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Domains in C n+l with Noncompact 
Automorphism Group 

By Eric Bedford and Sergey Pinchuk 

ABSTRACT. We consider certain pseudoconvex domains in C n+l and show that 
if the automorphism group is noncompact, then the domain is equivalent to E m =  
{1~12 + Izll 2m + Iz212 + .-- + Iz~l 2 < 1} for some integer m _> 1. 

Introduction 

We consider relatively compact domains f] C C n+l with smooth boundary, and we ask when 
it is possible for Aut(f ] )  to be noncompact. It is a result of Wong [W], Klembeck [K1], and Rosay 
[R] that if f~ is strongly pseudoconvex and if Aut(f])  is noncompact, then f] is biholomorphically 

equivalent to the unit ball B n+l. f] is said to be of finite type if there is a number t~ such that 
for any p E Of], a germ of a holomorphic variety Vp containing p cannot be tangent to Of] to 
order higher than ~. A bounded domain with real analytic boundary is always of finite type (see 
[DF1]). Our main result is the following: 

T h e o r e m .  Let f] C C n+l be a bounded pseudoconvex domain of finite type whose bound- 
ary is smooth of class C ~ ,  and suppose that the Levi form has rank at least n -- 1 at each point 

of the boundary. I f  Aut(f] )  is noncompact, then f] is biholomorphically equivalent to the domain 

E m =  {(~ ,Z l , . . . , zn )  ~ cn+l : Iw12 + Izll2m + Iz212 + . . .  + Iznl2 < 1) (1) 

for some integer m >_ 1. 
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In proving this theorem we develop three variants of a scaling argument. Scaling and related 
methods have been used in the convex case by [F], [GK1], [Kil-2], and [Kol-4].  In the papers 

by Greene and Krantz, Kodama, and Kim, it is shown that if Aut([2) is noncompact and if Q is 

locally equivalent near p ~  to a special domain E of ellipsoid type, then [2 is globally equivalent 
to E .  The scaling method also works well on strongly pseudoconvex domains, which are locally 
equivalent to strongly convex domains. In fact, the method can be used to obtain many of the 

basic results about holomorphic mappings between strongly pseudoconvex domains (see [P]). In 

particular, this gives the easiest proof of the result that if Aut([2) is noncompact and p ~  is a 
strongly pseudoconvex point, then Q is equivalent to the unit ball. 

For the characterization of domains [2 for which Aut([2) is noncompact, it is necessary 

to consider the case where p ~  is not strongly pseudoconvex. It is well known that (weakly) 
pseudoconvex domains are not locally equivalent to convex domains. Thus, since we must rescale 
with a more general (nonlinear) holomorphic mapping, the scaling techniques that were used in 
the convex and strictly pseudoconvex cases are not applicable here. The proof of convergence 

is more difficult in this case and can be reduced to estimates of an invariant metric on a family 
of domains D , ,  which are independent of u. In the case n = 1, this was achieved in [BP] by 

reducing this to estimates on the asymptotic behavior of the Kobayashi metric and then using the 

precise estimates on the Kobayashi metric of a domain in C 2 given by Catlin [C]. Such estimates 
are not known in higher dimension. However, it is known that [2 has a plurisubharmonic (psh) 

exhaustion, and we show that is possible to use another intrinsic metric, introduced by Sibony [S], 
that is defined in terms of psh functions. 

With this technique, we apply a scaling in Section 1 to obtain a biholomorphic mapping 

9 : D = {v + P ( z , )  + z222 + ' . .  + ZnZn < 0} ----+ [2, where P = P(zl)  is a real polynomial 
that is only known to be subharmonic. Any domain of the form D contains the translations 

Tt (w, z) = (w+t,  z) and thus has a noncompact automorphism group. The mapping 9 extends to 
a homeomorphism between/) t2{oc} and Q. Thus [2 has the 1-parameter family of automorphisms 

9 o Tt o 9- ' ,  which are parabolic with fixed point/5 = 9(oc) ,  i.e., limt__.+o. 9 o Tt o 9 -1 (p) = t3 
for all p C (~. The translations Tt are generated by the vector field _Re 2(O/Ow), so the parabolic 
subgroup 9Tt9 - '  is generated by the holomorphic vector field H = 9. (2(O/Ow)). 

The rest of the proof will be concerned with a local analysis of H and Q near p. We may 
choose coordinates such that I5 = 0 and near the origin 

Q= {V + r + ~-~ Zc~2a + ' ' '  < O} 

where ~b is a homogeneous polynomial of some degree 2m and the dots denote smaller terms. 

We make ~ unique up to scalar multiple by the assumption that it contains no harmonic terms. 

We assign weight 1/2m to the variable z, and weight - 1 / 2 m  to O/Ozl; weight 1/2 to z~ and 
weight - 1 / 2  to O/Oz~, 2 _< ce _< n; and weight 1 to w, weight - 1  to O/Ow. Thus the domain 
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is homogeneous of  weight 1 and is the homogeneous model of  f~ at/3. In Section 2 we determine 

the holomorphic vector fields Q such that Re Q is tangent to 0Qhom. The tangent holomorphic 

vector fields of  weight 0, .A (~ are of  the form (19). Thus the dimension of  .A (~ is 2 + (n  -- 1) 2 

if r = clzl] 2m and 1 + (n  -- 1) 2 otherwise. In Section 2 we show that there are no tangent 

vector fields to 0f~hom of weight > 0 unless r = clzl I 2m. In this case the only possible weights 

are 1/2 and 1, and the corresponding vector fields are given by (21) and (24). 

Now let Q denote the homogeneous part of  H = 9. (2(0/0w))  of smallest weight. By 

Lemma 6, Q r o. The vector fields of  weight zero are linear combinations of  dilations and 

rotations, so if Q has weight zero, it must correspond to a rotation. (In the case of  dimension 2 

we can conclude at this point that r = clz112,,~ and thus f2 is locally convex at/3; with these 

facts, we can proceed directly to the final rescaling in Section 5.) Unfortunately, if n > 1, a 

nontrivial rotation term might involve only the variables z~, 2 < ~ < n, which would not allow 

us to conclude that ~9 = ClZ112m. Further, if n > 1, the fact that ~ ---- C[Z112m d o e s  not guarantee 

that f~ is locally convex at the origin, and we must examine Q more closely. 

A parabolic vector field remains parabolic after the addition of  a (weight 0) rotation term, 

so there is no "geometric" reason why Q should not have weight 0. But under the change of  

coordinates w ~ - 1 /w  (which is merely "formal" since the domain is not known to be convex), 

O/Ow (with fixed point at cx~) is taken to w 2 (O/Ow), which has weight 1. So, formally, if g were 

"smooth" at infinity, the weight of 9.(O/Ow) would be 1. In Lemma 7, we use a second scaling 

argument, based on homogeneous dilations of  the mapping g, to make this formal argument 

rigorous. Thus it follows that Q has weight > 0, and so by the results of  Section 2 we conclude 

that ~b = ClzllZm. 

Our third scaling argument will be carried out on the parabolic subgroup {9 o Tt o g - l }  

generated by the vector field H = Q + . . . .  In order to obtain more information from the new 

rescaling than we obtained from the original one, we need to know the asymptotic behavior of  the 

orbit {g o Tt o g - l ( p 0 )  } of a point P0 E f~ as t ~ •  By Sections 2 and 3 we know that Q 

has either the form (22), corresponding to weight 1/2, or (24), corresponding to weight 1. These 

cases involve different geometric behaviors, and we analyze them separately. In Section 4 we show 

that in the case of  weight 1 /2  the orbit has the asymptotic behavior given in Lemma 8, and the 

w-coordinate satisfies u(t) = o(v(t)). The case of  weight 1 is more delicate; the asymptotic be- 
havior of  the orbit is given in Lemmas 9 and 10, and the w-coordinate satisfies v(t) = O(u(t)2). 

We perform our final rescaling in Section 5. We have shown that the orbit is well behaved 

as t --~ + o o .  With this information we can use very specific linear functions St for rescaling, 

and we can control the behavior of  the domains St(f~) well enough to conclude that the limit 

domain D is given by the homogeneous model f~hom. The proof is now complete, since this is 

biholomorphically equivalent to (1). 

We note that in the case n = 1 the theorem was proved in [BP] for the case where f ' /has  

real analytic boundary. 1 Bell and Catlin [BC] showed us a version of  Lemma 6 that allows the 

IE Berteloot brought to our attention a gap in the proof of Proposition 2.3 of [BP]; Lemma 2 both generalizes 
Proposition 2.3 and fills this gap. We have recently received the preprint [BCo] in which Berteloot and Coeur6 have found 
an independent proof of this proposition. 
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arguments of [BP] to carry over to boundaries of finite type. A natural direction for generalization 
of the theorem above would be to weaken the hypothesis on the rank of the Levi form. This 
case will be more difficult because a general pseudoconvex point does not have a nondegenerate 
homogeneous model, peak functions are not known to exist, and there are many domains (not 
of type (1)) with noncompact automorphism groups. For instance, let us choose positive weights 
51 , . . . ,  5~ of the f o r m  ~j = 1/2mj ,  m j  a positive integer, and let p(z)  be a real polynomial of 

the form 

p(z)  = ~ aj, gZJ2  K, 

wt(S)=wt(K)=�89 

where we set wt(J )  = wt(j l ,  . . . ,  jn)  = 51jl + " "  + 5nj~. The condition on the weights of the 
multiindices is equivalent to saying that f~ = {Iwl + p(z) < 1} is invariant under the 2-torus 
action (79, 0) H (eiSw, e i6 '~  ei6~~ For rather general choices of the numbers aj, K 
f~ is bounded and has smooth boundary (which may be pseudoconvex or not). But the mapping 
( w , z )  ~-~ ( (w /4  + i ) ( - - w / 4  + i ) - l , z l ( - - w / 4  + i) -261, . . .  , z ,~(- -w/4  + i)-2~,~) maps the 
domain D = {v + p(z)  < 0} (which has noncompact automorphism group) onto f~. 

1. Rescaling of domains 

If Aut(Q) is noncompact, then there exists p ~  C 0Q and a sequence {f~} C Aut(Q) that 
converges uniformly on compact subsets to p ~ ,  since there are no germs of complex varieties 
in 0f~ (cf. [BP, Lemma 2.2]). We may assume that the rank of the Levi form at p ~  is exactly 
n -- 1. Let r be a smooth defining function for ~2 = {r  < 0}. Writing w = u + iv, we may 
assume that p ~  = 0, and r is given near 0 as 

r : v ~- u79(u,z) + ]z2[ 2 + . . - +  Izn[ 2 -q- o(Izl 2) (2) 

where 79(0, 0) = 0. Since ~ is pseudoconvex and finite type, there exists a homogeneous poly- 
nomial r  51) of degree 2m such that 0f2 is given by 

7" = 

n 

v + u79(u,z)  + r  21) + ~-~(Re(B~(z l ,2~) z~)  + z~2~) 
oz=2 

+ o([zl[ 2m + Iz212 + . . .  + Iz 121 = 0. (3) 

It is standard to perform the change of coordinates 

Co = w + + c j w ) z  J, ~ ' = Z ,  (4) 

with [J[ < 2m, which serves to remove the "pure" terms from (3), i.e., it removes z J and 2 '1 
terms from ~b and 79(0, z) as well as z~ z~ from the summation. 
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Thus ~ contains no linear terms in z~ by (4), so the only linear term is of the form cu. 
Since ~ is pseudoconvex, we may apply [BE Lemma 2.1] to obtain 

( n ) 
79(u,z)-cu=o lul ~ + l u l l z l + l z ,  I m+~ + ~-~(IZlz~l + Iz~l 2) . (5) 

We may also perform a change of coordinates 

(o = w, zl = zl, 2,~ = z~ + Z c~J zj  (6) 
J 

to remove terms of the form s z~ from the summation in (3). 

Before we begin the scaling procedure, we make preliminary changes of coordinates of the 
form (4) and (6) to remove the corresponding terms from (3). To start the scaling procedure, we 
choose a point P0 E ~ and set p~ = f,~(Po) so that for u large, we may write p ,  ---- (w (~), z (~)) 
in the local coordinates at Po~ = 0. We introduce new coordinates 

(7) 

where w f  ) E C, 0~ E R, and aj E C are chosen so that in the coordinates (~b, ~) we have 
(i) the point (0 , . . . ,  0) E 0f~, (ii) p~ is given as (--ie~, 0 , . . . ,  0) for some e~ > 0, and (iii) the 
tangent to 09/at  ( 0 , . . . ,  0) is { I rn  zb = 0}. The boundary of f~ is given in the (~b, 2) coordinate 
system by 

2 m  n 

k = 2  k = 2  ~ = 2  

+ O ( ~ ( ~ , . . . ,  ~ )  + ~ ( ~ ,  ~) = 0 (8) 

where ~(k ") and ~(~) ~ , k  are homogeneous of degree k, (~(~) is a quadratic form, and /~(u) -- 

o(Izll =m + Iz2l 2 + . . .  + IZnl2). 

Now we make coordinate changes of the form (4) and (6) to remove the terms of the 
form z{, 2 < j < 2ra, z{z~, 5{z~, 2 < j < ra, and their conjugates from the expansion 
of /5 (~). We observe that these changes of coordinates, which we will denote by (4 (~)) and 
(6(~)), are biholomorphic mappings defined in a fixed neighborhood U of p ~  in C n+l, which 
is independent of u. Further, as u ---+ cx~, the composition of coordinate changes (4(~)), (6(~)), 
and (7(")), associated to the point p~, approaches the identity transformation. Thus there exists 
c > 0 such that ~--~k ~ ) ,  ~(~), and ~k/3(~,~ approach ~, 79, and/3~ in C~(lu[ + [z] < c) as 
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u ---+ oo, and O~ approaches Iz21 = + . . .  + Iznl 2. Further, there exist large N,  K < oo such that 

I~(~)1 ~ K(lul  + Izll m + Iz=l + . . .  + Iznl) 
I/~(')1 ~ K Izl(Iz, I ~m + Iz~l 2 + . . -  + I~12) (9) 

hold f o r .  > N and lul + lzl < c. 

Now let us drop the hats (^) from the coordinates and make the following rescaling of 
coordinates: 

evz3 = w 

(~v ,~'1 = Z 1 

v '~L~  = z~, 2 < ol < n. (10) 

The defining function for the corresponding domain is given by 

p(") 1 ~(.) 

s 

21 + ~-ffl ~/--'~ ~'u~"k (Z1) + ~ c*,k[Z1, Z1) Zcz) 
\ k = 2  k=2 ~=2 

+ 0( ' ) (~ , . . . ,  ~)  + ~v(")(~,~, ~ 1 ,  v ~ , . . . ,  v~-;~) 
+ e~-lE(~)(~Zl, ~/~-~z~,..., v/-~,z,~), (11) 

where we have dropped the tildes (~) from all the coordinates. Now we choose 3~ such that 
the coefficient of the largest term in parentheses in (11) has modulus 1. Since the function ~/,(~) W2m 
converges to ~ as v ---* oo, it follows that 

-tc2m (12) sup e u % < c~ .  
v 

We may pass to a subsequence as v ---+ oo so that the polynomials inside the large parentheses 
in (11) converge to a limit. By (9), the (p(~) and E (") terms disappear as u --+ oo, and thus the 
functions p(") converge to a function of the form 

n 

p =~ + P(~,, ~,)+ ~(n~(c~(~, ,  ~1)~o)+ ~ ) ,  

where P and C',~ are polynomials with deg P < 2m and deg C'~ < m. Since (11) holds on the 
set ([w[ < ce~ -l, [zl[ < c3~ -1, [z~[ < ce~-t/2}, it follows that the convergence takes place in 
C a of compact subsets of C ~+1. 
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Let D (~) denote the domain that is the image of Q A U under the original coordinate 
changes (4) and (6), followed by (4(~)), (6(~)), (7(~)), and (10(~)). It follows that the domains 
D (v) converge to the domain D = {p < 0}. 

Lemma 1. We have 

D : + + + . . . +  < 0} 

where P is a subharmonic polynomial whose Laplacian does not vanish identically. Further, there 
is a holomorphic function ~ on D such that Ig~(w, z)l < l for (w, z) E D and 

lim ~(w,  z) = 1. 
D~(w,z)---+cx~ 

Proof. Since D is the smooth limit of the pseudoconvex domains D ("), it is pseudoconvex. 
Thus the function p in (12) is plurisubharmonic, and so we must have 

0z10~1 ~e 0~0~1 z~ Z O. 

Since this must hold for all values of z~, it follows that the terms in the summation must vanish. 
On the other hand, since we removed all of the pure harmonic terms from Ca, it follows that the 
terms Ca themselves vanish. Since we have also removed all the pure harmonic terms from P ,  

it follows that the Laplacian cannot vanish identically. 

Let P be a polynomial of degree 2k, and let P2k denote the homogeneous part of P of 
degree 2k. Thus for e > 0 we may choose a large C such that 

D C b := {v + P2k(z,, ~,) + lz212 + - - "  + Iznl 2 < e(lwl + Iz, t) zk + C}.  

Let us recall the construction of a peak function for the point 0 C 0 D  as given in [BF]. This 
involved constructing a function that was linear along certain sectors and vanished at the origin. 
The reciprocal of this function vanishes at infinity and may be used to construct a function that 
peaks at the point at infinity of D. This proves the lemma. [ ]  

Now let h ,  : D (~) ~ ~ n U denote the biholomorphic mapping defined by taking the 
inverse of the coordinate changes (4(~)), (6(")), (7(")), and (10(")), followed by the inverses of 
the original (4) and (6). Any compact subset of f2 is mapped to U N f2 under f~ for large u, 
and so h~ -1 o f ,  is defined on any compact subset of f~ for u large enough. Furthermore, for 
any compact K C D, we have K C D (~) for u sufficiently large, and thus 9~ := f j l  o h~ 
is defined on K .  Since Q is bounded, we may extract a convergent subsequence {gvj } which 
converges to a mapping 9 : D --~ (L By the choice of e~, it follows that 9~(--i, O) = Po holds 

for u : 1,2,3, . . . .  Thus 9 ( - i , 0 )  = P 0  C Q. 
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In order to control the convergence of the sequence {9~}, we will use the invariant metric 

introduced by Sibony [S]. This assigns a length F(p, ~; D) to a point p E D and a tangent 

vector ~ at p. F decreases under holomorphic mappings, i.e., if 9 : D ---+ ~2 is holomorphic then 

F(g(P), 9 , (~) ;  f~) -< F(p, ~; D). 

By the distance decreasing property it is easy to show that F <__ Kobayashi metric. The property 
of  this metric that is most useful for our work is that F(p, ~; D) is defined in terms of certain 
bounded psh functions on D .  In particular, Sibony [S] shows that if there is a smooth, psh function 

p defined on all of  D with p < 1, and if there is a ~5 > 0 such that ddCp(~, ~) > 61~12 holds at 

all p such that the Euclidean distance satisfies dist(p, P0) < (5, then there exists c = e(cS) such 
that 

F(po,~;D) >_ ~1~1. (13) 

We will find (13) useful for metric estimates that hold uniformly for a family of  domains D .  
Equivalently, we could use the Kobayashi metric in the proofs below and appeal to the Sibony 
metric merely as a device for estimating the Kobayashi metric from below. 

L e m m a  2. The mapping 9 : D ---+ ~ is a biholomorphism. 

P r o o f .  By [DF2] there is a (5 > 0 and a smooth function a with c~(0) = 0 such that 

:---- --e~(-r) 6 is a plurisubharmonic exhaustion function for Q. Then 

= o = 

is plurisubharmonic, and /5 (~) converges to /5 :---- _(_p)6 as u --+ cxz. Let us choose a point 

qo E D near ( - i ,  O) such that 9((to) E f2 and e ~ is strictly plurisubharmonic at qo. For u 

sufficiently large, the functions e ~(~) will be uniformly strictly plurisubharmonic at the point q0- 
Thus for a tangent vector ( there will be a uniform lower bound for the Sibony metric 

F(qo, D 

Since this metric is nonincreasing under the functions 9~, and since F a  is strictly positive, it 

follows that the differential D9~, (qo) is bounded below. It follows then by the theory of H. Cartan 

(see IN]) that 9 : D --+ 9(D) is a biholomorphic mapping. 

It remains to show that 9 is onto. First we will show that 9 maps the boundary of D to 

the boundary of f~. Let us choose small neighborhoods B0 of q0 and B1 of g(qo) such that 

Bl  C g~(B0)  for r, sufficiently large. We choose c > 0 such that/5 < - -c  on B00, and thus 
/) (~) < - c  on Boo for tJ large. Now let h denote the harmonic function on ~t -- B1 such that 

h = - c  on OB~ and h = 0 on 0f~. By the Hopf  lemma, there is a constant ~ > 0 such that 
--~ dist(p, 0f~) > h(p) for p E f~. For any ~t > 0, we may choose a compact g such that 
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h > -d  outside/s  and thus for v, sufficiently large, we have 

- e  dist(p, 0f~) > h _>/5 (") ((g (v) ) - '  (p)) - e' 

for p E K .  If p E 9(D), we may pass to the limit as u ---+ cx> and obtain the same inequality 

for t5 with e' = 0. Finally, we note that for R > 0 there is a constant ~] > 0 such that 

- r /d i s t (q ,  OD) < p(q) holds for q C D such that [ql < R. We conclude, then, that for q E D 

with Iql < R we have 

e'/67/dist(9(q), 0 ~ )  t/6 <_ dist(q, OD). (14) 

Now we suppose that g is not onto. By (14) we must have limp~p0 g-l(p) = oo for any 

Po E f~ N O(9(D)). Let g) be the peak function given in Lemma 1. It follows that 

lim ~ ( g - I  ( p ) ) =  1. 
p---+~NO(g(D)) 

Thus, by Rado's theorem, ~ o g -1 extends analytically to f~ if we set it equal to 1 on f~ - 9(D). 
However, IV o 9-11 < 1 on 9(D), and so the extended function is bounded in modulus by 1 on 
Q. Thus [2 -- 9(D) is empty by the Maximum Principle. [ ]  

2. Tangent vector fields 

In this section we will analyze, from the algebraic point of view, the tangent vector fields 

for the homogeneous model of f~ at the point p ----- 0. We may assume that 0f~ has the form (3) 

at 0. (Note, however, that the point/3 is in general different from Po~ and the degree 2m of the 
homogeneous polynomial ~ at 13 may differ from the value encountered earlier.) We attach the 
following weights to the coordinates: w has weight 1, zl has weight 1/2m, and z,~ has weight 

1/2 for 2 < c~ < n. 

We perform the scaling of coordinates at the point/5 = 0 given by w = Bzb, Zl = T]l/2m,~l, 
Z~ = @/250", 2 < C~ < n. As z] --+ 0, we obtain the weighted homogeneous domain 

v -k r 2,) -'k ~ Re (Bc~,m(zl, 21)zc~) q- z~Sa < O. 
o~=2 

(15) 

Since ~ is pseudoconvex, (15) must be pseudoconvex, too, so if we argue as in the proof of 

Lemma 1 we conclude that the/30" terms vanish. Thus we have 

n 

r = v + ~b(zl, s + Z z~20" + . . -  (16) 
0 ' = 2  

where the dots denote terms of weight greater than 1. 
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We assign weight --1 to OtOw, - -1/2 to OIOz,~, 2 <_ ct <_ n, and weight --l12m to OlOzi, 
and we let ..4 (") denote the holomorphic vector fields Q that are homogeneous of weight # and 
such that Re Q is tangential to the homogeneous model {v + r  Zl) -~- ~n~=2 Za~'~ = 0}. 
Thus O.A (~) is a graded Lie algebra, and [A (") , .,4 (")] C .,4 (u+"). 

n If we write Q = Qo (63/0w) + ~j=l Qj (63/63zj), then the tangency condition is equivalent 
to 

n e  - ~ Q o  q- ~1Q1 q- Z z(~Q~ = O, (17a) 
~=2 

where we write r = 63r and we substitute 

(17b) 

with z and u arbitrary. It is evident that - 1  is the lowest possible weight, and ~A ( -1 )  consists of 
real multiples of O/Ow. Since m > 1, every vector field of ,A (-1/2) is easily seen to have the 
form 

n 

Q(-�89 = ~ c,~L,~, ca �9 R,  (18) 
O~=2 

where 

63 i 63 
L,~ = z'~wo 263z,~ (19) 

A(-1/2) may also be described by changing coordinates so that the homogeneous model becomes 

V ql_ r  Jr- R e ( c z  2m) .~_ y2 .~_....~_ y2 n = O. 

In these coordinates the vector field L~ corresponds to O/Oz~, which generates a translation in 
the x~-direction. It will be seen in Lemma 4 that .A (-1/2m) # 0 if and only if a, c C C can be 
chosen so that r  + Re (cz21TM) 2~ = Yl , and in this case .,4 (-1/2m) is generated by O/Oza. 

Let us make the useful observation that if wt(Q) > o, then Qj (0) = 0 for 0 < j _ n. Thus 
there are no pure holomorphic or antiholomorphic terms in ~1Q1 or 2~Q~. So if (17a) holds, 
then there can be no pure holomorphic terms in Q0, under the condition (17b). This means: 

If wt(Q) > o, then Q0 is divisible by w. (20) 



Domains in C n+l with Noncompact Automorphism Group 175 

It is an elementary calculation to check that a solution of (17) with weight 0 has the form 

o n o )  0 
Q(O) = p  2mw +Zl~zl+mZzc~O-oe=2 o~ + i T z l  ~ + 7~'/3z~ Oz/3 , (21) 

~,/3=2 

with #, ? C R and ?~,/3 = -~/3,,~. Conversely, if (21) is a solution of (17) and if "y r 0, then 

r = c%l 2m, 

L e m m a  3. If Q c fit (~), # > o, and if [O/Ow, Q] = 0 (i.e., if the coefficients of Q are 
independent of the variable w), then Q = O. 

Proof .  By (20) we have Q0 = 0. And since wt(Q) > 0, it follows that OQj(o)/Oz~ = 0 
for 2 < j ,  ~ _< n. Differentiating (17a) with respect to 2~, 2 < ol < n, we obtain 

(OQ11 n (OQ/3)=o 
Qc~Wr + Z z / 3 \ O z o ~  I 

/3=2 

Thus Qj --= o for j # 1, and so Q -- o. [ ]  

L e m m a  4. If Q E ,,4 (~) and Q r o, then either # ---- j / 2  for some integer j >_ -2 ,  or 
I z = - 1 / 2 m ,  in which case the following hold." 

(i) After a change of variable Z 1 H aZl, 

) 

(ii) Q ~- /~ (iz~m-l(O/OW) -q- C(O/OZl)) for some /~ E R and c ---- 4 m - l ( - - 1 ) m / m .  

Proof .  In the case - 1  < # < - 1 / 2 ,  we can only have Q = QoO/Ow, and it is obvious 
n 

that Q = 0. If - 1 / 2  < # < o, then Q = QoO/Ow q- ~ j = l  QjO/Ozj,  and no coefficient Q~, 
2 _< c~ _< n is a nonzero constant. Either Q1 -- 0 or we are in the case of weight - 1 / 2 m ,  

and Q1 is constant. [O/Ow, Q] -- 0 since it has weight < - 1 ,  so the coefficients Qj are 
independent of w for 0 _< j _< n. Further, [L~, Q] has weight strictly between - 1  and - 1 / 2 ,  
so it, too, vanishes. Thus the coefficients Q/3, 2 <_/3 _< n are also independent of the variables 
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z~, 2 < c~ _< n,  i.e., Q;~ = Q~(zl). Condition (17a) is now given as 

] / ~  -~Qo + Q,r + ~ Q ~ ( z l )  = 0, 

and it follows that Q z  : 0 for 2 < /3 < n. In the case of weight < - 1 / 2 m  we must have 

Q1 = 0, so Q = o. If Q has weight - 1 / 2 m ,  then Q1 is constant, and we consider the new 
coordinates zl Qolzl. Dropping the - f rom our notation, we have -(i /2)Qo , 2m-l ~- = OZ 1 , SO 

the previous equation becomes 

( l )  
R~ (bz, ~ - l  + r  : R~ bz~ " - I  + ~r = O. 

It follows that, modulo harmonic terms, r is independent of x I . Thus r has the form (i), and Q 

can easily be shown to have the form (ii). 

Next we show that .,4 (1-(1/2"~)) : 0. If Q c .,4 (l-(I/2m)), then [O/Ow, Q] E A (-l/2m). 

By Lemma 3, we have Q : 0 unless A (-l/2m) ~ 0, and in this case r must have the form (i) 

above and [O/Ow, Q] must have the form (ii). Thus by (20) we have Q0 : Aiwz~ m-1. And by 

Lemma 3 again, we have Q1 : Acw + Rl, Q,~ = R,~, 2 < o~ <_ n, where Rj(z) depends on 
the variables z alone. Now we set u = 0 and z ,  = 0 for 2 _< c~ _< n, so (17a) becomes 

n~ [~cv,~y~ m-' + R,(z, ,o , . . . ,o)r  =o .  

Now we note that v = - r  and by homogeniety we must have R1 (Zl, 0 , . . . ,  0) : Az~ TM for 
some constant A, so this equation becomes 

Az2m m 2 m - - l ]  / ~  ~ v 4 ~ - ' +  ~ 5-y,  j : o .  

Expanding this out into powers of  xl and Yl we see that we must have A : A = O, and thus 

Q = o .  

For # > 0 with # ~ 1 -- ( 1 / 2 m ) ,  we have [O/Ow, Q] c .A (~-1), and the lemma follows 
from Lemma 3 by induction. [ ]  

In case ~ = c l z  112m, it is easily seen that ~4 (1/2) contains 

Q(�89 = ~ c~P~, with ca E R, (22) 
ot=2 

and 

o__ 0 i m  0 n 0 

Z z .z~  - , (23) P,~ = mwzc, ,~ + z~z,~ - -  w - - + m  
Ozl ow 2 Oz,~ Ozz ~=2 
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and .,4 (~) contains 

0 r r t Z  Q(~) = Aw m w  + 2; 10Z 1 ~- Zo~ 
o~=2 

(24) 

L e m m a  5. I f A  (") r O for some # r - 1 , - 1 / 2 , - 1 / 2 m , 0 ,  then the following hold." 

(i) #---- 1/2or 1. 

(ii) ~b = c]zl 12"* for some c > O. 

(iii) ,,4 (1/2) is spanned by the vector fields Q(1/2) in (22). 

(iv) ,A (I) is spanned by the vector fields Q(') in (24). 

Proof .  By Lemma 4, # must be a positive half-integer. By Lemma 3, [O/Ow, ..4 (~)] ~ 0, 
and so we have .,4 ( '-1) ~ 0. Continuing in this way, we have either ..4 (1/2) ~ 0 or .A (1) 5~ 
0. Let us suppose first that there exists a nonzero Q E ..4 (1/2). If n = 1, then Q = 0 by 
Lemma 3. Thus we may suppose that n > 1, and [O/Ow, Q] has the form (18), so in this case 
OQolOw = E n ,~=2 c,~z,~. By (20) Qo is divisible by w, so we must have Q0 = Ea=2  CceZc~W" 
By Lemma 3, there exist functions R1, . . . , /~,~ that are independent of w such that Q1 = RI, 
and Q,~ = - ( i / 2 ) c ~ w  + R , ,  for 2 < a < n. 

The commutator [L-y, Q] has weight 0, and the coefficient of O/Ow is given by z. r ~ c~z~ - 
~c.rw - 1~. By (20) this is divisible by w, so we must have 

a = 2  

for 2 < ce < n. Now we have determined all of the Qj except Ql. Substituting into (17a), we 
obtain 

so we conclude that ~b = clz , 12,~ and Q, = (1~re)z, ~ = 2  c~z~. This proves (ii) and (iii)in 
case .A (1/2) 5~ 0. 

The other case is that there exists a nonzero Q c ..4. (1). The commutator [O/Ow, Q] has 
the form (21), so by (20) we have Q0 = I zmw2. By Lemma 3, we see that Q1 = lZWZl + 
iTwzl  + RL(z) and Q~ = #wz~ + ~ W , , ~ z ~ w  + R~(z)  for 2 _< a _< n. Now we consider 

the coefficient of O/Ow in [L~, Q] E .A (~/2). A simple calculation shows that this is equal to 
Ra plus terms divisible by w. So by (20) it follows that Ra(z)  = 0 for 2 < ce < n. Our vector 
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field now has the form 
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~Zl 0 Q _-- Q(1) q_ (i3"wzl q-/~l(Z)) ~- Z %3'~ OZo~ (25) 

where Q(1) is as in (24) with A = #.  Setting now u = zl = 0, we see that (17a) takes the 

form Re ~ 3"~,,~zZiv2~ = 0. By the condition 3'. ,~ = - ~ , ~ , . ,  we see that 3'~,Z = 0 for 

2 < ~ , / 3  < n .  

We distinguish now two subcases: 3' = 0 and 3' r 0. If  3' = 0, then we note that on 

v + ~ + E z~e~ -- 0 we h a v e / ~  Q(~)(v + r + E ~ . ~ . )  = u(R~ WZlr - U ~ r  Thus 
for the vector field Q,  (17a) becomes 

Re (#ivzlr + R l ( Z ) r  ---- O, (26) 

where we have set u = 0. If  n > 1, then there is a z~2,~ in v, and the coefficient of  z~2~ (26) 

must vanish, so 

# R E  ( i z l r  1) ---- 0, (27) 

and from this follows that R1 = 0. If  n = 1, then we must have Rl(z)  = - ~2m+l ~1 ~1 , and in this 

case also we must have (27) and Cl = 0. In both cases it is evident that (iv) holds. Further, since 

Q r o, we must have p r 0. Thus (27) gives ImZ l r  = 0, so it follows that r = ClZl[ 2m for 

some c > 0, and so (ii) holds. 

The other case is that 3, 7 ~ 0. As was observed after (21), this implies that r = ClZll 2m for 

some c > 0. In this case, if  we set u = 0, then (17a) becomes 

R e  ( i 3 " z , ( - i r 1 6 2  - R , r  = R e  (3"mlz~l 4m - R x ( z ) z ? - l ~ )  = O, (28) 

But (28) implies that 3' = R1 = 0. Again Q has the form (24), so (ii) and (iv) hold in this case, 

too. 

We see that in both of  the cases # = 1 /2  and p = 1 we have (ii), which implies that both 
,,4 (1/2) 7 ~ 0 and .4  (1) 7~ 0. Thus (ii), (iii), and (iv) all hold. 

Now we prove (i). By Lemma 3, it is sufficient to show that ~A (3/2) : 0 and .4(2) = 0. 

Let us first suppose that Q E .4(3/2). Then [O/Ow, Q] E .4(1/2), so by (iii) and (20) we have 

Qo = ~(m/2 )c~z~w 2. And by Lemma 3 we have 

Q1 = Z c,~z,~zlw -q- Rl(z)  

and 

im ~ c~z~z~w + R~(z). Q~ - 4 c/~w2 + m 
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Now [L.~, Q] E ..4 (~), so by (iv) the coefficient of  O/Ow in this vector field is given by 

mc~ ( - ~  + j )  w 2 -  R~(z) = Amw 2. 

Since c- r and A are real, they must vanish. This yields/~.y ---- 0, so Q = 0. 

Finally, suppose Q E A (z). Then [O/Ow, Q] E A (t), so by (iv) and (20) we have Q0 = 
! Amw 3. By Lemma 3 we have Q1 = ( A/2)z~ w2 q- R,(z)  and Q~ = ( A/2)mz~w 2 -k- Rc~(z) 
3 
for 2 ~ ce < n. Checking the coefficient of  u 2 in (17a), we find that A = 0. Thus Q = 0 by 
Lemma 3. This completes the proof of  (i) and of Lemma 5. [ ]  

3. Geometry of the domain 

The domain D has the one-parameter family of  automorphisms T~(w, z) = (w + ~-, z), 
'7- E R.  By Lemma 2, this induces a one-dimensional subgroup S~ :=  9 o T~ o g-~  of Aut([2). 
Since [2 is bounded, Aut([2) is a Lie group, so this 1-dimensional subgroup is generated by Re H 
for some holomorphic vector field H = Ho(O/Ow) + H~ (O/Ozl) + . . .  + H,~(O/Ozn), where 
H1, . . . ,  Hn are holomorphic on f~. By the fact that [2 is pseudoconvex and finite type, we know 

that the functions H 1 , . . . ,  H n  extend to be C ~ on f~. Repeating the proof of Proposition 2.4 of  

[BP], we see that 9 : D ~ [2 extends to a homeomorphism between D U {oc}  and [2. Thus 
the point fi ---- 9(cx~) is a fixed point of  S~ and thus a zero of H .  Further, it is a parabolic fixed 

point since l i m ~ + ~  S~(p) = j0 holds for all p E f~. 

The vector field H is generated by the mapping 9 in the sense that for any function qo on [2, 

d~(g(t)) t:o (ne  H)(qO)lp=9(qo) - ~ ' (29) 

where we write g(t) for g(qo + (t,  0 , . . . ,  0)).  It was shown in [BP, Proposition 2.4] that 

Ig(t)- Girl-' (30) 

holds for q0 E D and Itl _> to. Thus we see that at the point p = g(q) E [2, we have 

IRe H (p)l = tdg(q + (t ,  0 , . . . ,  O) ) /dtl~=o. 

Lemma 6. The vector field H vanishes to finite order at ~. 

P r o o f i  Let us assume/5 = 0 and choose/5 > 0 such that 1 - 6 > 2 - ' .  Then there is a 

sequence t j  ~ ~ such that 

It g(tj)l (1 -  6)tr (31) 
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for t > tj .  Thus 
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I f f ( t j )  - g(2tj)l ~  lg(tj)l 

for c = 1 -- (1 -- ~5)-12 - "  > 0. By the mean value theorem, there exists t j  < ~ < 2tj such that 

Itjg'( )l clg(tj)l c2- lg( )l, (32) 

where the last inequality follows from (31). From (30) we have t j  < ~ < Thus 

it follows from (32) that 19'(~)1 is bounded below by a constant times and so we 
conclude that H vanishes to finite order at/5 = 0. [ ]  

Thus the Taylor expansion of H vanishes to finite order at p ~ ,  and we may write H = 
Q + . . . .  where Q r 0 is homogeneous and the dots are terms of higher weight. By Lemma 5, 
Q is of  the form (21), (22), or (24). Let us suppose for the moment  that Q has the form (21) 

and set p = w@ + z'i"2~ ~ + Z2Z 2 + " ' "  + ZnZ n. If  # < O, then R e  H p  = m # p  + . . .  <_ 0 

holds near the origin. Thus the orbits of  R e  H approach the origin in positive time but not in 
negative time. So we conclude that for a parabolic vector field with Q given as in (21) we must 
have /z  = O. In the following lemma, we use the additional fact that 

which is a restatement of  (29), and we show that Q cannot have the form (21). Our proof will 
proceed by a scaling argument. 

First we recall the following result, which is an elementary consequence of the definition of 
the Kobayashi metric. 

P r o p o s i t i o n  1. Suppose that G C C n is an open set, that ~ : A ---+ G is a holomorphic 
mapping defined on the unit disk A C C, that co = {p C C n : dist(p, qD(0)) < 7} is contained 

in G, and that F(p ,  ~; G) > for some e > 0 and all p C co. Then qo(z) C co for 
[z] < min{ (1 /2 ) ,  (3/4)~/e}. 

This is useful because it gives us a criterion for normality of  a family of  mappings into 
variable domains. 

Proposition 2. Let ~,~ > 0 and po E C n be given. Let G~, u : 1 , 2 , 3 , . . .  be domains 

containing w : {p E C n : dis t (p0,p)  < ~/}, and suppose that F ( p , ~ ; G ~ )  > for all 

p C w. I f ~ ,  : A ---+ G ,  is holomorphicfor u = 1 , 2 , 3 , . . .  and l f l i m , ~  ~ ( 0 )  = Po, then 

{ ~ , }  is a normal family on {Izl < min{ (1 /2 ) ,  (3/4)~1e}. 
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Proposition 2 follows easily from Proposition 1. 
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L e m m a  7. Q has the form (22) or (24), and ~ = constzr/~U~. 

Proof .  By Lemma 5 and the remarks above, it is sufficient to show that if Q has the 
form (21) with # ---- 0, then Q =- o. So let us suppose that Q 5~ 0 and derive a contradiction. 
Consider the biholomorphic map R ( w ,  z)  = ( w + c z ~  TM, Zl, . . . , Zn) andthe scaling X , ( w ,  z) = 
(v2"~w, vz l ,  v"~z2, . . . ,  umz~),  and note that R X ,  = x , R .  Let us set Q = R - 1 Q  and ~)(") ---- 
X,f~. If r is as in (16), then by Diederich and Fornaess [DF2] there exists (5 > 0 and a smooth 
function (p on ~ such that p ---- - - e ~ ( - r )  6 is a psh exhaustion of Q. It follows that /3 (~) = 
u-2mrp o X71 o 1~ is a psh exhaustion of ~2 ('), and near the origin 

where (p(') ---+ g)(0) and / ) ( ' )  ---+ 0 as u ---+ oc. Further, as u ~ oc the domain ~)(') tends 
smoothly on compact subsets to the domain 

= - -  < 0  . 

We may choose c such that ( Im(c z~  "~) + r 7 L 0 on the set {zl 7 ~ 0 :  Czle~ = 0}. Thus/5* 
is strictly psh at all points of Q* f-? {zl 7 ~ 0}. It follows from (13) that 

for every compact K C ~* f-I {zl # 0} there exists Co > 0 such that 

F(/3,~, fi(~)) >- CoI~[ if/3 C K (34) 

for u large enough t h a t / (  C ~( ' ) .  

Let us fix p0 E (~* N {Zl # 0}. Setting q(~) = (w (~), z l " ) , . . . ,  z (")) := 9-1X; l (p~  we 
make the coordinate change 

~(~) 
Zj = Zj -- z j  , l <_ j  < n 

= w - R e w  (') - a~')i + R e  ~ ~(.)r~ ~(.)~ (Zj I Z j -  ,~j ) (35) 

where a~ ") E R and -(") aj  E C, 1 < j _< n are chosen such that (i) in the ^-coordinates q(~) is 

given by (- iA(")? 0 , . . . ,  0), (ii) the point ( 0 , . . . ,  0) E OD, and (iii) ToOD = { I ra  zb = 0}. 

Now in the ^-coordinates, the domain D has the form 

a (u) ~- { v  -~- P(U)(z1,  z , )  -~- z2~" 2 - ~ . . .  -~- ZnZ n < 0} ,  

where we have dropped the hats (^) from the notation. We observe that P(~) is a polynomial of 
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degree < 2m, and we may make a change of coordinates 

Co = w + Z cJz~ (36) 

so that the new expression for P(~) in (36) in the ~-coordinates has no harmonic terms. 

Finally we introduce the scaling of coordinates 

zb = /~(")w, ~, = #(~)z,, Y~ = ~x/-~z~,  2 _< c~ _< n. (37) 

G (~) will again be defined in the form (36) in the new coordinate system, and we choose/z (~) 
such that the largest coefficient in P(") has modulus 1. Now we drop the z from our notation. It 
follows that if we pass to a subsequence P(~) converges to a polynomial P*, and G (") converges 
smoothly on compact subsets to 

a* = {v + P*(z , ,~ , )  + z2~2 + . . .  + Zn~n < 0}. 

Since each G (~') is pseudoconvex, it follows that G* is, too. Thus P*(z, 51) is subharmonic. 

Now let us consider the mapping h (") : G (~) ---+ ~(~) that is given by the coordinate changes 
(35), (36), (37), followed by X- o 9- By construction, ~t(")(-i,  0 , . . . ,  0) = p0. Further, we have 
the estimate (34) in a neighborhood 

By Proposition 2, there exists 
( - - i , 0 , . . . , 0 )  l < n}. Let h :  V 
let al be a point near 0 such that P* 
we did to obtain (34), we see that 

{ IP -  p~ < cl }. 

> 0 such that {h (") } is a normal family on V = {[(w, z ) -  
fi* denote the limit of a subsequence of {h (") } on V. Now 
(al,  al)z~z, > 0. Arguing with psh exhaustion functions, as 

F(q,~;G (~)) >_ cl~l (38) 

holds for u sufficiently large and q sufficiently close to ( - i ,  al ,  0 , . . . ,  0). Now since h(~) is 
biholomorphic and dist(h (~) ( - i ,  al ,  0, . . . ,  0), 0 ~  (")) is bounded below, the estimate (38) gives 
the lower bound 

IhL~)(-i, a,, 0 , . . . ,  0)~1 _> c21~1 (39) 

for some c2 > 0. Thus h is locally biholomorphic at ( - i ,  al ,  0 , . . . ,  0). 

Now we consider the mappings h (") := Rh  (") : V ~ f2*, where 

We observe that the coordinate changes (35), (36), (37) preserve the orbits of O/Ou and in fact map 
O/Ow to a real constant multiple of itself. The map h (~) := R h  (~) : G(") --, f~(~) :=  Rfi(") 
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has the property that 

h ? ) ( ~  = (40) 

It is easily seen that the limit of a vector field under homogeneous scaling will yield only the 
terms of weight 0, i.e., lim~+oo(X~),H = Q. Since h (") converges to h = _Rh, we see that 
[G [ is bounded above, and by (39), h (~) converges to a locally biholomorphic mapping, so [c~ [ 
is bounded below away from zero. Thus we have 

h.  ( ~ w ) = c Q  (41) 

for some real c 7 ~ 0. 

Next we will use (40) and (41) to show that h may be continued to a holomorphic mapping 
of V + (R x {0}) to f~*. We may assume that h(V) is relatively compact in f2*. In the form 
(21), if 3' r 0, then the functions w, ~b = Izll and Izzl = + . .  + Iz l 2 are constant on the 
orbits of _Re Q; otherwise, if "y = 0, then zl in addition is constant. In either case, the orbit of 
h(V) under _Re Q is relatively compact in ~*. Thus by (34) there exists c > 0 and r/ > 0 so 
that 

F(p, ~; fF )  >_ e[~ I (42) 

in an v-neighborhood of the orbit of h(V). Since _Re(O/Ow) is an isometry, we have 

F (q ,~ ;G*)  _> e[~ I (43) 

for q E V + ( R x  {0}) and some other c > 0. Now we may use (40), (41), (42), and Proposition 2 
to conclude that {h (~) } is a normal family on V + (R • {0}), and we again denote the limit 
by h. By the estimate (43), it follows that h is a biholomorphic mapping from V q- (R • {0}) 
to its image. 

Finally, let ~r denote the orbit of _Re Q passing through h(-i ,  al, 0 , . . . ,  0). For any point 
A C ~, there is a (small) neighbornood U containing A on which h -1 is defined. By the estimates 
(42) and (43), the Jacobian matrix h! ~) is bounded above and below on a fixed neighborhood 
of h - l ( A ) .  Thus (h(~))- ' (A)  converges to h-l(A) as v --* oo. Thus, by Proposition 2, 
{ (h(")) -1 } is a normal family on a neighborhood of ~. But this is a contradiction, since h - l ( o  ) = 
{ ( - i  q- t, al ,  0 , . . . ,  0) : t C R} is not bounded. This completes the proof of Lemma 7. [ ]  

Remark .  We note that if P(zl, 21) is subharmonic and homogeneous, then the domain 
{v § P(zl, ~) § z222 + - . .  + Zn2n < 0} is hyperbolic. (We may use the change of variables 
@ = w + cz 2m to obtain a bounded function that is strictly psh at any given point of the domain.) 

[] 
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4. Parabolic orbits 

We let H = 9. (2(O/Ow))  denote our parabolic vector field, and we let f t  = exp(t  R e  H )  

denote the family of automorphisms of Q obtained by exponentiating. For a point P0 C Q, 

we let Pt = (w( t ) ,  z ( t ) )  = ft(Po) denote the orbit under R e  H .  In this section, we study the 
asymptotic behavior of the orbit t H Pt as t --~ 4-oc.  By Lemmas 5 and 7, we have H = Q + .  �9 �9 
where either Q = Q(1/2) is as in (22) or Q = Q(t) is as in (24). In all cases the orbits approach 0 

tangentially to the zFaxis,  but there is an essential difference: if # = 1/2, then w( t )  is essentially 
imaginary (i.e., the w-coordinate approaches the boundary essentially normally), whereas in the 

more singular case # = 1, v( t )  = O(u( t )2) .  

Now we may define Q locally as 

r(w,z)=v+lzll2~+lz212+...+lznl2+u~(u,z)+E(z)<O, (44) 

where g) satisfies (5). Since f~ is pseudoconvex, 

2m ]ZIZ2 IZ3])) , E = O (Izll 2"~+1 + ~-~([z, z~[ + l +  (45) 

In the first case, /z  = 1/2, we may make a change of coordinates by an (n  - I) x (n  - 1) 
(real) orthogonal matrix acting on the variables z 2 , . . . ,  z,~, followed by a dilation, so that Q ----- 
Q(1/2) = 2/92 (as in (23)). Thus we may assume 

1 = (wz2 + Go) + z1z2 + G1 Ozl 

+ - ~ w  + z~ + c2 ~ + }2(z2z~ + as) o 
o~=3 OZc~ 

where Gj denotes terms of higher weight. Thus the orbit t H Pt = (w( t ) ,  z ( t ) )  satisfies the 
equations 

wz2 + Go = ~b 
1 

- -Z2Z1 ~- GI = z1 
TI2 

i 
- - w  + z~ + G2 = z2 

2 
z2zc~ + Go, = zc~ 3 _< ct <_ n .  (46) 

From (44), we have 

[z,I 2m + ~ Iz~l z = o ( [ w l )  (47) 
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for points (w, z) C fL Thus if Gj vanishes with weight at least p j ,  we have G j ( w ,  z)  = 
O(Iwl  uj). From the first equation of (46) we have 

25 2 = W--I~u -- w - l G o  (48) 

and so 

d (T-'Go). ~2 = ~ - 2 ( w ~  - ( ~ ) ~ )  - ~ i  (49) 

Now we see from (46) and (47) that zb = 0 ( 1 w l 3 / 2 ) ,  b,, = O(Iw1('/2)+(1/2"~)), and ~,~ = 

O(Iwl) .  Thus it follows that 

d (21)-lGo) : s ~j(21)-lGo)~,j : 0 (l?J)ll-}-2-Lm) , 
j=o 

where we use the notation z0 = w. We substitue (48) and (49) into the third equation of (46) and 

divide by w to obtain 

i 2~bG0 G 2 G2 d 

2 w ~ + ~  + -- w dt  

z b )  1 d 1 
- ~ ( ~ -  Co), 

which we may rewrite as 

i + E2 = d ( (v ) (50) 

where E2 = 0(1w]1/2"~). We integrate this with respect to t, and it follows that w-2 tb  
-(i/2)t  in the sense that l i m t ~  t - l w - z t b  = - i / 2 .  Integrating again, we obtain w -1 ~ i t2/4,  

or w ~ - 4 i t  -2. Substituting this back into (50), we have 

-~+O(It l  -~ ) - -~ /  ~ . 

Integrating this gives 

w 2 - 2 + O [tl 1--& 

and 

w = - 4 i t  -2 - I -  0 (Itl -=--~), (51) 

which, by (48), gives 

252 = - 2 t - '  + o (521 
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Further, by (47), we have 

z~ = O (Itl - -~ ) ,  and z~ = O (It1-1) for 2 < o~ < n.  (53) 

Lemma 8. As t ---+ -]-oo, we have 

(i) w( t )  = - 4 i t  -e q- O([tl-z-(1/m)).  

(ii) z l ( t )  = O(Itl-e/'~). 

(iii) z2(t) = --2t -I + o(I t l - ' - (v"~)) .  
(iv) z . ( t )  = o(It l  -~-(e/~)) for 3 < c~ <_ n. 

P r o o f .  We have already shown (i) and (iii). To show (ii), we note that by (53), we have 

zl = o(It l-6)  for 5 = - 1/m,  and by (52), the second equation of (46) has the form - 2 z l  ~rot+ 
O(lt1-1-(1/m)-~) = zl,  or 

t - ~  z l t  -~ = O  t[ (54) 

Multiplying this by t 2/m, integrating, and then dividing by t 2/m, we have z~ ---= O(t  -2/'~ log Itl). 
If  we substitute this improved estimate for zl into the second equation of (46), then we have (54) 
with r > 1 / m .  Repeating our procedure, we obtain (ii). 

The proof of  (iv) is similar: by (53), we have z~ = o(It1-1-6) with 5 = 0. By (i), (ii), and 
(53), we have G~ = o(Itl-2-(2/m)),  the "worst" monomial that can appear in G~ being Z~Zl. 
Thus the fourth equation of (46) is 

t ~ ( t z ~ ) = O  + 0  . 

Proceeding as in the previous paragraph, we obtain (iv). [ ]  

In the case /z  = 1, we may write the vector field as 

(1 + 0 
2 = ( ~  + ao) + ~,~ + c ,  ~ as )o~o  ' 

where Gj denotes terms of higher weight. Thus the orbit t H Pt = (w( t ) ,  z ( t ) )  satisfies the 
equations 

w Z + G o  = zb 
1 

--WZ1 "~- G1 ---- zl 
m 

wz~ + G~ = ~ ,  2 < c~ < n. (55) 
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Since wt(G0) > 2, we have Go -= O(Iwl 2§ by (47). Under the change of variable 
w* = --1/w, the first equation of (55) becomes 

o r  

1 + ( ~ * ) : a o ( ( ~ * ) - ' ,  z) : e *  (56) 

1 + A(w*) + iB(w*) = w*, (57) 

where IA(w*)l, IB(w*)l -- 0 ( 1 w ' 1 - 1 / 2 " ~ )  �9 By elementary estimates on (57), we obtain w*(t)  = 
t + O(tl-O/2m)), from which it follows that 

= o 0 

By (56) and (58) we have 

L e m m a  9. c-it  -2 <_ Ir(w(t), z(t)) l  < c t  -2  

Proof .  Since Re H is tangential to 0f~, Re H(r)  is a smooth function on f~ that vanishes 
at the boundary. Thus near 0 there is a smooth function h such that Re H(r)  = hr. By (44) and 
(55) we have 

ReH(r )  

+ ~ ( z . w  + O.)  (2~ + (u~o + E)~.)) 

= ( - 2 u ( v  + IZl] 2m + [z212 + . . .  + Iz~l =) + . . . ) ,  

where the last set of dots indicates terms of higher weight. It follows that wt(h - 2u) > 1. Since 
r < 0 on f~, we may divide by r and obtain 

d~ l ~  = ( 2 u + . . . )  = - 2 t  - 1 + 0  t -1-~--~ . 

Here the dots indicate terms of weight > 1, and we have substituted the powers of t obtained 
in (59). Integrating this equation and then exponentiating, we obtain r = eCt-2e ~ which 

proves the lemma. [ ]  
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We will use the notation A = O(t ~+~ to mean that A = O(t ~+~) for each e > 0. 

L e m m a  10. z l ( t )  = O ( t - ' / m ) ,  and z~(t) = O(t - l+~ for 2 < c~ <_ n. 

Proof .  G,  vanishes with weight > l + ( 1 / 2 m )  at (w, z) = (0,0) and so G 1 7--- O(Iwl=+ 
z,~zl I + + By (59) G~ O(t - t - (1 /m)) ,  and the second equation in 

(55) becomes 

--1 - 1 - •  ) - l - •  

o r  

i 1 _ 1 _ •  

We multiply this by t l/'n, integrate with respect to t, and then divide by t 1/'~ to obtain 

z l ( t )  = O( t  - l / '~ logt) .  When we substitute this new estimate for zl into Gl ,  we have Gl = 
0(t -1-(2/~)+~ Thus the second equation in (55) is 

(1  )) . . . .  / - 1  

m t  + 0 0 = Zl" 

Solving this again, we obtain zl = O(t-'/'~). 

To take care of z2, . . .  , Zn, we note that G,~ vanishes with weight > 3/2, and so G .  = 
~ ~ 2 r n +  1 O(Iw12 + ~(IwZ~Zl[ + Iwz~l + IZ~Zl[ + ]z~z~+~] + ~ ,  I) § Iz~m+l [). We may assume 

that z/~ = O(t  -0/2)-~) for some e > 0, and so the third equation in (55) becomes 

_ ! _ e _ •  t-' ~(tz~)e = o(t -~) + o (t ~ m) + o(t-~-~). 

If e < 1/2, then we multiply by t, integrate with respect to t, and divide by t, to obtain 
z~ = ct -1 logt  + O(t-(V2)-~-(1/m)).  Thus we improve the old e by adding 1/rn until we 

reach z~ = O(t  -1 l og@ [ ]  

5. Final rescaling 

The goal of this section is to make a final rescaling of the domain Q and complete the proof 

of the theorem. We let f t  = exp(t R e  H )  denote the family of automorphisms of Q obtained 
by exponentiating the vector field H .  We will assume first that the vector field has the form 

H = Q(o  § . . . .  At the end of this section we discuss the case # = 1/2. 
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We now perform a scaling of  coordinates that is very similar to that of  Section 1. We let 

-= z - -  z (  t ) and ~v = w - w* ( t ), where we define w* ( t ) = u(  t ) + iv* ( t ) with v* < 0 chosen 

so that r ( w * ( t ) ,  z ( t ) )  ---- 0, i.e., v* = --Izl(t)12"~--F~ I z ~ ( t ) 1 2 - - u ( t ) ~ ( u ( t ) ,  z ( t ) ) - E ( z ( t ) ) .  
In the new coordinates, the defining function of  the domain is given by 

r(~,z)  ~(~ + ~*(t), ~ + ,(t)) 

�9 + (l~ + zl(t)[ 2~ - Iz l ( t ) [  2~) + ~-~'(1s + 2Re s  

+ ~ ( ~  + ~(t), ~ + ~(t)) + ~(t)[~(~ + ~(t), ~ + ~(t)) 

- p (u ( t ) ,  z(t))] + E ( 2  + z ( t ) )  - E ( z ( t ) ) .  

^ ^ 

Now we make another change of coordinates ~ = 2 and @ = zb + ~ 2 i 2 ~ ( t ) z , .  In the 
^ 

^-coordinates, but with the ~ omitted from all coordinates, the defining function has the form 

T" z v + (Iz, + z~(t)l 2m - I z l ( t ) l  2"~) + ~ z~2~ 

+ u(t)[p ( u -  ~ Re2i2.(t)z~ + u(t),z + z(t)) -qo(u(t),z(t))] 

+ E(~ + z ( t ) )  - E(z(t) ) .  (60) 

Now we make a scaling w = t-2zb, z i = t--1/mZl, Zc~ = t - - l~c~ .  We substitute the 

~-coordinates into (60) and multiply the defining equation by t 2 to obtain 

r (t) v + (]z, + t& z,(t)l 2m - I t &  z~(t)l 2m) + ~ z~2~ 

+ t2[E(t-"z + z(t)) - E(z(t))], (61) 

l t - l z n ) .  where t - " z  = ( t -~z , , t -  z 2 , . . . ,  

Let us analyze the behavior of  the various expressions. First, by Lemma 8, we may pass to a 

subsequence and assume that Zl (t)t ~/m converges to a limit/3. Also by Lemma 8, R e  2 i ~  (t)  = 
O ( t - l + ~  and it follows from (5) that 

p(t-zu - Re2i~( t ) t - iz~ + u(t), t-~z + z(t)) = O(t-i--~+~ 
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Thus it follows the first term in brackets [ ] in (61) tends to 0 as t ---+ oo. For the second bracketed 

term, we see from (5) and Lemma 8 that 

= O(t -'--~+~ + c ( t - 2 u  -- Re2i2~(t) t - ' z~)  = O(t-'--~+~ 

Thus t2u(t) times this term vanishes as t ---+ oo. By Lemma 8 and (45), we have E(t-Uz + 
z(t)) = O(t-2-(Vm)+~ so t 2 times the last term vanishes as t ~ o~. 

Let ht denote theholomorphic mapping obtained by the composition of ft  and the coordinate 
transformations z H ~ and the z H ~,. If  Gt = {r  (t) < 0}, then ht : f~ ---+ Gt is biholomorphic, 

and the domains Gt converge to the domain G = {v -4-Izl - / J I  2m - I~12'~ + E Iz~l 2 < 0}, 
which is equivalent to {vA-Izl 12m + ~  I z,~ 12 < 0} by translation. The point ht(pt) = ht(ft(po)) 
is given by the --coordinates of  the point Pt and is equal to ( i t - 2 ( v  * (t)  -- v ( t ) ) ,  0 , . . . ,  0). Since 

v * ( t )  - v ( t )  = z ( t ) )  - z ( t ) )  : - r ( w ( t ) ,  z ( t ) ) ,  

it follows from Lemma 9 that Pt is bounded and bounded away from OQ. Thus {htj (P0)} has 

a subsequence that converges to a point of G. It follows then from Lemma 2 that there is a 

subsequence of mappings htj that converges to a biholomorphic mapping h : ~ --+ G,  which 
completes the proof of  the theorem in the case /z  = 1. 

The main difficulties encountered in the final rescaling procedure above were due to the fact 
that u(t) is relatively large, compared to v(t). If  p = 1/2, however, then by (i) of Lemma 

8, u(t) = o(v(t)). Thus the arguments above carry through more easily in this case, and the 
theorem is proved. 
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