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Spaces of Wald-Berestovskii Curvature 

Bounded Below 

By Conrad Plaut 

ABSTRACT. We consider inner metric spaces of curvature bounded below in the sense of Wald, without 
assuming local compactness or existence of minimal curves. We first extend the Hopf-Rinow theorem by 
proving existence, uniqueness, and "almost extendability" of minimal curves from any point to a dense G6 
subset. An immediate consequence is that Alexandrov's comparisons are meaningful in this setting. We 
then prove Toponogov's theorem in this generality, and a rigidity theorem which characterizes spheres. 
Finally, we use our characterization to show the existence of spheres in the space of directions at points in 
a dense G6 set. This allows us to define a notion of "local dimension" of the space using the dimension of 
such spheres. If the local dimension is finite, the space is an Alexandrov space. 

1. Introduction and main results 

Curvature bounded below is usually defined using Alexandrov's triangle comparisons, an ap- 

proach which requires local compactness, or at least the assumption due to Berestovskii [B] that 

minimal curve exist locally. In this article we will use a very simple and natural definition based on 

one given in 1935 by Wald, [W], for which these requirements are unnecessary. Our primary result 

is an extension of the Hopf-Rinow theorem (Theorem 1.4) in which we use curvature in lieu of local 

compactness to obtain existence, uniqueness, and "almost extendability" of minimal curves, almost 

everywhere. We use this global theorem to extend Toponogov's theorem (Theorem 1.5), characterize 

spheres (Theorem 1.8), and get some control over the space of directions (Section 5). We continue 

the approach used in [P1] and [P2] in which assumptions involving dimension are avoided as much 
as possible. All of our major constructions and results are therefore valid for infinite dimensional 

spaces. In the finite dimensional case our conclusions (Corollaries 1.12-1.14) overlap with work 

done independently by Burago, Gromov and Perelman [BGP2]. 

Definition 1.1. An open subset U of Y is called a region of curvature > k if every quadruple 
of points in U can be isometrically embedded in S 3 for some m > k. 

By Sm 3 we mean the three-dimensional sphere (m > 0), Euclidean space (m = 0) or hyperbolic 

space (m < 0) of curvature m. The comparison radius on X is denoted by c~ (x) = sup{r " B(p ,  r) 
is a region of curvature >_ k}; we say X has curvature > k if ck > 0 on X and curvature locally 
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bounded below if for each x e X, ck (x) > 0 for some k (possibly depending on x). Every separable, 

metrizable space Y admits a metric of curvature > 0 since it can be embedded in the Hilbert cube, so 

curvature bounded below is in itself of little topological consequence. What is necessary to turn this 

condition into a powerful tool is a stronger connection between the metric and the intrinsic structure 

of the space. The usual condition is that the metric on Y should actually measure the distance travelled 

from point to point within Y itself, and not within some ambient space into which Y is embedded. 

To express this we use the following notation. A triple (b; a, c) in Y is an ordered set of ponts such 

that a, c 5~ b. We denote the excess of the triple by e(b; a, c) = d(a,  b) + d(b,  c) - d(a,  c). 

Def in i t ion l .2 .  ThemetficonYiscalledinner(orlengthorintrinsic)i f foreveryx 5~ Z e Y 
and 3 > 0 there exists a point y 6 Y such that d(x ,  y) = d(x ,  z ) /2  and e(y; x,  z) < 3. 

From now on we will assume that X is a metrically complete inner metric space and all curves 

are parameterized proportional to arclength. We denote by dim(X) the topological dimension of X. 

For any x, y 6 X one can use Definition 1.2 repeatedly to construct a continuous mapping from 

the dyadic rationals of [0, 1] into X whose extension to [0, 1] is a curve joining x and y of length 

arbitrarily close to d(x ,  y). In other words, d(x ,  y)  is the infimum of the lengths of curves joining 

x and y; this property is equivalent to Definition 1.2, and is the usual definition of inner metric. A 

curve y from x to y is called minimal i f s  = d(x ,  y). 

If X is locally compact, Ascoli's theorem can be used to obtain the existence of minimal curves 

between all pairs of points, and the famous triangle comparisons of Alexandrov can be used to 

define bounded curvature. In this case Berestovskii's and Alexandrov's definitions coincide, and 

the resulting class of spaces includes all Gromov-Hausdorff limits of Riemannian manifolds of 

dimension < n for some n < ~ ,  having a fixed lower bound on sectional curvature. This fact about 

limits has resulted in many applications in Riemannian geometry. 

When one doesn't assume local compactness the situation is not so simple. Alexandrov's com- 
parisons cannot have significant consequences if one does not know (or assume) there are enough 
minimal curves to make them useful. On the other hand, Wald's definition, as a price for its simplic- 

ity, lacks much immediate applicability. Our solution to this problem is to extend the Hopf-Rinow 

theorem using Wald's definition; the resulting minimal curves are sufficient to make Alexandrov's 

conditions useful. 

The Hopf-Rinow theorem is the starting point for the study of Riemannian manifolds as metric 
spaces. In Riemannian geometry the theorem establishes the equivalence of three conditions-- 

metric completenmess, extendability of geodesics, and the compactness of closed metric balls--and 

provides the existence of minimal curves between all pairs of points when the manifold is complete. 

The theorem can be understood in the context of inner metric spaces in the following way: A geodesic 
is a curve that is minimal on sufficiently short segments. A geodesic (minimal or otherwise) 13 from p 

to q is called extendable (past q) if/3 is the restriction to a subinterval of a geodesic y containing q in 

its interior. With this terminology the Hopf-Rinow Theorem is completely generalized to topological 

manifolds of curvature bounded above and below [P2]. More generally, local compactness and metric 

completeness in an inner metric space imply existence of minimal curves and are equivalent to 

compactness of metric balls (cf. [C]). However, extendability fails even if X has curvature bounded 
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below (e.g. at the apex of a cone) and existence even fails for infinite-dimensional Riemannian 
manifolds [A], [Gs]. Another consideration, the uniqueness of minimal curves, is usually a separate 
issue for Riemannian manifolds, connected with the study of the cut locus. In our theorem all three 

of these issues are addressed at once. 

Extendability can be expressed in terms of angles in the following way. If  (b; a ,  c) is a triple in X 
and d (a, b) + d (b, c) + d (a, c) < 2 z r / ~  (1 / ~ = cx~ when k < 0) then the triple has a unique 

(up to isometry) representative (B; A, C) in Sk = S 2 such that d(a,  b) = d ( A ,  B),  d(b,  c) = 

d ( B ,  C), and d(a,  c) = d ( A ,  C). We denote by otk(b; a ,  c) the angle of (B; A, C)  at B. The an- 

gle between minimal curves ot and F is given by c~ (o~, F) = lim inft--,0 ak (a  (0); ot (t), F (t), F (t)) 
exists, and a curve ~ from p to q is extendable beyond q only if there exists a minimal curve/z 
starting at q such that o r ( r , / z )  = 7r. 

Defini t ion 1.3. If  p and q lie in a region U of curvature > k then a minimal curve/~ from 

p to q is called almost extendable (beyond q) if for all e > 0 there exists a minimal curve ( starting 
a tq  such that ot(~6, ( )  > 7r -- e. 

T h e o r e m  1.4. Let X have curvature locally bounded below and p E X. There exists a dense 

G~ subset Jp of X such that for all x E Jp there is a unique, almost extendable minimal curve from 

p t o x .  

The fact that Jp is a dense G~ (countable intersection of open sets) is very useful since, by 
the Baire category theorem, the intersection of countably many dense G~'s is again a dense G~. 
Among other things this allows us to construct triangles almost everywhere, and obtain an essential 

equivalence of Wald's and Alexandrov's definitions (Corollary 2.10). Almost extendability allows us 

to use modified versions of arguments developed in [P1 ] for the geodesically complete case (where 
by definition all minimal curves are extendable); this approach is used to prove Theorem 1.8 below. 

T h e o r e m  1.5. If  X has curvature >_ k then Ck(X) ----- ~ for all x E X. 

Theorem 1.5 was proved in [P1] assuming a uniform Alexandrov curvature bound and existence 
and extendability of minimal curves, in [BGP1 ] assuming local compactness and, independently, in 
the general case, in [BGP2]. Our proof is an extended and simplified version of the proof in [P1]. 
It is primarily constructive in the sense that it inductively enlarges the comparison radius at a point. 
Furthermore, the proof uses only Alexandrov's comparisons, and can be reduced to quite a short 
argument in the Riemannian special case. 

Corollary 1.6, If  X has curvature >_ k > 0 then diam(X) < rr /v/k.  

We generalize Toponogov's maximal diameter theorem in the following way. When geodesic 

completeness is relaxed, we need a stronger condition than maximal diameter. 
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Defini t ion 1.7. A set of 2n points x t, Yl . . . . .  x , ,  y~ in a metric space Y is called spherical 

i fd (x i ,  Yi) = Jr for all i and det[cos d(xi ,  xj)] > O. 

The existence of a spherical subset in an arbitrary metric space in general does not have many 

useful consequences, but control over curvature yields the following theorem. 

T h e o r e m  1.8. If  X has curvature > 1 and contains a spherical set ~2 of 2(n + 1) points, 
then there is a subset S of X isometric to S n such that ~ C S. 

T h e o r e m  1.9. l f  X has curvature >_ 1, dim(X) < n < oo, and X contains a spherical set 

of 2(n q- 1) points, then X is isometric to S ~. 

Theorem 1.8 is used in Section 5 of this article. The standard hemisphere shows that Theorem 1.9 

cannot be improved by removing even a single point from the required set, and spheres of smaller 

dimension show that the determinant condition cannot be removed. By relaxing the criteria of 
Theorem 1.9 and applying the results of [P2] and [Y] we also obtain two differentiable sphere 
theorems (Theorems 4.7 and 4.9). 

If p E X lies in a region of curvature _> k, the space of directions Sp at a point p is defined to 
be the metric completion of the space of geodesic directions Sp. Sp, in turn, consists of all arclength 
parameterized geodesics (of maximal domain of definition) starting at p, with the angle metric. Prior 

to Theorem 1.4 it was not known whether Sp, defined in this way, was even nonempty without the 

assumption of local compactness. It is still unknown whether, in general, Sp is an inner metric space 
unless it is known to be compact or the space is geodesically complete [P1]. We let ~'p denote the 

metric cone on Sp, and call it the tangent space at p. One central difficulty that occurs when one 
removes either the upper curvature bound or geodesic completeness from the traditional assumptions 
of synthetic differential geometry is that compactness of Sp and finite dimension no longer follow 
from local compactness of X. In general, only after assuming finiteness of dimension and showing Sp 
is then a compact inner metric space of bounded curvature does l"p become a useful approximation 
of X near p. This strategy was first carried out by us in 1989 for spaces of curvature bounded both 
above and below (cf. [P2]). In Section 5 we show that Sp can be understood to a certain extent 
without any assumptions on dimension. Using the almost extendability part of Theorem 1.4 we find 
a spherical set in the space of directions at a dense set of points. We then construct an inner metric 
space contained in the space of directions and containing the spherical set. Theorem 1.8 can then 
be applied to produce an actual sphere (Theorem 5.6). This construction motivates the following 
definition. 

Definition 1.10. If X has curvature locally bounded below we let 

N n ( X )  = {p E X: Sp has a subset isometric to Sn-l}, 

and define the local dimension of X by ldim(X) = sup{n: N n ( X )  ~ 0}. 



Theorem 1.11. 
a dense G~. 
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If  X has curvature bounded below and ldim(X) > n then N ~ (X)  contains 

C o r o l l a r y  1.12. If X has curvature bounded below and ldim(X) = n, then for any p E 

Nn(X) ,  ZSp is isometric to S ~-1. X is locally compact and for each p E X, ZSp is a compact inner 

metric space of curvature > 1. Every compact subset of X has finite n-dimensional Hausdorff 

measure. 

Corollary 1.13. If X has curvature bounded below, then dim(X) < ldim(X). 

Coro l l a ry  1.14. If X has curvature bounded below and for some p E X, Sp is isometric to 

S n, then ldim(X) = n. 

C o r o l l a r y  1.15. If  X has curvature bounded below and dim(X) = ~ ,  then there is a dense 

G~ subset N ~ of X such that for all p E N ~ and n > O, Sp has a subset isometric to the unit 

sphere in s 

Note that by the results of [P3], if ldim(Xi) < n and the Gromov-Hausdorff limit X of the 

Xi's has curvature bounded below, then ldim(X) < n. 

In light of Theorem 1.8, the notion of local dimension is essentially the same as that of "strain 
number" [BGP2]. It follows from Theorem 1.12 and results of [BGP2] that if ldim(X) < o<) then 

ldim(X) = hdim(X) = dim(X). It remains an interesting open question whether dim(X) < 
implies ldim(X) < co. In fact this seems to be unknown even if X is a topological manifold. 

However, this implication is true in the following situation. The exponential map eXpp is defined on 

a subset of I"p as the unique continuous extension of the map t y  ~ y (t), y E Sp to the closure of 

its domain of definition. Proposition 2.10, [P1], can be restated in the following way. 

Proposition 1.16. If X has curvature > k, then at any point p, eXpp does not decrease 

topological dimension and does not increase Hausdorff dimension, 

The following corollary is immediate. 

C o r o l l a r y  1.17. If X has curvature bounded below, dim(X) = n and there exists a p E 

N n (X)  such that the domain of definition ofexpp contains an open set, then ldim(X) = n. 

A point p is called a geodesic terminal [P1] if there are a point q and a minimal curve y from q 

to p which cannot be extended as a geodesic beyond p. If there are no geodesic terminals in B (p ,  r )  

then eXpp is defined on B(O, r)  C 7"p. 
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Corollary 1.18. I f  X has curvature bounded below and the geodesic terminals in X are not 

dense, then dim(X) = ldim(X). 

An example of Otsu-Shioya [OS] shows that the hypothesis of Corollary 1.18 need not be 

satisfied even for a topological sphere. However, this example is arbitrarily Lipschitz close to spaces 

having nowhere dense terminals. It would be interesting to know whether approximations by spaces 

with nowhere dense terminals exist more generally. 

Corollary 1.18 and Theorem 1.4 imply that results of [P1 ], [P2], [P3], which require both finite 

topological dimension and either local compactness or existence of minimal curves, are true without 
either of the last two assumptions. In connection with this improvement in [P2], it is interesting to 
observe that even curvature bounded above and below has no significant consequences if the metric 

is not inner. Simply possessing an inner metric without curvature bounds also has few topological 
consequences. On the other hand, a finite-dimensional space which is both inner and has curvature 

bounded above and below, is, by [P2], a smooth manifold with boundary. 

We conclude this section with a few background results. The next proposition is essentially 
proved in [B], and gives a more useful curvature tool than Definition 1.1. By Sm we mean the 

two-dimensional simply connected space form (as opposed to Sm 3 ). 

Proposition 1.19. Any four points a, b, c, d in a region U of curvature >_ k can be isometri- 

cally embedded in Smforsomem > k. Furthermore, cgk(a; b, c)+otk(a;  b, d)-k-otk(a; c, d) < 2jr 
and any minimal curve triangle in U satisfies Alexandrov' s comparison conditions for curvature > k. 

We denote the three equivalent Alexandrov curvature conditions in the following way. Let T 

be a triangle of minimal curves in a region U of curvature > k. Condition A0 states that there is 

a representative T '  in Sk (same side length) and the distance from any comer of T to a point on 

the opposite side is >_ the corresponding distance on T' .  Condition A1 also states that T '  exists, 
and the angles of T are all > the corresponding angles on T' .  If W is a wedge in U (two minimal 
curves starting at a common point), then Condition A2 states that there is a representative W' in 
Sk (same angle and side lengths), and the distance between the endpoints opposite the angle in 
W is < the corresponding distance in W'. We say A0, A1, or A2 hold with equality if the above 
inequalities can be replaced by equalities. As an immediate consequence of the definition of the 
angle between minimal curves and Proposition 1.19, we have the following extension of the theorem 

of complementary angles in [R]. 

Corollary 1.20. I f  re - ot(fl, y )  < e then for any minimal curve ( with the same initial 

point, or(13, ( )  + or((, y )  < Jr q- 8. 

The strong excess of a triple is ~r(b; a ,  c) = e(b; a, c ) / m i n { d ( a ,  b), d(c ,  b)}. From the 
elementary geometry of Sk it is not hard to prove that cr (b, a ,  c) is small if and only if Jr --Otk (b; a ,  c) 
is small, with the exact relationship depending on k. (For k > 0 we require that d (a, b) + d (b, c) < 
rc/x/k) .  We will use these two quantities interchangably. 
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2. The Extended Hopf-Rinow Theorem 

L e m m a  2.1. Let p, q be distinct points in an inner metric space X. For every positive o" 
and 0 < 8 < d (p ,  q), there exists a point q' E X such that d(q,  q') = 8 and cr (q ' ;  p ,  q )  < ~r. 

P roo f .  Without loss of  generality we can assume 8 < d(p ,  q)/2.  Let Y be a curve from p 
to q such that s  < d(p ,  q) + crS. By the definition of the length of a curve and the triangle 

inequality, for any point x on Y, e(x; p ,  q)  < trS. By the intermediate value theorem there is a 

point q '  on Y such that d(q,  q ' )  = 8, which meets the requirements of the lemma. [ ]  

Definition 2.2. Let p be a point in X, a complete inner metric space. We define Jp to be the 

G~ set 

A { Y  E X: 3 z  E X suchthat~r(y; p , z )  < 2 - i , d ( y , z )  < 2-i}. 
i=1 

Proposition 2.3.. For any p ~ X, Jp is dense. 

Proo f .  Fix qo E X and positive 00 < 1, and suppose we wish to find a point q E Jp such that 

d (q0, q)  < 00. We will construct q as a limit of  an inductively defined Cauchy sequence {qj }. Using 
Lemma 2.1, let ql be a point such that d(ql ,  q0) = 17o/2 and cr (ql; p ,  q0) < 1/4. By continuity 

of the distance function there exists an rh < r/0/2 such that i f d ( x ,  q l )  < rh, then or(x; p ,  q0) < 
1/2. Now suppose we have found the following for all i < j :  points qi and numbers r/i, where 

d(qi, q i - l )  = r / i - l / 2 ,  and r/i < r / i - l / 2  is such that i f d ( x ,  q i )  < r/i then i f (x ;  p, q i - 1 )  < 2 - i - 1 "  

We can now pick qj such that d (q j, q j_ 1 ) = r/j- l /2  and cr (qj; p, q j_ 1 ) < 2 - j  , and r/j satisfying the 
necessary property by continuity of  the distance function. Since d (qk, qm) < ~_,m-1 d (qi, qi+l) < --  i=k 
Y~im=k I 2-ir/0, {qj} is Cauchy, and q = l imqj  E B(q0, r/0). Furthermore, for any j ,  d(q,  qj) < 
r/j < 2-J and cr(q; p, qj) < 2-J, Therefore q ~ Jp. [] 

Proposition 2.4. Let p, q ~ X with q ~ Jp. If c~(q) >_ r then there exists a unique point 
x such that d(x ,  q) = r, e(x; p, q) : O. Furthermore, there is a unique minimal curve joining q 
and x. 

Proo f .  Let x i be such that ,~(Xi; p ,  q)  < 2 - i  and d(q,  xi) = r. We claim that {xi} is 

Cauchy. Note that the definition of Jp implies that for any 8 > 0 there exists an M > 0 and a point 

q '  ~ B ( p ,  r )  such that for all i > M,  tr (q; xi, q ' )  < 8. Now if cr (q; xi, q') and tr (q; 'x j ,  q') 
are small, otk(q; xi, q') and otk(q; xj, q') are close to Jr and by Proposition 1.18, otk(q; xi, xj) is 

small. Since d (q, xi) = d (q, x j), d (xi, xj) is also small, {xi } is Cauchy. Now x : =  lim xi satisfies 

e(x; p ,  q)  = 0, and x is unique because the sequence {xi} was arbitrarily chosen. This proves the 

first part of the theorem. To finish the proof of the theorem, we can apply the first part to x and q to 
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construct a unique "midpoint" m c X between them. Proceeding with this standard construction we 

can produce an isometry of  the dyatic rationals in [0, d(x ,  q)], which can be extended to a minimal 

curve joining them. The minimal curve is unique because m is unique. [ ]  

Proof of T h e o r e m  1,4. We will first prove that if q ~ Jp then there is a unique minimal 

curve )/ between p and q. The curve will be constructed starting a q,  and extended toward p.  

Since ck(q) > r > 0 for some r and k, by Proposition 2.4 there is a unique point xl such that 

d(q ,  Xl) = r, e(xl; p ,  q)  = 0, and there is a unique minimal curve from q to xl. Let f2 denote the 

supremum of all 09 such that there exists an x E X such that (1) d(x ,  q) = co, (2) e (x ;  p ,  q)  = 0 

and (3) there is a unique minimal curve joining q and x. Then if2 > r. Let wi approach f2 from 

below and choose corresponding points xi and minimal curves Yi. Since the minimal curves are 

unique, each Yi is an extension of  Yi-l; hence the sequence xi is Cauchy with a limit point x. By 

continuity of  the distance function, x satisfies (l), (2), and (3), except possibly for the uniqueness of 

the minimal curve )/ = lim Yi joining q and x. Let/3 be any minimal curve from q to p and y be 

on 13 such that d(q ,  y) = r. Then e(y; x,  q)  = 0 and so 

0 < e (y ;  p, q) < d (p ,  x)  + d(x ,  y) + d(y ,  q) - d (p ,  q) = e(x; p, q) = O. 

But by uniqueness o fx l ,  y = xl,  and/3 = 2/. 

We have reduced the proof to showing that ~ > d(p ,  q). Suppose otherwise. By the above 

argument we have a point x satisfying (1), (2), (3) for w = f2; denote by y the unique minimal 

curve from q to x. Then CK(X) ___ R > 0 for some R < d(x ,  q) and K. We need to show x ~ jm 

Choose points wi on y such that d(x ,  wi) = 2 -i. Then e(x; p, q) = e(wi; x,  q)  ----- 0 implies 

0 <_ e(x; wi, p) = d (p ,  q) - d (x ,  q) + d(x ,  wi) - d (p ,  wi) 

= d (p ,  q) - d (x ,  i f ) i )  - -  d(wi ,  q) + d(x ,  wi) - d (p ,  wi) <_ O, 

i.e., x E Jp. Now we can apply Proposition 2.4 to find a unique point x '  such that d(x ' ,  x)  : R 
and e(x'; p ,  x)  ---- 0 and a minimal curve ?" from x to x ' .  Now e(x; p, q) implies 

0 < e(x; x',  q) = d (p ,  x)  - d (p ,  x') + d (p ,  q) - d (p ,  x)  - d(x ' ,  q) < O. 

In other words, ~' and y '  together form a minimal curve from q to x ' .  The curve is unique, again 

because xl is unique. 

To complete the proof of  Theorem 1.4, note that we can find a z E Jq such that ~r (q; p ,  z) is 

small, and hence zr - otk(q; p ,  z), is arbitrarily small. By what we have just proved, we can find 

a minimal curve o~ from q to z. By A1, Jr -- or(F, or) is small, and this proves that F is almost 

extendable. [ ]  

Corollary 2.5. I f  B = B ( p ,  r) is a region of curvature > k in X ,  q, x c B are such that 
e(x ;  p ,  q)  : 0 then there is a minimal curve from p to q. 
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P roof .  Since or (x; p ,  q)  : e (x; p ,  q)  = 0, Proposition 2.1 implies that there are minimal 

curves /5 from p to x and y from x to q. But /5 and V together form a minimal curve from 

p t o q .  [ ]  

Remark 2.6. Note that what we have in fact proved is that Jp consists of  points q which 

can be connected to p via a strictly minimal curve which is almost strictly extendable past q in the 

sense that for any e > 0 there exists a point q '  such that yr - ot~(q; p,  q ' )  < e. This is strictly 

stronger than almost extendable (even in the Riemannian case) because it forces uniqueness of  the 

joint between p and q. This result can be considered as a strengthened extension of the fact that, for 

Riemannian manifolds, the non-conjugate cut locus is contained in an F~. In the Riemannian case 

the cut locus is also nowhere dense; in our case, the F~ is at most first category. [ ]  

Example 2.7. In a geodesically complete space of curvature >_ k, every minimal curve is 

extendable and hence almost extendable. On the other hand, let X be the space obtained by gluing a 

half circle of  diameter d to a side S of a square of area d 2. The two sides of  the square perpendicular 

to S are minimal curves which cannot be extended past their intersection with the boundary of the 

circle, but are clearly almost extendable. By gluing two copies of  X along their boundaries, we 

obtain the same situation in a manifold without boundary. 

E x a m p l e  2.8. Let E be the infinite-dimensional ellipsoid given in [A] and let p ,  q be the 

two points in E which cannot be joined by a minimal curve. Take the one point union E '  of  E with 

another inner metric space X at q.  Then no point in X can be joined to p via a minimal curve, and 

the set of points joined to p is not dense. Of course q is a branch point in E '  so E '  has no lower 

curvature bound. We do not know of an example of an inner metric space without branch points in 

which the set of points joined to a given point via a minimal curve is not dense. If E denotes an 

infinite product of  copies of  E then the point P ---- (p ,  p . . . .  ) cannot be joined via a minimal curve 

to a dense subset Z of ~. In other words, Je ,  which is contained in the complement of Z,  cannot 

contain an open set. 

C o r o l l a r y  2.9. Suppose B ( p , r)  is a region o f  curvature >_ k. For any set {x, xi . . . . .  Xn } C 

' . .  ' arbitrarily close to x l, . �9 , xn, respectively, such that each B ( p ,  r /3) ,  thereexistpointsxl ,  . ,  x n 

pair o f  points in {x, x '  1 . . . . .  x'~} is joined by a minimal curve. 

Proof .  If  z E B ( p ,  r / 3 )  then B(z ,  2r /3 )  is a region  of  curvature > k which includes 

B ( p ,  r /3) .  The proof is by induction on n; the case n = 1 is immediate from Theorem 1.4. 

' . .  ' arbitrarily close to x l, �9 xk, respectively, so that all Suppose we have chosen points x 1, . ,  x k . .  , 
l t pairs in {x, x 1 . . . . .  xk} can be joined by a minimal curve. The sets Jx, Jx; for i < k are dense 

G~'s, and so is their intersection I by the Baire category theorem. To complete the induction step, 
I 

we simply choose xk+ i ~ I close to Xk+l. [ ]  
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Following Berestovskii's recent work we can state the next corollary; given Theorem 1.4, the 

proof involves only minor modifications of  the results in [B]. From this corollary, all of the traditional 

theory involving Alexandrov's comparisons, such as existence of angles, can be built up in the present 

more general setting. 

Corollary 2.10. l f  x E X ,  ck (x )  > 0 i f  and only i f ( l )  x lies in a region o f  curvature 

bounded below in the original sense o f  Alexandrov and (2) there is an open set U about x such that 

every y E U is jo ied by a minimal curve to each point in a dense G~ subset Jy o f  U. 

3. The Global Comparison Theorem 

If  X has curvature locally bounded below and there are at most two directions at some point, 

then using Theorem 1.4 it is easy to verify that X is isometric to a circle or an interval. In this case the 

global comparison theorem has no meaning, and some of the constructions given in the remainder 

of  this article fail. From now on we will always assume that i f  c k ( x )  > O, then there are at least 

three directions at x .  

Given a triple (b; a ,  c) such that a and c are joined to b by minimal curves, we can make sense 

of  the Conditions A1 and A2 in terms of  the angle between minimal curves Ybc and Yb~. We say that 

a triple (b; a ,  c) is A 1 if A 1 and A2 hold for every pair of  minimal curves Ybc and Yba- By continuity 

of  the distance function, in order to prove Theorem 1.5 it suffices to prove that all quadruples of  

points from some dense set of X can be embedded in Sm, m > k. In light of [B] and Theorem 1.4, 

we need only show that every triple (b; a ,  c), such that a and c are joined to b by a unique minimal 

curve, is A1. From now on, we will require that any triple (b; a, c) be joined in this way. We will 

take the comparison radius to mean the maximal radius o f  a ball in which every triple is A1. We will 

denote ot (ybc, Yb~) by or(b; a ,  c). In proving a triple (b; a ,  c) is A1, it will sometimes be necessary 
to introduce new points. Because the new points are sometimes required to lie on some given minimal 

curve, we cannot assume by Theorem 1.4 alone that they are joined to a and c by unique minimal 

curves. However, there exist points ai, ci arbitrarily close to a and c that are uniquely joined to any 

given finite set of  points. By the definition of  the angle, lim s u p i ~  ~ (b ;  at,  ci)  < or(b; a ,  c);  since 
the distance function is continuous it suffices to prove only that (b; ai, r is A1 for all i. In other 
words, when all the requirements imposed on a and c are open conditions, we can, in fact, always 
assume that the points we introduce can be joined to a and c by unique minimal curves. We will use 

this assumption without further comment (this includes the statement of Lemma 3.1). 

The next lemma is a standard trick in proofs of  Toponogov theorem (cf. [CE]). The proof is 

essentially the same as in the Riemannian case. 

Lemma 3.1. Let (b; a, c) be a triple. Suppose there is a partition Xo = b . . . . .  xn = c o f  

Ybc such that ( xi ; a,  xi + l ) f o r  O < i < n, and ( xi ; a ,  x i_  ~ ) f o r  O < i < n, a r e a l ,  then (b; a,  e) 
is A1. 
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Propos i t ion  3.2. Suppose ck > tc for some x > 0 on B = B(a, D) C X. Then every 
triple (b; a, c) in B such that d(a, b), d(a, c) < D - tr and d(b, c) < 2x, is A1. 

P r o o s  Suppose first that D < rc/~,/~. Choose positive X < min{K, Jr}/8 such that the 
following two conditions hold. 

(a) for any R < D if A, B, C ~ Sk are such that d(A,  B) < R, d(A,  C) < R - 2 X and 
d(B,  C) < 4X then d(A,  F) < R for all F on FBc. 

I f k  < 0 any X < x / 8  will work. I f k  > 0, note that by monotonicity we can as- 
sume d(A,  B) > d(A,  C); by convexity we can suppose d(A,  B) > n /2x /~ .  If ot(X ) = 

sup{cz(B; A, C)} over all possible triangles for a given X, then by the spherical cosine law, 

cos ~/k(R - 2X) - cos v /kR cos ~/rk4 X sin vCkR sin ~ /kD 
lim cosot(x)  > lim --  - -  > - -  
x~o x--,0 sin w/-k4 g 2 2 

In other words, for small X, ot (X) < zr/2 is bounded away from zr/2 by a positive number depending 
only on D, which completes the argument. 

(b) if A, B, C ~ Sk are such that d(A,  B) > x, d (A,  B) - d (A,  C) > X and d(B,  C) :=  
a < 3X, then or(B; A, C) is an increasing function o fa .  

We prove only the spherical case k = 1; the other cases are similar. Let R = d(A,  B) and 

R' = d(A,  C). By the spherical cosine law we need to show that the derivative of 

f ( a )  = 
cos(R')  - cos(a) cos(R) 

sin(a) sin(R) 

is negative for small enough X and a < 3X. This reduces to showing cos(R) < cos(R')  cos(a) 

or cos(R) < g(x )  :=  cos(R - X)cos (3x)  for suitably small X- But this is immediate from 
g'(0)  = sin(R) > min{sin(tr sin(D)}. 

We will show by induction that the following statement holds for every n <_ (D - X)/X: 

S(n). If (b; a ,  c) is  a triple such that d(a, b), d (a, c) < n. X and d(b, c) < X, then (b; a ,  c) 
is A1. 

An immediate consequence of S(n) and Lemma 3.1 is that if d(a, b), d(a, c) < n �9 X and 
any minimal curve Y from b to c lies in B(a, nx )  then (b; a ,  c) is A1 (subdivide y into intervals 
of length < X)- By the way X was chosen, S(n) is true for n < 8; suppose S(n) is valid for 

some n > 8 and let b, c be such that d(a, b), d(a, c) < (n + 1) �9 X and d(b, c) < X- Let 
d be on Yah such that d(d,  b) = 3X. Since d(d,  c) < 4X, (d; b, c) and (b; c, d)  are both A1. 

Lemma 3.1 reduces the proof to showing: If (d; a,  c) is a triple such that d(a, d) < (n - 2)X and 

d(d, c) < 4X then (d; a ,  c) is A1. Let A, D, C E Sk be such that or(D; A, C) = or(d; a ,  c), 
d(a, d) = d(A,  D), and d(d, c) = d(D,  C). 
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Suppose first that d(A ,  C) < nx .  Compactness and (a) imply that there is ( > 0 such 

that for any F on Foc ,  d(A ,  F)  < n x  - ( .  To show (d; a ,  c) is A1, it suffices to prove ?'de 

lies in B(a,  nx ) .  If Ydc doesn't lie in B(a,  n x )  there is a point f on Ydc closest to d such that 

d(a,  f )  = n x . Let f '  be on Yd,. between f and d arbitrarily close to f .  Then (a; f ' ,  d) is A1 so 

d(a,  f ' )  < n x  - ( and, hence, d(a,  f )  < n g  - ( ,  a contradiction. 

We can now assume that d(A ,  C) > n g  > d (A ,  D)  and also that d(a,  c) > n x since 
otherwise (d; a ,  c) is A 1 by definition. We will show that for all co, 3 > 0 there exist points d '  E X 

and D '  E Sk such that the following properties hold. 

(1) ot(d'; a,  c) _< ot(D'; A, C) + 3, 

(2) d(a,  d') = d (A ,  D') = d(a,  d), 

(3) d(d' ,  c) < d (D ' ,  C) + 3, 

(4) e(D';  A, C) < w. 

This will complete the inductive argument, since then d(a,  c) < d(a,  d') + d ( d ' ,  c) < d ( A ,  D') + 
d (D ' ,  C) + 3 < d ( A ,  C) + 3 + co. 

Certainly d and D satisfy these properties for possibly large co and any 3. Let ~ be the infimum 
of all co such that for all 3 > 0 there exist d ' ,  D '  satisfying (1)-(4), and d '  is joined by minimal 

curves to a and c; suppose f2 > 0. For coi ~ f2 and 3 i " +  0, choose d~, D~ satisfying (l)-(4) for 

col and 3i: we can assume D~ --+ D '  E Sk. Let Ei be the point on FAD I such that d(Ei ,  D~) = X, 
and D~' be the point on I"eic such that d ( A ,  D~') = d (A ,  D). If D" denotes the corresponding 
point constructed for D'  then D~' ~ D". Since d(D' ,  C) - d (D" ,  C) > O, e(D"; A,  C) < f2 
and e(D~'; A, C) < f2 for large i. We will obtain a contradiction by constructing d~' such that 

conditions (1)-(3) are satisfied by D~' and d~' and numbers 3~ --~ 0. For simplicity, we will use 3~ 
several (but finitely many) times to denote numbers tending to 0; the final choice of 3~ will be the 
maximum of these various values. 

Sinced(a,  d~) > d(a,  c ) -d (d~ ,  c) > ( n - 4 )  g > 4x,wecanchooseei  on the minimal curve 
from a to d~ such that d(ei,  d~) = X. Then ei, df, c all lie in a region of curvature > k. By continuity 
of the distance function, we can choose dr' on Ye,c such that d(d  H, a) = d(d ,  a) and d~' can be 
joined to a by a unique minimal curve. Now d(a,  c) > n x  implies d(d~, c) > 2 X = 2d(D~, El). 
Since d(D~, C) < 4g < rr/2, if we were to move C along the minimal curve from C to D~ 
until d(C,  D~) = d(c,  d~) - 3i we would shorten d(Ei ,  C). By A2 and (1) (for d~ and D~), 

d(ei,  c) ~ d(Ei ,  C) q-- 3~. 

If  we were to decrease the angle at D~, reducing d(Ei ,  C) to d(ei,  c) -- ~ we would increase 
ot(Ei; D~, C); it now follows from A1 that or(el; d~, c) > or(El; D~, C) - 3~ and hence that 

ot(ei; a, d~') < ot(Ei; A, D~') + 6~. Note that d(d~', ei) = d(ei,  c) - d(d~ t, c) < 5 X - (n X - 
(n - 2)X) = 3X so that the minimal curve from d 7 to ei lies in B(a,  ng ) .  It follows that both 
(e;; dr', a )  and (d~'; ei, a)  are A1. We now claim d(ei,  df') > d(Ei ,  D~') - 3~. Otherwise, there 
exists an e > 0 such that d(ei,  d~') < d(Ei ,  D~') - e for infinitely many i. For such i we 

could decrease d(Ei ,  D~') to d(ei,  d~') by an amount greater than e. Since d(Ei ,  D~') > X, we 

would increase c~(Ei; A, D;') by at least an amount e '  > 0 independent of i. A1 then implies 
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I I  t !  It I 
or(el', d i , a) > o l ( E i ;  D"i, A) + e, a contradiction. Thus d ( e i ,  d i ) _> d ( E i ,  D i ) - 3 i and 

I t  I !  f d(d i , c) <_ d (D  i , C) + &i, proving (3). 

Finally, if we were to increase d(Ei ,  D") . . . .  i ,  to d(ei, d i ) + 3 i then by (b) we would increase 
~D . . . . . .  This shows or(d;'; c, a )  < c~t i ; El,  A); i.e., A1 implies t h a t ~ t d  . . . .  " i ' e i ,  a) > o t ( D i ,  E i ,  A) &i" 

ot(D~'; C, A) + 6; and proves (1). 

We now complete the proof of the proposition. If ?'bc lies in B(a, rr/x/-k) then Ybc lies in some 

B(a, D),  D < r r / q ~ ,  we can subdivide into segments of length X and apply Lemma 3.1. This 

completes the proof for k < 0. Suppose k > 0 and suppose p c X such that d(p ,  a)  = 7r. Let 

q E Ja f-) Jp. Then we have shown that for Pi --+ P along yqp, (q; a, Pi) is AI .  By continuity 

it follows that Yaq and yqp together form a minimal curve from a to p through q. If  we choose 

w E Ja A Jp such that or(a; q,  w) > 0 (we can do this because there are at least three directions 

at (a), then we have a second distinct minimal curve from a to p.  Thus no minimal curve passes 

strictly through a point of  distance 7r/~c/-k from a,  and we have shown that the diameter of  X is at 

most r r /x/~.  For any point p '  such that d(p' ,  a)  = r r / x /~  and q' E Ja A Jp A Jp,, from the above 

argument we have minimal curves from a to p and p '  through q' .  But these would have to coincide 

between a and q ' ,  which means p = p ' .  The only remaining case is that the unique "antipodal" point 

p ~ c lies on Yb,. If  b ----- p,  we can consider triples (Pi; a, c) with Pi --+ P and Pi E Ja f') Jc, 
and apply semicontinuity of  the angle to complete the proof. If p --fib then or(b; a,  c) = Jr and we 

need only show a representative exists. But we can choose ci c Jp A Ja with c, --+ c. Continuity 

and the fact that cg lies on a minimal curve from a to p imply d(a, c) = zr - d(p ,  c), which is the 

required distance. [ ]  

C o r o l l a r y  3.3. If ck > tc for some tr > Oon B(p ,  D) C X then ck(p) > D/3. 

Proo f .  If (b; a ,  c) is a triple in B(p ,  D/3)  then ck > x on B(a, 2 D / 3 ) .  Since Fbc lies 

inside B(a, 2 D / 3 ) ,  we can subdivide it into segments of length < 2x and apply Lemma 3.1 and 

Proposition 3.2 to complete the proof. [ ]  

C o r o l l a r y  3.4. t i ck (p)  < p then for every e > 0 there exists a point q ~ B(p ,  3p) such 
that ck(q) < e. 

P r o o f  o f  T h e o r e m  1.5. Suppose there is a triple (b; a ,  c) in X which is not A 1. Then if p = 

max{d(a ,  c),  d(a, b)}, ck(a) < p. By Corollary 3.4 there exists a point Xl E B(a, 3p) such that 

ck (xl) < p/6.  But then there exists a point x2 E B(x2, p/2)  such that ck (x2) < p~ 12. Continuing 

in this way we can construct a Cauchy sequence {xi} such that ck(xi) --~ O. But if l imxi ---- x,  

ck(x) = & for some & > 0. Then for all large enough i, d(xi,  x) < 3 /2  and ck(xi) > 3/2,  a 

contradiction. [ ]  
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4. The Sphere Theorems 

The next lemma was proved in [GP2] assuming existence of minimal curves. 

L e m m a  4.1. Suppose X has curvature > 1 and x ,  y ~ X satisfy d ( x ,  y )  = 7r. For any 

point Z ~ x, y in X,  there is a minimal curve from x to y through Z. In consequence, any minimal 

curve starting at x can be extended as a minimal curve from x to y. 

P r o o f .  Let zi ~ z be such that there exist unit minimal curves of i and/3i from zi to x and 
y,  respectively, Then AI implies a(ot i , /3i)  = 7r; that is, ~i and ~i form a unit minimal curve Fi 

from x to y through Zi. We claim that the sequence {Fi} is uniformly convergent. In fact, A0 and the 

monotonicity of  distance as a function of angle implies that i f d ( z i ,  z j )  is small then d(Fi ( t) ,  Fj ( t ) )  

is uniformly small for all t E [0, Jr]. Now Y :=  lim Yi is the desired minimal curve. [ ]  

De f in i t i on  4.2. A subset Y of X is said to be metrically embedded if the induced metric on 
Y is an inner metric. 

If  Y is locally compact, the following are trivially equivalent: (1) Y is metrically embedded in 
X, (2) the induced metric and induced inner metric ([P 1 ]) on Y are equal, and (3) every pair of  points 
in Y is joined by a curve which is minimal in the metric of  X and lies in Y. The term "metrically 

embedded" therefore has the same meaning as "convex" in [P1] and [R]; but we have decided to 

abandon the latter term due to possible confusion with other usages. If  Y (with the induced metric) 

is isometric to an inner metric space (e.g. the sphere) then Y is automatically metrically embedded. 

Note that if Y is a submanifold of  a Riemannian manifold then the distance derived from the induced 
Riemannian metric on Y is the induced inner metric on Y. If X has no branch points (in particular 

if X has curvature bounded below) and Y is geodesically complete and metrically embedded then 
Y is totally geodesic in the sense that any geodesic of  X which lies in Y for some positive length 
lies entirely in Y. 

Lemma 3.3. Suppose X has curvature > 1 and y is a metrically embedded geodesic loop in 

X o f  length 2~r. For any geodesic/3 starting at y (0), the wedge (/3 It0,s~, y It0,,j) is A2 with equality 
for  all s, t E (0, :rr). 

P r o o f .  Since F is metrically embedded, every segment of  F of length < Jr is minimal. We 

need to show that if Y', /3 '  are minimal in Sk such that ot (F ' ,  13') = ot (F , /3)  then for all s, t E (0, n'),  

d ( F ( s ) , / 3 ( t ) )  ----- d ( y ' ( s ) , / 3 ' ( t ) ) .  By Lemma 4.1, d ( F ( s ) , / ~ ( t ) )  = Jr - d ( y ( s  q- Jr),  f l ( t ) ) ,  
and A2 implies 

Jr -- d ( y ( s  + zr) ,  /3 ( t ) )  > Jr - d ( F ' ( s  + n ) ,  ~ ' ( t ) )  

= d ( F ' ( s ) ,  ~ ' ( t ) )  

> d ( g ( s ) ,  r []  
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L e m m a  4.4. I f  X has curvature > 1 and y is a closed geodesic in X having a minimal 

segment o f  length Jr then y is metrically embedded of  length 21r, 

Proo f .  By reparameterizing if necessary, we can assume that F is minimal from p ---- F (0) 

to q = F(zr).  For sufficiently small e > 0,/3 = Ylt~-~,~+~l and q = F[I0,~-~l are also minimal. 

Letting ( = FIt,~+~,2~l and applying A0 to the triangle ( ( , /3 ,  rl) we obtain that d ( y ( s ) ,  F(s  + 

n ) )  = rc for all s < e. If  S = sup{s: d ( y ( s ) ,  F ( s  + re)) = re} and we suppose S < 7r, we can 

apply the same argument to p '  = F ( S )  and q '  = F ( S  + rr) to obtain a contradiction. Therefore 

d ( y ( s ) ,  F(S + Jr)) = n for all s and so the induced metric on Y is intrinsic. [ ]  

L e m m a  4.5. Suppose X has curvature > 1 and contains a subset S isometric to S n, for  

some n, with the induced metric. I f  there exist points x, y C X \ S  such that d ( x ,  y )  -~ 7r, then X 

contains a subset S' isometric to S n+l containing x, y, and S. 

Proof .  L e t Z  = {F 6 Sx: y ( s )  6 S f o r s o m e s  < Jr} a n d S ' =  {p = y ( t ) :  Y 6 Z 

and t < Jr}. By Lemma 4.1 if F E Z then Ylt0.~l is minimal from x to y and Fl[0,s] is the unique 

minimal curve from x to Y (s) E S. Furthermore, since S is totally geodesic, Y I[0,~l intersects S 

in exactly one point. By Lemma 4.1 there is a minimal curve Fw from x to each point in w E S; 
the map w w+ Fw is a homeomorphism from S ---- S n to Z. Using this map we can topologically 

identify Z with the unit sphere in the tangent space at a point on S n+l . With this identification we can 

define a homeomorphism qg: S' --* S n+l which carries a geodesic starting at x to the corresponding 

geodesic in S ~+1 . We will show that r is actually an isometry, and for this it suffices to prove that if 

F, 13 E Z and F' ,  13' are minimal in S ~+l such that ~ ( F ' , / 3 ' )  = Or(F,/3) then for all s, t E (0, 7r), 

d ( y ( s ) , / 3 ( t ) )  = d ( F ' ( s ) ,  i f ( t ) ) ,  or equivalently, the wedge W = (/3[I0,.~l, F [[0,tj) is A2 with 

equality. 

That W is A2 with equality in turn follows from Lemmas 4.3 and 4.4 if we show that F can 

be extended as a geodesic loop of  length 27r lying in S'. But if F ( r )  = v c S and w is antipodal 

to v in S, the minimal curve ( from y to x through w extends y as a geodesic, by AI ;  F, in turn, 

extends ( .  [ ]  

Proof of T h e o r e m  1.8. We proceed by induction. The proof is trivial for n = 0. Now 

suppose the theorem holds for 2n points, n ~ 0 and there is a spherical set {xl, Yl . . . . .  xn+l, Y~+I } 
in X. By the induction hypothesis there is a subset S'  of  X isometric to S n-I containing xi and Yi 

for all i < n. Lemma 4.5 implies that we need only now show that xn+l, Y~+l ~ S', but this is 

immediate from the definition of  spherical set and the fact that S' is metrically embedded. [ ]  

P r o o f  o f  T h e o r e m  1.9. By Theorem 1.8, X contains a subset S isometric to S n. Suppose 

there exists some x E X \ S .  By Lemma 4.1, for each point y E S there is a unique minimal curve 

from y to x. In addition, if Yl and Y2 are close in S then A1 applied to a triangle formed by Yl, 

x,  and a point antipodal to Y2 implies that the angle between minimal curves from x to Yl and Y2, 
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respectively, is small. Thus the subset Z of Sx corresponding to minimal curves from x to a point in 
S is homeomorphic to S to S n. That is, the tangent space Tx contains a subset R homeomorphic to 

R n+l, and the exponential map expx is a homeomorphism on B(0, 7r/2) fq R. Thus B ( x ,  Jr) C X 

contains a closed subset of dimension n + 1, a contradiction. [ ]  

Before proving our pinching theorems we give a little background on Gromov-Hausdorff con- 

vergence and curvature. For more details, see [P2]. Suppose {Xi } is Gromov-Hausdorff convergent 
to X and each Xi is an inner metric space. Then there is a compact metric space into which all the 
spaces can be embedded, so that we can use the classic Hausdorff convergence and make sense of 
uniform convergence ([G]). By Ascoli's theorem, if Yi is unit (arclength parameterized) minimal in 
Xi then {Yi } has a subsequence which is uniformly convergent to a minimal curve in X. On the other 

hand, in [P2] the following is proved. 

Proposition 4.6. I f  each Xi  has curvature > k for  some fixed k, then for  any minimal curve 

y starting at a point p in X and points Pi E Xi with Pi --+ P, there exist minimal curves Yi in 

Xi  starting at Pi such that {Yi} converges uniformly to y .  Furthermore, i f  y can be extended as a 

geodesic beyond p then for  any minimal curves fl starting at p and 16i starting at Pi, if16i converges 

uniformly to t6 then limot(16i, Yi) = ~(16, Y). 

For simplicity, in what follows we will often work with the limit of curves without mentioning 

each time that we might have to take a subsequence in order for that limit to exist. The reader can 
verify in each case that this does not affect the validity of the proof. 

T h e o r e m 4 . 7 .  For any n, S > O there exists an e > O such that if  M is a Riemannian manifold 

o f  dimension < n and sectional curvture > 1, and M has 2(n q- 1) points Xl, Yl . . . . .  xn+l, Y,+l 
such that 

(1) d(x i ,  Yi) ~ 7r - e for  all i and 

(2) det[cosd(xi ,  xj)]  > ~, 

then M is diffeomorphic and almost isometric to S n. 

Proof .  By the definition of the Gromov-Hausdorff metric, if { M~ } is a convergent sequence 

of Riemannian manifolds of sectional curvature > 1 having "almost spherical" sets satisfying the 
hypothesis of Theorem 4.7 for e = I / i ,  then X := lim Mi contains a spherical set of 2(n + 1) 

points. By Theorem A of [GP], dim(X) < n. Theorem 8, [P2] (cf. also [GP]) implies that X has 

curvature > 1 and now Theorem 1.9 proves that X is in fact a sphere, The proof of the theorem is 

now complete by Yamaguchi's pinching theorem ([Y]). [ ]  

L e m m a  4.8. Let { X i } be a sequence o f  inner metric spaces o f  curvature > 1 converging to a 

locally compact limit space X.  Suppose there exist points Pi, q, ~ Xi  such that lim d (pi ,  qi ) = :rr. 
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I f  Yi is a geodesic in Xi  starting at Pi and lim g.(Yi) = Jr, then a subsequence of  {Yi } converges 

uniformly to a minimal curve in X.from p = lim Pi to q ----- lim qi. 

Proo f .  By choosing a subsequence and reparameterizing, if necessary, we can assume that 

Fi is unit and {Fi} converges uniformly to a curve F in X of length 7r. Let zi = Fi(/~(Fi)). Then 

by A2 (applied to Fi[[0,~j if/~(Fi) > n'), d(z i ,  qi) -+ 0 and so zi -+ q. Since d ( p ,  q )  = n', the 
proof is complete. [ ]  

T h e o r e m  4.9. For any n, 8 > 0 there exists an ~ > 0 such that if M is a Riemannian 

manifold o f  dimension < n and sectional curvature >_ 1, and for  some points p ,  q E M and 

vl . . . . .  vn E SpM such that 

(1) det[(vi, vj)]  > 8, 

(2) d ( e x p p ( ( ~ / 2 ) v i ) ,  expp( ( - : rr /2)v i ) )  > 7r - ~, for  all i, and 

(3) d ( p ,  q)  > zr - e, 

then M is diffeomorphic and almost isometric to S ' .  

Proo f .  Suppose {214,-} is a convergent sequence of  Riemannian manifolds of  curvature > 1 

such that there exist pi, qi E Mi and vi~, �9 �9 �9 v i n c  Sp, Mi such that 

(1) det[(vik, vij)] > 8, 

(2) d(expp((rr /2)v i j ) ,  eXpp((--rc/2)vi j ) )  > rc - 1 / i ,  for all j ,  and 

(3) d ( p , q )  > 7r - 1 / i .  

As in the proof of Theorem 4.7, we need only show that X :=  lim Mi contains a spherical subset 
having 2(n + 1) elements. 

Let Vii be the unit geodesic corresponding to vii; i.e., Vii (t) = eXpp, (t vii). Choosing a subse- 
quence if necessary we can find p = lim Pi, q = lim qi. Let yj = lim Vii [I0,~l and --yj  = Vij [I0,-~l- 
By Lemma 4.8, yj and --Vj are minimal from p to q. Furthermore, d(v j ( z r /2 ) ,  - -Vj(zr /2))  = yr, 

so A2 implies ot(yj, - -y j )  = zr. In fact, Lemma 4.4 implies yj and --y; together form a metrically 
embedded closed geodesic. 

Let ~ij be minimal from Pi to Fij(zr/2) and --[3ij be minimal from Pi to Fi j ( - z r / 2 ) .  Then A1 
implies that limot(flij ,  Fij[Lo,-~l) ----- 7r, and so limot(flij ,  Yij[io,~l) = 0. Likewise, 
ot(--/3ij, Fi/It0,-~l) = 0. Furthermore, since Fj is the unique minimal curve from p to Fj(zr/2) ,  

lim flij = Fj and lim - ~ i j  = - F j  for all j .  By Proposition 4.6, ot(Fk, Fj) = limot(/3i~, ~ij) = 

limot(Fi~, Fij) ----- l imcos(vk,  Vj). In addition, Lemma 4.3 implies that if xj = Fj(zr/2)  and 
yj = - y / ( - - z r / 2 )  for j = 1 . . . . .  n then d ( x j ,  x~) = ot(y i, Fk) and these 2n points form a spher- 

ical set with det[cosd(xi ,  xj)] = det[cosc~(Fi, Fj)] > 8 > 0. Letting x,+l = p and Y,+l = q 

completes the proof. [ ]  
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5. Dimension 

We define the cut radius of y E Sp to be C ( y )  = sup{t: )'[to.,l is defined and minimal}, and 
extend it to be 0 on 7Sp \ Sp_ The cut radius map is upper semicontinuous but not in general continuous 
(Example 2.13, [P1]) on Sp. 

L e m m a  5.1. Let B(p ,  r) be a region of curvature >_ k and {oti}, {fli} be Cauchy in Sp. 
Suppose there exist ~i < C (oti ) and ei < C (fli ) such that Si, ei ~ O, Cl <_ ei / ~i < c2for positive 
(finite) constants Cl and c2, and there is a minimal curve ~i from ai =- o l i ( ~ i )  to  bi -= ~ i ( E i ) .  I f  ri 
denotes the segment o f  ol i from ai to p then limi__,~ ot ('ci, r/i) ---- limi__.~ ot k (ai; p, bi). 

Proof .  By A1, limi___.ecot(z'i, t l i ) >  limi__,~t~(ai; p,  bi). Let A = limo~(oti, fli). Fix 
> 0 and somem such thatoe(oti,otj) < 3 andot(fl  i , f l j )  < 3 wheneveri ,  j > m. By 

Lemma 1.3, [P1] and the "strong existence" of angles JR], [otk(p; am, bi) - A[ < 33 for large 
i. Lemma 1.3, [P1] also implies that l imd(ai ,  bi)2/e2 i = 1 + (3i/ei) 2 - 2~i cos A/e i  (i.e., the 
Euclidean cosine law). If Fl, F2 are minimal in Sk starting at a point P such that ot(F~, I"2) = A, 

Ai = F i ( ~ i ) ,  and Bi = 1"~2(~i) then l i m i ~  [d(Am, Bi) - d(am, bi)[/ei < ( ,  where ( ~ 0 
as ~ ~ 0. In other words, if x~ is the segment of ot m from Otm(e~) to am, K~ is the corresponding 
segment on 1-'l, A~ is minimal from Ai to Bi, and T~ is the segment of Fl from P to Ai, then 
l i m i ~ e c  Jr - -  ~ ( ~ ,  A i )  - otk(ai; am, bi) -= limi--,ocot(Ki, A i )  - otk(ai; am, bi) < ( ' ,  w h e r e  

( '  ~ 0 as ~ ~ 0. Since limi__,oc Jr -- ~k(ai; am, bi) - otg(ai; p,  bi) tends to 0 as 6 --~ 0 (and 
hence m becomes large), the proof is complete. [ ]  

L e m m a  5.2. Let numbers cl, c2 > O and k be fixed; for every e > O there exists a S > 0 
such that the following holds. Suppose U is a region of curvature >_ k, P t, P2, P3, p4 E U 
and Y34 is minimal in U from P3 to P4 with the property that (1) otk(p2; Pl,  P3) -> Jr -- S 
and (2) cl < d(p2,  p3) /d(p3,  P4) < c2. Assume further that 1"13, F34, I'41 are minimal in 
Sk forming a triangle with corresponding corners P1, P3, P4 such that ~(1~13) = d(p l ,  P2) + 
d(p2, P3), ~(F34) = d(p3, P4), and s = d(p4, Pl) and q, Q are the midpoints of)/34, I-'34. 
Then (d (p l ,  q) -- d(P~, Q) ) /d (p2 ,  P3) + e > 0. 

Proof .  By A0 and Corollary 2.9 it suffices to show the following. Let P~ be the point in Sk 

closest to P3 such that (P1; P3, P4) represents (Pi; P3, P4) and Q' be midway between Pj and 
P4. Then for ~ > 0 small enough, d ( Q ,  Q ' ) /d (p2 ,  p3) is small. If3 is small then by Lemma 1.2, 

[P1], [d(P1, P2) + d(P2,/~ - d(P1, P3)]/d(P2,/~ is small. Therefore if Pj' is the point on 
Fl3 such that d(P~', P1) = d(Pl ,  P3), d(P3, P~')/d(P3, P4) <_ c2d(P3, P~')/d(P2, P3) is also 
small. This implies that if Q" is midway between P~' and P4 then d(Q ,  Q") /d(P2, /~  is also 

small. Furthermore, Id(P3, P4) - d ( P 3 ' ,  P4)t _< d(  P3, P~') implies that d(  P~, P~') / d (  P3, P4) is 
small, and so d (Q" ,  Q') /d(P3,  P4) is small, again by Lemma 1.2, [Pl]. The lemma now follows 
from the triangle inequality and the fact that d(P3, P4) < d(P2, P3)/cl. [] 
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The next Lemma extends Lemma 1.4, [P1]. The case when ot(~, [3) = Jr is treated in Theo- 
rem 5.6, from which it also follows that ( is unique. 

Lemma 5.3. Suppose p E X lies in a region of  curvature >_ k and or, [3, 6t', [3' E ZSp are 
such that or(or, [3) < Jr and o~(~, ~ ' )  = or([3, [3') = Jr. Then there exists a ( E Sp such that 

= = oe(c , [ 3 ) / 2 .  

Proof. Let A = ot(~, [3). Choose oti, fli, Old, ~ E Sp such that oti ~ ~, fli ~ [3, 
ot~ --~ &', fi~ --~ [3'. By Corollary 2.9 we can assume that oti, fli, ot~, fl~ were chosen so that 

there exist 8i, ~i, S~, e~ --~ 0 such that 8i <_ C(oti), ei < C(f l i ) ,  ~ <_ C(ot~), e~ < C(fi~), 
lim 8i/ei = lim 8~/e~ = lim 8i/8~ = lim ei/e~ = 1, and there are minimal curves r/i from 

ai =ot i  (Si) to bi = fli (ei). Let Pi denote the midpoint of r/i. Let F1, F2, F3 be minimal in Sk starting 
at a point P such that ot (F1, F2) = A, and ot (F  t, F3) = Jr- Denote by Pi the point midway between 
[ ' l  (8i) and I" 3 (~i)- By Lemma 5. l and A2, lim d ( p i ,  p ) / e i  <_ lim d(Pi ,  P ) / e i ,  but since A0 implies 

d(p i ,  p )  > d(Pi ,  P )  we in fact have l i m d ( p i ,  P) /~i  = l i m d ( ~ ,  P ) / e i .  By Lemma 1.3, [P1], 
for sufficiently large i, otk (p ;  o~i (6i), ot~ (8~)) is close to Jr, Otk (p ;  Oti (8i), fii (ei))  is close to A, and 
otk(p; fli(ei),  ot~(8~)) is close to Jr -- A. We now have immediately that lim otk(p; oti(ei), Pi))  = 
A/2 .  On the other hand, Lemma 5.2 now implies that lim ot k (p ;  Pi, c~ (S~)) = Jr -- A /2 .  If we choose 
a minimal curve Yi from p to a point p~ sufficiently close to Pi then lim ot k (p ;  ai  (ei),  Pl))  = A / 2  

and l imotk(p;  Pl,  ot~(8~)) = Jr -- A/2;  the first implies that l i m a ( a i ,  ?'i) > A / 2  and the second 

implies that l imot(Fi,  a~) > Jr -- A / 2 .  Since lira ot(txi, ?'~) -t- ot(F~, a l )  = Jr, ~(o~i, Fi) = A/2 .  
A similar argument shows that ot(fli, Yi) = A /2 .  [] 

L e m m a  5.4. I f  B ( p ,  r)  is a region of  curvature > k and fl, ?/ E Sp such that Jr -o t ( f l ,  y )  < 
then for  any ( E Sp, ot(fl, ( )  -1- or((, y )  <_ Jr -q- 8. In particular, if [3, ?/ E Sp such that 

ot(fl, ~/) = Jr then for  any ( E Sp, ot(fl, ( ) -I-or((, ~/1 = Jr. 

The above lemma is an immediate consequence of Proposition 1.19, the triangle inequality for 

angles, and the definition of the angle. Lemma 5.4 extends Lemma 2.3, [PI], and using it we can 

extend Proposition 2.4, [PI ] to obtain the following. 

Proposition 5.5. / f  ck (p )  > 0 and a subset S of  Sp is a convex inner metric space, then S 
has curvature uniformly > 1. 

Theorem 5.6. l f  ck (p )  > 0 and rSp contains a spherical set E o f2 (n  + 1) points then there 
is a subset S of  rSp isometric to S n containing I]. 

Proof. We will prove that there exists a subset/2 of  Sp containing E such that/2 (with the 

induced metric) is a convex inner metric space. Proposition 5.5 then shows that /2 has curvature 

uniformly >__ 1, and Theorem 1.8 then gives the existence of S. 
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Define E0 ----- E and ~m inductively as follows. Suppose s  has been defined, and has the 
property that for each ~ C Era-1 there exists an ~ '  E s  such that ot(~, &') = 7r. Then for 
every ~ , / 3  E s such that ot(~, /~)  < 7r there exists, by Lemma 5.3, an element )5 C Sp such 
that a ( ~ ,  )5) = or()5, j~) = ot(~, j~)/2. We define s to be the union of s with set of all 

such elements ~. For any ~" C s either ~" C s in which case there is a ~" c s  C ~m 

such that et(~', ~") = Jr, or ( ~ 12m-1- In the latter case we can find 6t,/? ~ s such that 
ot(rt, )5) ----- or()5,/~) = ot ( r t , /~) /2  a n d S ' , / ~ '  C 12m-l suchthatot(rt ,  ~ ' )  = Jr andot(f i , /~ ' )  = Jr. 

But there is an element )5' E s such that ot(~' ,  ~ ' )  = or()5',/~') -~ ot(~' ,  j~ ') /2;  i.e., such that 

or()5, )5') = 7r. Thus ~m has the desired "betweenness" property. The set s = I..J~ m has the 
property that for each ~ ,  j~ E 12 such that a ( ~ ,  ~)  < rr there exists an element ~ E E such that 
ot(rt, )5) = or()5,/3) = ot(rt, j~)/2. By successive approximation it is therefore possible to find, 
for any )~ ~ [0, 1] and element ~ ~ /2 such that ot(~, ~) ----- ~. �9 ot(~, ~ )  and e(~;  ~ ,  j~) = 0. 
If  ot(~, /~)  = Jr then we can choose any ~ ~ s different from ~ and/~ and, using the fact that 
ot(~, ~) + o~(~,/~) = 7r, find a "midpoint" between ~ and/~. Corollary 2.5 now shows that/2 is a 

convex inner metric space. [ ]  

The next lemma can be considered an extension of Lemma 2.11, [P 1 ]. 

L e m m a  5.7. Suppose points p, a, b, c and minimal curves or,/3, from p to a, b, lie in a 

region of curvature > k and let o2 = max{zr - otk(p; a ,  c), 7r - [otk(p; a ,  b) + ot~(p; c, b)]}. 

For every 8 > 0 there exists a ~ > 0 such that if d(q ,  p) < 6 and or',/3' are minimal from q to a, 
b, then lot(or,/3) -- or(or',/3')1 < e = 309. 

Proof. Let q~ ~ p and eta,/3~ be minimal from qi to a ,  b respectively. By Corollary 2.9 
(choosing a "new" c, if necessary) we can assume there exist minimal curves X from p to c and 

Xi from qi to c. A1 and Lemma 5.4 imply lira infot(oti,/3i) _> otk(p; a ,  b) > 7r - ~k(P;  c, b) - 
o9 > Jr - or(X,/3) - o2 > ~(et , /3)  - 209. On the other hand, Lemma 5.4 and A1 imply that 

lim sup o l ( X i ,  O[i) ~ Y'C - -  (I) SO lim sup Ot(oti, /3i) ~ 7"/" --  lim sup ot(Xi, /3i) + o9 < or(X,/3) + 309 
by the above argument. This completes the proof. [ ]  

P r o p o s i t i o n  5.8. Suppose ck(p)>>O and ZSp contains a subset S isometric to S n. Then if 
~Sp ~ S ~ then N n+l A B ( p ,  ~) contains a dense G~for all small enough ~ > O. 

P r o o f .  Since Sp is dense in Sp we can find a spherical subset E = {Yl, YI . . . . .  Yn+l, ~n+l} 

of Sp, where Yi E Sp. We now choose points ai, ai such that ot~(p; ai, ~tj), otk(p; ai ,a j ) ,  and 
otk (p ;  fii, fij) are all arbitrarily close to ot (Vi, Yj), ot (Yi, Yj), and ot ()5i,)sj), respectively. If  Sp =fi S n 

then we can find some fl ~ Sp \S  and a point b such that Otk(p; b, ai) and otk(p; b, ai)  are close 

to or(/3, Yi) and or(/3, )5i), respectively. We can assume all of  these points lie in B ( p ,  ck(p) /2) .  
By Corollary 2.9 we can find a dense G~ subset A of B such that if q E A then there are almost 
extendable minimal curves oti from ai to q and ( from b to q. By Lemma 5.7 and the "openness" of  
the second condition in Definition 1.7, if q is close enough to p ,  the curves oti, together with their 

complementary curves ~i E Sq, form a spherical set E '  of  2(n + 1) elements; adding ( and its 
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complement in Sp to E '  we form a spherical set of 2(n + 2) elements. The proof is complete by 
Theorem 5.6. [ ]  

P r o o f  o f  T h e o r e m  1.11. It is immediate from Proposition 5.8 that if ld im(X) _> n then 

N~(X) is dense in X. Furthermore, for each p E X there exists a Bp = B(p, r) such that 
Bp A N~(X) contains a G, .  That is, there exist open sets U f  such that ~i~l Uf C Bp N N~(X). 
Let Hi = UpcX Up. It is easy to verify that Ai~l  Hi is a dense G ,  in X contained in N ~ (X) .  [ ]  

P r o o f  o f  C o r o l l a r y  1.12. By Proposition 5.8 there is a point p such that Sp ----- S n - 1  , then in 

particular Sp is compact and so every sequence of minimal curves of bounded length has a uniformity 
convergent sequence. It follows from Theorem 1.4 that every point in B = B(p, ck (p)) is joined to 

p by a minimal curve. In fact, choose qi --+ q and unit minimal curves Yi from p to q. Choosing a 

subsequence, if necessary, we can assume ot(yi, yj) ~ 0 as i, j become large. From A2 we deduce 
that {Yi} converges uniformly to a minimal curve from p to q. Now expp is defined on a closed 

(hence compact) set containing the origin, whose image is B. Therefore X is locally compact, and 
every pair of  poits in X is joined by a minimal curve. Since X is locally compact, for any r > 0, 
ck(p) > r for some k, and so every compact set lies in a region B(p, k) of curvature > k for some 
k. If  one puts the metric of  constant curvature k on B(0,  r )  _c Ti, then expp is distance decreasing 
on its domain of definition, and hence decreases Hausdorff measure. Finally, let p be arbitrary, and 
suppose there exist 3 > 0 and Yl E Sp such that for all i, j ,  ot(y~, yj)  > 3. By the semi-continuity 

of the angle (cf. Lemma 2.2, [P1]), for any m > 0 there exists an e > 0 such that i f d ( p ,  q)  < e 

then Sq contains a sequence B1 . . . . .  Bn such that ot(/3i,/3j) > 3/2.  But q can be chosen so that 
Sq = S n -  I ,  and for arbitrarily large m such a sequence cannot exist, a contradiction. It follows that 

Sp is compact, and Proposition 2.4, [P1] implies it is an inner metric space of curvature > 1. [ ]  

P r o o f s  o f  C o r o l l a r i e s  1 .13-1 .15 .  Corollary 1.13 is immediate from that fact that d im(X)  _< 

hd im(X)  and Corollary 1.12. Corollary 1.14 follows from Proposition 5.8 as in the proof of  Theo- 
rem 1.11. To prove the last corollary, let N ~ : (")n~__~ N n. Note the union in Sp of any isometric 
copies S, S'  of  S n and S n+l, respectively (where S may not be a great sphere of S') must contain a 
copy S" of S n+l such that S' is a great sphere of S". Therefore we can construct a sequence {Sn}, 
where S, is a copy of S ~, such that S~ is a great sphere of S~+1. The metric completion of the limit 

of  S, is isometric to S ~ .  [ ]  
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