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A Note on the Instability of Embeddings of 
Cauchy-Riemann Manifolds 

By David Catlin and LSszl6 Lempert 

ABSaV, ACT. We prove that there are compact strictly pseudoconvex CR manifolds, embedded into some 
Euclidean space, that admit small deformations that are also embeddable but their embeddings cannot 
be chosen close to the original embedding. 

1. Introduction 

Let M be a compact differentiable manifold of odd dimension dim M = 2n + 1. A Cauchy- 
Riemann structure on M is given by the choice of a (complex) subbundle Hl '~  C C @ T M  
of rank n satisfying the following two conditions: 

(1) If H ~  denotes the conjugate of H I ' ~  then H ~  N H I ' ~  = (0). 

(2) If Z, W are local sections of Hl'~ then so is their Lie bracket [Z, W]. 

(In this paper all objects will be infinitely differentiable; in particular M,  H I ' ~  Z, W are 
such, so that [Z, W] makes sense.) 

The pair (M,  H I ' ~  is a Cauchy-Riemann (CR) manifold. For example, compact hyper- 
surfaces M in complex manifolds X inherit a CR structure from the ambient manifold: H I ' ~  
simply consists of those (1,0) tangent vectors to X that lie in C | T M .  In the past 25 years 
or so, much work was directed to finding out to what extent the converse is true, e.g., can any 
CR manifold be gotten from a complex manifold by the above or related constructions. A central 

question is whether a CR manifold M can be CR embedded into some Euclidean space C k. In 
other words, does there exist a (smooth) embedding f : M ~ C k such that for any Z E HI'~ 
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f .  Z E C | TC  k is a (1,0) vector. An answer to this question depends on the notion of strict 
pseudoconvexity. A CR manifold M is strictly pseudoconvex if for any nonvanishing local section 
Z of HI'~ [Z, Z] is never tangent to Hl'~ @ H~ If M is such, and of dimension of 

at least five, a theorem of Boutet de Monvel asserts that it can be CR embedded into some space 
C k (see [1]). This is not true if dim M = 3, as an example of Rossi shows; see, e.g., [2,3,9]. 

Along with the question of existence of CR embeddings, the problem of their stability also 
arises. Suppose a CR manifold (M,  Hl'~ is embedded into some C k via a mapping f : 

M ~ C k, and let (M, H~'~ denote a small perturbation of the CR structure of (M, HI'~ 

which again is embeddable (into some other Ce). The problem is to decide whether (M,  HI'~ 
can be embedded into the same C k via a CR embedding f : M ~ C k close to f .  When M 
is strictly pseudoconvex, of dimension at least 5, an affirmative answer was given by Tanaka 

0,1 (see [10]), provided a certain cohomology group of M (Hob ( M ) )  vanishes. More recently, 

the second named author proved stability when dim M = 3 and there is a CR embedding 

f0 : (M,  HI'~ ~ C 2 such that fo(M) is a strictly convex hypersurface [8]. (Strictly speaking, 
[8] proves stability only when the embedding f agrees with the convex embedding f0, but it is 
easy to show that stability for f0 implies stability for any other embedding f . )  

Since in the latter case, the relevant cohomology group is infinite dimensional, one may be 
led to believe that stability of embeddings of strictly pseudoconvex CR manifolds always holds, 
without regard to the vanishing of some cohomology groups. The purpose of this note is to show 
that this is not so, and unstable CR embeddings do exist (see Theorem 2.1). The CR manifolds 
with unstable embeddings will arise as unit circle bundles in hermitian line bundles over projective 
algebraic manifolds. The instability of CR embeddings will be a consequence of the instability of 
an algebraic property: very ampleness of line bundles. 

2. Formulation of the main theorem 

By a smooth family of CR manifolds we shall mean a family HI'~ of CR structures 
on a fixed compact manifold M,  - e  < t < e, such that the bundles Hlt'~ C C | T M  
depend smoothly (C ~ on t. If (M,  H~'~ is strictly pseudoconvex, so will (M,  HI'~ for 
sufficiently small t. 

Theorem 2.1. For any r~ : 1, 2, . . . .  there are a smooth family (M, Hit'~ of strictly 
pseudoconvex CR manifolds of dimension 2 n +  1, each CR embeddable into some Euclidean space; 
a CR embedding f : (M, H l'~ ~ C k; and a positive number ~ with the following property. 
If t ~ O, there is no CR embedding g:  (M,  HI'~ ~ C k such that Ig(P) - f (P)I  < iS for 
every p E M. 

3. Very ample line bundles 

Let L denote a line bundle over a compact complex manifold N.  The space H~ of 
holomorphic sections of L is finite dimensional. If a 0 , . . . ,  crk E H~ is a basis, we obtain 
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a mapping a = (or0 : . . .  : ak) of N into projective space ]?k (which may not be defined 
everywhere on N).  

Definit ion 3.1. L is called very ample if the above mapping cr biholomorphically embeds 
N into ]Pk. 

For example, if N C ]?k, and H is the hyperplane section bundle on ]?k, the restriction of 
H to N is very ample. Indeed, the homogeneous coordinates z0 , . . . ,  zk on ]?k are sections of 
H and their restrictions to N biholomorphically embed N into ]?k. 

A divisor D on N determines a line bundle [D] (see, e.g., [5]). D is called very ample 
if [D] is. This is not a stable concept (in contrast to ampleness = positivity): arbitrarily small 
perturbations of very ample divisors or line bundles may not be very ample. 

E x a m p l e  3.2. Let F C ]?2 denote the Fermat curve z~  = z~+z~ .  A simple computation 
involving the Riemann-Hurwitz formula shows that the genus of F is g = (m - 1)(m - 2) /2  
(see, e.g., [5]). Let p E F have homogeneous coordinates (1 : 1 : 0). Then the divisor rnp is very 
ample but for nearby points jo E /7, rnlo is not, provided m >_ 5. Indeed, dim H ~  = 1. 

Proof .  (i) The line A C ]?2 given by z0 = Zl has one single point on F ,  p, and the order 
of contact between F and A is m. Hence the restriction of the hyperplane section bundle [A] to 
F is [rap], so that by our previous remark [rap] is indeed very ample. We also see that sections 

of [rap] can embed F into ]?2. 

(ii) Holomorphic sections of [mp-'] are in one-to-one correspondence with meromorphic func- 
tions on F with a single pole at io of order at most m. If for a point ~ E F there exist nonconstant 
meromorphic functions with a single pole at io of order at most g (_> m) ,  the point is called a 
Weierstrass point, and it is known that there are only finitely many such points on /~  (see, e.g., 
[4]). Hence for ~ close to but different from p, the only meromorphic functions of the above type 
are the constants, so dim H~ = 1. [ ]  

E x a m p l e  3.3. With F and p as above, and n a positive integer, let N be the n-fold product 

of F with itself. With ~ E F define D~ C N by Dp  = { (P l , . . .  ,pn) E F •  x F : p~ = i~ 

for some i}. Then the divisor mDp is very ample but for ff r p close to p, mDpis  not, provided 

m > 5; again, dimH~ = 1. 

This is a straightforward consequence of Example 3.2. 
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4. Deformations of line bundles 

Let F be the Fermat curve of degree m as before (or any compact Riemann surface), k an 
integer, and p(t) ( - e  < t < e) a small smooth curve on F .  The line bundles Lt = [kp(t)] are 
smoothly equivalent to one another, so we can think of Lt as having the same underlying smooth 
line bundle as L0, but of course for t ~ 0 the holomorphic (= complex) structures will differ. 
However, the identifications Lt ~ L0 can be chosen so that the complex structure of Lt depends 
smoothly on t, by which we mean that the bundle of (1,0) vectors Tl'~ C C| = C| 
depends smoothly on t. 

To see this, choose a coordinate neighborhood U C F that contains the closure of the curve 
p(t). Let z : U ~ C be a local coordinate on U. We can assume that z(U) is the unit disc 
and z(p(O)) ---- O. Let V C F denote a neighborhood of F \ U  such that V is disjoint from the 
closure of the curve p(t). The bundle Lt can be defined as 

L, : • c)  u ( v  • c ) / ~  (4.1) 

where (ql ,~,)  E U x C and (q2,~2) E V • C are identified if q, = q2 and 

(z(ql)  - z(p(t))) k ~2 = ~1. (4.2) 

Next choose a smooth function f :  U • ( - e ,  e) ~ C\{0} such that f(q,  O) : 1 (q E U) 
and 

f (q , t )  = z(q)k/(z(q) - z(p(t))) k (q E U M V). (4.3) 

With this f ,  for every t E ( - e ,  e) construct a smooth self-diffeomorphism 7~t of the disjoint 
union (U • C) U (W • C) by putting for (q1,~1) E U x C, (q2,~2) E V • C 

~t (ql, ~1) = (ql, f (q l ,  t)~l),  ~t (q2, ~2) = (q2, ~2). 

Because of (4.2), (4.3) qot descends to a smooth bundle isomorphism @t : Lt ~ L0. Then ffPt 
provides the required identification Lt ~ Lo. 

5. Unstable embeddings of CR manifolds 

With m _> 5, F ,  p as in section 3, construct a smooth arc p(t) ( - e  < t < e) in F so that 
p(0) = p, but for t ~ O, rap(t) is not very ample. Let Lt denote the line bundle [-mp(t)]. As 
smooth line bundles the Lt's will be identified, as explained above. Choose holomorphic sections 
ao, trl ,a2 of [mp] = L~ that embed F into 172, and define a hermitian metric h on Lo by 
h(v)  = Zl j(v)l 2, v ~ L0. h is a strictly plurisubharmonic function on Lo\F, so that the circle 
bundle M = {v E L0 : h(v) = 1} is a strictly pseudoconvex hypersurface, and inherits a CR 
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structure H~'~ = (C | T M )  rn TI'~ M can be CR embedded into C 3 by the mapping 

M ~ v ~ f ( v )  = (ao(V),Ol(v),a2(v)) E C a. (5.1) 

We can also endow M with a CR structure Ht l '~  inherited from Lt, and thus (after possibly 
shrinking the interval ( - e ,  e)) we obtain a smooth family of compact strictly pseudoconvex CR 
manifolds. 

Each of these CR manifolds bounds a compact strictly pseudoconvex complex manifold, 
namely {v E L t  : h(v) < 1}; hence it follows from [6] that (M, H~'~ embeds into some 
Euclidean space. 

There exists a 6 > 0 such that no complex line in C 3 contains f ( M )  in its 6 neighborhood. 
With this (5 we have the following Proposition, which implies Theorem 2.1 for n = 1: 

Proposi t ion 5.1. For t 7 ~ 0 there is no CR embedding 9 of (M, HI '~  into C 3 such 
that Ig(v) - f (v ) l  < tS for every v E M.  

Proof.  Suppose there is, and define a CR mapping k : (M, H~t'~ -~ C 3 by 

lf02  k(v) = ~ g(vei~176 v E M. (5.2) 

By a result due to Kohn and Rossi, any CR function on the boundary of a compact strictly 
pseudoconvex complex manifold extends holomorphically to the manifold [7]. In our case this 
means that k extends holomorphicaUy to f2t = {v E L t  : h(v) < 1}. Equation (5.2) implies 
that k(ei~ = ei~ for 0 E R, v E M,  hence also for v E f~t, so that k is in fact linear 
on the fibers of Lt. In other words, the components k0, kl, k2 of k are holomorphic sections of 
L~. Since d i m H ~  = 1 according to Section 3, k = (k0, kl, k2) maps Lt, and so M,  into 
some complex line. From (5.2), 

lf02  If(v) - k(v)l <_ ~ I f (ve i~ - g(vei~ dO < 6 

for v E M, which now contradicts the choice of 5. [ ]  

R e m a r k  5.2. If in the above construction we choose o0, at ,  a2 to be the homogeneous 
coordinates Zo, Zl, 22 on F C ]I)2, we find that via (5.1) (M,  H~'~ embeds into C a as 

{Z E C 3 : Z0 n : Z ?  -~- ~,~n, IZ0I 2 -t-[Zll 2 -~-]Z2I 2 : 1}. [] 
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The proof of Theorem 2.1 in case n > 1 follows the same path as above, except that F 
will be replaced by N --- F x . . .  x F and, with notation as in Example 3.3, Lt will be defined 

[-mDp(t)]. The details will have to be omitted. 
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