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Maximizing the L>° Norm of the Gradient of

Solutions to the Poisson Equation
By Andrea Cianchi

ABSTRACT.  We find the maximum of || Du ¢||,ec when uy is the solution, which
vanishes at infinity, of the Poisson equation Au = f on R™ in terms of the
decreasing rearrangement of f. Hence, we derive sharp estimates for || Duy|| 1,00
in terms of suitable Lorentz or L? norms of f. We also solve the problem of
maximizing lDu? (0)| when 12 is the solution, vanishing on 8B, to the Poisson
equation in a ball B centered at 0 and the decreasing rearrangement of f is
assigned.

1. Introduction and main results
We are concerned with a number of problems, a prototype of which can be stated in the

following physical terms: Consider a distribution of electric charges such that the density is 1 and
the total charge is fixed; which configuration maximizes the largest intensity of the electric field?

The problem amounts to finding

max <max |DuXE(x)|> (1.1)

E zER™

as E is subject to the following conditions:

E is a measurable subset of R™,

m(E) is fixed,
and u, , is the solution to the equation
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in R™, such that

(1.3)

limyg) o0 4(%) = 0 ifn >3
limsup, ., u(z)/|z] < +oo ifn=2.

Here © = (z1,...,%,) € R”, vertical bars | | denote modulus, 77 is the Lebesgue measure, D
stands for gradient, and A = Y7, 62 /02 for the Laplace operator. We call X  the characteristic
function of a set F; namely, X equals 1 in £ and vanishes elsewhere.

In the present paper we show that the maximum in (1.1) is attained when F is a suitable
egg-shaped set (a disk, in case n = 2) that is symmetric about an axis. This result can be precisely
stated as follows.

Theorem 1. Let E be any measurable subset of R, n > 2, such that m(E) < +o0.
Then

;2%)5 |DUXE (:I;)' S ‘DUXS(E) (0)‘ (1'4)

where S(E) is the set that has the same measure as E and is defined by

S(B)={z e R :[a]" < m K} 'm(E)' (1.5)
where
e —1/n
x(r=1/2p (g_n__;)
K, = >
nT(325)
Moreover,
Dy s, (0)] = Qu m(E)/", (1.6)
where

A pn=1+1/(2n) I‘(Zn—1> 1-1/n
= (e

an

Theorem 1 enables one to solve the more general problem

max (nel%x |Duf(x)\) (1.8)
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when [ is constrained as follows:

f is a real-valued measurable function on R”,

either f} and f* or f* is given,

and uy is the solution to the full Poisson equation
Au=f (1.9)

in R", satisfying (1.3). Hereafter, f. and f_ denote the positive and the negative part of f
respectively, i.e.,

_-f

_ A+t
’ 2

fr 5

f-

(t) < s}, the decreasing rearrangement of f, where

Above, f*(s) = inf{t > 0 : py
| > t}), the distribution function of f (see [HLP] for more

uit) = m{{z € B : |f(2)] >
details).

The solution to problem (1.8) is given in Theorems 2 and 3. In the statements,

+oo
s = [ 1) ds, (110

an equivalent norm in the Lorentz space L(n, 1) (see, e.g., [Z]).

Theorem 2. Let f be any measurable function on R™ such that || f||,,1 < -+00. Then

max | Duy(2)] < |Dus(s)(0)], (1.11)

where S(f) is the function having the following properties:

S(f)s and S(f)_ are equidistributed with f, and f_, respectively.

the level sets of S(f). are the maximizing sets described in Theorem 1, the level sets of
S(f)— are the symmetrical about the hyperplane {x : ©1 = 0} of such maximizing sets.

In formulas,

f1 () /= D]g| /DR ) i 20

(1.12)
0 if 1 S0.

S(f)(z) = {
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Theorem 3. Assume the same hypotheses as in Theorem 2. Then

max |Dug(z)] < |Dus(s)(0)]; (1.13)

where S(f) is the function equidistributed with f, such that S(f )= S(f)* and whose level
sets are defined analogously to the level sets of S(f) (Theorem 2).

In formulas,

~

8(f) = sign(@)) f* (2las| /"D /DRI (1.14)

Theorem 3 makes it possible to derive sharp upper bounds for max,egs |Dus(z)| in terms
of the L(n, 1) norm or the L' and L™ norms of f (Corollary, Section 2).

Now we want to emphasize that problem (1.8) can be regarded as a particular case (p = 00)
of

m?XIIDUf”Lp (1.15)

as f* is assigned. Recall that, when p = 2, the norm of Duy in (1.15) has a precise physical
meaning: it represents the (square root of the) energy of the electrostatic system described above.

Problem (1.15) can be solved if p < 2. In fact, Theorem 1 of [T] tells us that

[ Dugllze < || Dug

r

for p < 2, where f*, the spherically symmetric rearrangement of f, is the function whose level
sets { € R" : f*(z) >t} = {z € R" : |f(z)] > t}*. We recall that, given any measurable
subset  of R™, Q* denotes the Schwarz symmetrized of €2, i.e. the ball, centered at the origin,
which has the same measure as ).

As far as we know, problem (1.15) is open for 2 < p < co. Theorem 3 solves the problem
in case p = 00. The result suggests that when 2 < p < 00, a loss of the spherical symmetry
should be expected. Indeed, we stress that the rearrangement S(f), which maximizes in (1.15)
if p = 00, does not agree with f*.

A further question arises quite naturally: What can one say if, in (1.15), uy is replaced by
the solution to equation (1.9) in a domain €2, vanishing on 027
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For 0 < p < 2, the solution to the above question follows again from Theorem 1 of [T],
whereas it is not known if 2 < p < co. When p = o0, the case considered in this paper, we
present a partial answer in this direction.

We deal with the solutions ufE and u? to (1.2) and (1.9), respectively, in the unit ball B™
of R”, which satisfy the condition

v=0 on OB" (1.16)

and replace max | Du/| by |Du(0)
consider the problems

, the modulus of the gradient at the center of B™; namely, we

max |Du?_(0)], (1.17)
and
max | Du? (0)] (1.18)

as m(E) and either f or f* are fixed, respectively. In Theorem 4 the corresponding maximizers
SB(E), SB(f), and SE(f) are exhibited.

Theorem 4. Part I. Let E be any measurable subset of B™, n. > 2. Then

|Duy, (0)] < [Duy_, _(0)], (1.19)

XsB(m)
where SB(E) C B™ is the set, having the same measure as E, defined by

SB(E) = {zeR:0< 2 Stpmy, a3+ -+ 22 <W(z)} it m(E) <C,/2
B” \ {fL' € R™ : (_$1)$27 D] 7:En) i~ SB<Bn \ E)} otherwise.
(1.20)
Here:

tm(g) is the solution in [0,1] to the equation t™ 4+ (n — 1)C,A(m(E)) "' — 1 =0,
W) (t) = £#/7((n — )CuA(m(E)) + 1)~/ — 12,

A(+) is the function defined by (3.6) (Section 3),

C, = 7 /T(1 + n/2), the measure of B™.

Part I Let f be any measurable function on B", n > 2, such that || f ||, 1 < 00. Then:

D (0)] < | Dufs((0)] (i)
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where SB(f) is the function having the following properties:

SB(f), and SB(f)_ are equidistributed with f and f_, respectively;

the level sets of SB(f). are the maximizing sets described in Part I; the level sets of
SB(f)_ are the symmetrical about the hyperplane {x : T\ = 0} of such maximizing sets;

[Du2(0)] < [Du, ) 0)

(i)

where SB(f) is the function equidistributed with f, such that SP(f)% = SB(f)* and

whose level sets are defined analogously to the level sets of SB(f) above.

2. The problem in R"

Our proof of Theorems 1 through 3 is based on a representation formula for the solution 1
to problem (1.3)—(1.9) in R™. As is well known, u s agrees with the Newtonian (logarithmic, in

case n = 2) potential of f; namely,

— —}___ _ i 2—n
40 = G gne, Je TWNE Yy
if n >3, or
1
usle) = 5- [ £(v) e —yldy

if n = 2. Thus, we have

1

Duy(z) = —=

. f)(z —y)|z -yl " dy.

Observe that |Du¢| is bounded in R”, provided f € L(n,1). In fact,

1
Dus(z)| < — / z—y|' " dy.
[Dug(@)| < - | 1 @lle =" dy
On the other hand, the Hardy-Littlewood inequality says that

g(z)h(z)dx < /Rn g (z)h*(z) dx

R

(2.1a)

(2.1b)

(2.3)

(2.4)
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for any couple of measurable functions g,k : R® — R (see [HLP]). Therefore, from (2.3) and
(2.4) we obtain

1
< — * T dy.
Dus@)| < == [ @l dy

Consequently,

1 T 1 o
IDUf(SL‘)I < - 1/n/0 Sl/n If (s)ds,

as f*(y) = f*(Calel).

Clearly, f € L(n,1) is a sharp condition for the boundedness of [Duy|. A sufficient
condition for f to belong to L(n,1) is f € LP(R*) N LY(R™) for some n < p < oo and
1 < ¢ < n. This fact follows from the Holder inequality, since

ess sup | f(z)] = sup f*(s) = sup f*(x) (2:5)
zeR™ sER TERN

and
[ i@pas= [ perds= [ pare 26

Now, let us fix a few notations. If ) is any measurable subset of R”, we define the “cylindrically
symmetrized” *! of  along the z;-axis by

Q' ={zeR": (zs,...,2,) € QAN{Yy €R" : 4y, = 2, })*}, (2.7)

where, on the right-hand side, % stands, with abuse of notation, for (n — 1)—dimensional Schwarz
symmetrization on the hyperplane {y € R” : y; = z; }.

Analogously, if g is any measurable function on ), we call g*! : Q*! — R the cylindrically
symmetric rearrangement of ¢ if g*' depends only on 2; and (T3 +-- + xi)l/ 2 and

9" (@1,7) = (g(z1,)". (2.8)
By the Cavalieri principle,
m(Q7H) = m(Q). (2.9)

Moreover, by the Fubini theorem and equation (2.4),

/Q g@h@ dz < [ g (2)h\ (@) da (2.10)

Q*,l

for any pair of measurable functions g and / on 2.
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Proof of Theorem 1. Since A is translation- and rotation-invariant, we can restrict
ourselves to maximizing —(0/0x;)u, , (0).

As

) 1 »
5ot 0 = =5 [ Xl dy

(see formula (2.2)) and y;|y|™™ > 0 for y; > 0, —(8/0x1)uy,(0) increases is we replace £
(if necessary) by a new set F that has the same measure as F and is contained in the half-space
R? = {z € R" : z; > 0}. We put

il E if ECRY
| (ENRL)UF  otherwise,

where F' is any set, contained in R”, such that m(F) = m(E \R}) and FNENR} =
(such a set I exists, for m(E ) < 400). So doing, we have

0 1
- < : " dy. .
gz, b0 < o /R X5(Y)ylyl™" dy (2.11)

Now, since the kernel %;]y|™™ is cylindrically symmetric on R} (see (2.8)) and (xz)*' =
X g+.1, inequality (2.10) implies

1 1
nC. 2 Tty < e " dy. 2.12
= | ey < o [ i@yl dy 1)
Combining (2.11) and (2.12) yields
8%1 X - nCn R X \Y)Y11Y1. Y. .

Notice that the right-hand side of (2.13) is nothing but —(9/01)uy, ,(0). Consequently, due
to (2.9), inequality (2.13) enables us to infer

9 9
2 (0) < <—8—%um)(o>> . (2.14)

"5 0 S i)
Here E(v) denotes any symmetric set about the x;-axis of the form

Ew)={z€R":2,>0, (z3+---+ )2 < v(z))},
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where v, the meridian of E(v), fulfills

v e L0, +00), w(t)>0. (2.15)

Therefore, the last step of our proof consists of maximizing

_ +oo [ o)/t
(n=1Cns nlc),c"“l / ( / s”‘2(1+52)““/2ds) dt,
n 4] 0

under the constraint
+o0
Ch_t / v" 1 (t)dt given,
0

among those functions v that satisfy (2.15).

To this purpose, let us set

400 v(t)/t
Jv) = / / s"72(1+ 8*) "2 ds | dt,
0 0

—+o0
Gv) = Cn / v (1) dt, (2.16)
0

and consider, for fixed A > 0, the functional J — AG. Setting a(t,v) = fov/ Tsh2(1 +
§%)""2ds — ACp_ 10", we have (J — AG)(v) = ;" ax(t, v(t)) dt.

It is easily seen that, for every v > 0, ax(t,v) < ax(¢,vx(t)), where v,(t) equals
(/" ((n—=1)Cri N)2m—#2)12 40 < t < ((n—1)Cr—;A) Y1) and vanishes otherwise.
Therefore, v, maximizes J — AG in the class of functions v fulfilling (2.15) and maximizes J
among those functions v that, in addition, satisfy G(v) = G(vy).

Imposing G(v,) = m(FE) yields

1-1/n

) rn=0/27 (22_:1) -~
A= (n—1)Cpy n I (2:;2) 2 ) e

Thus, by virtue of (2.14), we get (1.4), as —(3/3xl)uXS(E)(O) = |Dug(g)(0)|. Finally, (1.6)
follows through straightforward computation of [Dug(g)(0)]. [

Proof of Theorem 2. We have

+o0

+oo
Duy(z) = /0 Dus, @t = [ Duy, (@) (2.17)
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In fact, splitting f into its positive and negative parts and making use of the formula fi(x) =
+o0 . .
fo X{fe>t3(2) dt in (2.2) give

_ ! (z —y)
Duys(z) = nCo o Tz 4"
00 +o00
X ( /0 X{f: >0 (y) dt — /O x>t (y) dt) dy. (2.18)

Hence, (2.17) follows via the Fubini theorem.

From (2.17) one gets

|Duy(z)] < /0 e (|Puxs, o @)+ [Ditng, y (@)]) . (2.19)

By (1.4),

?
‘Duxmm(m){g\Dum@m(o)‘z_a—%uxs({fiw(o) fort>0.  (2.20)

for t > 0. Clearly,

0 d
B a—ftluxs({f—”})(o) - b—auxs({f_»}), (0)7 (2.21)

where, for any set F' C R”, the notation
F_ ={zeR":(—-z,x,...,2,) € F} (2.22)

is used.

Now, thanks to formula (2.2) and Fubini’s theorem, we have

+o0 a a
[) (_8—:1:1114)(5({1‘-}-»}) (0) + b?luxs“f"x})“ (0)) dt (2.23)
= 7C, Ju Iy|n 0 Xs({f+>th\¥ A XsEs->th-\¥Y Y.

Observe that the right-hand side of (2.23) equals —(3/0%1)us(#)(0), for the term in brackets
in the integrand agrees with S(f). Furthermore, —(8/0x;)us(s)(0) = |Dus(s)(0)|, since the
level sets of S(f) are symmetric about the z;-axis and S(f)(z) > 0if z; > 0, S(f)(z) <0
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Thus, (2.23) yields

too 0 0
/0 <—;9—x“1“xs({f+>t}>(0) + 3_$1qu(“_>,5})_ (O)> dt = IDUS(f)(O)I g (2.24)

Combining (2.19), (2.20), (2.21), and (2.24) completes the proof.

We notice that the maximizing function S{f) can be obtained by rearranging f on the level
sets of the harmonic function ;/|z|". [

In the proof of Theorem 3 we shall make use of the following lemma.

Lemma. Let E, F, and G be any subsets of R" such that 2m(E) = m(F) + m(G).

Then
0 0 0
- BE,TUXS(F) (0) - BEUXS(G) (0) < _Z%UXS(E)(O)' (2'25)
Proof. Suppose, by contradiction
0 0 0
- ——UXS(F)(O) — o Uxse (0) > _Z“UXS(E)(O)' (2'26)
81’1 (9x1 33:1

Assume, for instance, m(F') < m(G). By adding (0/0%1)uy,, (0) to both sides of (2.26)
and observing that, under our assumptions, S(F) C S(E) C S(G), we obtain

0 0
- g—x—l—uXS(G)\(S(E)\S(F))<0) > _’a—fvlqu(E)(O)' (2'27)
But m(S(G) \ (S(E) \ S(F))) = m(FE). Thus, inequality (2.27) contradicts (1.4), as

—(0/021)uxs5, (0) = | Dy, (0)] and S(S(G) \ (S(E)\ S(F))) = S(E). U

Proof of Theorem 3. Let us set
Lty={z €R": fL2""x) >t} U{z eR*: f_(2""x) > t}, t>0.  (2.28)
Obviously,

m(L(T)) = 2p5(1). (29)
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Therefore, owing to the lemma above and to equality (2.21),

0
_%“xmn»}) (0) + 3—xluXS({f_>t}>_ (0)
0 0
< _8—%_UXS(L(t))(O) + 8—x1fu’XS(L(t))_ (0) (2.30)

On the other hand,

oo d 0
/0 <_8—$1UXS(L(1‘,))(O) + BEIUXS(L@))_ (O)> dt

1 % oo +oo
< /0 Xsir)(y) dt — /0 XS(L(t))_(?,/)dt) dy. 2.31)

N nCn R™ W

Note that the expression in brackets in the latter integrand agrees with S(f). Therefore, (2.31)
implies

oo 0 0
/o <—5:C—1qu<L<t>>(O) T _(’ic—luxs“(t))_ (0)> dt = ‘Dug(f) <0)’ ' (232)
since —(0/0z1)ug)(0) = |Dug(0)].

Thus, (1.13) follows through (1.4), (2.24), (2.30), and (2.32). O

Corollary. Assume the hypotheses of Theorem 2. Then

21—1/n .
max [ Dus(@)] < =——Qullflln (@

and equality holds if f = S'(f),
max |Duy(2)] <27 Qull =" FIIL" (i1

and equality holds if f = c(Xs(r) — Xs(B)_ ), where E is any set (recall (2.22)) and c is any
real number.

The constant Q,, is given by (1.7).

Proof. Taking into account (1.13) and using (2.32) to compute |Dug(0)| yield

too 0 0
max |DU,f(33)| < A (_—_UXS(L(t))(O) + 8_3:1'”)(5(14(1:))_ (0)> dt.

zeR™ 0z,



Maximizing the L Norm of the Gradient of Solutions to the Poisson Equation 511

Hence, by (1.6} and (2.29), we get

“+o0
max | Duy(z)] < 27/°Q, / s ()7 dt. (2.33)
zeR™ 0
Now, one has
+o0 1 ftoe
/ pa(t)! " dt =~ / $1/7 £ (5) ds. (2.34)
0 0

This is shown by an integration by parts, which uses the formula f*(s) = f0+°° Xo,u(2) () dt.
Thus, (i) is a consequence of (2.33) and (2.34).

As far as (ii) is concerned, we obtain from (2.33), via Holder inequality,

“+o0

1/n
max | Duy(z)| < 27" Qn (sup f1)'71/" (/ uf(t)dt> :
ceR™ 0

Since f0+°° pe(t)dt = | fllo: (see, e.g., [Z]) and (2.5) holds, (ii) is proved.  [J

Remark 1. Theorems 1 and 2 make it possible, via reflection arguments, to solve maximum
problems analogous to (1.1) and (1.8) for the gradient of solutions to equations (1.2) and (1.9),
respectively, in the half-space R .

Let E' be any subset of R7} having finite measure and let u;E be the solution to (1.2) in R},
which satisfies (1.3) and the boundary condition

u(0,2,,...,2,) = 0. (2.35)
Then,

max [Dut, (2)] < |Duf, ,, (0)] (2.36)
+

In fact, it is easily verified that

+

uXE

= Uy y + Usp (2.37)

(recall (2.21)). Therefore, | Duyf ()| < |Duy, ()| +|Duy,_(z)] for every z € RY. Applying
Theorem 1 yields |Duj_ ()] < |Duyg ) (%) + Dty (2)]. By (2.37), the right-hand side
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of the latter inequality agrees with [Duy_ (x)|, inasmuch as S(E) and S(E)_ are symmetric
sets about the x;-axis. Hence, (2.36) follows.

More generally, consider any nonnegative function f € L(n,1) on R} and call u} the

solution to the equation (2.9) on R’} satisfying (1.3) and (2.35). Then, arguing as in the proof of
Theorem 2 and making use of (2.36) instead of (1.4) shows that

max | Duj (z)| < [Dug,) (0)].
reRy

An analogous result holds for nonpositive f. The details are omitted for brevity. [l

3. The problem in a ball

The same role played by (2.1) in Section 2 is performed here by the following formula,
which makes use of the Green function, for the solution u? to problems (1.9)-(1.16) in B™:

1

U? (l?) - (2 - ’I’L)TLCn B

F@) (o =y =y e — g ) dy (3.1a)
ifn >3, or

u?(a) = = [ 1) (wle =] = n(lyl [« - 7)) dy (3.10)

if n =2, where § = y/|y|*

Hence,
Duj (z) = ﬁé—; /B F)(z—ylz -yl =y " @ -ylz -9 dy.  (32)

Arguing as in Section 2 shows that | Du?| is bounded in B™ provided f € L(n, 1). Since
B" has finite measure, f belongs to L(n, 1) if f € LP(B™) for some n < p < 00.

Proof of Theorem 4, Part I. To begin with, let us consider the case where m(E) <
C,/2.
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Since A and B™ are invariant with respect to rotations about 0, we may assume without
loss of generality that |[Dul_(0)] = —(8/dz,)uy,(0). By (3.2),

i, 0=~ [ xslunlal - )y

61;1 XE

Moreover, ¥ (Jy|™™ = 1) > 0 if y € BY; henceforth, B} = {z € B" : z; > 0}. Thus, in
order to increase —(0/0z)u?_(0), we modify (if necessary) the set E by putting

. (E ifECBr
(EUF)N BT otherwise,

where F' is any measurable subset of B \ E such that m(F) = m(E \ BY). This set F exists
because we are assuming m(E) < C, /2.

Therefore, we have

0 1 B
550 < == [ eyl 1) dy.

Hence, as the kernel ;(|y| ™™ —1) is cylindrically symmetric on B} (recall (1.8)), one can repeat
the argument used in the proof of Theorem 1 and infer

0 5 9 5
——uB (0)< —_— . .
8m1u”( ) < m(E(g)l?ém(E) ( 8:c1uXE<”>(O)> (3:3)

Here E(v) is any subset of B7, symmetric about the x;-axis, having the form
Ev)={z€R":0<z; <1, (22 + -+ 22)? <w(z))},

where

0<v(t) < (1-tH)Y2, telo,1]. (3.4)

Thus, our task is to maximize

-1C,- 1 v(t)/t
(n nC)YC 1 / (/ (Sn—2(82 + 1)-—7’1/2 _ t2) dS) dt,
n 0 0

subject to the constraint
G(v) = m(E) (3.5)

(see (2.16)), among those functions v that satisfy (3.4).
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Let A > 0 be fixed. Setting

J2(0) /01 (/ov(tJ/z (Sn‘2(sz i 1)-n/2 _tz> ds) dt

and arguing as in the proof of Theorem 1 shows that the function v¥, which equals (£2/™((n —
1)Cr A+ 1)74™ —t1)1/24f 0 < t < ¢()) and vanishes otherwise, maximizes the functional
JB — AG in the class of those functions fulfilling (3.4). Here, t()\) denotes the inverse of
(" —t)/((n = 1)Cpy) for t € (0,1] (clearly, t{AN)"* + (n — OC,_ M(A)"1 — 1 =0).

Now, consider the function ¢ defined as ¢(\) = G{(v¥). It is easily verified, by direct
computation, that d@/dA < 0if A > 0; moreover, we have ¢(0) = C,, /2 and limy_, o, ¢(A) =
0. Thus, ¢ is bijective and decreasing from [0, +-00) into (0, C,, /2].

By setting

AC) =070, (3.6)

we have G(vg,, p))) = M(E). Consequently, v, ), minimizes the functional J under the
constraints (3.4), (3.5). Hence, by (3.3), we get (1.19).

Note that, if m{E) = C,,/2, then the maximizing set S(E) = BY.

Finally, if m(E) > C,,/2, then inequality (1.19) easily follows from the case proved above.
Indeed, for any E C B", |Duf_(0)| = |DuB__ (0)], because

XBn\E

DO = | [ xe@mlyl™ - Dy,
DU s O) = né‘n Lann\E(y)yl(?yl’”—l)dy)

and [, y1(Jy|™" — 1) dy = 0. O

Proof of Theorem 4, Part II, sketched. A proof of inequalities (i) and (ii) starts from
formula (3.2) and proceeds through the same steps as in the proof of Theorems 2 and 3. One has
to make use of Theorem 4, Part I, in the place of Theorem 1 and of SZ(f) and SZ(f) instead

of S(f) and S(f).

Notice that, in order to prove (ii), a new version (with identical proof) of the lemma in
Section 2 is needed, where S(-) and u in (2.25) are replaced by SP(-) and u”, respectively.

We remark that the maximizing function SZ(f) is nothing but the rearrangement of f on
the level sets of the harmonic function z;(jz|™" —1). 0
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Remark 2. Obviously, Theorem 4 still holds, with simple suitable changes in the defini-
tions of SZ(E), SB(f), and SE(f), if B™ is replaced by a ball B™(R) of any radius R.

It is quite easy to verify that the maximizing set for the problem in B™(R) converges to the
maximizer for the problem in the whole space R”, as R goes to 4+00. This is what one reasonably
expects, since, heuristically speaking, the former problem approaches the latter one when R tends
to +oo. [

Remark 3. We point out that, by arguing as in Remark 1, the results of Theorem 4 can
be used to solve analogous questions for the gradient of the solutions of Poisson’s equation with
zero boundary data, in the half-ball BY.  []
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