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Gaussian Curvature on Singular Surfaces 

By Wenxiong Chen and Congming Li 

ABSTRACT. We consider prescribing Gaussian curvature on surfaces with conical singularities in both 
critical and supercritical cases. First we prove a variant of Kazdan-Wamer type necessary conditions. 
Then we obtain sufficient conditions for a function to be the Gaussian curvature of some pointwise 
conformal singular metric. We only require that the values of the function are not too large at singular 
points of the metric with the smallest angle, say, less or equal to 0, or less than its average value. 
To prove the results, we apply some new ideas and techniques. One of them is to estimate the total 
curvature along a certain minimizing sequence by using the "Distribution of Mass Principle" and the 
behavior of the critical points at infinity. 

1. Introduction 

Given a function R(x) on a compact surface S, can it be realized as the Gaussian curvature 

of some pointwise conformal metric? This is an interesting problem in geometry. A usual way to 

solve this problem is to pick up a pointwise conformal metric 90, the so-called basic metric, then 

try to conformally deform it to a metric 9 with the desired curvature. If we let g = e2Ugo, then 

it is equivalent to solve the following nonlinear elliptic equation: 

- + R o ( X )  = (,) 

where A and Ro(X) are the Laplacian operator and the Gaussian curvature of go respectively. 

In the last few years, a lot of work has been done to understand this on smooth surfaces (see 
the surveying article of Kazdan [3] and [1,2,4,7,8,9,10,11]). 

Let X be the Euler characteristic of the surface S, for X < 0, people usually solve the problem 
by using a method of sub- and supersolutions (cf. Kazdan and Warner [1]) and for X -> 0 by 

variational method. 
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The case 0 _< X < 2 is the so-called subcritical case where one relies on the inequality 

{ ffs 1 f s  } 1 ]Vu]2dA + - -  udA fs exp udA <_ C exp 1 ~  Area(S) ' (1) 

a direct consequence of the Moser-Trudinger inequality (cf. [5]). 

The case X = 2 is called the critical case. In this case, the corresponding variational functional 

loses its compactness. There are obstructions found by Kazdan and Warner [1] and then by 

Bourguignon and Ezin [13], which show that a few functions cannot be realized as such Gaussian 

curvature. Then for which R(x), can one solve (*)? What are the necessary and sufficient 
conditions for (*) to have a solution? These are challenging problems in geometry. Since the 

analysis here is more delicate, one needs the best value of the constant C in the above inequality. 

It was shown by Onofri [6] and Hong [7] that on the standard sphere S 2, the best constant C 

in (1) is 47r (we would like to remind the readers that there is another well-known best constant 
in the inequality (1), 1/167r, which is obtained by Moser in [5]). Based on this, many results on 

prescribing Gaussian curvature on S 2 were obtained by using various techniques (cf. [8,9,10,11]). 
One of the powerful tool used is called the "Center of Mass" analysis. 

Then comes a natural question: Can one generalize these results to surfaces with singularities? 
Under what conditions can a function be the Gaussian curvature of some pointwise conformal 
singular metrics? 

To start with, one may consider a compact surface with conical singularities. Roughly speak- 
ing, a compact surface with conical singularities is a compact Riemannian surface with finitely 

many points Pl,P2,.. .  ,Pk removed. Locally, near the singular point Pi, the surface is diffeo- 
morphic to a cone with an angle 0i > 0 and the metric can be written as d82 = p(z)lxl2 ,ldxl 2 
in a local coordinate centered at Pi, where fli = ~ -- 1 and p(x) is a smooth function (cf. 27r 

[17] for more details). These kinds of singularities appear in many situations, such as orbifolds, 
branched coverings etc. They also describe the ends of complete Riemannian surfaces with finite 
total curvature. 

In his recent paper, Troyanov [17] systematically studied surfaces S with conical singularities 

of angle 0i at point Pi, i = 1 ,2 , . . . ,  k. First, he generalized a series of inequalities on smooth 
surfaces to surfaces with conical singularities, such as Poincarr, Sobolev, and Trudinger inequal- 
ities. Then he considered prescribing Gaussian curvature. He pointed out that in this process, one 
can use the number 

k(0 ) 
x ( s , o )  = x ( s )  + Z - 1 

/=1 

instead of x(S)  to characterize it in four cases: 

(i) negative case : x ( S ,  O) < O, 

(ii) subcritical case : O <_ x(S,O) < min~ {2, ~ }, 
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{ O i } a n d  - -  (iii) critical case : X(S,  O) ---- mini 2, 7r 

(iv) supercritical case : X(S,  O) > mini 2, 7r 
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In the negative and subcritical cases, he obtained conditions for a function to be the Gaussian 
curvature of  some pointwise conformal metric. His results are parallel to those on smooth surfaces. 
One of his key ingredient is the inequality 

1 
fse~dA <- C, exp {C2 fs lVul2dA+ area(S-----~ fsUdA} �9 (2) 

It guarantees the compactness of the functional in the subcritical case. He posed the critical case 
as an open problem. 

In the critical case, one encounters the same kinds of difficulties as on S 2. Here, the corre- 

sponding variational functional loses its compactness. A minimizing or minimax sequence may 

blow up. To compensate, one first needs to obtain the best values of  the constants in inequality (2). 

Fortunately, our previous result [18] on the best constant of  the Trudinger inequality on singular 
surfaces makes this possible. It implies immediately that the largest possible value of C2 is 1/4bo 
with bo = 27r mini{2, ~ }. 

In [15], we start from a special critical case, a sphere S with two singularities of  equal angle, 

0 < 01 = 02 < 27r. It looks like a football. 

First, we proved a variant of  Aubin's  [12] inequality. It implies that every minimizing or 
minimax sequence with distributed mass possesses a convergent subsequence. We call this the 

"Distribution of Mass" Principle. One knows that the Center of Mass analysis once played an 

important role in prescribing Gaussian curvature on S 2. However, it relies on the coordinates in 

R 3 and hence cannot be applied to other kinds of surfaces. Our Distribution of Mass Principle is 
much more general and can be applied to any compact surface, smooth or singular. It can also be 
applied to a subdomain of a surface. 

Then, with the help of the Distribution of Mass Principle, we proved that the best value of 
the constant CI  in inequality (2) is the area of  S. 

Finally, using our previous techniques on S 2, we obtained sufficient conditions for a sym- 

metric function (invariant under the action of some isometry group) to be the Gaussian curvature 
on the football. The conditions are parallel to those we obtained for S 2 (cf. [8]). 

In the supercritical case, the variational functional is in general neither bounded nor compact. 

This makes the variational approach even more difficult. In [16], McOwen considered a special 

case, a sphere with one singularity. Assuming that R(x) approaches 0 in some order near the 

singularity, he was able to regain the boundedness and compactness for the functional and hence 
arrived at a solution of (*). 
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In this paper, we consider general critical and supercritical cases. First, we prove a variant of 

the Kazdan-Warner obstruction in some special critical and supercritical cases. Then, we obtained 

a series of  sufficient conditions for prescribing Gaussian curvature on general surfaces with conical 

singularities in critical and supercritical cases. Because of  the use of  some brand new ideas and 

techniques, we are able to greatly generalize our previous results [15] in the critical case. In the 

supercritical case, we obtained some sufficient conditions disjoint to that of  McOwen's,  and our 

conditions are somewhat more relaxed. 

In Section 2, inspired by an idea of Kazdan and Warner [1], we obtain necessary conditions 

for a function R(x) to be the Gaussian curvature of some pointwise conformal metric on a 

sphere with two singularities of equal angle (a critical case) and a sphere with one singularity (a 

supercritical case) (cf. Theorem 2.1). One knows that, by Kazdan-Warner 's  necessary condition 

fs~ v R  " V r  exp udA = 0 

a monotone function can never be realized as the Gaussian curvature of  some pointwise conformal 

metric on a smooth standard sphere. We show that this is the case on the sphere with two 

singularities of  equal angle. While on the sphere with one singularity, it is interesting that the 

above identity is replaced by strict inequalities, which seem to suggest that monotone functions 

are now the right candidates for Gaussian curvature. To partially justify this, we provide some 

examples (cf. Example 1 and 2 in Section 2). 

In Section 3, we obtain sufficient conditions for a function R(x) to be the Gaussian curvature 

of some pointwise conformal metric in a special critical case, the sphere with two singularities 

of equal angle (cf. Theorem 3.1). These conditions are very weak. Besides the obvious necessary 

condition that R(x) be positive somewhere, we only require that the value of  R is not too large 

at the singular points of the metric, say less than or equal to 0, or less than the average value 

of R on the surface, while no other restrictions are imposed on R(x) elsewhere. Surprisingly, 

our sufficient conditions here are much weaker than those on S 2, while we obtain some similar 
obstructions as Kazdan-Wamer did for S 2. 

Some brand new ideas are employed to prove the above results. Instead of  estimating the 

value of  the functional, as people did traditionally, we estimate the total curvature along a certain 
minimizing sequence. Our Distribution of Mass Principle implies that the minimizing sequence 

can only blow up at one point. Then using blowing up and rescaling technique and our knowledge 

on the behavior of the critical points at infinity [14], we showed that the sequence can only blow 

up at one of  the singularities. This enabled us to drop the symmetry assumption on R(x) in [15]. 

Finally, imposing some conditions on R(x) just at such a singularity, we are able to control the 

convergence of the minimizing sequence and hence arrive at a solution. 

In Section 4, we consider general critical cases and obtain similar sufficient conditions (cf. 

Theorem 4.1). We only require the values of R(x) are not too large at singular points of  the 

metric with the smallest angle. Our results apply to any conical singular surface satisfying 
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However, because we are not able to obtain the best value of the constant C1 in inequality (2) 
for a general surface, some of our conditions here are not as accurate as in Section 3. To obtain 

this results, one can use the idea in Section 3. However, we present an alternate approach, which 
is also interesting in its own right. 

In Section 5, we study some supercritical cases. Our sufficient conditions are that R(x) must 

be positive somewhere and R(x) must be less than 0 at the singular points of  the metric with 

the smallest angle (cf. Theorem 5.1). Our proof is based on the idea introduced in Section 4. We 

first show by contradiction that, under our assumptions, the corresponding variational functional 

is bounded from below. Then we can treat a minimizing sequence as in Sections 3 or 4 and arrive 

at a solution. 

2. Necessary conditions and examples 

In this section, we derive some necessary conditions for prescribing Gaussian curvature on 
the sphere with two singularities of equal angles (a critical case) and on the sphere with one 

singularity (a supercritical case). We approach from open manifolds. 

Let S 2 be the sphere with standard metric 9, and let (0, r  be the spherical coordinate with 

0 _< 0 _< 7r and 0 _< ~b _< 27r. Let p be the north pole with 0 = 0 and q be the south pole with 
0 = 7r. Write Sl = S 2 \ {p} and So = S 2 \ {p, q}. 

Given a smooth function R(z) on S 2, we study the solvability of the semilinear elliptic 

problems 

{ - A u + 2 = R ( x )  expu onS1  

u(x) = 7 In 0 + v(:c) near p 
(3) 

and 

{ - A u + 2 = R ( x ) e x p u  on So 

u(x) = 7 In 0 + v(x) near p 
u(x) = -y ln(Tr - 0) + v(x) near q, 

(4) 

where 3' > - 2 ,  v(x) is a smooth function and A is the Laplacian of the standard metric 9. It is 
well known that if u is a solution of (4) then R(x) is the scalar curvature (twice of  the Gaussian 

curvature) of  the metric exp u 9. 

Let ~b = cos 0 be the spherical harmonic function. We have the following Kazdan-Warner 

type conditions. 

Theorem 2.1. (i) I f  u is a solution of (3), then 

fs, v R "  V ~  exp udA > 0 for 7 > 0  
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and 
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fs, v R "  V r  exp udA < 0 for 7 < O. 

(ii) If u is a solution of (4), then 

fs, V R" V r  exp u d A  = 0 V ~/ > --2. 

Proof of Theorem 2.1. The proof is similar to that of Kazdan and Wamer's [1]. The 
difference here is that we need to take care of the boundary terms. Let B ,  (p) be the ball of 
radius e centered at p. Let B be the set S 2 \ B,(p) in problem (3) and S 2 \ {B , (p )  U B , (q )}  

in problem (4). Multiply both side of the equation in (3) or in (4) by V u �9 V~b and integrate on 
B. Taking into account of the fact that 

we obtain 

L oo 
0U 2 0 u ~ ' ~  
OnVU" V ~  + On J ds = - f s  V R .  V ~ e x p u d A  

where 0 / 0 n  is the outward normal derivative on OB. 

To show the first part of Theorem 2.1, we take into account of the following facts: 

Ou Ou "7 O~ 
Ivul , - o '  1, and an 

Letting c---*0, (5) becomes 

- -  ~ 0, for/9 small. 

(5) 

7r'72 + 47r'7 = fB V R" VCexp udA, (*) 

and the conclusion of (i) follows. 

To verify the second part of Theorem 2.1, one simply notice that on the two boundary parts 
of B,  the integrands on the left-hand side of (5) have the same asymptotic growth with opposite 
sign. Thus the left-hand side of (5) approaches 0 as e---~0. 

This completes the proof of the theorem. [ ]  

R e m a r k  2.1. Due to technical limitation, we can only prove the Kazdan-Wamer type 
necessary condition in the two special cases. It is known that in the smooth case both Bourguignon 
and Ezin [13] and Schoen showed that the same necessary condition (appropriately stated) was 
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present for all compact surfaces, not just the sphere. However, the only case the necessary condition 
gave an obstruction to solvability was on the sphere. Then for general surfaces with conical 

singularities two natural questions arose: 

(a) Can one obtain an appropriate necessary conditions? 

(b) Are there obstructions for singular surfaces other than the punctured sphere? 

It is well known that by Kazdan Wamer's condition a monotone function cannot be realized 
as the Gaussian curvature of some pointwise conformal metric on smooth standard S 2, while our 

Theorem 2.1 seems to suggest that monotone functions are now the right candidates for Gaussian 
curvature on the sphere with one singularity. At this stage, we are not able to prove this fact; we 
will try in the near future. However, we can provide some examples of R(x) ,  which satisfy our 
necessary conditions in Theorem 2.1, and for such R(x), we can find explicit solutions for (3). 

E x a m p l e  1. Let 7 > - 2 .  Consider a family of functions 

R.y(O)= ( ~ + 2 )  (sin~) -7/2 

The corresponding solution of (3) are 

u~(0) = 71n (sin ~ ) .  

It can be seen easily that for r = cos 0 

! 

(i) for 7 > 0, RT(O) < 0, hence fs, vR'r " VCexpu'y dA > O; 
! 

(ii) for "y < 0, R7(0 ) > 0, hence fs, V R 7  " VOexpuTdA < 0; 

(iii) for ~ / =  0, u 7 = 0 and R,y = 2, this corresponds to the smooth sphere. 

Here as 0---~0, 

{ + a ~ z f o r T > 0  
RT(O)--~ +0  for 7 < 0. 

In the following, we present a family of bounded monotone increasing or decreasing functions 

R(x) with singular metric. 

E x a m p l e  2. Let 

2(47cos 0 + '7 + 4) 
a (e) = 

" y c o s 0 + 7 + 4  
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One can verify that R.y(O) satisfy the above (i), (ii), and (iii) in Example 1. Also one can see 

that the corresponding metrics are 

[( cos0+ 1 + 

which possess the desired conical singularity at 0 = 0. 

3. Sufficient Conditions for a Special Critical Case 

In this section, we find sufficient conditions for prescribing Gaussian curvature in a special 

critical case, the sphere with two singularities of equal angles. We approach from a singular 

surface. 

Again let So be the sphere S 2 with north and south poles removed. Equip So with the metric 

go = dO 2 + (0~ sin O)2dq~ 2 

where 0 < c~ < 1, 0 < 0 < 7r, and 0 < r < 27r. One can see that go has two singularities of 

equal angle 27rc~ at the north pole and south pole. The corresponding Laplacian is 

0 2 cos 0 0 1 02 
+ 

sin 0 00 (ct sin 0) 2 0 r  2 

and the area element dA = a sin OdOdr with total area 47rot. A straightforward calculation 
shows that the scalar curvature of 90 is equal to 2. 

Given a smooth function R(x)  on S 2, one would like to know whether it can be the scalar 

curvature of some metric 9 pointwise conformal to 90. If we let g = exp (u) 90, then it is 
equivalent to solve the following elliptic equation: 

- - /~u  + 2 = R(x)  expu(x) x E So. (6) 

To find a solution of the equation, we use variational method. Consider the functional 
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defined on H = {u E HI(SO)I fSo R e x p u d A  > 0}, where H1(SO) is the Hilbert space with 
n o r m  ( c f .  [ 1 7 ] ) :  

I l u l l = ( f S o ( [ V u l 2 + l u l 2 ) d A )  '/2 

We prove 

T h e o r e m  3.1. Let p and q be the north pole and south pole of S 2, respectively. Assume 
that maxs: R(x)  > O. Let m = max{R(p ) ,  R(q)} .  Then problem (6) has a solution provided 
either one of the following conditions hold: 

(i) m < 0 or 

(ii) In > 0 and infH J < - 8 7 r a  In (47ram).  

R e m a r k  3.1. Condition (ii) in Theorem 3.1 is satisfied if either one of the following 
holds: 

1 
(a) 0 < m < Area(So~ fSo R ( x ) d A ,  or 

(b) R(q) < R(p) a n d / k R ( p )  > O. 

To see that (a) implies (ii), we simply consider J (0 ) .  To see that (b) implies (ii), we estimate 
J ( r  - q~),  where 

1 - -  A 2 
r = In for A C [0, 1), 

( 1  - Acos 0) 2 

and 

r -- Area(So) o r dA for A C [0, 1). 

Similar to the proof of Theorem 2.2 in [8], using the second-order Taylor expansion of R(x)  
near the point p, one can verify that 

J(r - r < --87rolln47ro~m 

for A sufficiently close to 1. 

R e m a r k  3.2. One can easily see that R(x)  is positive somewhere is a necessary condition. 
Besides this, we only require that the values of R ( x )  are not too large at two poles. No other 
restrictions are imposed on R(x)  elsewhere. 
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The  out l ine of  the p r o o f  of  T h e o r e m  3.1. First we show that for each A < 2, the 
equation 

-- A u  +/~ = R(x)  expu(x) x E So (v) 

has a solution. 

Then we consider a sequence Ak---+2 and the solution uk of (7) associated to it. 

If {uk} is bounded, then it converges to a solution of (6). We are done. 

If {uk } blows up, by our Distribution of Mass Principle, it can blow up at only one point, say 

Y0. We show that Y0 has to be one of the poles by estimating the total curvature fSo R(x)  exp ukdA 
along the blowing-up sequence. To estimate the total curvature, we apply the rescaling technique 
to get a limiting equation in R 2 and then use our knowledge on the solutions of the limiting 

equation, the so-called "the behavior of the critical points at infinity" (cf. [14,15]). Finally, we 
show that (Uk) cannot blow up at the poles under the assumptions of Theorem 3.1, and we arrive 
at our desired solution. 

To prove the theorem, we need the following three useful tools developed in our previous 
papers [14,15]. 

The first is the so-called Distribution of Mass Principle, which implies that every minimizing 
sequence of J(u)  possesses a subsequence that can only blow up at one point. This principle 
is true for general compact Riemaniann surfaces, smooth or with singularities (cf. [15]). For 

simplicity, here we state it for our football So only. 

Propos i t ion  3.1. Let ~1, ~-~2 C S O be two sets that dist(~21, ~22) _> e0 > 0. Let C~o be a 
number 0 < c~ 0 _< 1/2. Then for any ~ > O, there exists a constant C = C(o~0, %, e) such that 
l f u  E HI(S0)  satisfies 

fa,  exp udA 

fSo exp udA >- C~o, 
i =  1,2, 

then 

{ (  1 ) l f u d A  ~ f soexpudA<-Cexp  3-~-~ + e fsolVUl2dA+~JSo j "  

The second tool provides information on the behavior of the critical points at infinity of the 
functional J .  Here we only state the part that we need in this paper (cf. [14] for more details). 
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Proposition 3.2. Let u(x) be a solution of 

- - A u  : C e x p u  x C R 2 

with fR 2 exp udx < cx~. Then fR~ C exp udx = 87r. 

The third tool gives the best constant in a key inequality. 
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Proposition 3.1 The inequality 

udA < 47rolexp { 1 1 - 1 T ~ f S o [ V U l 2 d A + ~ f s o U d A  } Lo exp 

holds for all u E H~(So). 

(8) 

The proof of Theorem 3.1. 

Step 1. To show that a solution of (7) exists for each fixed A < 2, we simply minimize the 
functional 

J;, (u) : -~l fso Ivul2dA + A fso UdA - 47raA ln fso R exp udA 

on H .  By (8), we have 

JA(u) >- (~ - ~ )  fso lvu12dA-47r~ (47r~ ) �9 

It follows that for any minimizing sequence {vk} of JA, uk = vk + ck is bounded in H with 
a suitable choice of constants ck. Thus {uk} possesses a weakly convergent subsequence. Note 
that the functional J~ (.) is weakly lower semicontinuous and satisfies 

JA(u + c) = JA(U) for any constant c, 

the weak limit ~ of the subsequence is a minimizer of JA. It is easy to see that uA = UA + CA 
is a solution of (7) and a minimizer of J~ for a suitable choice of constant cA. 

Step 2. Let {Ak} be a sequence approaching 2. For each Ak, let Uk be the solution of 

- A u  + Ak = R(x) expu(x) x E 5o. 

Let mk = maxs2 Uk(X). 
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If  {ink} is bounded from above, then one can show by a standard argument that {Uk} 
possesses a convergent subsequence in H ;  hence the limit u0 is a solution of (6). We are done. 

Now suppose that ink---* + ~ as k---*e~. We are going to apply the Distribution of Mass 

Principle to show that {Uk} Can only blow up at one point. To this end, we need the boundedness 

of  J~k (uk).  In fact, we can show that 

lim sup inf JA _< inf J.  (9) 
A---+2 H H 

To see this, for any e > 0, choose u C H ,  s.t. 

J(u) < i n f J  + e. 
H 

Then let A be sufficiently close to 2, s.t. 

[J~,(u)- J(u)l <_ (2 -  A) ( fs udA +47ra ln fsoexpudA ) < e. 
o 

Now (9) follows easily. 

Let Yk be one of the maximum points of  Uk on S 2, i.e., uk(yk) = maxs2 uk = ink. Passing 

to a subsequence, one may assume that yk---~yo C S 2. 

Applying inequality (9) and Proposition 3.1, we claim that the masses of  the sequence 

{exp uk } have to concentrate at Y0. More precisely, for any e > 0, we have 

fS0\B,(v0) exp ukdA 
*0 

fSo exp ukdA 

Consequently, by (9), we derive that (cf. [15]) 

R(yo) > O. 

as k---+cx:~. (10) 

(11) 

Step 3. At this stage, we apply the blowing-up technique to estimate the total curvature 

fSo R(x) exp ukdA and arrive at a contradiction. Hence conclude that if0 has to be one of the 
poles. Or in other words, {uk} can only blow up at one of the singular points of  the metric. 

Suppose Yo is not one of the poles. Fix an c > O, such that on the ball B~(yo), 

R > O .  (12) 

This is possible due to (11). 
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Choose a local coordinate system centered at Yo, such that the metric of So can be written 
a s  

go(y)  = p ( y ) l d y l  2 

where p(y) is a positive smooth function with P(Yo) = 1. 

Set vk (x) -- uk (ekx + Yk) - m k  with ek =- exp(--mk/2). Denote the Euclidean Laplacian 
in R 2 by Ao. Then 

1 
p(e~:x + Yk)AoVk(X) + r = R(~kx + Yk)exp vk, x �9 B ~ ( 0 )  (13) 

Since {vk(x)} is bounded from above and vk(0) = 0, by (13) and a standard approach, one 
can see that in any bounded region f~ C R 2, {vk(x) )  converges weakly to a function Vo(X) in 
W2'Z(f~) and the limiting function satisfies 

-AoVo(X) = R(yo)expvo(x), x �9 R 2. 

One can obtain fsoeXpukdA < C < oo from (9) and (10). Consequently one sees that the 
integral fR2 exp Vo dx is finite. Then by Proposition 3.2, we have 

RR(yo) Vo(x)dx = 87r. (14) exp 
2 

On the other hand, integrating both sides of (7) with A = Ak and taking into account of (10), we 

obtain 

47raAk = fSo R(x) expukdA 

fB exp ukdA = [R(y0) q- o(1)] dyo) 

---- [.R(yo) -+- o(1)] f exp vkdx 
J B  

o(1) + f R(yo)expvo(x)dx >_ 
JR 2 

= o(1) + 87r. 

This is impossible because a < 1 and Ak _< 2. Therefore 20 has to be one of the poles. 

Step 4. Now suppose the sequence {Uk} blows up at one of the poles, say p. We want to 

show that both assumptions (i) and (ii) in the theorem are violated. 

First, by (11), R(p) > 0. This contradicts (i). 
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To derive a contradiction with (ii), we apply (8) and (10) and obtain the estimate 

J~k (uk) >_ --47raAk In [47ra(R(p) + o(1))]. 

lim inf J~,++ (uk) >_ - 8 7 r a  In (47ram). 
k---+ c<~ 

Consequently, by (9), 

inf J > - 8 7 r a  ln(47ram), 
H 

which contradicts assumption (ii). This completes the proof. [ ]  

4. Sufficient conditions for general critical cases 

In this section, we consider general critical cases. Let S be a compact Riemannian surface 
with metric 9o having conical singularities of angle Oi at point Pi, i = 1 , 2 , . . . ,  m.  Assume that 

Ol,02,... ,08:n~nOi=Oo<27r and X(S,O):n~n{2,0i/Tr}. (15) 

Let /X o, Ro(x), and dAo be the Laplacian, the scalar curvature, and the area element of the 

metric 9o. To find the solution for the equation 

x E S (16) - AoU + Ro(x)  = R ( x ) e  u, 

we minimize the corresponding variational functional 

in 

1 _ ~ R(x)eUdA ~ J(u) = ~ fs IV~176 40oln 

Ho = {u E Hl(S) l fsR(x)e~'dAo > O and fsR~176 =O}" 

It is easy to see that a critical point of J(u) in Ho plus a suitable constant is a solution of (16). 

To estimate the minimizing sequence of the functional, we need the following inequalities. 

The first is our Moser-Trudinger inequality on surfaces with conical singularities (cf. [14]). 

Its version for the surface S is that 

fs e2~176 <_ Ct (17) 
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holds for all u C HI(S) with fs IVoU[2dAo -< 1 and fs udAo = 0; where 0o is the smallest 
angle of the singularities. 

As a direct consequence of (17), we have for all u E Hi(S) 

1 1 udAo} fseUdA~ ( 18) 

Based on (18), we can prove 

L e m m a  4.1.  For all u E H 1 (S), 

1 Ro(x)udAo} fse~dA~ 

holds where the constant Co depends on the metric 9o. 

(19) 

1 
Proof.  Let Ro = ~ fs Ro(x)dAo be the average of Ro(X) on S. Then by the generalized 

Gauss-Bonnet theorem (cf. [17]), we have 

RO=A ol . 47rx(S ' 0) - 40OAo (20) 

Let v(x) be the solution of 

A v  = Ro(z) - Ro 

and let u = w + v. Then by (16),  (18),  and (19),  we have 

fse~dAo < _ C3fseWdAo <_ C4exP{8~ofsW(-Aow)dAo +-~ofswdAo} 

= C4exp { 8~o(fs IVoUl 2dAo + 2fsuAovdAo + fs ]VoVl2dAo) 

1 - v)dAo} 

<_ Coexp{8-~ofSlVoul2dAo + 4-~ofsRo(x)udAo} 

[] This completes the proof. 

(21) 
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Now, we are ready to prove the existence theorem. 

T h e o r e m  4.1. Assume that R(x)  is positive somewhere and Co be defined in (17). 

Let m = maxi=l ...... R(pi). Then problem (16) has a solution if either one of the following 
conditions hold: 

(i) m < O, or 

(ii) m > 0 and infH J(u)  < -480 ln(Com). 

R e m a r k  4.1. Condition (ii) is satisfied if m < ~ofsR(x)dAo.  

P r o o f .  Let {Uk} be a minimizing sequence of  J(u)  in Ho. 

If {Uk} is bounded in H 1 ( S ) ,  we are done. 

Now suppose {uk} blows up. Then by the Distribution of  Mass Principle, passing to a 

subsequence of  {Uk}, there exists a point Xo C S, such that for any e > 0 

fB,(~o) eUkdAo 

f s  e~  dAo 
§ (22) 

as k--~oc. 

We are going to show that Xo has to be one of  the singularities Pl ,  �9 �9 �9 Ps with the smallest 
angle. To this end, one could estimate the total curvature as we did in the proof of  Theorem 3.1. 

However, here we would rather present an alternate approach, the idea of  which is interesting and 
can be applied to investigate some other problems, as will be seen in Section 5. 

We prove by contradiction. Suppose Xo is a smooth point or is one of  the other singular 

points P ,+ l ,  . . .  ,Pro. Let 0 = m i n { 0 , + l , . . . ,  0m, 27r). Then by the definition of 80, we have 

0 > 0o. (23) 

Choose a smooth positive function v(x) on S,  such that v(x) = 1 in a small neighborhood 

of Xo and v(x) ~ [dist(x, pi)] 2 ~ near the singularities Pi, for i = 1 , 2 ~ . . . ,  s. Then the metric 

g = V9o has conical singularities of angle 0i at points Pi for i = sq-  1 , . . . ,  m.  Here we use v(x) 
to smooth out the singularities P l , . . . , P 8  of the original metric go. Denote the corresponding 

gradient and the area element of  9 by V and dA. Then our Moser-Trudinger inequality becomes 

20u 2 
f se  dA < C 
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for any u satisfying fs IVul 2dA -< 1 and fsudA = 0. Consequently, for u E H i ( S ) ,  the 
following holds: 

fseUdA <_ Cexp{ 8J-ors ]Vul2dA + AfsUdA } . (24) 

Choose c > 0 so small that v(x) = 1 in B,(xo). Then for sufficiently large k, by (22) and 
(24), we have 

fseU~dAo < 2;B e~dAo =2fB e~dA 
,(Xo) ,(Xo) 

<_ 2fseUkdA<Cexp{ lfs 'vukl2dA + AfsUkdA} 

= Cexp{~ofslVoukl2dAo+AfsUkvdAo}. (25) 

Since fsRo(x)ukdAo = 0, the generalized Poincar6 inequality implies 

1 2 ~ fsukdAo <_ C fslVoUkl2dAo. 

Consequently, by H61der inequality, we have 

1 1 2 ~ ~ ~fsukvdAo <_ ~ {fsukdAo} - {fsv2dAo} ~ <_ C{fslVoUkl2dAo} ~ 

< #fslVoUk]2dAo + C, 

1 1 ' ). Then by (25) and (26), for any /z  > 0. Choose p = ~ (8~o 8o 

fs e~kdA~ <- C u e x p  { (8@0 - # )  fslVoUkl2dAo} �9 

It follows that 

J(uk) >_ #LIVoukl2dAo - C. 

(26) 

The above contradiction shows that the minimizing sequence {uk} can only blow up at one 
of the singularities Pl ,  �9 �9 �9 Ps with the smallest angle. Now similar to the proof of Theorem 3.1, 

Consequently {uk} is bounded in H 1 (S) .  This is a contradiction with our assumption that {uk} 
blows up. 
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we can show that under assumption (i) or (ii) of Theorem 4.1, the sequence {Uk} Can blow up 
nowhere and hence has to converge weakly to a minimizer of J in Ho. 

This completes the proof of the theorem. [ ]  

5. Sufficient conditions for supercritical cases 

In this section, we provide sufficient conditions for prescribing Gaussian curvature in su- 

percritical cases. To better illustrate our idea, we only state our results and present the proof 
in a special case, the sphere S with one conical singularity at point p of angle 0o < 27r. We 

start from a metric 9o on S having such a singularity, and then pointwise conformally deform 

it to a metric with the same singularity and having the prescribed scalar curvature R(x). Since 
x(S, 0) = 1 + 0o > 0o we are in a supercritical case. 

2 7 r  7 r  ' 

As we did in Section 4, let A o, Ro(x), and dAo be the Laplacian, the scalar curvature and 
the area element of the metric 9o. To find the solution for the equation 

- + Ro(Z)  = R(z)  ", x �9 S (27) 

we minimize the corresponding variational functional 

1 
J(u) = ~ L [V~176 47rx(S' 0) In fs R(x)eUdA~ 

in 

Ho = {u C HI(S) I L R(x)e~dAo > 0 and fsRo(x)udAo =O}.  

Unfortunately, in supercritical cases, the functional J(u) is no longer bounded from below 
in general. Hence we first need to regain some boundedness for J by imposing some conditions 
on R(x). 

Theorem 5.1. Assume that R(x) is positive somewhere and R(p) < O. Then problem 
(27) has a solution. 

Proof .  Step 1. We show by contradiction that under the assumption R(p) < O, the 
functional J(u) is in fact bounded from below in Ho. 

Otherwise, there exists a sequence {uk} in Ho, such that J(uk)---~ - cx~. 

(i) If {uk} is bounded in Ho, then passing to a subsequence {uk} converges weakly to 
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an element Uo in Ho. Since J ( . )  is weakly lower-semicontinuous, we have 

--o<D : l iminf J(uk) >__ J(uo). 

This is obviously impossible. 

(ii) Now suppose {uk } blows up. Since J(uk) is bounded from above, by our Distribution 

of Mass Principle, {Uk}, or passing to a subsequence, can only blow up at one point, say Xo. 

By an argument similar to the proof of Theorem 4.1, we can show that {uk} can only blow 
up at singularity p. 

Now taking into account the fact that R(p) < 0 and 

1 
J(uk) = ~fslVoukl2dAo -47rx(S,O)ln{[R(p) + o(1)]fse~kdAo}. 

We again arrive at a contradiction. Therefore, the functional J has to be bounded from below 

in Ho. 

Step 2. Now we consider a minimizing sequence {uk} of J in Ho. Applying the similar 
argument as in the proof of Theorem 4.1, we can show that {Uk } can blow up nowhere and hence 
arrive at a solution. This completes the proof. [ ]  

R e m a r k .  One can easily generalized the results in Theorem 5.1 to some other supercritical 
cases. [ ]  
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