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1. Introduction 

Obata [3] gave a characterization up to isometry of the standard sphere sn in terms of the 
Hessian operator on a complete Riemannian manifold. With the convention Hess u = Vgrad u, his 
result says that if M is a complete Riemannian manifold which admits a nondegenerate function u 
such that Hess u = - u -  Id then M is isometric to the standard sphere. Obata goes on to prove related 
results in conformal geometry which take advantage of  the existence of  a function whose Hessian 
has a special form. Other authors have also obtained strong geometric properties of  a Riemannian 
manifold by exploiting the existence of a function u with Hess u = f - Id for some function f .  In 
particular, this last equation implies that M is a warped product. For a proof and related results, see, 
for example, Osgood and Stowe [5]. 

In the complex case, a characterization of  cn  up to isometry was given by Stoll [6] via the 
complex Monge-Amp~re operator. Stoll's result says that if M is a complex manifold which ad- 
mits a strictly plurisubharmonic exhaustion r :  M --> [0, ~ )  such that (dd c log r) n -- 0, then 
(M, r) = (C", Iz12). In other words M, with hermitian metric given by the Kahler form ddCr, 
is biholomorphically isometric to C". Obata also showed that a complete, connected and simply 
connected Kahler manifold is isometric to the complex projective space ]?n if and only if it admits 
a solution to a certain linear system of third order differential equations [4]. Blair [1] subsequently 
showed that in some cases this characterization of  ]?n follows from a corresponding result for Rie- 
mannian manifolds and indicated that one would not expect a characterization of  ]?n by a Hessian 
equation analogous to that which Obata used to characterize S n. 

In this paper we give a complex analog of  Obata's theorem [3]. We characterize complex 
projective space up to biholomorphic isometry by the existence of  a solution to a system of second 
order equations. Since ]?n with the Fubini-Study metric is not a warped product, there does not exist 
a nontrivial function u on ]?n whose Hessian is a multiple of  the identity. However, ]?n with one point 
deleted is the hyperplane section bundle over I? n -  1 and the fibers of  this bundle are totally geodesic 
complex lines. Thus, there is a relationship between the natural metric structure and the line bundle 
structure of  ~n. This relationship provides the motivation for the construction of  a function u on ]?n 
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whose Hessian satisfes an equation similar to Obata's equation. We are then able to show that this 
second order equation characterizes ]~n up to holomorphic isometry. 

The relationship between the metric structure and the fiber bundle structure we consider in this 
paper generalizes, in a sense, a warped product structure on a Riemannian manifold. The product 
structure is replaced by the "twisted product" structure of a bundle and the metric varies uniformly 
in the fiber direction with a correction factor to compensate for the twist. The complex manifolds 
C n and B~C = {Z 6 cn:  IZl < 1} with the Euclidean metric and the complex hyperbolic metric, 
respectively, are other examples of this structure. Complex Euclidean space has the usual warped 
product structure while complex hyperbolic space has a structure analogous to the structure on 17 ~. 
We hope to return to these topics with additional examples in subsequent work. 

2. Preliminaries and notation 

Let M be a complex manifold. TM denotes the real tangent bundle, TCM the complexified 
tangent bundle. The complex structure is given by the operator J:  TCM --~ TCM. We let ThM 
denotes the i-eigenspace of J, TAM the (-i)-eigenspace. Then TC M ~_ Th M @ Th M. 

Suppose M is endowed with a hermitian metric g. For a vector V c TCM, :rv will denote 
orthogonal projection onto the complex subspace of TCM spanned by V; :rv(X) = (g(V, r~)) -1 g 
(X, V) re. 

Let u be a real-valued C 2 function on M. Let grad u denote the real vector field on M which 
is uniquely determined by 

du(() = g((, grad u) 

for all real vectors (. We write gradu = grad h u 4- grad~ u, where grad h u c T h M, grad f, u 6 T ~ M, 

grad~ u = grad h u. One may verify that grad h u is the unique ThM-valued vector field with the 
property that for all V ~ TCM, g(V, grad h u) = Ou(V). 

Let V denote the canonical complex metric connection on M associated to g. The complex 
Hessian of u is the section of End (TCM) which is defined for all V ~ TCM by Hess u(V) = 
Vvgrad u. The complex Hessian is the complex linear extension of the real Hessian. 

Henceforth assume that g is a Kahler metric and that dimcM = n. We will calculate grad h u 
and Hess u in terms of local holomorphic coordinates (Zl . . . . .  zn). 

Let gi] : g(~-~,, ~zj) and define g]l: by 

gi]g]k 0 if i 5& k 
1 if i = k .  

j=l  

Letui = ~~ andu~ = ~7"~ Christoffel symbols are denoted by F/kj. From the equation g (Tzi, gradh u) = 
ui, we obtain the expression 

T/ 7 .  

grad h u ----- Z uTg~J 
i,j=l OZj 

To calculate Hess u, we write 

Hess u = a/  dzi ~ 4- 4- c[ dz, ~ 4- d /  dzi @ . 
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Since u is real-valued, d / = a/  and c/ = b/. One computes a /  as follows: 

Hess u (a~- i )  = V a~ gradu 
�9 0 . 0  

: V '0azi gradh u + V ~a~.i grada u = E a/Oz---] + E b/O~j 
J J 

Therefore, 

�9 0 

E a/ OZ j 
J 

V'0  
- -  graa h u 

OZ t 

: ~kj" Ui[:gkj + U~ - -OZi )~Zj  -'b Ukg kj Fij 

- .  0 

= E u i k g k j  OZj 
k,j 

The last equality follows from the fact that for a Kfihler manifold, 

n 

Ozi ozi 
m 1 m = l  

compute b/,  we first note that V ,0  0@, = 0 for all i and j .  Therefore, To 
Oz i Zj 

0 

J OZj 
- -  VA_ grad~ u 

az i 

az ~- " ~ OZj ] ~k, j  ! 

: ukg  

J 

As an immediate consequence of this calculation we obtain the following lemma. 

L e m m a  2.1. b[ = 0 for all i and j i f  and only i f  grad h u is a holomorphic vector field, that is, i f  
and only i f  the coefficients of  grad h u are holomorphic. 

To summarize, 

Hess u = E E Uikgkj dgi @ ~Zj -~- ~ OZ 7 
i,j 

k k 
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3. Main theorem 

We now state our main theorem, which may be thought of  as a complex version of  Obata's 
theorem characterizing the sphere. 

Theorem. Let  M be a complex manifold o f  dimension n >_ 2, g a complete Kiihler metric 
on M. Then M is biholomorphically isometric to complex projective space ~n with the Fubini- 
Study metric i f  and only i f  there is a nonconstant real-valued function u ~ C2(M) such that on 
{p ~ M: gradu(p)  (: 0} 

1 
Hess u = - u  Id + 7(u  - 1)(Id - Jr) , (3.1) 

z 

wheFe 7r : 7rgradh u "q- 7rgrad~ u. 

The operator Jr is the projection onto the complex subspace in TpCM spanned by grad h u and 
grad~ u, or, equivalently, by grad u and J grad u. In local coordinates, equation ( . )  is a system of 
2n 2 equations: for all i, j ,  

( Z  U~ulg ~l) (2ui] - (u + 1)gi] ) = ( 1 -  u)uiu] 

uij : ~_aUlrlj 

4. P r o o f  o f  necess i ty  

On 17 n, let Z = [Z0 : Z1 : . . .  : Z,] represent the homogeneous coordinates. Let Z 
(Z0, Z1 . . . . .  Zn) be a local holomorphic choice of representative. The K~ihler form of the Fubini- 
Study metric on I? ~ is 

co = --4i03 log ([Zo[ 2 -}-...--~ IZn[2] \ ] 

and the corresponding hermitian metric is given by g(X,  Y) = co(JX, Y). 

On Uo = {Z ~ ~n: Zo ~ O} we use the usual inhomogeneous holomorphic coordinates zi = 

for i = 1 . . . . .  n. Let Izl 2 = zin=l Izi[ 2. 

In these coordinates, 

2 Izl e) ZjZi) and 
gi] -- (1 q-Iz[2) 2 (3ij(1 q- - 

gj~: _ 1 ~ +  Iz12 (ajk + ~jzk) 

Iz~ . . . . .  IZnl2 On Uo, u(z) -- l-lzl2 One may check directly that Define u(Z)  = iZol2+lZlt2+...+lZ,,12, l+[z12. 
{grad u # 0} = Uo \ {[1 : 0 : . . .  : 0]} and that on this set u satisfies equation (3.1). 

Note that for n = 1, u is the "height function" on S 2 _~ I? 1 hnd satisfies Obata's theorem [3]. 
While S n is the most natural generalization of  S 2 in the context of  real manifolds, I? n is the appropriate 
complex generalization. One should think of  u as extending the idea of  the height function to I? n. 
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5. Geometric properties of the foliations associated to grad u and gradh u 

We now begin the proof of  sufficiency for the main theorem. Let M, g, and u be as in the 
theorem. We use the notation ~ ---- grad u and X = grad h u. From ~ one obtains a foliation of 
{~ # 0} by real curves, the integral curves of  ~, and from X one obtains a foliation by complex 
curves. Equation (3.1) imposes strong geometric properties of these foliations. 

We first show that the integral curves of  ~, when reparametrized by arc length, are geodesics. 
Let f = I~l and where ~ # 0, let r = i@1~, so that g( r ,  r )  -- 1 and ~ = f t .  We will show V~ r = 0. 
Calculate: 

1 ( f )  1 1 V r r  = y V ~  ~ =-~- -~3~( f )  ~ + ~ v ~ .  

By equation (3.1), V ~  = Hess u(~) = - u ~ .  Thus, V r r  is a multiple of  ~, hence, a multiple of  r.  
However, since r is of  constant length, 0 = v(g( r ,  r ) )  = 2g(Vrr ,  r ) ,  so V~r = 0. 

We next show that each leaf of  the foliation associated to X is totally geodesic. Observe that 
the lemma combined with equation (3.1) implies that X is a holomorphic vector field. 

Let p ~ M, Xp # O, L the leaf through p of the foliation defined by X. To show that L is 
totally geodesic, it suffices to show that the second fundamental form of L vanishes. A real vector 
is tangent to L if and only if �89 (~ - i J ( ) ,  which will be denoted by Ph (() ,  is a complex multiple of X. 
Therefore, we must show that if r 6 TpM and r is a real vector field near p such that Ph (~) = XX, 
ph ( r )  = CX, then ph(Vfr)  is a multiple of  X. 

Observe that ~ = XX +2J~,  r = CX + ~ X .  Since X is holomorphic, VxJf  = 0 and Vy:X = O. 
Thus, 

= ( r  + 

= z x ( r  + ZCVxX + x x  (~) ~" + ~ ( r  

+ + 

Now V~ X = Vx X and from equation (3.1) we obtain Vx X = Vx (X + X) = Vx ~ = Hess u (X) = 
- u  X.  Therefore, 

v c r  = [ z x ( r  + ~ 2 ( r  

+ [XX (~) + ~3~ (q~) - ~.r .~ and 

Ph (V~r) = [ZX(r -- ~r + ~2(r  X ,  

which is a multiple of  X. 

6. Calculation of u 

We will first calculate u along an integral curve of ~. Let p ~ M be a point at which ~p # 0. 

~' Since the metric is complete, Let F: R --+ M be the unique geodesic with F (0) = p,  ~)(0) = I-~pl" 

F(t)  is defined for all t ~ ]I{. We denote ~u(t) by ~t, u(g( t ) )  by u(t) and ~(u)  by u'. Because the 

integral curves of ~ are geodesics, we may write ~) (t) = I@1 when ~t # 0. 

It will be useful to compute I~tl. We have g(~, ~)) = du@)  = ~(u) = u'. Also g(~, l)) = 
I~lg(l ), Y) = I~l. Thus, I~l = u', and ~t = u'(t)~)t wherever ~t # 0. Since g(~t, ~'t) = u'(t) holds 
for all t, we see that ~t = 0 if and only if u'(t) = 0, so ~t = u'(t)~t for all t E R. 
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We now use equation (3.1) to compute u(t). For stt # 0, 

V~St = Hess u(st) = -ust  . 

Thus, 

g (v~st, st) = -ug(st,  st). 

Now 
g(st, s t)  = (u') 2 g ( f ,  Y) = (u') 2 

and 
2g (VSSt, s t ) =  st(g(st, s t ) )=s t  ( (u ' )  2) = u '~  ( (u ' )  2) = 2  (u')2 u ' '  . 

Therefore, (ut)2u" = -u(u~) 2 and we obtain 

u'1(t) + u(t) = 0 

for all t such that stt r 0. The general solution to (6.1) is u(t) = A c o s t  + B sint, 
fact (6.1) holds for all t, as shown by the following lemma. 

(6.1) 

A , B  ~ .  In 

L e m m a  6.2. Along the geodesic y, st = 0 only at isolated points. 

P r o o f .  Suppose not. Then there is a limit point to of  {t: stt = 0} which is also a limit point of  
{t: stt # 0}. Since u is C 2, u'(to) = u"(to) = 0. But u(t) = A c o s t  + B sint on {t: stt ~ 0}, SO it 
is impossible for u~(t) and u ' ( t )  to simultaneously approach zero at to unless A = B = 0. But this 
is not the case; if it were, then stt would vanish at all points in a neighborhood of  to. [ ]  

By continuity, then, u(t) = A c o s t  + B sint  for all t 6 ~.  Therefore, u achieves a positive 
maximum and a negative minimum along 2/. Suppose u(t) attains its maximum at a point to. For 
convenience, we reparametrize F so that to = 0 and denote the point y (0) by P. 

P is a critical point of  u since ste = 0. We will show that it is an isolated critical point for u on 
M. To do this, we will show that Hess u(P)  is nonsingular. 

For t near 0, t ~ 0, we have stt ~ 0 and Hess u (stt) = - u  (t)stt. Thus, Hess u (Yt) = - u  (t) ft by 
linearity. By continuity, this equation holds for t = 0 also. One may show in an analogous fashion 
that Hess u (J  Y0) = - u  (0)J  Y0. Let fit be any continuous real vector field along y with (t orthogonal 
to fit and to Jf/t. Then Hess u(~t) = -u~ t  + �89 - 1)~t = - � 8 9  + 1)~t for t near 0. Again by 
continuity, the equation holds for t = 0 also. Since u(P)  > 0, we see that Hess u(P)  is negative 
definite, so P is an isolated critical point of  u. 

We next show that u (P)  = 1. For points in a neighborhood of  P but not equal to P,  equation (3.1) 
holds: Hess u + u Id = l ( u  - 1)(Id - rr). The left hand side is defined and continuous at P,  so it 
provides a continuous extension of  the right side to P.  However, since P is an isolated maximum, 
st always "points toward" P near P,  so there can be no continuous extension of Id - zr to P when 
n > 2. Therefore, u(P)  = 1 must hold. 

We can now calculate u along y. Since u(0) = 1 and HI(0) = 0, u(t) = cos t. 

The integral curve of  st through any point near P passes through P.  Thus, every geodesic y 
through P is tangent to st; that is, st = Ist l Y. The above analysis of  u then shows that u (y (t)) = cos t 
for any unit speed geodesic y with y(0) = P. Because the metric is complete, every point of  M lies 
on such a geodesic; u(p)  = cos(diStM (p, P))  

We next show that P is the unique maximum point o f u  on M. Let L be a leaf of  X, fi = uJL. 
Since L is totally geodesic, equation (3.1) becomes Hess fi = - fi Id when restricted to L \ {st = 0}. 
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By continuity, this equation holds on all of  L. By Obata's theorem [3], L is isometric to I? 1 with the 
Fubini-Study metric. (One may instead compute the holomorphic sectional curvature of  L to show 
that L is isometric to i71; a similar curvature computation is carried out in Section 7.) 

From this we see that u has a unique maximum on each leaf at P,  so P is the unique maximum 
of u on M. 

Leaves of  X can intersect only at points where ~ = 0. Therefore, 

expp: T p M  -+ M 

is a diffeomorphism when restricted to the open ball of radius zr and maps the closed ball of  radius 
Jr onto M. 

7. Definition of  ~P: ~n ~ M 

Using the information we have obtained concerning the geometry of  M, we now define a map 
from ]?" to M. 

Let 
Let P0 = [1 : 0 : . . .  : 0] 6 l? n. The hyperplane {Z: Z0 = 0} C ]?~ will be denoted by H0. 

IZol 2 - I Z l l  2 . . . . .  IZnl 2 
u o ( Z )  : IZ~ 2 + IZ~I 2 + " "  -4- IZnl 2 '  &0 = g raduo ,  Xo = grad h u o .  

Observe that expe 0 is a diffeomorphism when restricted to the open ball of  radius Jr in TPo ~n. We 

denote the inverse of this restriction by expp~l. 

Fix once and for all a complex linear isometric identification t: TPo]? n --+ TpM. This iden- 
tification will sometimes be used without explicit mention. Let H C M be the set of  all points of  
distance zr from P. Observe that H = {p 6 M: u(p)  = -1}.  

Define a diffeomorphism ko: I? n \ H0 ---> M \ H by 

O J = e x p p o t  oexp71 . 

Note that u o qJ = u0 and qJ,~0 = ~, so qJ maps leaves of~0 to leaves of~.  

We extend ko to a map from ]?n to M (also called qJ) as follows. For Z c Ho, let {Z v } be a 
sequence of points in a leaf of  ~0 through Z (that is, in a geodesic containing Z and P0) such that 
Z v r H0 and l i m v ~  Z ~ = Z. Let ~P(Z) = l i m ~  q,(ZV). Since qJ maps leaves of~0 to leaves 
of  ~, ko (Z) is well-defined; it is the unique point of  the corresponding leaf of  ~ which lies in H. We 
will show that qJ is biholomorphic and isometric. 

8. Proof  of  the main theorem 

To prove the theorem, we must show that ko is a biholomorphism and an isometry. We first 
show that �9 I~"\n0 has these properties. 

Step 1:qJ]~"\n0 is biholomorphic. 

We will show that M \ H is Stein and that qJ,(J0~0) = J~.  Then the argument in [2, p. 359] 
implies that ko I~"\no is biholomorphic. 
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On M \ H, let~b = 1 COO h~"  Then q~ is a exhaustion function for M \ H. 

1 
0 ~  - ~ 1  " ~ ( u  + [ - ( u  + 1)a~u + 2au A ~u] . 

For W E Th M, 

OOu (W, ~V) = g (Hess u(W), 17V) , 

(Ou A (w, ee) = Ig (w,  )12 

We write W = aX + Y, with g(X, I 7") = 0. Then 

l [ ~ ( u +  l )2g(y , f ' )  
O0q~(W,l~) = ( u + l )  3 

+ ]al2g (X, X) ((u + 1)u + 2g (X, 2 ) )  1 p 

Now g(X, 2 )  = lg(~,  ~) = 1. ,,2 2tu ) = 1 sin 2 t, where t(p) = distM(p, P).  Therefore, 2g(X, f() + 
( u + l ) u  = l + c o s t ,  which is positive for 0 _< t < Jr. Since ( u + l )  > 0 o h M \ H ,  OOga(W, I7V) > 0 
for all W # 0. Thus, 4~ is strongly plurisubharmonic and M \ H is Stein. 

To show that ~ ,  (Jo~o) = J~,  we use an argument similar to that of Burns [2, p. 359-360]. 

Let go be a unit speed geodesic in I? n with Yo (0) = Po. Then we know that ~o (t) = - (sin t) 1)o (t). 
Let p (t) = exPTo 1 (go (t)) be the corresponding ray in Teo Pn and let i/(t) = qJ (go (t)). Then y (0) = P 
and g is a unit speed geodesic with ~(t) = - ( s i n  t)ft(t). 

Fix s e (0, zr). To calculate ~P.(Jo~o(s)), we first calculate (exp~l).(Jo~o). To do this, we 
seek the Jacobi field Vo(t) along Y0 with Vo(0) = 0 and Vo(s) = Jo~o(s). Since Jo~)0 is parallel 
along Y0, Vo is of  the form 

Vo(t) = fo(t)Jof/o(t). 

Also note that V0 satisfies the Jacobi equation 

Vpo V~o Vo + R (Vo, Yo) 1)o = 0 .  

Since the leaves of  Xo are totally geodesic and since the holomorphic sectional curvature of the 
Fubini- Study metric on I? n is identically 1, R (Vo, })o) ~)o = Vo = fo Jo )7o. Furthermore Vpo Vpo Vo = 

~)o@o(f))Jo))o = fo'Jof/o. The Jacobi equation reduces to fo'(t) + fo(t) = 0. The initial 
conditions on Vo become fo(0) = 0 and fo(s) = - s i n s .  Therefore, fo(t) = - s i n t  and 
Vo(t) = - sin t Jof~o(t). From this we obtain (Vpo Vo)(0) = -JoPo(0) .  

Identify TPo(TeoI? n) with TPoI? n and consider -Jo~)o(0) 6 Teo(TPol?n). Parallel transport 

-JoYo(0)  along p(t) and let r( t)  = - t  JoPo(0) along p(t). Then (eXPTol),(Jo~o(s)) = Y(s) = 
- s  J&0(0). 

Under the identification t, t . ( - s  J01)0(0)) = -sJf/(O).  We follow a similar procedure to 
calculate ( e x p e ) . ( - s  J))(0)). We seek a Jacobi field of  the form V(t) = f ( t )J f / ( t )  along y with 
V(0) = 0 and (V~V)(0) = Y'(0) = - J~) (0) .  As shown in Section 5, each leaf of  X is totally 
geodesic and has constant curvature 1. Therefore, R(V, f/)f/ = V = f J f / a n d  the Jacobi equation 
becomes f "  + f = 0, with initial conditions f ( 0 )  = 0, i f (0)  = - 1 .  Then f ( t )  = - s i n t  and 
V(t) = - sin t Jf/(t). Finally, 

**(Jo~o(s))  = ( e x P e ) , t , ( e x p T 1 ) , ( J o ~ o ( s ) )  
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= (expp) ,  ( - s  JS (0 ) )  

= V(s) = - s i n s  JS(s )  = Jr(s)  �9 

619 

Step 2: ~ln, n\no is an isometry. 

We now know ~ , t o  = t and ~ ,  Joto = J r .  Since the metric is hermitian, we have go (to, J to )  = 
g ( t ,  J r )  = 0 and go(to, to) = go(Joto, Joto) = sin 2 t = g ( t ,  t )  = g ( J t ,  Jr) .  Where tp  7 ~ 0, t 
and J t  span the leaf of  X through p, so qJ is an isometry on the leaves of Xo. 

Now let go e T(I? n \ Ho) be orthogonal to to and to Joto. In order to show that go(go, go) = 
g (~ ,go ,  tP, go), we use an argument analogous to that of  Step 1 to calculate qJ, go. 

Suppose go e TzF n. Let Yo be the unit speed geodesic from Po to Z with yo(0) ---- Po, yo(s) = 
Z, 0 < s < Jr. Let go(t) denote the parallel translate of  (o along 1/o to YOU). Then fro(t) is orthogonal 
to to(t)  and to Joto(t). 

We seek a Jacobi field Vo(t) ---- fo(t)go(t) such that Vo(0) = 0 and Vo(s) = go(s). Since go is 
t t  

parallel, V~o V~o Vo -- fo go. To calculate R(Vo, 50)5o we use the definition of the curvature operator 

R, equation ( ,) ,  and the fact that rrx(go(t)) = rr2(go(t)) = 0, so that Hess uo((o) = - l ( u o  + 1)(o. 
We could instead use our explicit knowledge of the Fubini-Study metric, but we prefer this apparently 
more general calculation because it will also apply to the manifold M. For convenience, we write 

R(Vo, So) 5 0 = R  fogo, to = - t o = ~  (~o to) to. 
u 0 

We also observe that V~otO = V ,o~o(O = 0 since (o is parallel and that (o(uo) = go(to, (o) = 0. By 

definition, 

R ((o, to) to = V~o V~oto - V~o V~otO - Vl~o,~o]tO �9 

Now 

V~-o V~o to = V~o (Hess uo (to)) 

= -uoV~oto 
1 

-- ~ u o ( u o + l ) ( o .  

Also 

V~o V~o to = V~o ( - ~  (uo + 1) (o )  

1 
- [to (uo) (o1 

2 

2 

1 To calculate V[~o,~o]tO, notice that [(o, to] = Vr - V~o(O = - ~ ( u o  + 1)(o, since the metric is 
torsion-free. Therefore, 

1 1 
Vtr = - ~  (u0 + 1) V(otO ----- ~ (uo + 1) 2 (0 
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Adding the three terms, we obtain 

(1  1 ( ; ) 2  l ) 
R (fro, ~0) ~0 = ~u0 (no + 1) + ~ u - ~ (u0 q- 1) 2 (0 

1 sin2 t -  ~ ( c o s t +  1) 2 (0 = cos t (cos t + 1) + 

= 1 sin2 t (0 
4 

= - u ( 0  
4 

Thus, R(V0, F0)Y0 = -~(0 and the Jacobi equation becomes fo' + ~ = 0. The initial conditions on 
Vo imply fo(0) = 0 and fo(s) ---- l, so fo(t) = (csc ~)(sin ~) and Vo(t) = (csc ~)(sin ~)(o(t). 

As before, we identify the vector (VyoVo)(0) = �89 ~)(o(0) �9 TPo~ ~ with a vector in 

TPo(TPo ~n) and parallel translate it along p(t) = exPpol (yo(t)). Define Y(t) = l(csc ~)t (o along 

p(t). Then (exp~l),((0(s))= Y(s). 

We again identify Teo]? n and TeM using t, set ( = t(r and calculate (expp),(Y(s)) = 
(expp),(�89 ~)s(o(0)). Let F(t) = expe(p(t)) and let ((t) be the parallel translate of ( along 
y. We set V(t) = f(t)((t)  and find a function f such that V is a Jacobi field with V(0) = 0 and 
(V? V)(0) = Y~(0) = �89 (csc ~)(o(0). Since (,) holds on M, one follows a calculation similar to the 
one above to show that f( t)  = (csc ~)(sin ~)(0(t). Thus, ~P,((o(s)) = V(s) = ((s). 

Since ~0 and ( are parallel along F0 and F, respectively, go((o(s), (o(s)) = go((o(0), (0(0)) and 
g(((s), ((s)) = g(((0), ((0)). The identification t was chosen to be an isometry, so g(((0), ((0)) = 
go((o(0), ~o(0)) and qJ is an isometry. 

Step 3: qJ: I~ n --+ M is a biholomorphic isometry. 

It is clear from the definition of ~P that it is surjective. To see that it is injective, suppose 
Z, 2 �9 ?n, q~(Z) = ~P(2). By the definition of ~,  there exist sequences 

{ZV}, lZ  v ] c ]~n \ a 0 with l i m v ~  Z v = Z, l i m v ~  ~v = ~ ,  

l i m v ~  qJ(ZV)= qJ(Z), l i m o ~  qJ(2~) = q J ( Z )  . 

Since each complex leaf of the foliation associated to X intersects H at exactly one point, 
diStM\H(Qj, Q2) = distM(Q1, Q2) for all Ql, Q2 �9 M \ H. Furthermore, disty,\Ho(Q1, Q2) = 
disty,, (Q1, Q2) for all Q1, Q2 �9 ~n \ Ho. Since qJ is an isometry on ]?n \ HO, 

d i s t ( Z , Z )  = v~oolim dist (Z~,2~)=v~oolim d i s t ( q J ( Z v ) , q J ( 2 v ) )  

= a i s ,  

Therefore, Z = 2. 

~P is a homeomorphism. In fact, the above argument shows that for all 

Z, 2�9 dJst (qJ(z), k o ( Z ) ) = d i s t  ( Z , Z )  , 

so qJ is continuous. It follows from the compactness of 1? n that qJ is an open map, so o2-1 is also 
continuous. 
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To show that qJ is a diffeomorphism, fix Z 6 H0. We will find a neighborhood U of  Z and 
construct a diffeomorphism ~ :  U ~ ~ ( U )  C M. We will show that qJ = �9 on a dense subset of  
U, which implies that qJ = q~ on U. 

To construct ~ ,  fix W 6 ~n \ H0 close enough to Z so that there is an open set U containing 
Z which is the diffeomorphic image under expw of  an open set in TwI? n and so that qJ(U) is 
the diffeomorphic image under expq,(w ) of  an open set in Tq,(w)M. For ~0 ~ T w ~  n, let 30 
TPoI? n be its parallel translation to P0 along the unique minimizing geodesic Y0 from W to P0. Let 
L: Tpo]? n ~ T p M  be as previously defined, r --  L(r0) 6 TpM,  and ~ 6 T , ( w ) M  be the parallel  
translation of  ~ along the geodesic qJ o F0 to qJ(W). Let lw(~0) = ~ and define ~ :  U --+ ~P(U) by 

= expq,(w ) olw o exP~v 1 . Then �9 is a diffeomorphism. 

Since qJ is an isometry on ~n \ H0 ' ~I/ : (Yp on a dense subset of  U, namely on the set of  all 
Q 6 U such that the minimal geodesic from W to Q does not intersect H0. By continuity of  qJ, 
~P : �9 on U, so qJ is a diffeomorphism on U. Therefore, qJ: ]?n --+ M is diffeomorphic. 

By the continuity of qJ. and the fact that qJ is holomorphic and isometric on ~n \ H0 ' we conclude 
that ~P: ~" -+ M is a holomorphic isometry, which completes the proof  of  the main theorem. 
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