Maximizing the L^{∞} Norm of the Gradient of Solutions to the Poisson Equation

By Andrea Cianchi

ABSTRACT. We find the maximum of $||Du_f||_{L^{\infty}}$ when u_f is the solution, which vanishes at infinity, of the Poisson equation $\Delta u = f$ on \mathbb{R}^n in terms of the decreasing rearrangement of f. Hence, we derive sharp estimates for $||Du_f||_{L^{\infty}}$ in terms of suitable Lorentz or L^p norms of f. We also solve the problem of maximizing $|Du_f^B(0)|$ when u_f^B is the solution, vanishing on ∂B , to the Poisson equation in a ball B centered at 0 and the decreasing rearrangement of f is assigned.

1. Introduction and main results

We are concerned with a number of problems, a prototype of which can be stated in the following physical terms: Consider a distribution of electric charges such that the density is 1 and the total charge is fixed; which configuration maximizes the largest intensity of the electric field?

The problem amounts to finding

$$\max_{E} \left(\max_{x \in \mathbb{R}^n} |Du_{\chi_E}(x)| \right)$$
(1.1)

as E is subject to the following conditions:

E is a measurable subset of \mathbb{R}^n ,

m(E) is fixed,

and u_{χ_E} is the solution to the equation

$$\Delta u = \chi_E \tag{1.2}$$

Math Subject Classification 35J05, 35B45.

Key Words and Phrases A priori estimates, Poisson equation, symmetrization. The author wishes to thank Professor G. Talenti for suggesting the problem.

in \mathbb{R}^n , such that

$$\begin{cases} \lim_{|x|\to\infty} u(x) = 0 & \text{if } n \ge 3\\ \limsup_{|x|\to\infty} u(x)/|x| < +\infty & \text{if } n = 2. \end{cases}$$
(1.3)

Here $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, vertical bars | | denote modulus, m is the Lebesgue measure, D stands for gradient, and $\Delta = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$ for the Laplace operator. We call χ_E the characteristic function of a set E; namely, χ_E equals 1 in E and vanishes elsewhere.

In the present paper we show that the maximum in (1.1) is attained when E is a suitable egg-shaped set (a disk, in case n = 2) that is symmetric about an axis. This result can be precisely stated as follows.

Theorem 1. Let E be any measurable subset of \mathbb{R}^n , $n \ge 2$, such that $m(E) < +\infty$. Then

$$\max_{x \in \mathbb{R}^n} |Du_{\chi_E}(x)| \le |Du_{\chi_{S(E)}}(0)| \tag{1.4}$$

where S(E) is the set that has the same measure as E and is defined by

$$S(E) = \left\{ x \in \mathbb{R}^n : |x|^n \le x_1 K_n^{n-1} m(E)^{1-1/n} \right\}$$
(1.5)

where

$$K_n = \left(\frac{\pi^{(n-1)/2}\Gamma\left(\frac{2n-1}{2n-2}\right)}{n\,\Gamma\left(\frac{n^2}{2n-2}\right)}\right)^{-1/n}$$

Moreover,

$$\left| Du_{\chi_{S(E)}}(0) \right| = Q_n \ m(E)^{1/n},$$
 (1.6)

where

$$Q_n = \frac{2\pi^{n-1+1/(2n)}}{n^{2-1/n}\Gamma\left(\frac{n}{2}\right)} \left(\frac{\Gamma\left(\frac{2n-1}{2n-2}\right)}{\Gamma\left(\frac{n^2}{2n-2}\right)}\right)^{1-1/n}$$
(1.7)

Theorem 1 enables one to solve the more general problem

$$\max_{f} \left(\max_{x \in \mathbb{R}^n} |Du_f(x)| \right)$$
(1.8)

when f is constrained as follows:

f is a real-valued measurable function on \mathbb{R}^n ,

either f_+^* and f_-^* or f^* is given,

and u_f is the solution to the full Poisson equation

$$\Delta u = f \tag{1.9}$$

in \mathbb{R}^n , satisfying (1.3). Hereafter, f_+ and f_- denote the positive and the negative part of f respectively, i.e.,

$$f_+ = \frac{|f| + f}{2}$$
, $f_- = \frac{|f| - f}{2}$.

Above, $f^*(s) = \inf\{t \ge 0 : \mu_f(t) \le s\}$, the decreasing rearrangement of f, where $\mu_f(t) = m(\{x \in \mathbb{R}^n : |f(x)| > t\})$, the distribution function of f (see [HLP] for more details).

The solution to problem (1.8) is given in Theorems 2 and 3. In the statements,

$$||f||_{n,1} = \int_0^{+\infty} s^{1/n-1} f^*(s) \, ds, \tag{1.10}$$

an equivalent norm in the Lorentz space L(n, 1) (see, e.g., [Z]).

Theorem 2. Let f be any measurable function on \mathbb{R}^n such that $||f||_{n,1} < +\infty$. Then

$$\max_{x \in \mathbb{R}^n} |Du_f(x)| \le |Du_{S(f)}(0)|, \tag{1.11}$$

where S(f) is the function having the following properties:

 $S(f)_+$ and $S(f)_-$ are equidistributed with f_+ and f_- , respectively.

the level sets of $S(f)_+$ are the maximizing sets described in Theorem 1; the level sets of $S(f)_-$ are the symmetrical about the hyperplane $\{x : x_1 = 0\}$ of such maximizing sets.

In formulas,

$$S(f)_{\pm}(x) = \begin{cases} f_{\pm}^* \left((\pm x_1)^{-n/(n-1)} |x|^{n^2/(n-1)} K_n^{-n} \right) & \text{if } x_1 \ge 0\\ 0 & \text{if } x_1 \le 0. \end{cases}$$
(1.12)

Theorem 3. Assume the same hypotheses as in Theorem 2. Then

$$\max_{x \in \mathbb{R}^n} |Du_f(x)| \le |Du_{S(f)}(0)|, \tag{1.13}$$

where $\hat{S}(f)$ is the function equidistributed with f, such that $\hat{S}(f)^*_+ = \hat{S}(f)^*_-$ and whose level sets are defined analogously to the level sets of S(f) (Theorem 2).

In formulas,

$$\hat{S}(f) = sign(x_1) f^* \left(2|x_1|^{-n/(n-1)} |x|^{n^2/(n-1)} K_n^{-n} \right).$$
(1.14)

Theorem 3 makes it possible to derive sharp upper bounds for $\max_{x \in \mathbb{R}^n} |Du_f(x)|$ in terms of the L(n, 1) norm or the L^1 and L^{∞} norms of f (Corollary, Section 2).

Now we want to emphasize that problem (1.8) can be regarded as a particular case $(p = \infty)$ of

$$\max_{f} \|Du_f\|_{L^p} \tag{1.15}$$

as f^* is assigned. Recall that, when p = 2, the norm of Du_f in (1.15) has a precise physical meaning: it represents the (square root of the) energy of the electrostatic system described above.

Problem (1.15) can be solved if $p \leq 2$. In fact, Theorem 1 of [T] tells us that

$$||Du_f||_{L^p} \le ||Du_{f^*}||_{L^p}$$

for $p \leq 2$, where f^* , the spherically symmetric rearrangement of f, is the function whose level sets $\{x \in \mathbb{R}^n : f^*(x) > t\} = \{x \in \mathbb{R}^n : |f(x)| > t\}^*$. We recall that, given any measurable subset Ω of \mathbb{R}^n , Ω^* denotes the Schwarz symmetrized of Ω , i.e. the ball, centered at the origin, which has the same measure as Ω .

As far as we know, problem (1.15) is open for 2 . Theorem 3 solves the problem $in case <math>p = \infty$. The result suggests that when 2 , a loss of the spherical symmetry $should be expected. Indeed, we stress that the rearrangement <math>\hat{S}(f)$, which maximizes in (1.15) if $p = \infty$, does not agree with f^* .

A further question arises quite naturally: What can one say if, in (1.15), u_f is replaced by the solution to equation (1.9) in a domain Ω , vanishing on $\partial \Omega$?

For $0 , the solution to the above question follows again from Theorem 1 of [T], whereas it is not known if <math>2 . When <math>p = \infty$, the case considered in this paper, we present a partial answer in this direction.

We deal with the solutions $u_{\chi_E}^B$ and u_f^B to (1.2) and (1.9), respectively, in the unit ball B^n of \mathbb{R}^n , which satisfy the condition

$$u = 0 \quad \text{on} \quad \partial B^n \tag{1.16}$$

and replace max |Du| by |Du(0)|, the modulus of the gradient at the center of B^n ; namely, we consider the problems

$$\max_{E} |Du^B_{\chi_E}(0)|, \qquad (1.17)$$

and

$$\max_{\ell} |Du_f^B(0)| \tag{1.18}$$

as m(E) and either f_{\pm}^* or f^* are fixed, respectively. In Theorem 4 the corresponding maximizers $S^B(E)$, $S^B(f)$, and $\hat{S}^B(f)$ are exhibited.

Theorem 4. Part I. Let E be any measurable subset of B^n , $n \ge 2$. Then

$$|Du^{B}_{\chi_{E}}(0)| \le |Du^{B}_{\chi_{S^{B}(E)}}(0)|, \qquad (1.19)$$

where $S^B(E) \subseteq B^n$ is the set, having the same measure as E, defined by

$$S^{B}(E) = \begin{cases} \{x \in \mathbb{R}^{n} : 0 \le x_{1} \le t_{m(E)}, x_{2}^{2} + \dots + x_{n}^{2} \le W(x_{1})\} & \text{if } m(E) \le C_{n}/2 \\ B^{n} \setminus \{x \in \mathbb{R}^{n} : (-x_{1}, x_{2}, \dots, x_{n}) \in S^{B}(B^{n} \setminus E)\} & \text{otherwise.} \end{cases}$$

$$(1.20)$$

Here:

 $t_{m(E)}$ is the solution in [0,1] to the equation $t^n + (n-1)C_n\lambda(m(E))t^{n-1} - 1 = 0$, $W_{m(E)}(t) = t^{2/n}((n-1)C_n\lambda(m(E)) + t)^{-2/n} - t^2$, $\lambda(\cdot)$ is the function defined by (3.6) (Section 3), $C_n = \pi^{n/2}/\Gamma(1+n/2)$, the measure of B^n .

Part II. Let f be any measurable function on B^n , $n \ge 2$, such that $||f||_{n,1} < \infty$. Then:

$$\left| Du_{f}^{B}(0) \right| \leq \left| Du_{S^{B}(f)}^{B}(0) \right|, \tag{i}$$

where $S^B(f)$ is the function having the following properties:

 $S^{B}(f)_{+}$ and $S^{B}(f)_{-}$ are equidistributed with f_{+} and f_{-} , respectively;

the level sets of $S^B(f)_+$ are the maximizing sets described in Part I; the level sets of $S^B(f)_-$ are the symmetrical about the hyperplane $\{x : x_1 = 0\}$ of such maximizing sets;

$$\left| Du_{f}^{B}(0) \right| \leq \left| Du_{\hat{S}^{B}(f)}^{B}(0) \right| \tag{ii}$$

where $\hat{S}^B(f)$ is the function equidistributed with f, such that $\hat{S}^B(f)^*_+ = \hat{S}^B(f)^*_-$ and whose level sets are defined analogously to the level sets of $S^B(f)$ above.

2. The problem in \mathbb{R}^n

Our proof of Theorems 1 through 3 is based on a representation formula for the solution u_f to problem (1.3)–(1.9) in \mathbb{R}^n . As is well known, u_f agrees with the Newtonian (logarithmic, in case n = 2) potential of f; namely,

$$u_f(x) = \frac{1}{(2-n)nC_n} \int_{\mathbb{R}^n} f(y) |x-y|^{2-n} \, dy \tag{2.1a}$$

if $n \geq 3$, or

$$u_f(x) = \frac{1}{2\pi} \int_{\mathbb{R}^n} f(y) \ln|x - y| \, dy$$
 (2.1b)

if n = 2. Thus, we have

$$Du_f(x) = \frac{1}{nC_n} \int_{\mathbb{R}^n} f(y)(x-y) |x-y|^{-n} \, dy.$$
(2.2)

Observe that $|Du_f|$ is bounded in \mathbb{R}^n , provided $f \in L(n, 1)$. In fact,

$$|Du_f(x)| \le \frac{1}{nC_n} \int_{\mathbb{R}^n} |f(y)| \, |x - y|^{1-n} \, dy.$$
(2.3)

On the other hand, the Hardy-Littlewood inequality says that

$$\int_{\mathbb{R}^n} g(x)h(x) \, dx \le \int_{\mathbb{R}^n} g^*(x)h^*(x) \, dx \tag{2.4}$$

for any couple of measurable functions $g, h : \mathbb{R}^n \to \mathbb{R}$ (see [HLP]). Therefore, from (2.3) and (2.4) we obtain

$$|Du_f(x)| \le \frac{1}{nC_n} \int_{\mathbb{R}^n} f^{\star}(y) |y|^{1-n} \, dy.$$

Consequently,

$$|Du_f(x)| \le \frac{1}{nC_n^{1/n}} \int_0^{+\infty} s^{1/n-1} f^*(s) \, ds,$$

as $f^{\star}(y) = f^{\star}(C_n |x|^n)$.

Clearly, $f \in L(n, 1)$ is a sharp condition for the boundedness of $|Du_f|$. A sufficient condition for f to belong to L(n, 1) is $f \in L^p(\mathbb{R}^n) \cap L^q(\mathbb{R}^n)$ for some $n and <math>1 \le q < n$. This fact follows from the Hölder inequality, since

$$\operatorname{ess\,sup}_{x\in\mathbb{R}^n} |f(x)| = \sup_{s\in\mathbb{R}} f^*(s) = \sup_{x\in\mathbb{R}^n} f^*(x) \tag{2.5}$$

and

$$\int_{\mathbb{R}^n} |f(x)|^p \, dx = \int_0^{+\infty} f^*(s)^p \, ds = \int_{\mathbb{R}^n} f^*(x)^p \, dx. \tag{2.6}$$

Now, let us fix a few notations. If Ω is any measurable subset of \mathbb{R}^n , we define the "cylindrically symmetrized" $\Omega^{\star,1}$ of Ω along the x_1 -axis by

$$\Omega^{\star,1} = \{ x \in \mathbb{R}^n : (x_2, \dots, x_n) \in (\Omega \cap \{ y \in \mathbb{R}^n : y_1 = x_1 \})^* \},$$
(2.7)

where, on the right-hand side, \star stands, with abuse of notation, for (n-1)-dimensional Schwarz symmetrization on the hyperplane $\{y \in \mathbb{R}^n : y_1 = x_1\}$.

Analogously, if g is any measurable function on Ω , we call $g^{\star,1}: \Omega^{\star,1} \to \mathbb{R}$ the cylindrically symmetric rearrangement of g if $g^{\star,1}$ depends only on x_1 and $(x_2^2 + \cdots + x_n^2)^{1/2}$ and

$$g^{\star,1}(x_1,\cdot) = (g(x_1,\cdot))^{\star}.$$
(2.8)

By the Cavalieri principle,

$$m(\Omega^{\star,1}) = m(\Omega). \tag{2.9}$$

Moreover, by the Fubini theorem and equation (2.4),

$$\int_{\Omega} g(x)h(x) \, dx \le \int_{\Omega^{\star,1}} g^{\star,1}(x)h^{\star,1}(x) \, dx \tag{2.10}$$

for any pair of measurable functions g and h on Ω .

Proof of Theorem 1. Since Δ is translation- and rotation-invariant, we can restrict ourselves to maximizing $-(\partial/\partial x_1)u_{\chi_E}(0)$.

As

$$-\frac{\partial}{\partial x_1}u_{\chi_E}(0) = \frac{1}{nC_n}\int_{\mathbb{R}^n}\chi_E(y)y_1|y|^{-n}\,dy$$

(see formula (2.2)) and $y_1|y|^{-n} \ge 0$ for $y_1 \ge 0$, $-(\partial/\partial x_1)u_{\chi_E}(0)$ increases is we replace E (if necessary) by a new set \tilde{E} that has the same measure as E and is contained in the half-space $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n : x_1 \ge 0\}$. We put

$$\tilde{E} = \begin{cases} E & \text{if } E \subset \mathbb{R}^n_+ \\ (E \cap \mathbb{R}^n_+) \cup F & \text{otherwise,} \end{cases}$$

where F is any set, contained in \mathbb{R}^n_+ , such that $m(F) = m(E \setminus \mathbb{R}^n_+)$ and $F \cap E \cap \mathbb{R}^n_+ = \emptyset$ (such a set F exists, for $m(E) < +\infty$). So doing, we have

$$-\frac{\partial}{\partial x_1}u_{\chi_E}(0) \le \frac{1}{nC_n} \int_{\mathbb{R}^n} \chi_{\tilde{E}}(y)y_1|y|^{-n} \, dy.$$
(2.11)

Now, since the kernel $y_1|y|^{-n}$ is cylindrically symmetric on \mathbb{R}^n_+ (see (2.8)) and $(\chi_{\tilde{E}})^{\star,1} = \chi_{\tilde{E}^{\star,1}}$, inequality (2.10) implies

$$\frac{1}{nC_n} \int_{\mathbb{R}^n} \chi_{\tilde{E}}(y) y_1 |y|^{-n} \, dy \le \frac{1}{nC_n} \int_{\mathbb{R}^n} \chi_{\tilde{E}^{\star,1}}(y) y_1 |y|^{-n} \, dy.$$
(2.12)

Combining (2.11) and (2.12) yields

$$-\frac{\partial}{\partial x_1}u_{\chi_E}(0) \le \frac{1}{nC_n} \int_{\mathbb{R}^n} \chi_{\tilde{E}^{\star,1}}(y) y_1 |y|^{-n} \, dy.$$
(2.13)

Notice that the right-hand side of (2.13) is nothing but $-(\partial/\partial x_1)u_{\chi_{\bar{E}^{\star,1}}}(0)$. Consequently, due to (2.9), inequality (2.13) enables us to infer

$$-\frac{\partial}{\partial x_1}u_{\chi_E}(0) \le \max_{m(E(v))=m(E)} \left(-\frac{\partial}{\partial x_1}u_{\chi_{E(v)}}(0)\right).$$
(2.14)

Here E(v) denotes any symmetric set about the x_1 -axis of the form

$$E(v) = \{x \in \mathbb{R}^n : x_1 \ge 0, \quad (x_2^2 + \dots + x_n^2)^{1/2} \le v(x_1)\},\$$

where v, the meridian of E(v), fulfills

$$v \in L^{n-1}[0, +\infty), \quad v(t) \ge 0.$$
 (2.15)

Therefore, the last step of our proof consists of maximizing

$$\frac{(n-1)C_{n-1}}{nC_n} \int_0^{+\infty} \left(\int_0^{v(t)/t} s^{n-2} (1+s^2)^{-n/2} \, ds \right) dt,$$

under the constraint

$$C_{n-1}\int_0^{+\infty}v^{n-1}(t)\,dt$$
 given,

among those functions v that satisfy (2.15).

To this purpose, let us set

$$J(v) = \int_{0}^{+\infty} \left(\int_{0}^{v(t)/t} s^{n-2} (1+s^{2})^{-n/2} \, ds \right) dt,$$

$$G(v) = C_{n-1} \int_{0}^{+\infty} v^{n-1}(t) \, dt,$$
(2.16)

and consider, for fixed $\lambda > 0$, the functional $J - \lambda G$. Setting $a_{\lambda}(t, v) = \int_{0}^{v/t} s^{n-2} (1 + s^2)^{-n/2} ds - \lambda C_{n-1} v^{n-1}$, we have $(J - \lambda G)(v) = \int_{0}^{+\infty} a_{\lambda}(t, v(t)) dt$.

It is easily seen that, for every $v \ge 0$, $a_{\lambda}(t,v) \le a_{\lambda}(t,v_{\lambda}(t))$, where $v_{\lambda}(t)$ equals $(t^{2/n}((n-1)C_{n-1}\lambda)^{-2/n}-t^2)^{1/2}$ if $0 \le t \le ((n-1)C_{n-1}\lambda)^{-1/(n-1)}$ and vanishes otherwise. Therefore, v_{λ} maximizes $J - \lambda G$ in the class of functions v fulfilling (2.15) and maximizes J among those functions v that, in addition, satisfy $G(v) = G(v_{\lambda})$.

Imposing $G(v_{\lambda}) = m(E)$ yields

$$\lambda = \frac{1}{(n-1)C_{n-1}} \left(\frac{\pi^{(n-1)/2} \Gamma\left(\frac{2n-1}{2n-2}\right)}{n \, \Gamma\left(\frac{n^2}{2n-2}\right)} \right)^{1-1/n} m(E)^{1/n-1}.$$

Thus, by virtue of (2.14), we get (1.4), as $-(\partial/\partial x_1)u_{\chi_{S(E)}}(0) = |Du_{S(E)}(0)|$. Finally, (1.6) follows through straightforward computation of $|Du_{S(E)}(0)|$. \Box

Proof of Theorem 2. We have

$$Du_f(x) = \int_0^{+\infty} Du_{\chi_{\{f_+>i\}}}(x) \, dt - \int_0^{+\infty} Du_{\chi_{\{f_->i\}}}(x) \, dt. \tag{2.17}$$

In fact, splitting f into its positive and negative parts and making use of the formula $f_{\pm}(x) = \int_{0}^{+\infty} \chi_{\{f_{\pm}>t\}}(x) dt$ in (2.2) give

$$Du_{f}(x) = \frac{1}{nC_{n}} \int_{\mathbb{R}^{n}} \frac{(x-y)}{|x-y|^{n}} \\ \times \left(\int_{0}^{+\infty} \chi_{\{f_{+}>t\}}(y) \, dt - \int_{0}^{+\infty} \chi_{\{f_{-}>t\}}(y) \, dt \right) dy.$$
(2.18)

Hence, (2.17) follows via the Fubini theorem.

From (2.17) one gets

$$|Du_f(x)| \le \int_0^{+\infty} \left(\left| Du_{\chi_{\{f_+>t\}}}(x) \right| + \left| Du_{\chi_{\{f_->t\}}}(x) \right| \right) dt.$$
(2.19)

By (1.4),

$$\left| Du_{\chi_{\{f_{+}>t\}}}(x) \right| \le \left| Du_{\chi_{S(\{f_{\pm}>t\})}}(0) \right| = -\frac{\partial}{\partial x_{1}} u_{\chi_{S(\{f_{\pm}>t\})}}(0) \quad \text{for } t > 0.$$
 (2.20)

for t > 0. Clearly,

$$-\frac{\partial}{\partial x_1}u_{\chi_{S(\{f_->i\})}}(0) = \frac{\partial}{\partial x_1}u_{\chi_{S(\{f_->i\})_-}}(0), \qquad (2.21)$$

where, for any set $F \subseteq \mathbb{R}^n$, the notation

$$F_{-} = \{ x \in \mathbb{R}^{n} : (-x_{1}, x_{2}, \dots, x_{n}) \in F \}$$
(2.22)

is used.

Now, thanks to formula (2.2) and Fubini's theorem, we have

$$\int_{0}^{+\infty} \left(-\frac{\partial}{\partial x_{1}} u_{\chi_{S(\{f_{+}>t\})}}(0) + \frac{\partial}{\partial x_{1}} u_{\chi_{S(\{f_{-}>t\})_{-}}}(0) \right) dt$$

$$= \frac{1}{nC_{n}} \int_{\mathbb{R}^{n}} \frac{y_{1}}{|y|^{n}} \left(\int_{0}^{+\infty} \chi_{S(\{f_{+}>t\})}(y) \, dt - \int_{0}^{+\infty} \chi_{S(\{f_{-}>t\})_{-}}(y) \, dt \right) dy.$$
(2.23)

Observe that the right-hand side of (2.23) equals $-(\partial/\partial x_1)u_{S(f)}(0)$, for the term in brackets in the integrand agrees with S(f). Furthermore, $-(\partial/\partial x_1)u_{S(f)}(0) = |Du_{S(f)}(0)|$, since the level sets of S(f) are symmetric about the x_1 -axis and $S(f)(x) \ge 0$ if $x_1 \ge 0$, $S(f)(x) \le 0$ if $x_1 \le 0$.

Thus, (2.23) yields

$$\int_{0}^{+\infty} \left(-\frac{\partial}{\partial x_{1}} u_{\chi_{S(\{f_{+}>t\})}}(0) + \frac{\partial}{\partial x_{1}} u_{\chi_{S(\{f_{-}>t\})_{-}}}(0) \right) dt = \left| Du_{S(f)}(0) \right|.$$
(2.24)

Combining (2.19), (2.20), (2.21), and (2.24) completes the proof.

We notice that the maximizing function S(f) can be obtained by rearranging f on the level sets of the harmonic function $x_1/|x|^n$. \Box

In the proof of Theorem 3 we shall make use of the following lemma.

Lemma. Let E, F, and G be any subsets of \mathbb{R}^n such that 2m(E) = m(F) + m(G). Then

$$-\frac{\partial}{\partial x_1}u_{\chi_{S(F)}}(0) - \frac{\partial}{\partial x_1}u_{\chi_{S(G)}}(0) \le -2\frac{\partial}{\partial x_1}u_{\chi_{S(E)}}(0).$$
(2.25)

Proof. Suppose, by contradiction

$$-\frac{\partial}{\partial x_1}u_{\chi_{S(F)}}(0) - \frac{\partial}{\partial x_1}u_{\chi_{S(G)}}(0) > -2\frac{\partial}{\partial x_1}u_{\chi_{S(E)}}(0).$$
(2.26)

Assume, for instance, m(F) < m(G). By adding $(\partial/\partial x_1)u_{\chi_{S(E)}}(0)$ to both sides of (2.26) and observing that, under our assumptions, $S(F) \subset S(E) \subset S(G)$, we obtain

$$-\frac{\partial}{\partial x_1}u_{\chi_{S(G)\backslash (S(E)\backslash S(F))}}(0) > -\frac{\partial}{\partial x_1}u_{\chi_{S(E)}}(0).$$
(2.27)

But $m(S(G) \setminus (S(E) \setminus S(F))) = m(E)$. Thus, inequality (2.27) contradicts (1.4), as $-(\partial/\partial x_1)u_{\chi_{S(E)}}(0) = |Du_{\chi_{S(E)}}(0)|$ and $S(S(G) \setminus (S(E) \setminus S(F))) = S(E)$. \Box

Proof of Theorem 3. Let us set

$$L(t) = \{ x \in \mathbb{R}^n : f_+(2^{1/n}x) > t \} \cup \{ x \in \mathbb{R}^n : f_-(2^{1/n}x) > t \}, \quad t > 0.$$
 (2.28)

Obviously,

$$m(L(T)) = \frac{1}{2}\mu_f(t).$$
 (2.29)

Therefore, owing to the lemma above and to equality (2.21),

$$-\frac{\partial}{\partial x_{1}}u_{\chi_{S(\{f_{+}>i\})}}(0) + \frac{\partial}{\partial x_{1}}u_{\chi_{S(\{f_{-}>t\})_{-}}}(0)$$

$$\leq -\frac{\partial}{\partial x_{1}}u_{\chi_{S(L(t))}}(0) + \frac{\partial}{\partial x_{1}}u_{\chi_{S(L(t))_{-}}}(0). \tag{2.30}$$

On the other hand,

$$\int_{0}^{+\infty} \left(-\frac{\partial}{\partial x_{1}} u_{\chi_{S(L(t))}}(0) + \frac{\partial}{\partial x_{1}} u_{\chi_{S(L(t))_{-}}}(0) \right) dt$$
$$= \frac{1}{nC_{n}} \int_{\mathbb{R}^{n}} \frac{y_{1}}{|y|^{n}} \left(\int_{0}^{+\infty} \chi_{S(L(t))}(y) \, dt - \int_{0}^{+\infty} \chi_{S(L(t))_{-}}(y) \, dt \right) dy. \quad (2.31)$$

Note that the expression in brackets in the latter integrand agrees with $\hat{S}(f)$. Therefore, (2.31) implies

$$\int_{0}^{+\infty} \left(-\frac{\partial}{\partial x_1} u_{\chi_{S(L(t))}}(0) + \frac{\partial}{\partial x_1} u_{\chi_{S(L(t))}}(0) \right) dt = \left| D u_{\hat{S}(f)}(0) \right|, \tag{2.32}$$

since $-(\partial/\partial x_1)u_{\hat{S}(f)}(0) = |Du_{\hat{S}(f)}(0)|.$

Thus, (1.13) follows through (1.4), (2.24), (2.30), and (2.32).

Corollary. Assume the hypotheses of Theorem 2. Then

$$\max_{x \in \mathbb{R}^n} |Du_f(x)| \le \frac{2^{1-1/n}}{n} Q_n ||f||_{n,1} \tag{i}$$

and equality holds if $f = \hat{S}(f)$;

$$\max_{x \in \mathbb{R}^n} |Du_f(x)| \le 2^{1-1/n} Q_n ||f||_{L^{\infty}}^{1-1/n} ||f||_{L^1}^{1/n}$$
(*ii*)

and equality holds if $f = c(\chi_{S(E)} - \chi_{S(E)})$, where E is any set (recall (2.22)) and c is any real number.

The constant Q_n is given by (1.7).

Proof. Taking into account (1.13) and using (2.32) to compute $|Du_{\hat{S}(f)}(0)|$ yield

$$\max_{x \in \mathbb{R}^n} |Du_f(x)| \le \int_0^{+\infty} \left(-\frac{\partial}{\partial x_1} u_{\chi_{S(L(t))}}(0) + \frac{\partial}{\partial x_1} u_{\chi_{S(L(t))_-}}(0) \right) dt.$$

Hence, by (1.6) and (2.29), we get

$$\max_{x \in \mathbb{R}^n} |Du_f(x)| \le 2^{1-1/n} Q_n \int_0^{+\infty} \mu_f(t)^{1/n} dt.$$
(2.33)

Now, one has

$$\int_0^{+\infty} \mu_f(t)^{1/n} dt = \frac{1}{n} \int_0^{+\infty} s^{1/n-1} f^*(s) \, ds.$$
(2.34)

This is shown by an integration by parts, which uses the formula $f^*(s) = \int_0^{+\infty} \chi_{[0,\mu(t)]}(s) dt$. Thus, (i) is a consequence of (2.33) and (2.34).

As far as (ii) is concerned, we obtain from (2.33), via Hölder inequality,

$$\max_{x \in \mathbb{R}^n} |Du_f(x)| \le 2^{1-1/n} Q_n (\sup f^*)^{1-1/n} \left(\int_0^{+\infty} \mu_f(t) \, dt \right)^{1/n}$$

Since $\int_0^{+\infty} \mu_f(t) dt = ||f||_{L^1}$ (see, e.g., [Z]) and (2.5) holds, (ii) is proved.

Remark 1. Theorems 1 and 2 make it possible, via reflection arguments, to solve maximum problems analogous to (1.1) and (1.8) for the gradient of solutions to equations (1.2) and (1.9), respectively, in the half-space \mathbb{R}^n_+ .

Let E be any subset of \mathbb{R}^n_+ having finite measure and let $u^+_{\chi_E}$ be the solution to (1.2) in \mathbb{R}^n_+ , which satisfies (1.3) and the boundary condition

$$u(0, x_2, \dots, x_n) = 0.$$
 (2.35)

Then,

$$\max_{x \in \mathbb{R}^{n}_{+}} |Du_{\chi_{E}}^{+}(x)| \le |Du_{\chi_{S(E)}}^{+}(0)|.$$
(2.36)

In fact, it is easily verified that

$$u_{\chi_E}^+ = u_{\chi_E} + u_{\chi_{E_-}} \tag{2.37}$$

(recall (2.21)). Therefore, $|Du_{\chi_E}^+(x)| \leq |Du_{\chi_E}(x)| + |Du_{\chi_{E_-}}(x)|$ for every $x \in \mathbb{R}^n_+$. Applying Theorem 1 yields $|Du_{\chi_E}^+(x)| \leq |Du_{\chi_{S(E)}}(x)| + |Du_{\chi_{S(E)-}}(x)|$. By (2.37), the right-hand side

of the latter inequality agrees with $|Du^+_{\chi_{S(E)}}(x)|$, inasmuch as S(E) and $S(E)_-$ are symmetric sets about the x_1 -axis. Hence, (2.36) follows.

More generally, consider any nonnegative function $f \in L(n, 1)$ on \mathbb{R}^n_+ and call u_f^+ the solution to the equation (2.9) on \mathbb{R}^n_+ satisfying (1.3) and (2.35). Then, arguing as in the proof of Theorem 2 and making use of (2.36) instead of (1.4) shows that

$$\max_{x \in \mathbb{R}^n_+} |Du_f^+(x)| \le |Du_{S(f)}^+(0)|.$$

An analogous result holds for nonpositive f. The details are omitted for brevity.

3. The problem in a ball

The same role played by (2.1) in Section 2 is performed here by the following formula, which makes use of the Green function, for the solution u_f^B to problems (1.9)–(1.16) in B^n :

$$u_f^B(x) = \frac{1}{(2-n)nC_n} \int_{B^n} f(y) \left(|x-y|^{2-n} - |y|^{2-n} |x-\tilde{y}|^{2-n} \right) dy$$
(3.1a)

if $n \geq 3$, or

$$u_f^B(x) = \frac{1}{2\pi} \int_{B^2} f(y) \left(\ln|x - y| - \ln(|y| |x - \tilde{y}|) \right) dy$$
(3.1b)

if n = 2, where $\tilde{y} = y/|y|^2$.

Hence,

$$Du_f^B(x) = \frac{1}{nC_n} \int_{B^n} f(y) \left((x-y)|x-y|^{-n} - |y|^{2-n}(x-y)|x-\tilde{y}|^{-n} \right) dy.$$
(3.2)

Arguing as in Section 2 shows that $|Du_f^B|$ is bounded in B^n provided $f \in L(n, 1)$. Since B^n has finite measure, f belongs to L(n, 1) if $f \in L^p(B^n)$ for some n .

Proof of Theorem 4, Part I. To begin with, let us consider the case where $m(E) \leq C_n/2$.

Since Δ and B^n are invariant with respect to rotations about 0, we may assume without loss of generality that $|Du^B_{\chi_E}(0)| = -(\partial/\partial x_1)u^B_{\chi_E}(0)$. By (3.2),

$$-\frac{\partial}{\partial x_1}u^B_{\chi_E}(0) = \frac{1}{nC_n}\int_{B^n}\chi_E(y)y_1(|y|^{-n}-1)\,dy.$$

Moreover, $y_1(|y|^{-n} - 1) \ge 0$ if $y \in B^n_+$; henceforth, $B^n_+ = \{x \in B^n : x_1 \ge 0\}$. Thus, in order to increase $-(\partial/\partial x_1)u^B_{\chi_E}(0)$, we modify (if necessary) the set E by putting

$$\tilde{E} = \left\{ \begin{array}{ll} E & \text{if } E \subseteq B_+^n \\ (E \cup F) \cap B_+^n & \text{otherwise}, \end{array} \right.$$

where F is any measurable subset of $B^n_+ \setminus E$ such that $m(F) = m(E \setminus B^n_+)$. This set F exists because we are assuming $m(E) \leq C_n/2$.

Therefore, we have

$$-\frac{\partial}{\partial x_1}u^B_{\chi_E}(0) \le \frac{1}{nC_n}\int_{B^n}\chi_{\bar{E}}(y)y_1(|y|^{-n}-1)\,dy.$$

Hence, as the kernel $y_1(|y|^{-n}-1)$ is cylindrically symmetric on B^n_+ (recall (1.8)), one can repeat the argument used in the proof of Theorem 1 and infer

$$-\frac{\partial}{\partial x_1}u^B_{\chi_E}(0) \le \max_{m(E(v))=m(E)} \left(-\frac{\partial}{\partial x_1}u^B_{\chi_{E(v)}}(0)\right).$$
(3.3)

Here E(v) is any subset of B_{+}^{n} , symmetric about the x_{1} -axis, having the form

$$E(v) = \{ x \in \mathbb{R}^n : 0 \le x_1 \le 1, (x_2^2 + \dots + x_n^2)^{1/2} \le v(x_1) \},\$$

where

$$0 \le v(t) \le (1 - t^2)^{1/2}, \quad t \in [0, 1].$$
 (3.4)

Thus, our task is to maximize

$$\frac{(n-1)C_{n-1}}{nC_n} \int_0^1 \left(\int_0^{v(t)/t} \left(s^{n-2} (s^2+1)^{-n/2} - t^2 \right) ds \right) dt,$$

subject to the constraint

$$G(v) = m(E) \tag{3.5}$$

(see (2.16)), among those functions v that satisfy (3.4).

Let $\lambda \geq 0$ be fixed. Setting

$$J^{B}(v) = \int_{0}^{1} \left(\int_{0}^{v(t)/t} \left(s^{n-2} (s^{2}+1)^{-n/2} - t^{2} \right) ds \right) dt$$

and arguing as in the proof of Theorem 1 shows that the function v_{λ}^{B} , which equals $(t^{2/n}((n-1)C_{n-1}\lambda+t)^{-2/n}-t^2)^{1/2}$ if $0 \le t \le t(\lambda)$ and vanishes otherwise, maximizes the functional $J^B - \lambda G$ in the class of those functions fulfilling (3.4). Here, $t(\lambda)$ denotes the inverse of $(t^{1-n}-t)/((n-1)C_{n-1})$ for $t \in (0,1]$ (clearly, $t(\lambda)^n + (n-1)C_{n-1}\lambda t(\lambda)^{n-1} - 1 = 0)$.

Now, consider the function ϕ defined as $\phi(\lambda) = G(v_{\lambda}^B)$. It is easily verified, by direct computation, that $d\phi/d\lambda < 0$ if $\lambda \ge 0$; moreover, we have $\phi(0) = C_n/2$ and $\lim_{\lambda \to +\infty} \phi(\lambda) = 0$. Thus, ϕ is bijective and decreasing from $[0, +\infty)$ into $(0, C_n/2]$.

By setting

$$\lambda(\cdot) = \phi^{-1}(\cdot), \tag{3.6}$$

we have $G(v^B_{\lambda(m(E))}) = m(E)$. Consequently, $v^B_{\lambda(m(E))}$ minimizes the functional J^B under the constraints (3.4), (3.5). Hence, by (3.3), we get (1.19).

Note that, if $m(E) = C_n/2$, then the maximizing set $S(E) = B_+^n$.

Finally, if $m(E) > C_n/2$, then inequality (1.19) easily follows from the case proved above. Indeed, for any $E \subset B^n$, $|Du^B_{\chi_E}(0)| = |Du^B_{\chi_{B^n\setminus E}}(0)|$, because

$$|Du^{B}_{\chi_{E}}(0)| = \frac{1}{nC_{n}} \left| \int_{B^{n}} \chi_{E}(y) y_{1}(|y|^{-n} - 1) \, dy \right|,$$

$$|Du^{B}_{\chi_{B^{n} \setminus E}}(0)| = \frac{1}{nC_{n}} \left| \int_{B^{n}} \chi_{B^{n} \setminus E}(y) y_{1}(|y|^{-n} - 1) \, dy \right|.$$

and $\int_{B^n} y_1(|y|^{-n}-1) \, dy = 0.$

Proof of Theorem 4, Part II, sketched. A proof of inequalities (i) and (ii) starts from formula (3.2) and proceeds through the same steps as in the proof of Theorems 2 and 3. One has to make use of Theorem 4, Part I, in the place of Theorem 1 and of $S^B(f)$ and $\hat{S}^B(f)$ instead of S(f) and $\hat{S}(f)$.

Notice that, in order to prove (ii), a new version (with identical proof) of the lemma in Section 2 is needed, where $S(\cdot)$ and u in (2.25) are replaced by $S^B(\cdot)$ and u^B , respectively.

We remark that the maximizing function $S^{\mathcal{B}}(f)$ is nothing but the rearrangement of f on the level sets of the harmonic function $x_1(|x|^{-n}-1)$. \Box

Remark 2. Obviously, Theorem 4 still holds, with simple suitable changes in the definitions of $S^B(E)$, $S^B(f)$, and $\hat{S}^B(f)$, if B^n is replaced by a ball $B^n(R)$ of any radius R.

It is quite easy to verify that the maximizing set for the problem in $B^n(R)$ converges to the maximizer for the problem in the whole space \mathbb{R}^n , as R goes to $+\infty$. This is what one reasonably expects, since, heuristically speaking, the former problem approaches the latter one when R tends to $+\infty$. \Box

Remark 3. We point out that, by arguing as in Remark 1, the results of Theorem 4 can be used to solve analogous questions for the gradient of the solutions of Poisson's equation with zero boundary data, in the half-ball B_{+}^{n} .

References

- [HLP] Hardy, G. H., Littlewood, J. E., and Pólya, G. Inequalities. Cambridge: Cambridge University Press 1964.
- [T] Talenti, G. Elliptic equations and rearrangements. Ann. Sc. Norm. Sup. Pisa 4, 3 (1976).

[Z] Ziemer, W. P. Weakly differentiable functions. Berlin: Springer-Verlag 1989.

Received September 13, 1991

Istituto di Matematica, Facolta' di Architettura, Universitá Degli Studi di Firenze, Piazza Brunelleschi 4, 50121 Firenze, Italy