P}^n)$ with $T_{P_0}\mathbb{P}^n$ and consider $-J_0\dot{\gamma}_0(0) \in T_{P_0}(T_{P_0}\mathbb{P}^n)$. Parallel transport $-J_0\dot{\gamma}_0(0)$ along $\rho(t)$ and let $Y(t) = -t J_0\dot{\gamma}_0(0)$ along $\rho(t)$. Then $(\exp_{P_0}^{-1})_*(J_0\xi_0(s)) = Y(s) = -s J_0\dot{\gamma}_0(0)$.

Under the identification ι , $\iota_*(-s \ J_0\dot{\gamma}_0(0)) = -sJ\dot{\gamma}(0)$. We follow a similar procedure to calculate $(\exp_P)_*(-s \ J\dot{\gamma}(0))$. We seek a Jacobi field of the form $V(t) = f(t)J\dot{\gamma}(t)$ along γ with V(0) = 0 and $(\nabla_{\dot{\gamma}}V)(0) = Y'(0) = -J\dot{\gamma}(0)$. As shown in Section 5, each leaf of X is totally geodesic and has constant curvature 1. Therefore, $R(V, \dot{\gamma})\dot{\gamma} = V = f J\dot{\gamma}$ and the Jacobi equation becomes f'' + f = 0, with initial conditions f(0) = 0, f'(0) = -1. Then $f(t) = -\sin t$ and $V(t) = -\sin t \ J\dot{\gamma}(t)$. Finally,

$$\Psi_* (J_0 \xi_0(s)) = (\exp_P)_* \iota_* (\exp_{P_0}^{-1})_* (J_0 \xi_0(s))$$

618

$$= (\exp_P)_* (-s J\dot{\gamma}(0))$$

= $V(s) = -\sin s J\dot{\gamma}(s) = J\xi(s)$

.

Step 2: $\Psi|_{\mathbb{P}^n \setminus H_0}$ is an isometry.

We now know $\Psi_*\xi_0 = \xi$ and $\Psi_*J_0\xi_0 = J\xi$. Since the metric is hermitian, we have $g_0(\xi_0, J\xi_0) = g(\xi, J\xi) = 0$ and $g_0(\xi_0, \xi_0) = g_0(J_0\xi_0, J_0\xi_0) = \sin^2 t = g(\xi, \xi) = g(J\xi, J\xi)$. Where $\xi_p \neq 0$, ξ and $J\xi$ span the leaf of X through p, so Ψ is an isometry on the leaves of X_0 .

Now let $\zeta_0 \in T(\mathbb{P}^n \setminus H_0)$ be orthogonal to ξ_0 and to $J_0\xi_0$. In order to show that $g_0(\zeta_0, \zeta_0) = g(\Psi_*\zeta_0, \Psi_*\zeta_0)$, we use an argument analogous to that of Step 1 to calculate $\Psi_*\zeta_0$.

Suppose $\zeta_0 \in T_Z \mathbb{P}^n$. Let γ_0 be the unit speed geodesic from P_0 to Z with $\gamma_0(0) = P_0$, $\gamma_0(s) = Z$, $0 < s < \pi$. Let $\zeta_0(t)$ denote the parallel translate of ζ_0 along γ_0 to $\gamma_0(t)$. Then $\zeta_0(t)$ is orthogonal to $\xi_0(t)$ and to $J_0\xi_0(t)$.

We seek a Jacobi field $V_0(t) = f_0(t)\zeta_0(t)$ such that $V_0(0) = 0$ and $V_0(s) = \zeta_0(s)$. Since ζ_0 is parallel, $\nabla_{\dot{\gamma}_0} \nabla_{\dot{\gamma}_0} V_0 = f_0^{''} \zeta_0$. To calculate $R(V_0, \dot{\gamma}_0)\dot{\gamma}_0$ we use the definition of the curvature operator R, equation (*), and the fact that $\pi_X(\zeta_0(t)) = \pi_{\bar{X}}(\zeta_0(t)) = 0$, so that Hess $u_0(\zeta_0) = -\frac{1}{2}(u_0 + 1)\zeta_0$. We could instead use our explicit knowledge of the Fubini-Study metric, but we prefer this apparently more general calculation because it will also apply to the manifold M. For convenience, we write

$$R(V_0, \dot{\gamma}_0) \dot{\gamma}_0 = R\left(f_0\zeta_0, \frac{1}{u'_0}\xi_0\right) \frac{1}{u'_0}\xi_0 = \frac{f_0}{(u'_0)^2} R(\zeta_0, \xi_0) \xi_0.$$

We also observe that $\nabla_{\xi_0} \xi_0 = \nabla_{u'_0 \dot{\gamma}_0} \zeta_0 = 0$ since ζ_0 is parallel and that $\zeta_0(u_0) = g_0(\xi_0, \zeta_0) = 0$. By definition,

$$R(\zeta_0,\xi_0)\,\xi_0 = \nabla_{\zeta_0}\nabla_{\xi_0}\xi_0 - \nabla_{\xi_0}\nabla_{\zeta_0}\xi_0 - \nabla_{[\zeta_0,\xi_0]}\xi_0 \; .$$

Now

$$\nabla_{\xi_0} \nabla_{\xi_0} \xi_0 = \nabla_{\zeta_0} (\text{Hess } u_0 (\xi_0))$$

= $-u_0 \nabla_{\zeta_0} \xi_0$
= $\frac{1}{2} u_0 (u_0 + 1) \zeta_0$.

Also

$$\begin{aligned} \nabla_{\xi_0} \nabla_{\xi_0} \xi_0 &= \nabla_{\xi_0} \left(-\frac{1}{2} \left(u_0 + 1 \right) \zeta_0 \right) \\ &= -\frac{1}{2} \left[\xi_0 \left(u_0 \right) \zeta_0 \right] \\ &= -\frac{1}{2} \left(u_0' \right)^2 \zeta_0 \,. \end{aligned}$$

To calculate $\nabla_{[\xi_0,\xi_0]}\xi_0$, notice that $[\zeta_0,\xi_0] = \nabla_{\zeta_0}\xi_0 - \nabla_{\xi_0}\zeta_0 = -\frac{1}{2}(u_0+1)\zeta_0$, since the metric is torsion-free. Therefore,

$$\nabla_{[\zeta_0,\xi_0]}\xi_0 = -\frac{1}{2} (u_0 + 1) \nabla_{\zeta_0}\xi_0 = \frac{1}{4} (u_0 + 1)^2 \zeta_0 .$$

Adding the three terms, we obtain

$$R(\zeta_0, \xi_0) \xi_0 = \left(\frac{1}{2}u_0(u_0+1) + \frac{1}{2}\left(u'_0\right)^2 - \frac{1}{4}(u_0+1)^2\right)\zeta_0$$

= $\left(\frac{1}{2}\cos t(\cos t+1) + \frac{1}{2}\sin^2 t - \frac{1}{4}(\cos t+1)^2\right)\zeta_0$
= $\frac{1}{4}\sin^2 t \zeta_0$
= $\frac{1}{4}\left(u'_0\right)^2\zeta_0$

Thus, $R(V_0, \dot{\gamma}_0)\dot{\gamma}_0 = \frac{f_0}{4}\zeta_0$ and the Jacobi equation becomes $f_0'' + \frac{f_0}{4} = 0$. The initial conditions on V_0 imply $f_0(0) = 0$ and $f_0(s) = 1$, so $f_0(t) = (\csc \frac{s}{2})(\sin \frac{t}{2})$ and $V_0(t) = (\csc \frac{s}{2})(\sin \frac{t}{2})\zeta_0(t)$.

As before, we identify the vector $(\nabla_{\gamma_0} V_0)(0) = \frac{1}{2}(\csc \frac{s}{2})\zeta_0(0) \in T_{P_0}\mathbb{P}^n$ with a vector in $T_{P_0}(T_{P_0}\mathbb{P}^n)$ and parallel translate it along $\rho(t) = \exp_{P_0}^{-1}(\gamma_0(t))$. Define $Y(t) = \frac{1}{2}(\csc \frac{s}{2})t \zeta_0$ along $\rho(t)$. Then $(\exp_{P_0}^{-1})_*(\zeta_0(s)) = Y(s)$.

We again identify $T_{P_0}\mathbb{P}^n$ and $T_P M$ using ι , set $\zeta = \iota(\zeta_0(0))$, and calculate $(\exp_P)_*(Y(s)) = (\exp_P)_*(\frac{1}{2}(\csc\frac{s}{2})s\zeta_0(0))$. Let $\gamma(t) = \exp_P(\rho(t))$ and let $\zeta(t)$ be the parallel translate of ζ along γ . We set $V(t) = f(t)\zeta(t)$ and find a function f such that V is a Jacobi field with V(0) = 0 and $(\nabla_{\gamma} V)(0) = Y'(0) = \frac{1}{2}(\csc\frac{s}{2})\zeta_0(0)$. Since (*) holds on M, one follows a calculation similar to the one above to show that $f(t) = (\csc\frac{s}{2})(\sin\frac{t}{2})\zeta_0(t)$. Thus, $\Psi_*(\zeta_0(s)) = V(s) = \zeta(s)$.

Since ζ_0 and ζ are parallel along γ_0 and γ , respectively, $g_0(\zeta_0(s), \zeta_0(s)) = g_0(\zeta_0(0), \zeta_0(0))$ and $g(\zeta(s), \zeta(s)) = g(\zeta(0), \zeta(0))$. The identification ι was chosen to be an isometry, so $g(\zeta(0), \zeta(0)) = g_0(\zeta_0(0), \zeta_0(0))$ and Ψ is an isometry.

Step 3: Ψ : $\mathbb{P}^n \to M$ is a biholomorphic isometry.

It is clear from the definition of Ψ that it is surjective. To see that it is injective, suppose $Z, \tilde{Z} \in \mathbb{P}^n, \Psi(Z) = \Psi(\tilde{Z})$. By the definition of Ψ , there exist sequences

$$\{Z^{\nu}\}, \left\{\tilde{Z}^{\nu}\right\} \subset \mathbb{P}^{n} \setminus H_{0} \text{ with } \lim_{\nu \to \infty} Z^{\nu} = Z, \lim_{\nu \to \infty} \tilde{Z}^{\nu} = \tilde{Z},$$
$$\lim_{\nu \to \infty} \Psi(Z^{\nu}) = \Psi(Z), \quad \lim_{\nu \to \infty} \Psi\left(\tilde{Z}^{\nu}\right) = \Psi\left(\tilde{Z}\right).$$

Since each complex leaf of the foliation associated to X intersects H at exactly one point, $dist_{M\setminus H}(Q_1, Q_2) = dist_M(Q_1, Q_2)$ for all $Q_1, Q_2 \in M \setminus H$. Furthermore, $dist_{\mathbb{P}^n\setminus H_0}(Q_1, Q_2) = dist_{\mathbb{P}^n}(Q_1, Q_2)$ for all $Q_1, Q_2 \in \mathbb{P}^n \setminus H_0$. Since Ψ is an isometry on $\mathbb{P}^n \setminus H_0$,

dist
$$(Z, \tilde{Z})$$
 = $\lim_{\nu \to \infty} \text{dist} (Z^{\nu}, \tilde{Z}^{\nu}) = \lim_{\nu \to \infty} \text{dist} (\Psi (Z^{\nu}), \Psi (\tilde{Z}^{\nu}))$
= dist $(\Psi (Z), \Psi (\tilde{Z})) = 0$.

Therefore, $Z = \tilde{Z}$.

 Ψ is a homeomorphism. In fact, the above argument shows that for all

$$Z, \tilde{Z} \in \mathbb{P}^n$$
, dist $\left(\Psi(Z), \Psi\left(\tilde{Z}\right)\right) = \text{dist}\left(Z, \tilde{Z}\right)$

so Ψ is continuous. It follows from the compactness of \mathbb{P}^n that Ψ is an open map, so Ψ^{-1} is also continuous.

To show that Ψ is a diffeomorphism, fix $Z \in H_0$. We will find a neighborhood U of Z and construct a diffeomorphism $\Phi: U \to \Phi(U) \subset M$. We will show that $\Psi = \Phi$ on a dense subset of U, which implies that $\Psi = \Phi$ on U.

To construct Φ , fix $W \in \mathbb{P}^n \setminus H_0$ close enough to Z so that there is an open set U containing Z which is the diffeomorphic image under \exp_W of an open set in $T_W \mathbb{P}^n$ and so that $\Psi(U)$ is the diffeomorphic image under $\exp_{\Psi(W)}$ of an open set in $T_{\Psi(W)}M$. For $\zeta_0 \in T_W \mathbb{P}^n$, let $\tau_0 \in T_{P_0}\mathbb{P}^n$ be its parallel translation to P_0 along the unique minimizing geodesic γ_0 from W to P_0 . Let ι : $T_{P_0}\mathbb{P}^n \to T_PM$ be as previously defined, $\tau = \iota(\tau_0) \in T_PM$, and $\zeta \in T_{\Psi(W)}M$ be the parallel translation of τ along the geodesic $\Psi \circ \gamma_0$ to $\Psi(W)$. Let $\iota_W(\zeta_0) = \zeta$ and define $\Phi: U \to \Psi(U)$ by $\Phi = \exp_{\Psi(W)} \circ \iota_W \circ \exp_W^{-1}$. Then Φ is a diffeomorphism.

Since Ψ is an isometry on $\mathbb{P}^n \setminus H_0$, $\Psi = \Phi$ on a dense subset of U, namely on the set of all $Q \in U$ such that the minimal geodesic from W to Q does not intersect H_0 . By continuity of Ψ , $\Psi = \Phi$ on U, so Ψ is a diffeomorphism on U. Therefore, $\Psi \colon \mathbb{P}^n \to M$ is diffeomorphic.

By the continuity of Ψ_* and the fact that Ψ is holomorphic and isometric on $\mathbb{P}^n \setminus H_0$, we conclude that $\Psi: \mathbb{P}^n \to M$ is a holomorphic isometry, which completes the proof of the main theorem.

References

- [1] Blair, D.E. On the characterization of complex projective space by differential equations, *J. Math. Soc. Japan*, **27**, 9–19, (1975).
- [2] Burns, D. Curvatures of Monge-Ampère foliations and parabolic manifolds, Ann. Math., 115, 349-373, (1982).
- [3] Obata, M. Certain conditions for a Riemannian manifold to be isometric with a sphere, *J. Math. Soc. Japan*, **14**, 333–340, (1962).
- [4] Obata, M. Riemannian manifolds admitting a solution of a certain system of differential equations, *Proc. United States-Japan Seminar in Differential Geometry*, 101–114, (1965).
- [5] Osgood, B. and Stowe, D. The Schwarzian derivative and conformal mapping of Riemannian manifolds, *Duke Math. J.*, 67, 57–99, (1992).
- [6] Stoll, W. The characterization of strictly parabolic manifolds, Ann. Sc. Nor. Sup. Pisa, IV(VII), 870–154, (1980).

Received March 24, 1993

University of Kentucky, Lexington, Kentucky

University of Kentucky, Lexington, Kentucky e-mail: pinney@ms.uky.edu