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ABSTRACT. We find the maximum of IlDuy IlL oo when uy is the solution, which 
vanishes at infinity, of the Poisson equation Au = f on I~ n in terms of the 
decreasing rearrangement of f .  Hence, we derive sharp estimates for ]lDuf IlLo~ 
in terms of suitable Lorentz or L p norms of f .  We also solve the problem of 
maximizing [Duf (0)[ when u f  is the solution, vanishing on OB, to the Poisson 
equation in a ball B centered at 0 and the decreasing rearrangement of f is 
assigned. 

1. Introduction and main results 

We are concerned with a number of problems, a prototype of which can be stated in the 
following physical terms: Consider a distribution of electric charges such that the density is 1 and 
the total charge is fixed; which configuration maximizes the largest intensity of the electric field? 

The problem amounts to finding 

max (max lDux~(x) O E  x6N n (l.1) 

as E is subject to the following conditions: 

E is a measurable subset of R n, 

re(E) is fixed, 

and ux~ is the solution to the equation 

A u = x E  (1.2) 
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in R ~, such that 

Andrea Cianchi 

limlzl__+oo u(x) = 0 if n >_ 3 
(1.3) 

limsuPl~l__+o o u(x ) l l x  I < + o o  if n = 2. 

Here x = ( x l , . . . ,  xn) E R '~, vertical bars I I denote modulus, m is the Lebesgue measure, D 
stands for gradient, and A = ~__a 02/Ox 2 for the Laplace operator. We call XE the characteristic 

function of a set E;  namely, XE equals 1 in E and vanishes elsewhere. 

In the present paper we show that the maximum in (1.1) is attained when E is a suitable 

egg-shaped set (a disk, in case n = 2) that is symmetric about an axis. This result can be precisely 

stated as follows. 

Theorem 1. 
Then 

Let E be any measurable subset of R ~, n > 2, such that ra(E) < +oc. 

max ID%E(x)I < IDu~E)(0)I xER~ 

where S (E)  is the set that has the same measure as E and is defined by 

n--1 1--1/n s(E) : {~ ~ R~: I~1 ~ <_ x~K~ ~(E) } 

where 

K ~  = 

(~-11/2p__ 2n-1 ) -1/n 

D2ZXs(E)(0) = Qn 7"/L(/~) l/n, 

_ \ ~ 5 - i ]  

Moreove~ 

where 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

Theorem 1 enables one to solve the more general problem 

max (max \ ~ ' ~  (1.8) 
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when f is constrained as follows: 
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f is a real-valued measurable function on R n, 

either f~_ and f*_ or f* is given, 

and uf is the solution to the full Poisson equation 

A u  = f (1.9) 

in R n, satisfying (1.3). Hereafter, f+  and f_  denote the positive and the negative part of f 
respectively, i.e., 

[ f [ + f  [ f ] - f  
f + - - - ,  f _ _ -  2 2 

Above, if(s) = inf{t >_ 0 : #f( t)  <_ s}, the decreasing rearrangement of f ,  where 
#i(t)  = ra({x C R n : If(x)l > t}), the distribution function of f (see [HLP] for more 
details). 

The solution to problem (1.8) is given in Theorems 2 and 3. In the statements, 

f0 II/11 ,1 = sUn-l f*(s)  d8, (1.10) 

an equivalent norm in the Lorentz space L(n, 1) (see, e.g., [Z]). 

Theorem 2. 

max IOuf(x)l < IOu (f>(o)l 
xER~ -- 

where S(f) is the function having the following properties: 

Let f be any measurable function on R n such that Ilflln,1 < Then 

(1.11) 

In formulas, 

f ;  ( ( ' 4 -X l ) -n / (n -1 ) l x [n2 / (n -1 )Knn)  i f x  1 ~ 0 

S ( f ) i ( x )  = 0 if  X 1 ~ O. 
(1.12) 

S ( f ) + and S ( f )_ are equidistributed with f+ and f _, respectively. 

the level sets of S ( f )+ are the maximizing sets described in Theorem 1; the level sets of 
S ( f ) _  are the symmetrical about the hyperplane { x :  Xl = 0} of such maximizing sets. 
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Theorem 3. Assume the same hypotheses as in Theorem 2. Then 

max IDuf(x)l  <_ IDus(f)(O)l 
xER~ 

(1.13) 

where S ( f )  is the function equidistributed with f ,  such that S(f)*+ = S(f)*_ and whose level 
sets are defined analogously to the level sets of S ( f )  (Theorem 2). 

In formulas, 

S ( f )  = sign(xl)f* (21x l l -n / (~ -1 ) l x l~2 / (n -1 )K~)  . (1.14) 

Theorem 3 makes it possible to derive sharp upper bounds for max:~e~,~ IDuf(x)  l in terms 
of the L(n,  1) norm or the L 1 and L ~ norms of f (Corollary, Section 2). 

Now we want to emphasize that problem (1.8) can be regarded as a particular case (p = oc) 

of 

maxllDufllLp (1.15) 
f 

as f*  is assigned. Recall that, when p = 2, the norm of D u f  in (1.15) has a precise physical 
meaning: it represents the (square root of the) energy of the electrostatic system described above. 

Problem (1.15) can be solved if p < 2. In fact, Theorem 1 of [T] tells us that 

IID flIL  IID r 

for p < 2, where f*,  the spherically symmetric rearrangement of f ,  is the function whose level 
sets {x E R n :  f*(x)  > t} = {x E R n : [ f(x)]  > t}*. We recall that, given any measurable 

subset f~ of R n, f}* denotes the Schwarz symmetrized of f}, i.e. the ball, centered at the origin, 

which has the same measure as ft. 

As far as we know, problem (1.15) is open for 2 < p < oo. Theorem 3 solves the problem 

in case p = oc. The result suggests that when 2 < p < oc, a loss of the spherical symmetry 

should be expected. Indeed, we stress that the rearrangement S ( f ) ,  which maximizes in (1.15) 

if p = oc, does not agree with f*.  

A further question arises quite naturally: What can one say if, in (1.15), u f  is replaced by 

the solution to equation (1.9) in a domain Q, vanishing on Of}? 
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For 0 < p < 2, the solution to the above question follows again from Theorem 1 of [T], 
whereas it is not known if 2 < p < oo. When p = co, the case considered in this paper, we 
present a partial answer in this direction. 

We deal with the solutions UB~E and u} ~ to (1.2) and (1.9), respectively, in the unit bal l /3 n 
of R ~, which satisfy the condition 

u = 0  on OB ~ (1.16) 

and replace max IDul by IDu(0)l, the modulus of the gradient at the center of B'~; namely, we 
consider the problems 

and 

maxIDuff~(0)l , (1.17) 
E 

max IDu~(0)l  (1.18) 
S 

as re (E)  and either f~  or f* are fixed, respectively. In Theorem 4 the corresponding maximizers 

S B ( E ) ,  S x ( f ) ,  and ~ B ( f )  are exhibited. 

Theo rem 4. Part I. Let E be any measurable subset of t3 n, n >_ 2. Then 

IDu~E(O)I _< IDu~s~(~)(o)l, 

where S B (E)  C_ t? n is the set, having the same measure as E,  defined by 

{X �9 ~ n :  0 ~ X 1 ~_~ tru(E), X 2 J r ' ' '  -~ X 2 ~ W(Xl)  } if r e ( E )  _< C~12 
S B ( E )  = B n \ { z  E R~:  ( - Z l , X 2 , . . .  ,an) C S B ( B  n \ E ) }  otherwise. 

(1.20) 
Here." 

tin(E) is the solution in [0, 1] to the equation t ~ Jr (n - 1)Cn)~(m(E)) t  ~-1 - 1 = O, 

W,~(E)(t) ---- t2/n((n -- 1)Cn/~(m(E))  4- t) -z/~ - t 2, 

A(.) is the function defined by (3.6) (Section 3), 

Cn = 7r~/2/I~(1 + n/2) ,  the measure o f B  ~. 

Part II. Let f be any measurable function on B n, n > 2, such that Ilflln,1 < Then." 

(1.19) 

In f(o)l _< (i) 
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where SB( f ) is the function having the following properties: 

S B (f)+ and S B ( f )_  are equidistributed with f+ and f_,  respectively," 

the level sets of SB( f )+ are the maximizing sets described in Part I; the level sets of 
S B ( f )_  are the symmetrical about the hyperplane {x :  xl = 0} of such maximizing sets," 

Duf(O) <_ Du~.(f)(O) (ii) 

where ~B( f )  is the function equidistributed with f ,  such that ~B(f).+ = ~ , ( f ) . _  and 
whose level sets are defined analogously to the level sets of 5 'B ( f)  above. 

2. The problem in R ~ 

Our proof of Theorems 1 through 3 is based on a representation formula for the solution u f  
to problem (1.3)-(1.9) in R n. As is well known, u f  agrees with the Newtonian (logarithmic, in 
case n = 2) potential of f ;  namely, 

if n > 3, or 

if n = 2. Thus, we have 

uf(x)  - ( 2 -  n)nC~ ~ f(y)lx - dy 

u f (x  ) = ~ ~ f ( y )  l n l x -  y ldy  

D u f ( x ) -  1 j [  nC~ ~ f ( y ) ( x  - y)lx - yl-~ dy. 

(2.1 a) 

(2.1b) 

(2.2) 

Observe that IDufl is bounded in R ~, provided f E L(n, 1). In fact, 

1 ~ yll_ n 
IDuf(x)l <- nCn ~ If(y)l l x -  dy. 

On the other hand, the Hardy-Littlewood inequality says that 

(2.3) 

(2.4) 
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for any couple of measurable functions 9, h : R ~ ---+ R (see [HLP]). Therefore, from (2.3) and 
(2.4) we obtain 

IDuf(x)l  1 A nCn f*(Y)IYI'-  dY" 

Consequently, 

1 fo 
n(Jn 

sl/~-lf*(s) ds, 

as f*(y)= f*(Cnlxl'~). 

Clearly, f E L(n, 1) is a sharp condition for the boundedness of IDufl. A sufficient 
condition for f to belong to L(n, 1) is f E LP(R n) N Lq(R ~) for some n < p _< c~ and 
1 < q < n. This fact follows from the HSlder inequality, since 

ess sup Jf(x)l = s u p f * ( s ) =  sup f*(x) 
x E R  ~ s E ~  x E N  n 

(2.5) 

and 

L If(x)lPdx=~o+~f*(8)Pds=L~ f*(x) p dx. (2.6) 

Now, let us fix a few notations. If f~ is any measurable subset of R n, we define the "cylindrically 
symmetrized" ~,,1 of ~2 along the xa-axis by 

~2*'l={xGR~:(x2,...,xn) e(UtA{yERn:yt=xl})*} ,  (2.7) 

where, on the right-hand side, * stands, with abuse of notation, for (n - 1)-dimensional Schwarz 
symmetrization on the hyperplane {y E R ~ : Yl = xl}. 

Analogously, if 9 is any measurable function on Q, we call 9 *'1 : f2 *A + R the cylindrically 
symmetric rearrangement of 9 if 9 *'1 depends only on Xl and (x~ + . . .  + x2) 1/2 and 

9"1(X1, . )  : (9 (Xl , ' ) )  *. (2.8) 

By the Cavalieri principle, 

*,1) 

Moreover, by the Fubini theorem and equation (2.4), 

ff~ g ( x ) h ( x ) d x  ~ ff2,,1 g* ' l (x)h* ' l (x)dx  

for any pair of measurable functions 9 and h on ft. 

(2.9) 

(2.10) 
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Proof  of The o r e m 1. Since A is translation- and rotation-invariant, we can restrict 
ourselves to maximizing - - (0/021 )u)~z (0). 

As 

0 i/~ 
0xl~XE(0) -- n C  n ~ ~E(y)Yl lYl  -~ dy 

(see formula (2.2)) and yllyl  -n  ~ o for yl >_ o, --(0/0271)%6XE(0 ) increases is we replace E 

(if necessary) by a new set E that has the same measure as E and is contained in the half-space 

~ = {~ ~ a~: ~ > o). We put 

/ ) = {  E if E c R~_ 
(E  A R~) [3 F otherwise, 

where F is any set, contained in R~_, such that r e ( F )  = m ( E  \ R~_) and F A E N R~_ = 0 
(such a set F exists, for r e ( E )  < +oo). So doing, we have 

0 uxz(0) < 1 J/R Oxl _ ~ ~ Xj2(y)yllyl -n  dy. (2.11) 

Now, since the kernel Yl lYt -~ is cylindrically symmetric on R~_ (see (2.8)) and (X$) *'~ = 
X~,,1, inequality (2.10) implies 

nC~ ~ ~ ( y ) y l I y I - ~ d y  ~ nCn ~ ~ * ' I ( y ) y l l y I - ~ d y  (2.12) 

Combining (2.11) and (2.12) yields 

0 u~(0)<  1 f~ OXl __ ~ , )@,,l(y)yllyl.-~dy. (2.13)  

Notice that the right-hand side of (2.13) is nothing but - (O/Oxl )ux~ . ,  1 (0). Consequently, due 
to (2.9), inequality (2.13) enables us to infer 

m a x  
Oxl - ~(E(~))=.~(E) 

Here E ( v )  denotes any symmetric set about the xl-axis of the form 

E ( v )  = { x  E ]l~ n : Xl > 0 , ( x 2 - J c . . . - ~ - x 2 >  1/2 < V(Xl )} ,  
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where v, the meridian of E(v), fulfills 

v v(t) _ 0. 
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(2.15) 

Therefore, the last step of our proof consists of maximizing 

( n -  1)Cn-lnCn do +~176 8 2 ) - n / 2 )  f s~-2(1 + ds dr, 

under the constraint 

Cn-1 fo +ee V n-1 (t) dt 

among those functions v that satisfy (2.15). 

To this purpose, let us set 

given, 

G(v) = C~-1 v~-l(t)  dr, (2.16) 

and consider, for fixed A > 0, the functional J -  ),G. Setting a~(t,v) = fo/t s~-2(1 § 
s2) -n/2 d s -  AC~_IV n-i,  we have ( J -  A C ) ( v ) =  f+~a~(t ,  v(t))dt. 

It is easily seen that, for every v >_ O, aa(t,v) <_ aa(t, vx(t)), where va(t) equals 
(t2/~((n - 1)C~_IA)-2/~-t2) 1/2 if0 < t < ( ( n -  1)Cn_IA) -1/(n-l) and vanishes otherwise. 
Therefore, v:~ maximizes J - AG in the class of functions v fulfilling (2.15) and maximizes J 
among those functions v that, in addition, satisfy G(v) = G(vx). 

1-1/n 

Imposing G(v),) = re(E) yields 

__(n--1)/2~ {2n--1"~ ) 
1 (J~ _ _  x ~2--;~-2J 

A -- (n - 1)Cn_l ~ n F ( 2 ~ @ z )  m(E) l /n - ' "  

Thus, by virtue of (2.14), we get (1.4), a s  - - (O/OXl)Uxs(E)(O ) = [Dus(E)(O)[. Finally, (1.6) 
follows through straightforward computation of [Dus(Ei (0)1. [] 

Proof of Theorem 2. We have 

f0 +~ f0 +~ 
Duf (x) = Dux~s+ >,~ (x) dt - Dux~f_ >,~ (x) dr. (2.17) 
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In fact, splitting f into its positive and negative parts and making use of the formula f •  (z) = 
f ; ~  X{f• >t} (z) dt in (2.2) give 

1 (x -- y !  
, co 

Duf(x) 

Hence, (2.17) follows via the Fubini theorem. 

From (2.17) one gets 

By (1.4), 

Du~u+>,}(r _< Dux~(u•  ) (0) - 

0 0 

(2.19) 

for t > 0. Clearly, 

0 
Ozl Uxs(~s+ >~})(0) for t > 0. (2.20) 

where, for any set F C R n, the notation 

is used. 

F_ = {x e Rn: ( - x , , ~ 2 , . . .  ,~n) e r }  

Now, thanks to formula (2.2) and Fubini's theorem, we have 

(2.21) 

(2.22) 

(2.23) 

1 Yl 

Observe that the fight-hand side of (2.23) equals - (O/Ozl)us(f)(0), for the term in brackets 
in the integrand agrees with S(f). Furthermore, - (O /Ox l )us (y ) (0 )  = IDus(/)(0)I ,  since the 
level sets of S(f)  are symmetric about the x~-axis and S(f)(z)  >_ 0 if Zl _> 0, S(f)(z)  <_ 0 
i f x i  _< 0. 
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Thus, (2.23) yields 

/ 7 ( _ 0  o 5 7 ~ s ( { , + > , , ( 0 )  + 877x ~s (~ ,_> , ,_  = ID~s(,)(o)l  �9 (2.24) 

Combining (2.19), (2.20), (2.21), and (2.24) completes the proof. 

We notice that the maximizing function co(f) can be obtained by rearranging f on the level 
sets of the harmonic function Xl/IXl n. [] 

In the proof of Theorem 3 we shall make use of the following lemma. 

Lemma. 
Then 

Let E, F, and G be any subsets of R '~ such that 2re(E) = rn(F) + ra(G). 

0 0 0 
OxIUXS(F, (O) - ~xl~Xs(o)(O) ~ -2~XlUXS(~) (O). (2.25) 

Proof. Suppose, by contradiction 

0 0 0 
Uxs(F , (0) - > -2-~xl uxs(~, (0). OX 1 O~Xl uXs(G) (O) 

(2.26) 

Assume, for instance, re (F)  < ra(G). By adding (O/OXl)~xs(E) (0) to both sides of (2.26) 
and observing that, under our assumptions, S(F) C co(E) C S(G), we obtain 

0 0 
OXlUXS(O)\(S(E)\S(F)) (0) > -- 0X~tXs(E) (0). (2.27) 

But ra(S(G) \ (CO(E) \ CO(F))) = re(E). Thus, inequality (2.27) contradicts (1.4), as 
-(O/Ox,)uxs(E,(O ) = IDuxs(~,(O)l and S(S(G) \ (S(E) \ S(F))) = S(E). [] 

Proof of Theorem 3. Let us set 

L(t) = {x �9 Rn:  f+(21/'~x) > t} U {x �9 Rn:  f_(2'/nx) > t}, 

Obviously, 

1 
m(L(T)) = 7 # / ( t  ). 

t > 0. (2,28) 

(2.29) 
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Therefore, owing to the lemma above and to equality (2.21), 

0 0 
OXl~XS({,+>~})(O) Ji- ~ X l  ~Xs({y_>t})_ (0) 

0 0 
< -7~l~L+)(o) + ~ 1 ~ + ) _  (0). (2.30) 

On the other hand, 

(-~7~ ~ , ) ~  (o) + Ox-7~(~+)_ 
1 y~ 

Note that the expression in brackets in the latter integrand agrees with S( f ) .  Therefore, (2.31) 
implies 

/o += 0 0 (0)) et : D ~ + ( o ) ,  (2.32) 

since --(O/OXl)~/@(f)(O ) = IDu~(f)(0)l. 

Thus, (1.13) follows through (1.4), (2.24), (2.30), and (2.32). []  

Corollary. Assume the hypotheses of Theorem 2. Then 

m a x  IDus(x)l ~ - -  xEIR n 

and equality holds if f = S( f ) ;  

21-1/n 
Qnllflln,1 (i) 

n 

01-1/nt  ") II tell 1-1/n 1/n 
m a x  IDuf (x ) l  <, -  -~n,,J,,L~ IlfllL1 (ii) xER~ 

and equality holds if f = C(XS(E) - )is(E)_ ), where E is any set (recall (2.22)) and c is any 

real number. 

The constant Q~ is given by (1.7). 

Proof. Taking into account (1.13) and using (2.32) to compute [Du~/y)(O)l yield 

fo=(O o ) max IDuf (x ) l  < - uxs(L(~))(o ) + - -  (o) dr. xE R~ -- ~ OX l ~I~XS( L( t) )- 
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Hence, by (1.6) and (2.29), we get 

f0 max IDue(x)l  < 21-1/~Q,~ #f(t) ~/~ dt. 
xCR~ 
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(2.33) 

Now, one has 

/ + ~  - /  sWn-lf*(s) ds. (2.34) #f(t) 1/n dt = 1 +~ 
n 

This is shown by an integration by parts, which uses the formula f*(s) = f ; ~  X[0#,(t)l (s) dr. 
Thus, (i) is a consequence of (2.33) and (2.34). 

As far as (ii) is concerned, we obtain from (2.33), via H61der inequality, 

max ID~s(x)I  < 21-1/nQn(sup f*)l-1/n ~f(t) dt 
xER~ 

Since f?oo #f(t) St = [[f[lz~ (see, e.g., [ZJ) and (2.5) holds, (ii) is proved. [ ]  

Remark 1. Theorems 1 and 2 make it possible, via reflection arguments, to solve maximum 
problems analogous to (1.1) and (1.8) for the gradient of solutions to equations (1.2) and (1.9), 
respectively, in the half-space R~. 

Let E be any subset of R~_ having finite measure and let u + be the solution to (1.2) in R~, 
XE 

which satisfies (1.3) and the boundary condition 

= 0 .  (2.35) 

Then, 

max ID%+~(x)I < IDu+ (~)(0)1. xER~ 
(2.36) 

In fact, it is easily verified that 

~z + + ux~ - (2.37) XE ~ %X~ 

(recall (2.21)). Therefore, IDu+ (x)l <_ IDux~(x)l+lDuxE - (x)l for every x C R~_. Applying 

Theorem 1 yields IDu+E (x)l < ]Duxs(E ) (x)l + IDuxs(F)_ (x)[. By (2.37), the right-hand side 
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of the latter inequality agrees with IDu+s(~)(x)l, inasmuch as S ( E )  and S ( E ) _  are symmetric 
sets about the xl-axis. Hence, (2.36) follows. 

More generally, consider any nonnegative function f �9 L(n, 1) on R~_ and call u ]  the 
solution to the equation (2.9) on R~_ satisfying (1.3) and (2.35). Then, arguing as in the proof of 
Theorem 2 and making use of (2.36) instead of (1.4) shows that 

max ID~2(x)l _< IDu~+(s)(0)l. xE~_ 

An analogous result holds for nonpositive f. The details are omitted for brevity. [ ]  

3. The problem in a ball 

The same role played by (2.1) in Section 2 is performed here by the following formula, 
which makes use of the Green function, for the solution u~ to problems (1.9)-(1.16) in/3~: 

1 fB yIe-~ u}~(z) = (2-n)nCn f(y) (Ix-  -lYl2-nlx-~12-~)dy (3.1a) 

if n _> 3, or 

u ~ ( x )  = ~ f ( y ) ( l n l  x - Y l -  hi(lyl I x -  91))dy (3.1b) 

if n : 2, where ~ : y/lyU. 

Hence, 

D u ~ ( x )  - nC~ ,~ f ( y )  ((x - y ) l x  - yl  -~  - l y l ~ - ~ ( x  - y) lx - 91 -~) dy. (3.2) 

Arguing as in Section 2 shows that [Dull is bounded in /3  n provided f E L(n, 1). Since 
B n has finite measure, f belongs to L(n, 1) if f E LP(B ~) for some n < p _< cx~. 

P roof  of Theorem 4, Pa r t  I. To begin with, let us consider the case where re(E) <_ 
on~2. 
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Since A and B ~ are invariant with respect to rotations about 0, we may assume without 
loss of generality that ]DuB (0)1 = --(O/Oxl)uB~ (0). By (3.2), 

0 
(0)--  1 ~ X~(y)y l ( lY l_~_ Ody.  U B 

Ozl  ~E n C n  . 

Moreover, y~(]y]-n _ 1) > 0 if y E B~_; henceforth, B~_ =- {x E B n : xl > 0}. Thus, in 
order to increase - (O /Ox l )u ~E  (0), we modify (if necessary) the set E by putting 

/ ) =  ~ E i f E C _ B ;  

[ (E U F) n t3 2 otherwise, 

where F is any measurable subset of B~_ \ E such that re(F) = m ( E  \ B2~). This set F exists 
because we are assuming re(E) < C~/2. 

Therefore, we have 

o 1s  
OxlUB (O) <_ ~ ~ X~(y)yl(ly] -~ - lDdy. 

Hence, as the kernel Y1 ( lyl-~ - 1) is cylindrically symmetric on B~_ (recall (1.8)), one can repeat 
the argument used in the proof of Theorem 1 and infer 

OXlUB(O) < max -- uB (~)(0) . (3.3) 
- ,~(E(v))=m(E) 

Here E(v)  is any subset of B_~, symmetric about the xl-axis, having the form 

E ( v ) :  {xeR ~ :O<xl < 1 , ( x [ + . . . + x ~ )  V2 ~_~ V(Xl)}, 

where 

O <_v(t) <_ ( 1 - - t 2 )  1/2, t E [0,1]. (3.4) 

Thus, our task is to maximize 

f0 
subject to the constraint 

a ( v )  = 

(see (2.16)), among those functions v that satisfy (3.4). 

(3.5) 
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Let A > 0 be fixed. Setting 

- -  + - t d t  

and arguing as in the proof of Theorem 1 shows that the function v~, which equals ( t 2 / n ( ( n  - -  

1)C~_IA + t) -2/~ - t2) 1/2 if 0 < t < t(A) and vanishes otherwise, maximizes the functional 
j u  _ AG in the class of those functions fulfilling (3.4). Here, t(A) denotes the inverse of 
(t t -n - t ) / ( (n  - 1)C~_~) for t �9 (0, 1] (clearly, t(~) n + (n - 1)Cn_l~t() ,)  n-1 - 1 = 0). 

Now, consider the function r defined as r = G(vB). It is easily verified, by direct 
computation, that dr < 0 if A _> 0; moreover, we have r = C~/2 and l ima~+~ r = 
0. Thus, r is bijective and decreasing from [0, + c o )  into (0, C~/2]. 

By setting 

A(.) = r  (3.6) 

we have G(v~(~(E))) = re(E). Consequently, Va(m(E) ) B  minimizes the functional j B  under the 
constraints (3.4), (3.5). Hence, by (3.3), we get (1.19). 

Note that, if re(E) = C~/2, then the maximizing set S(E)  -~ B; .  

Finally, if re(E) > C~/2, then inequality (1.19) easily follows from the case proved above. 
Indeed, for any E C/3~ ,  I D ~ ( 0 ) l  = IP~.~ ,~(0) [ ,  because 

1 L IDu~(0) l  - nC~ XE(y)yl(]y[ - ~ -  1)dy , 

D ~ (o)1 - 1 s dy 

and fB~yl(ly] - ~ -  1) dy = 0. [ ]  

Proof of Theorem 4, P a r t  II, sketched.  A proof of inequalities (i) and (ii) starts from 
formula (3.2) and proceeds through the same steps as in the proof of Theorems 2 and 3. One has 
to make use of Theorem 4, Part I, in the place of Theorem 1 and of SU( f )  and ~ B ( f )  instead 

of S ( f )  and S ( f ) .  

Notice that, in order to prove (ii), a new version (with identical proof) of the lemma in 
Section 2 is needed, where S(.)  and u in (2.25) are replaced by SB(.) and u u, respectively. 

We remark that the maximizing function S B ( f )  is nothing but the rearrangement of f on 
the level sets of the harmonic function x l (Ix ]-~ - 1). [ ]  
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R e m a r k  2. Obviously, Theorem 4 still holds, with simple suitable changes in the defini- 
tions of SB(E), SB(f), and ~B(f), if /3 ~ is replaced by a ball/Y~(/~) of any radius R. 

It is quite easy to verify that the maximizing set for the problem in /3  ~ (R) converges to the 
maximizer for the problem in the whole space R ~, as R goes to +oc .  This is what one reasonably 
expects, since, heuristically speaking, the former problem approaches the latter one when R tends 
to +cxz. []  

R e m a r k  3. We point out that, by arguing as in Remark 1, the results of Theorem 4 can 
be used to solve analogous questions for the gradient of the solutions of Poisson's equation with 
zero boundary data, in the half-ball B~_. []  

[HLP] 
[T] 
[Zl 

References 

Hardy, G. H., Littlewood, J. E., and P61ya, G. Inequalities. Cambridge: Cambridge University Press 1964. 
Talenti, G. Elliptic equations and rearrangements. Ann. Sc. Norm. Sup. Pisa 4, 3 (1976). 
Ziemer, W. R Weakly differentiable functions. Berlin: Springer-Verlag 1989. 

Received September 13, 1991 

Istituto di Matematica, Facolta' di Arcbitettura, Universit~i Degli Studi di Firenze, Piazza Brunellescbi 4, 50121 Firenze, 
Italy 


