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Summary 
A m e t h o d  is p r e s e n t e d  for t he  numer ica l  so lu t ion  of b o u n d a r y - v a l u e  

p rob lems .  The m e t h o d  is appl icable  to  a r b i t r a r y  regions  in a n y  n u m b e r  of 
d imens ions .  The t e c h n i q u e  of so lu t ion  is non - i t e r a t i ve  and  appea r s  well- 
a d a p t e d  to  use w i th  h igh- speed  c o m p u t i n g  machines .  

w 1. Introduct ion.  The following problem is of great importance 
in both pure and applied mathematics. Given a closed region R (in 
two or more dimensions, simply or multiply-connected) and an 
elliptic partial differential equation E(u ;  x, y, z . . . . .  ) where u is the 
dependent and x, y, z . . . . .  the independent variables (which need 
not be cartesian). One supposes that u (and/or several of its deriva- 
tives) are given over the closed boundary of region R and determine 
a unique solution of equation E throughout R. The problem is to find 
this solution and, from the standpoint of the applications, find it in a 
practical manner. Indeed, if a particular boundary distribution be 
given, one would like to find the numerical  value of the solution, 
usually at a very large number of points inside the region. Such a 
large volume of numbers calls strongly for the use of a high-speed 
computing machine; in devising a technique of solution one should 
bear in mind the pecularities of such machines, which differ con- 
siderably in their abilities and methods of operation from human 
computers. 

w 2. General remarks. There are two widely used methods of at- 
tacking such a boundary-value problem as that  described above: 
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analytical and numerical. For a certain small (but non-trivial) class 
of regions and equations, it is possible to give an explicit formula for 
the "exact solution" of the boundary-value problem. Such a formula 
may be quite complicated, involving special functions and infinite 
processes, and therefore very difficult to reduce to numbers when 
the solution is required at many points. From a computational point 
of view, the use of an explicit formula does have two advantages: 
the solution can be obtained with any desired precision, and no 
lengthy, large-scale iteration is required. For the wide class of prob- 
lems where an explicit formula for the solution cannot be obtained or 
where such a formula is too formidable, one attacks numerically. 
The usual procedure is to cover the region R with a grid of points and 
replace the differential equation by a difference equation. Insisting 
that  this difference equation must be satisfied at every grid point 
interior to R, one obtains a high-order system of simultaneous 
algebraic equations (linear if the original differential equation is 
linear) which nowadays are usually solved by successive approxima- 
tions 1) 2) a). To program (i.e., plan) such a large-scale iterative calcula- 
tion on a computing machine is a considerable task. Moreover, the 
machine must remember many numbers and, unless convergence is 
rapid, calculating time will be an important factor. The difficulties of 
complicated programming and large memory requirements are also 
present when a computing machine is used to evaluate an involved 
analytical formula. Besides its generality (it can be applied to any 
equation over any region) the numerical method has one great 
advantage: it usually asks the computer, human or machine, to 
carry out arithmetic operations of only the very simplest sort. This 
paper will describe a procedure for solving boundary-value problems 
which appears to be of rather wide applicability, and to meet the 
practical requirements sketched in the first paragraph. This proce- 
dure is non-iterative, asks the computing machine to carry out only 
simple arithmetic operations, and does not require complicated 
programming or large memory capacity. 

w 3. Laplace's equation over a rectangle. We shall illustrate the 
suggested procedure by first considering a rather special case: the 
solution of Laplace's equation over a rectangle. Extensions (to more 
than two dimensions, to more general equations, and to more general 
regions) will be discussed later. 
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We shall always assume that our regions and boundary distribu- 
tions are sufficiently non-pathological so that a unique solution of 
the differential boundary-value problem exists. 

w 4. Consider a rectangle with sides L and D. We cover it with a 
rectangular grid: L = (N + l) Ax, D = (M + 1) Ay (M and N are 
integers; Ax and Ay are independent. 

,i-I .I ,I+1 
(O,D) (L,D) 

(0,0) 

Fig. 1. 

I 
K+I t 

K 3 0 I v = (M+I)Ay 
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L :  ( l ~ l )  Ax (L,O) 

C o m p u t a t i o n  over  a r e c t a n g u l a r  d o m a i n .  

u(x, y) must satisfy the difference equation 

o r  

u(x + Ax, y) - -  2u(x, y) + u(x - -  Ax, y) 

Ax 2 
+ 

u(x, y + Ay) - -  2u(x, y) + u(x, y - -  Ay) 
§ Ay2 

where we have replaced Laplace's equation, 

82u 82u 
- -  - -  = 0 j  

8x 2 + 8y2 

by its simplest possible difference representation. 
uik ---- u(i Ax, k Ay) must satisfy equation (I) at every interior 

point (1' - I, 2, . . . . ,  N; k ---- 1, 2 . . . . . .  M), and take on prescribed 
values (those for the differential problem) at all boundary points. 

u 4 -  2 u  o § u2 U l - - 2 u  o + u3 + = 0 ,  (]) 
Ay 2 Ax 2 
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Various authors 4)5)6)7) have shown that the solution u of this 
di]/erence problem will converge to the solution u* of the correspon- 
ding di/]erential problem as Ax, Ay-> 0 independently. Therefore, 
by  using a sufficiently fine grid, we can make the truncation error 
(u* - -  u) entirely negligible. Moreover, changing the boundary distri- 
bution at a finite number of points does not change the solution 
approached in the limit at interior points; we can therefore set u = 0 
at the four corners of the rectangle. Equation (1) does not call for 
any of the four corner values of u; however we might want to use a 
less simple difference representation for Laplace's equation which 
would yield an equally small truncation error with a coarser grid; 
the more involved difference equation might call for the corner 
values. 

w 5. The solution of (1) which vanishes at the four corners but  
which is otherwise arbitrary at the boundary grid points may be 
written as the sum of two solutions, each of which vanishes on two 
sides and takes the prescribed boundary values on the other two 
sides. Thus we need only seek a solution of (I) which satisfies the 
boundary conditions 

u(O, k Ay) = u(L, k Ay) = 0, (2.1) 

u(i dx, O) = Fi, u(i Ax, O) =-  Gj ,  (2.2) 
( i - - 1 , 2  . . . . . .  N;  k - - - -0 ,1 ,2  . . . . .  ; M +  I). 

All such solutions coincide at points of the grid. By  direct trial (or 
more systematically, by separation of variables) we verify that equa- 
tion (1) has solutions of the form 

Y 

u(x, y) = (sin fix) ~ 

where/~ is any real number, 

From (2.1) we get 

Y 

and (sin nix) ~ ' ,  

1 
41 -- - - ~ +  ~ 2 - - 1 ,  

;t 2 

~ 1 + 2r 2 sin 2 ~Ax Ay 
2 ' Ax 

n ~  
-~ -~, where n = 0, I, 2, 3, . . . . .  

(2.3) 
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Now in the sum 

N* 
2; s i n -  [ " 21 nnx ~ ~ ~ N*  ~ N,  

L P,dh,~ + ~."2,.-~, 

we can choose the 2N* constants P ,  and Q, so as to satisfy the 2N 
conditions (2.2). Since solutions with different values of N* have the 
same values at all points of the grid, we choose the simplest expres- 
sion, setting N* =: N. 

of (1) in the form 
x 

u i , =  Z s i n - - -  
n=| 

This is a matrix equation: 

where 

w 6. Using a notation previously explained, we write our solution 

in~ IP,,~L + GGI. (3) 
N + I  

U = CqS, (4) 

v = !l ui~ II, 
jn:~ 

C = ! l  ci,, I f =  s i n N + ~  ' 

= [1%~= II = II P,,2~,, + Q,,2~,, II, 
( j , n =  1,2 . . . . . .  N; k = O ,  1,2 . . . . . .  M + I ) .  

The symmetric matrix C has the delightful property of being, to 
within a constant, its owninverse:  

2 N 
C--1= C or XCrsCst-- 

N - t - 1  s=1 

0 r @ t ,  

N + I  
- r = t ,  

2 

as is well-known (see W i 1 1 e r s ~4), p. 335). Equation (4) is then 
easily solved: 

2 
- C  ~U . . . . . . .  CU, (4') 

N + I  

o r  

x l'nx 
k 2 22 u~k sin 

1 nJ, ln -1-  Qn~.gkn = 2u @- 1:;= 1 N + 1 

Now, from (2.2). Ujo =-- F/, u iMt l  = G i. 
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It follows that 

2 ~' i n s  
= - S Fj sin A, ,  (5) 

P " q - Q "  N q - l j = t  N q - 1  

~,i ]n7~ 
p ~i+l  tO ~U+l = 2 X Gj sin . . . .  t3,,, 
~n'm+ q- ~:,,"2,~ N + 1 j= l  N q- 1 

(n = 1 ,  2, 3 . . . . . .  N)  

where A,,, B,+ are the respective coefficients of the n'th harmonic 
in the finite Fourier expansions of F i and G~. Equations (5) are easily 
solved to give 

A ,,,~2,, ~ 'r-1 _ _  ] 3  n 11 'I M + I 1 ~  ,, / l nAtn  - -  

P n  = - -  .~Mz. + 1 - -  "~2.7.~M+ 1' Qn :=  "'ln~M+ 1-~_ -~M,.~2.. 1" (6) 

If M is large and A,, and B,, are of about the same order of magni- 
tude (the conditions which usually hold), then to a good approxima- 
tion, 

12~u l~ 3 M i 1 P,o , -  = Q,, A,, .  (6') 

The matrix q5 is now completely known and the solution of equation 
(1) subject to boundary conditions (2) is given by (4) or (more expli- 
citly) by  (3). We have replaced the inversion of a matrix of order M N  
(the number of interior points at which (1) must be satisfied) by the 
trivial inversion of N matrices of order 2. An essential step was the 
replacement of the set of base vesters [6,,] by the set [c,, 1, where 6, 
and c,+ are the n' th  columns, respectively, of the unit N ' t h  order 
matrix and of the matrix C. Both basic sets are orthogonal, but  the 
set [c,,? has the additional advantage that coordinates with respect to 
it are uncoupled as we move forward from line to line (k = 0, 1, 
2 . . . . . .  M q- 1) in equation (1). In other words, the set of vectors 
[c,, 1 are eigenvectors of the operator which carries line k into line 
k + 1. Previous investigators (see R o s e n b 1 o o m v) have used 
the set of base vectors [ ~  and have been led to the inversion of 
matrices of .order N rather than order 2, as here. We remark finally 
that  the reciprocal character of the matrix formulas 

2 
F = CA, A CF 

N - b  l 

is very convenient in checking numerial calculations. 
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w 7. We now observe that it is unnecessary to use formulas (3) or 
(4) to calculate the solution uj~ at each of the M N  interior grid 
points. We may write equation (1) in the form 

3y  
u 4 = (2u 0 - -  u2) - -  r2(ul - -  2u 0 + u3), r ~ zlx' (7) 

and it is clear from inspection of fig. 1 that  the solution of any line 
(k + 1) can be expressed very simply in terms of the solution on the 
two preceding lines (k, k -  1). Uio is given; from formula (3), we 
may compute ujl, and then using formula (7) "step-ahead" the solu- 
tion in the remainder of the region. This "stepping-ahead" process 
(or "marching", as it was picturesquely termed by R i c h a r d- 
s o n 9) has been effectively used for many years in the machine 
solution of initial-value problems (where the governing differential 
equation is hyperbolic or parabolic). The process has apparently 
never been applied to boundary-value problems for two reasons: 

(a) the absence of a technique for transferring data readily from 
remote boundaries to the initial surface; 

(b) the essential instability of a stepping-ahead process when 
applied to an equation which calls naturally for data given on a 
closed boundary. 

However, the idea of "stepping-off" the solution of an elliptic 
equation is probably old, though scarcely mentioned in the litera- 
ture; see R u n g e 1~). 

w 8. Error groT~th. By the instability of a stepping-ahead process, 
we mean that a1~ error (either a computer's blunder or a round-off 
error) introduced at any step is magnified in subsequent steps. Such 
matters are discussed by setting-up the variational equation, easily 
obtained from the equation governing the stepping-ahead process 10). 
If the governing equation is linear and homogeneous, the variational 
equation will have the same form, and the error will have the same 
law of growth as the general error-free solution. Thus if our governing 
equation be (1) or (7), the errors will also satisfy this equation and 
their growth will be given by formula (3). We see that the n ' th 
harmonic of the error consists of two parts 

( t '  n sin nL~x ) ~,~ and (Q,, sin L -x) ~,,; 

these parts are multiplied respectively by 



332 MORTON A. HYMAN 

41, and ~2u 
every  t ime we move  forward one line. Here  

_ _ _  

RI, , - -  - -  # ,  2r- V p , ~ -  1, 

F*, , -  1 + 2 r  2sin 2 N +  1 2 ' 

r ~ - - > 0 ,  n =  1, 2 . . . .  N �9 
AX "' 

Clearly '~1,, > 1 for all n and thus  an error  of any  f requency  fed 
into the calculation must  in general grow. An upper  l imit on 21, , 
which is closely approached for large N is 

2" --~ (1 + 2r 2) + %/(1 + 2r2) 2 -  1. 

For  

r =  0.1, 2* = 1.2210, 

r = 1.0, 4" : 5.8284, 

r - -  10.0, 2* = 401.9975. 

1 step at r = 10 equals 10 steps at  r -~ 1.0 and 100 steps at r = 0. I. 
However  

r = 0.1: (1.2210) l~ = 7.3653 (1.2210) 1~176 = 4.7 (10 s ) 

r = 1.0: (5.8284) L = 5.8284 (5.8284) 1~ := 4.5 (107) 

r : 10.0: (402.00) 1 = 4.0 (102) 

and it is clear tha t  in order  to go a given distance in the y-direction, 
i t  is be t t e r  f rom the s tandpoin t  of error growth to use a big ra the r  
than  a small r. However ,  the most~ useful difference solutions are 
those in which A x  and A y  are equal  or near ly  so th roughout  any  sub- 
region, i.e., r is 1 or ve ry  close to it. Moreover,  the convergence of the 
solution of the difference problem to tha t  of the differential  problem 

is p resumably  chiefly dependent  on the magni tude  of the larger of 
the two increments  Ax,  A y ;  hence, f rom the s tandpoint  of conver-  
gence, ve ry  little is gained by  using a Ay which is appreciably  larger 

or smaller than  Ax.  We add  one final remark  : the general solution of 
(I) over  a rectangle requires the superposit ion of two special solu- 

t ions which s tep-ahead respect ively  in the x- and y-directions and 
hence have reciprocal  r 's  (see w 5). Therefore,  if we intend to step-off  
these solutions separate ly  and af terwards  add them (rather than  vice- 
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versa, which leads to only one stepping-ahead traverse of the region) 
we should clearly use an r close to 1 to cut down error growth. For all 
these reasons, then, we believe that Ay/Ax should be as close to 1 as 
is permitted by the dimensions of the rectangle without using too 
fine a grid. 

w 9. Choosing r = 1, then, we calculate the maximum possible 
growth of a single error; since 

(5.8284)13.06= 10 I~ ' 

we see that in stepping-ahead thirteen lines, we can corrupt as many 
as ten decimal places ahead of the place where the error enters. It  
should be remarked that  the actual error present at any point is the 
sum of many errors of different amplitudes, frequencies, and growth- 
rates, so that  the description of growth in the preceding section is 
in general too dire, based as it is on only a single error of the fastest 
growing frequency possible. We reserve for another paper a detailed 
discussion of single and cumulative errors in step-wise processes; 
such an analysis is facilitated by expansion of each line of errors in 
terms of eigenvectors of the stepping-ahead operator (see w 6). In the 
present case of elliptic boundary-value problems the cumulative 
error appears to grow rapidly, in a manner indicated by the simple 
calculation above. However, it is very important to note that  the 
true (error-/ree) di//erence solution usually grows as rapidly as the error, 
since both are given by formula (3). Thus the tendency in general 
will be for the relative error to become and remain constant as we step- 
ahead; the number Of correct significant figures after many steps 
should differ by perhaps one or two from the number of correct 
significant figures with which one begins (see w 11). This is clearly 
seen from Table I: considering the first two lines (k = 0, I) to be 
exact, nineteen more lines were stepped-off using formula (7) with 
r = l, and retaining systematically eight significant figures. The 
exact values, calculated from formula (3), are given for comparison ; 
the relative error is in all cases of the order 10 -5 %, which is exactly 
what would be expected from a priori comparison of P1, P2,/~a (see 
w167 11, 13). Noting that  the number of correct significant figures 
remains nearly constant, while the decimal point migrates greatly, 
it seems desirable (but of course, not essential) to carry out the 
stepping-ahead process using a /loating-decimal-point calculating 
machine. 
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TAI3I .E I 

I o 1 2 3 4 

0 0.000 0000 
0.000 0000 I oooooooo 
0.0000000 

5 0.000 0000 
0.000 0000 

I 10 0.000 0000 
0.000 0000 

I5 0.000 0000 
0.000 0000 

20 0.000 0000 
O.OOC 0000 

2~00 0000 
2.000 0000 

6.785 7160 

6.785 7160 

1.177 8591(2) 

11177 8591(2) 

2.202 3728(4) 
2.202 3735(4) 

1.718 2771(8) 

1.718 2773(8) 

7.470 4734(11) 

7.470 4743(11) 

3.000 0000 

3.000 0000 

1.001 7859(1) 

1.001 7859(1) 

1.982 6769(2) 
1.982 6769(2) 

- -6 .257  0348(4) 

- - 6 . 257  0357(4) 

--2.781 8599(8) 
--2.781 8602(8) 

---1.082 4813(12) 
--1.082 4814(12) 

4.000 0000 
4.000 0000 

7.785 7160 

7.785 7160 

2.147 8591(2) 

2.147 8591(2) 

9.224 9728(4) 

9.224 9735(4) 

2.226 7123(8) 
2.226 7126(8) 

7.838 5798(11) 
7.838 5806(11) 

0.000 0000 
0.000 0000 

0.000 0000 

0.000 0000 

0.000 0000 

0.000 0000 

0.000 0000 

0.000 0000 

0.000 0000 
0.000 0000 

0.000 0000 

0.000 0000 

Lines k = 0, 1 are assumed exact (correct to an infinite number of significant figures). 
On top: exact solution, rounded to 8 significant figures, obtained using formula (3). 
Oi1 bottom: solution obtained by stepping-ahead fr'om lines k = 0. 1, keeping always 8 

significant figures. 
2.202 3726(3) is an abbreviation for 2.202 3726(10a). 

w 10. Thus the numerical solution of the elliptic difference equa- 
tion (call it N)*)  is "close" to the exact solution of the difference 
equation (A) *), in the sense that they agree to a large number of 
significant figures. Moreover, the proofs in 4) 5) ~) 7) show that, for a 
sufficiently fine grid, A will be arbitrarily close to D, the exact 
solution of the di//erential equation. Since N and D are close, we will 
have satisfactorily solved the differential equation by our numerical 
methods. Thus the usual terror inspired by instability does not seem 
justified in such elliptic problems. The fear is justified for parabolic 
problems, because (as pointed out in 10) instability or error growth is 
often accompanied in such problems by non-convergence (i.e., A does 
not approach D as the mesh is made finer and finer). 

w 11. We have remarked that the number of correct significant 
figures is nearly preserved as we step-ahead. This refers to the number 
o[ correct significant figures in the amplitudes o] the various/requencies. 
We now shall see how such significant figures can be lost at the begin- 
ning of stepping-ahead, and how this loss may be avoided. We have 
seen that each frequency/5 gives rise to two waves, 

PA ~ sin fix and QA k sin fix, 

*) We use the notation (N, A,  D) introduced in 10). 
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which respectively increase and decrease exponentially as y (or k) 
increases. P and Q are so chosen that 

P + Q = A  
and 

pxM+l + Q2--(M k l )  = B, 

where A, B are the amplitudes of the harmonic ~ on the first and last 
lines (respectively, k = 0 and k = M + 1). If A, B are of the same 
order of magnitude (this is usually the case, or can be managed, as we 
shall see) and M is large, both P and P2 will be very small in compar- 
ison with Q and Q2-' .  Let S be the amplitude on the second line, 

P2 + Q,~-' = S, 

calculated from the P and Q just found. In stepping-ahead, we tacitly 
assume the two "starting" lines (here the first and second lines) to be 
exact, while actually they are accurate only to a certain number of 
significant figures. That is, our process implicitly solves the equa- 
tions 

for P and Q, and uses P and ~) for stepping-ahead. But it is clear from 
these equations and the remark that the first term in each case is 
very small compared to the second, that  while Q will have about as 
many correct significant figures as A or S, P will have considerably 
fewer correct significant figures. By "correct" significant figures of 
an approximate number we mean simply the number of significant 
figures in which that number, considered as an infinite decimal, 
agrees with the exact number it is approximating. 

At any line k the value obtained by stepping-ahead is 

~t - k  p~k + Q , 

plus accumulated round-off errors which, as we have seen, do not 
much affect the number of correct significant figures. For k small, 
~2k contributes negligibly to the sum, but  for k large, this term is 
dominant and 

will agree with the exact amplitude 

P2 k + Q2 -k 
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only to as m a n y  significant figures as P agrees with P. Thus the 
error which m a y  rise to swamp us is not  the growth of round-off 
error, but  the inaccuracy implicit in our initial data,  which inaccu- 
racy makes its presence felt ever more s trongly as we step-ahead. 

w 12. To minimize this inaccuracy, we chose the two lines from 
which we step-ahead as the lines where fi2 k and ~2-k are of com- 
parable magni tude (are "ba lanced") ;  fi and  Q, evaluated at  the 
"ba lanc ingl ines" ,  will each have about  as m a n y  correct significant 
figures as we wish to employ in our stepping-ahead. If the values 
prescribed on opposite sides of the rectangle are of the same order of 
magnitude,  we choose two lines at  the middle of the region and step- 
off in both  directions. If there are a great m a n y  lines between opposite 
sides, it will be desirable (see also w 13) to insert s e v e r a l  pairs of very  
accurate "s tar t ing lines" (using formula (3)) and step-off the entire 
region piecewise. Beginning at  or near the middle, one would step- 
ahead perhaps ten or twen ty  lines, then compute two more "s ta r t ing  
lines", s tep-ahead again, compute two star t ing lines, step-ahead, etc. 
The stepping-ahead process can be checked and the error growth 

l l 1 l T 

. . . . .  . . . .  _ §  

..... 4 

L 1 T 
(2,) (2b) (2c) 

Fig. 2. Alternative stepping-ahead routines. 

l 

"starting" lines, computed from formula (3). 
adjacent lines where steppings-ahead overlap. 
balancing position. 

I t is not intended to imply that the balancing position need be in the center or 
that the number of lines between opposite sides (k = O, 1, 2 . . . . . .  3I + 1) 

is the same in all four figures. 
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monitored by making the last two lines computed by stepping-ahead 
coincide with the two starting lines which begin the next stage of 
calculation; this also checks the evaluation of formula (3). The 
pattern of calculation just described is indicated schematically in 
Figure 2a; three other patterns which possess some advantage are 
given in Figures 2b, 2c, 2d. We remark that the balancing position 
will be usually (but not always) near the middle of the region; more- 
over the distance between pairs of starting lines need not (and if we 
wish to mininfize the number of starting lines while keeping the 
tolerable error the same should not) be constant. 

w 13. It  should be observed that, whereas by starting in the middle 
we have balanced the amplitudes fia~, Q21 k of the two waves genera- 
ted by each frequency, the amplitudes of different frequencies P1,~1, 
P2,~2, ~a,~3, . . . . .  and Q I ~  ~, Q2~  ~, Qa,~i~ k . . . .  , are not of the same 
order of magnitude at the middle. We conclude, by an argument 
similar to that  used before, that  PI, P2, P3, " .  will differ in their 
number of correct significant figures, as will Q1, Q2, Q3 . . . . . .  How- 
ever, the resulting loss as we step ahead does not appear to approach 
in magnitude the loss we have just avoided. We may diminish (often 
considerably) the present loss by the device of subtracting out at the 
very beginning the constant part of the solution - -  i.e., the part 
obtained by averaging the boundary values. This device serves the 
double purpose of 

(a) diminishing the amplitudes of the lower frequencies which 
decrease at the smallest exponential rates in passing to the middle 
of the region ; 

(b) making the average of boundary values on opposite faces 
approximately the same, thus in general justifying our use of the 
middle for balancing. 

By subtracting out the constant part of the solution, we are able 
to obtain more accurately the variable part, a matter  of considerable 
importance if we intend to differentiate (via differencing) the num- 
erical solution. 

w 14. We present three calculations which illustrate and support 
the foregoing remarks. Table II shows the results of applying the 
process to a 5 • 5 square, stepping-off in turn from the left and top 
sides, and then adding; the calculation was performed twice, car- 

Appl. sci. Res. B 2 22 
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"FABLE I I  

1 

2 

3 

4 

0.000 0000 

0.000 0000 

2.000 0000 

2.000 0000 

3.000 0000 
3.000 0000 

4.000 0000 

4.000 0000 

0.000 0000 

0.000 0000 

1.000 0000 

1.000 0000 

2.000 0000 

2.000 0000 

- -  3 .000  000 

- -  3 .000 0001 

- -20.000 000 
20.000 0002 

- - 5 4 . 9 9 9  999 

55.000 0008 

1.000 0000 
1.000 0000 

8.000 000 

8.000 0001 

2.999 999 
2.999 9998 

--26.000 000 

- - 2 5 . 9 9 9  9999 

- - 9 1 . 0 0 0  000  

- - 9 1 . 0 0 0  0000 

1.000 0000 

1.000 0000 

26 .000 001 

26 .000 0006 

32.999 996 

32 .999 9991 

4 .000 001 

4 .000 0008 

79 .000 001 

- 78.999 9992 

0.000 0000 

0.000 0000 

62.000 009 

62.000 0032 

98.999 983 

98.999 9952 

88.000 009 

88.000 0032 

0.000 0000 
0.000 0000 

O n  t o p :  n m n e r i c a l  so lu t ion ,  c a r r y i n g  eight significant figures (no g u a r d  f igures) .  

Oll b o t t o m :  n u m e r i c a l  solution,  carrying seven d e c i m a l  p laces .  

T A B L E  I I l  

0 1 2 3 4 

0 
1 

7 

8 

9 

10 

11 

0 .0000  0000 

0 .0000  0000 

0 .0000 0000 

0 .0000 0000 

0 .0000 0000 

0 .0000 0000 

0 .0000 0000 

6.0000 0297(4) 

1.0330 3168(4) 

--3.5218 3628{I) 

- - 1 . 7 6 9 6  1667(1) 

- - 9 . 8 7 1 7  3115 

- - 7 . 6 6 4 4  7973 

- - 9 . 8 7 1 7  3117 

9.0000 0363(4) 

- - i ,9951 4298(4 ) 
- -5,2725 5056(I) 

2.5694 5728(1) 

- - 1 . 4 1 2 6  2782(1) 

- - 1 . 0 9 1 4  4566( i )  

- - 1 . 4 1 2 6  2782(1) 

4.0000 0216(4) 

4 .9713 3080(3) 

3 .7202 4376(1) 

- -  1.8230 3406( 1 ) 

- - 1 . 0 0 2 4  3523(1) 

7.7407 9027 

- -1 .0024 3522(1) 

0.0000 0000 
0,0000 0000 

0.0000 0000 

0.0000 0000 
0.0000 0000 
0.0000 0000 

0.0000 0000 

B o u n d a r y  distribution: at j --  0, 4: i d e n t i c a l l y  zero 
at k = 0 ,20:  e x a c t l y  6(104), - -9 (104) ,  4(104). 

Line k = 10, 11 were  c a l c u l a t e d  co r r ec t  to nine significant figures, and tile so lu t ion  

stepped off, carrying one guard f igure  (i.e., t en  c o l u m n s  of a digital  decimal c a l c u l a t o r  

were used) .  In  the results given above,  the tenfh column has been  r o u n d e d  away.  

rying, respectively, eight significant figures and seven decimal places; 
the exact solution may be obtained by rounding to the nearest in- 
teger the numbers shown; the boundary distribution imposed was 
not averaged. Tables III and IV show the same potential problem 
solved respectively by stepping-off from the middle and from one 
side. It is supposed that a ten-place machine with floating decimal 
point is being used; we round the starting data to nine significant 
figures and use the tenth column for a guard figure. Starting from the 
middle (lines k = 10, 11) it is seen that we lose about 2.3 significant 
figures in advancing ten steps (Table III). A simple calculation 
shows that by assuming lines 10 and 11 to be exact 
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have respectively 8.9, 7.4, 6.8 correct significant figures. Starting 
from one side and stepping-ahead (Table IV), we see that after eight 
steps almost all significance is lost and the numbers computed are 
useless. In general, there is a rapid loss of correct significant figures 
from both the left and right of computed numbers, as we move from 
the boundary toward the center of the region. The loss on the left 
is by cancellation, and the loss on the right is caused by round-off 
error feed-in and build-up. In the example summarized in Table IV, 
however, no round-off errors are fed-in by the stepping-ahead calcul- 
ations, because the numerical work calls only for additions, subtrac- 
tions, and multiplications by the integer 4, with no overflow of the 
registers necessitating round-off on the right. 

] ' A B L E  IV 

k \ j  0 1 2 3 4 

0 
1 
7 
8 
9 

10 
11 

0.0000 O00C 
0.0000 O00C 
0.0000 0000 
0.0000 O00G 
0.0000 0000 
0.0000 0000 
0.0000 0000 

6.0000 0000(4) 
1.0330 3108(4) 

--3.53812 (1) 
--1.85057 (1) 
--1.39468 (1) 
--2.83772 (1) 
--1.159202 (2) 

--9.0000 0000(4) 
--1.9951 4229(4) 
--8.25341 (1) 
--2.46947 (1) 
--8.9043 
+ 1.63583 (1) 
+'1.283122 (2) 

4.0000 0000(4) 
4.9713 2697(3) 

--3.73103 (1) 
--1.88348 (1) 
--1.33342 (1) 
--2.55975 (1) 
--1.054140 (2) 

0.0000 0000 
0.0000 0000 
0.0000 0000 
0.0000 0000 
0.0000 0000 
0.0000 0000 
0.0000 0000 

B o u n d a r y  d is tr ibut ion:  at  j = 0, 4: iden t i ca l l y  zero.  
at k -- 0, 20: exact ly 6(104), --9(10*), 4(104). 

Lines k -- 0, 1 were ca lcu la ted  correct  to nine s igni f icant  f igures,  and the so lut ion  
stepped-off ,  carry ing  one guard  f igure (i.e., ten co lumns  of a digi tal  dec imal  ca lcu la tor  
were  used).  In the  results  g iven  above ,  the tenth  c o l u m n  has  been  rounded  a w a y .  Not i ce  
how v e r y  rap id ly  correct  s igni f icant  f igures are lost on the left  b y  cance l la t ion .  

w 15. Poisson's  equation oz'er a rectangle. So far we have been dis- 
cussing the solution of Laplace's equation. But our techniques are 
easily applied to Poisson's equation: 

+ -= F(x, y). (8) 

As before, we replace the differential equation by a difference equa- 
tion (see fig. 1) 

u 4 - 2 %  + u 2 u 1 - 2 u  o + u 3 
+ --  G 0, (9) Ay 2 Ax 2 

o r  

u 4 = ( 2 %  - -  u2) - -  rU(ul - -  2% + u3) + G O A y  2 

where r - -  A y / A x  as before, and G O - -  G ( x  o Yo). 

(lo) 
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Equation (9) must  hold at every interior point of the mesh 
(i = 1, 2 . . . . . .  N ;  k = 1, 2 . . . . . .  M) .  Let Gjk denote GffAx,  k a y ) ;  

then we easily obtain the double sine expansion 

N .~I :zjn :~km 
G j k :  Z S 7,,m sin - -  sin ~ ,  (11) 

. = 1  . . . .  1 N + 1 M + 

where 
4 N 3I ~ f n  

X Z Gjk s i n - -  s i n - - -  
7,,m (M + 1) (N + 1)j=l k:l N + 1 

As before we can put  these relations in matr ix  form : 

G = CTD, 

4 
7 = C-1GD-~  = 

( M +  1 ) ( N +  1) 

where 

and the matrices 

~ k m  
(11') 

M +  1 

(12) 

CGD, (12') 

(14') 

satisfies equation (9) at all interior mesh points and vanishes 
identically on the boundary. We next obtain an explicit solution 
of Laplace's equation for the prescribed boundary values, in the 
manner  described previously: 

! rt 
V~ = I + Vjk + Vj~, 

where I is the constant solution, and V/k and V~:~ are, respectively, 

we see, by direct substitution, that  

N M ~ / n  

W j k =  2," Z ~ % m s i n - - -  
n - 1  m=l  N + 1 

or W :  C o ) D  

z~km 
sin - - -  (14) 

M + I  

" :, ! 7gKm 
zqn D = sin - -  

C =  sin N - F  1 M +  1 

are used in solving the related homogeneous (Laplace's) equation. 
Setting 

AY 2 7rim o, m - (13) 
4 1- 2 �9 2 ~ n  ~ m  

Lr sm 2(N~--1) ~- sin22(M +1)  / 
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the "horizontal" and "vertical" solutions for the rectangle. It  is 
clear that  

Uik = Vj~ @ Wjk (15) 

is the solution we seek, because 
(a) it satisfies equation (9) at every interior mesh p o i n t ;  
(b) it takes on the prescribed boundary values. 
Our procedure assumes a certain amount  of regularity for the 

function G(x, y). If G possesses irregularities of certain sorts which 
are not first removed, the procedure here followed may not yield 
properly convergent (or sufficiently rapidly convergent) results as 
the mesh dimensions shrink to zero. In such cases, other methods 
have to be employed, somewhat more complicated than the simple 
methods described here. 

w 16. We now proceed as before : using the explicit solution (15), 
we compute several pairs of lines in the interior of the region and 
step-off the solution in between these lines using formula (10) and 
analogous expressions. Note tha t  we may adopt any of several 
procedures to obtain 

! t t  

I + V j ~ + V j k + W j k  

which vary in the amount  of work they require and their accuracy: 

r '  " (a) ~ + (j~) + (v,~) + (wj,), 
t / t  (b) i + (vj~ + v,~) + (wj~), 
t t t  (c) I + (vj~) + (vj~ + wj~), 
! I I  (d) I + (Vj~ + Vj~ + Wjk), 

etc. ; the quant i ty  inside any pair of parentheses is computed by a 
single stepping-ahead traverse of the region, set up from the explicit 

t H 

formulas available for Vjk, Vik, Wik. Our choice of procedure is 
based on convenience and the stability considerations of w167 8-13. 
Procedure (a) is probably the most accurate, usually, and procedure 
(d) the quickest. One should always be careful about combining 
quantities of different orders of magnitude in setting-up a stepping- 
ahead calculation. I t  seems best, in general, to add on I at the end 
of the calculation, particularly if it differs in order of magnitude 
from the other numbers entering. 
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w 17. Extensions o/the technique. Let us summarize the principal 
features of our technique, after which it will be clear what the 
possible extensions are. 

(a) We first by some means obtain an explicit solution (ES) of the 
difference equation satisfying prescribed conditions at the boundary 
mesh points. If the equation (which may be non-homogeneous) has 
a simple structure and the region is simple geometrically, it will be 
possible to obtain (ES) by direct analogy with the techniques which 
are known to succeed for the corresponding di][erential boundary- 
value problem - -  such as separation of variables, generalized Fourier 
expansions, integral representations, etc. - -  each suitably modified 
for application to difference equations. For all those differential prob- 
lems, with various equations and regions, which have been solved 
explicitly, we may' expect to obtain an explicit solution of the 
corresponding difference problem. Thus we may expect to solve La- 
place's and Poisson's equations not only over rectangles, but these and 
somewhat more complicated equations over the interior and exterior 
of circles, rings, ellipses, etc. ; indeed, we may go to higher dimensions 
without difficulty, solving over parallelopipeds, spheres, ellipsoids, 
etc. It  should be remarked that problems in more than two dimen- 
sions are almost entirely beyond the scope of present-day iteration 
methods (A 11 e n has recently made a preliminary attack using 
relaxation methods 11)) ; from the computing machine point of view, 
the number storage required with more than two independent vari- 
ables is enormous. 

(b) Using the explicit solution (ES) obtained in some way, we 
compute sufficient "starting lines" (varying in number with the 
order of the difference equation) near the middle of the region (or 
wherever the different components of the solution are most nearly 
"balanced") and step-off the solution, a process which involves only 
simple arithmetic operations. After having taken as many steps 
forward as permitted by the tolerable loss of significant figures, we 
compute several more "starting lines" (generally the last ones 
obtained by stepping-ahead, which checks that operation) and step 
ahead again, etc. - -  stepping in general always from the interior of 
the region toward the boundaries. The distances between groups of 
starting lines need not all be the same; indeed, given the tolerable 
loss of significant figures, it seems possible to calculate optimum 
values for these distances. If the totality and complexity of the 
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"starting" calculations are not too great, it would seem possible to 
calculate all the starting data by some relatively slow computing 
device and do only stepping-ahead on a fast electronic computing 
machine. In describing how to find the explicit solution, we have 
split it into parts.: the constant part, the non-homogeneous part, the 
several parts of the homogeneous solution ; all these partial solutions 
can be combined and the whole region traversed only once ; or, any 
combination of partial solutions may be stepped-off separately over 
the region and later combined; the decision is based on convenience 
and error control considerations. The process as we have described 
it is non-iterative. However, it may be thought desirable to employ 
some iterative techniques analogous to the iterative techniques used 
in solving ordinary differential equations by stepping-ahead methods 
--- whose purpose is to decrease the order of the truncation error in 
the solution (thus allowing a larger step with the same or smaller- 
sized error). These techniques involve computing the next point (or 
the next line), correcting it several times, then proceeding to the 
next following point (line), etc. ; they are obviously iterations of a 
much lower order of magnitude in time and number storage required 
than the techniques ordinarily referred to as iterative in the numeri- 
cal solution of boundary value problems 12) la) 14). For parabolic and 
hyperbolic partial differential problems, such iterative stepping- 
ahead techniques have been used by H a r t r e e  and by v o n  
N e u m a n n  (for a fuller discussion, see O ' B r i e n ,  H y m a n ,  
and K a p l a n l ~  

w 18. We would like to add several specific remarks to the above 
generalities. First of all, it seems desirable to subtract out whenever 
possible, a so-called "constant part" of the solution, which is usually 
some convenient average of the boundary values. This constant will 
in many cases satisfy the homogeneous equation, but, if not, the 
residue can often be subtracted from the right member. Thus, for 
example, if u(x, y) satisfies 

ux~ + uy~, + 4u = F(x, y) 

then v --~ (u - -  I) satisfies 

v~x + vy, + 4v = f ( x ,  y) - -  41 _= G(x, y). 

Similarly, it is usually wise to subtract out any other simple parts 
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of the solution whose subtract ion at every mesh-point of the region 
is easily managed. These devices are always applicable if the govern- 
ing equat ion is linear. 

w 19. Next  we remark that  the equat ion 

L ( u )  = C ( x ,  y ,  z . . . . . .  t) ,  (16 )  

where L (u) is a general linear difference operator  with constant  coeffi- 
cients and arb i t rary  order, can be solved explicitly over a rectangle, 
parallelopiped, etc. (we assume a certain amount  of regulari ty for G). 
This s ta tement  follows from the observat ion that  L(u) = 0 admits  
solutions of the form 

t 

(sin a,,x) (sill fl,,,y) (sin 71z) :2 A' ), etc., 
. . . .  \ n m l  . . . .  

where 
{a.}, {Y,} . . . . .  

are, as before, finite sequences of constants  of the form 

:rn :rm .xl 

% --  (X + 1) Ax' ~m - -  ( M  -~- 1) Ay' ~l - -  (L 4- 1) Az . . . . .  

( n = 0 ,  1 . . . . .  N 4 - 1 ;  m = 0 , 1  . . . . .  M 4 - 1 ;  l - - 0 ,  1 . . . .  , L 4 - 1 ; . . . )  

and 2,ml . . . .  is a known constant  depending only on n, m, l," . . . . .  In 
three dimensions, for example,  we would write 

u(x, y, z) = v' 4- v" 4- v"  4- w, 

where w is a part icular  solution of L(u) = G and v' is tha t  solution 
of L(u) = 0 which vanishes on all four faces of the parallelopiped 
which are parallel to the x-direction. Then 

M L x 

tO 2Ax~ (17) /P  2zlx 4- ~ z  2~z: v ' =  Z Z sin /7.,y sin y;z ~ ,~; x~; 
m= I I 1 

and 
N M L 

z~' Z Z Z (sin ,x,,x sin fl,~y sin ylz) o~,,,, t (18) 
n 1 m 1 1 = 1 

where P,,z, Qml, ~o,~,,~ are constants  determined wi thout  difficulty in 
a manner  str ict ly analogous to the one already explained. Formulas  
(17) and (18).are analogous to equations (3) and (14) and can be 
thrown into matr ix  forms analogous to equations (4) and (I 4'). For  
convenience in this example, we hare implicitly assumed that  L(u) is 
a second-order difference operator  and that  21 is in all cases distinct 
from 22. 
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w 20. We would like to stress our use of the method of separated 
variables, which provides us with "uncoupled coordinates". As we 
cross from one boundary to another, the amplitudes of these coordi- 
nates change in an easily followed manner, and there is no interaction 
or influence on each other of the amplitudes of different components. 
It  is this property which enables us to connect up with ease data 
given on separated surfaces, obtain the undetermined constants in 
our "explicit" solution so that  it becomes truly explicit, and makes 
a knowledge of the exact solution available wherever in the region 
we want it. Moreover, the uncoupled variables will usually, because 
of imposed boundary conditions, be orthogonal; this property, as we 
have seen in equations (4), (4'), and (12), (12'), makes for great 
analytical elegance and in particular allows great ease in certain 
checking that must be done. 

w 21. In connection with non-homogeneous equations, 

L(u) - - G ,  (19) 

we seek relatively simple functions {#~} such that 
(a) inside the region, G is conveniently expressed in the form 

# E a i Or where # is a known function ; 
(b) the solution of L(u) = # a~ O i is easily obtained. 
It  will be an added convenience if the {~i} all satisfy certain condi- 

tions at the boundaries of the region, such as vanishing. These condi- 
tions may ordinarily be satisfied by  seeking functions {q~i} such that 

t(~,) - , . k~ , ,  (20) 

where the ki are constants, and # is a product of known functions, 
each function depending on one of the independent variables. We 
solve equation (20) by separation of variables, obtaining 

r - -  X d x  ) Y , (y )Z , ( z )  . . . .  ; 

we endeavour to choose tt and impose such boundary conditions on 
X~, Y i ,  Z~ . . . . .  as will yield a set of relatively simple functions 
allowing convenient expansion of a fairly general function G. It is 
also sometimes desirable to insist that  ki r 0; otherwise, the solu- 
tion of L(u)  = A#qb~ will not be u = A ~ i / k  i but B ~ v ,  where v is 
some auxiliary function, such as a power or a logarithm. In  some 
cases, there will be several sets of {~,} which we may use, the sets 
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differing in the degree to which they possess (or do not possess) the 
advantages we have mentioned above. Which set we use then be- 
comes a matter  of convenience. We might mention the case of Pois- 
son's di[]erential equation in a region of circular symmetry. Here we 
may use as our {q~} either 

(a) q~,, = [A cos mO + B sin mO] [C~" + Do~-"] 
o r  

(b) q~',~,, = [A cos mO + B sin mOi [CJ,~ (n~) 4- DY,n (n~)l 

where m is an integer > 0, n > 0. 
Powers of ~ are of course much simpler to deal with than Bessel 

functions; moreover, powers of ~ appear in the solution of the homo- 
geneous equation and it is convenient to continue their use for the 
particular solution of the non-homogeneous equation. On the other 
hand, k i vanishes if rn = n when using set (a), but  k i never vanishes 
if we use set (b). In addition, we may readily choose the constants 
C, D, and n, so that the functions q~'~n will, as functions of ~, have 
various pleasant orthogonality and boundary-vanishing properties. 
The restrictions on G when using set (b) seem much weaker than 
when using set (a). We can of course combine e :'n for different inte- 
gral n to form Legendre polynomials, etc., allowing expansion of 
more general G's ; but  then we lose the convenient reproducing prop- 
erty (20). 

w 22. So far we have described methods which are ordinarily 
usable only for geometrically simple regions, such as rectangles, 
rings, spheres, etc. Such regions are really the most important ones, 
since their simplicity makes them occur again and again in applied 
mathemat ics -whereas  a region of irregular shape may occur on 
only one occasion (although it may be required to obtain a solution 
for a considerable family of boundary distributions on that one 
occasion). But suppose that  we do have a non-simple region. 
Then, of course, various techniques of mapping are available to us, 
of which the best known is perhaps conformal mapping applied to 
Laplace's equation in two dimensions. To find the transformation is 
itself a boundary-value problem, and we may have to carry out by  
hand an iterative numerical calculation to find the mapping function 
(see S o u t h w e 11 for the use of relaxation techniques in con- 
formal mapping 1)). But such a numerical task of mapping need be 
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carried through only once; after that, if the transformed region and 
transformed equation fall into the category of problems to which our 
new techniques apply, we may solve rather easily for any number of 
different boundary distributions, the chief numerical problem being 
probably not the solution of the transformed equation over the 
transformed region, but  the transformation back to the original 
region. 

w 23. We now describe a technique which seems to handle irre- 
gular regions and does not involve mappings. We use Laplace's 
equation as an example. Let us divide the boundary by  2N 
points, which may be spaced at our convenience (see fig. 3): 
x~, y~ (a =- ]. 2 . . . . .  2N) with corresponding boundary values u~. 

u:Y 

(0,0) 

7 

'Q ? / ~  --= ~ ' x e  
. . /x'  15 I ~: I 

x~ X / x  ~ I 

.K3 

(L,0) 
L 

Fig. 3. C o m p u t a t i o n  over  an  i r r egu la r  d o m a i n .  

Next we enclose the whole figure in a rectangle. We divide the 
rectangle by  N evenly spaced verticals and as many evenly spaced 
horizontals as are convenient (it is desirable but  not essential that 
A x  = Ay  approximately). 

The 2 N  boundary points need not be points of the lattice. Now 
(cf. formula (3)), the solution of the difference equation (1) for this 
lattice can be written as 

N n . 7 ~ x  "~ Y 

u(x,  y) = I + 22 sin . . . .  [P,,2,~' + Q,/~24~'1' (21) 
,,-= 1 L 

I may be taken as zero or as the average of the {u~). The 2N con- 
stants {P~, Q~} are determined by imposing the boundary conditions 
u = % - -  I at x~, y~ (note that '~1,, and ;t2, ~ are real and positive - -  
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equation (2.3) - - a n d  therefore "~an>'/s;' and ~ '  have real meanings for 
non-integral values of y/Ay). (21) is a "sine formula"; the condition 
u = I on x = 0 and x = L in general induces new singularities out- 
side R of the differential solution u*. Alternatively, we may use a 
"sine-cosine formula" and leave unspecified the values of u on x -- 0, L. 
It  should be noted that the presence of singularities causes loss 
of significant figures in numerical work; for example, we should 
avoid evaluating formula (21) near singularities. 

w 24. Thus we have to invert a (2N • 2N) matrix by some means 
after which (21) is an explicit solution of Laplace's difference equa- 
tion over the irregular region, taking on the prescribed boundary 
values; starting from (21), we apply our usual stepping-ahead 
methods *). We make the following remarks: 

(a) The matrix to be inverted is independent of the values {%} 
assigned at the 2N boundary points, and can be inverted once and 
for all for any particular region (provided the same boundary points 
are used). In changing from one boundary distribution to another for 
this region, we need only multiply the (2N • 2N) inverse matrix by 
the new vector ( u ~ -  I ') to obtain the new coefficients {P~,, Q',} 
(primes denote new values). 

(b) Suppose the number of interior and boundary points to be 
about M 2 and 4M, respectively. The usual methods (relaxation, 
etc.) seek to invert for each boundary distribution a specialized 
(M 2 • M 2) matrix, while here the matrix to be inverted once is 
merely (4M • 4M). If the region is a perfect rectangie, we have seen 
that the matrix problem can be reduced much further still, to the 
trivial inversion of 2M (2 • 2) matrices. If the region, while not com- 
pletely elementary, still possesses a good deal of symmetry, the 
typical matrix to be inverted may be somewhere in order between 

2 and 4M. 
(c) We have illustrated the method by enclosing the irregular 

region R in a rectangle. This is usually most convenient. However, 
if R is nearly circular, or nearly elliptic, we may find it desirable to 
use one of the other "standardi'  lattices over which we can solve. 
The chief difficulty would seem to be in finding and evaluating the 

*) To  solve  Po i s son ' s  e q u a t i o n  over  R, we f i rs t  ge t  a p a r t i c u l a r  so lu t ion  over  t he  

r e c t a n g l e  b y  a n . o b v i o u s  a d a p t a t i o n  of ou r  p r e v i o u s  t e e h n i q u e  - -  t h e n  solve  L a p l a e e ' s  

e q u a t i o n  over  R wi th  mod i f i ed  b o u n d a r y - v a l u e s .  
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explicit solution (ES) at the "starting lines"; but the stepping-ahead 
which we conceive to be the major part of the numerical work, al- 
ways consists of simple arithmetic operations. It  should be noted 
that the rectangle, circle, parallelopiped, etc., which we put around 
the region R to be solved, is merely a "scaffolding", a device for 
setting up a convenient (ES) over R. 

(d) There is no question that (21) gives us a valid solution of the 
difference problem; that is, (21) certainly satisfies the equation and 
takes on the assigned boundary values. There is some question of 
convergence, however; that  is, what happens as the mesh dimem~ions 
go to zero ? For example, there might be an infinite singularity at the 
point Q; as the mesh dimensions go to zero, (21) must go to infinity, 
at least near Q. 

Over what region, then, does (21) converge ?, To what values does 
it converge? Does this region contain R? These are interesting 
questions about which we shall say only a little here. The discussion in 
references 4) 5) 6) 7) shows that a solution of equation (1) which takes on 
the proper values at the boundary points of a general region R must 
converge to the solution of Laplace's differential equation analytic 
throughout R and taking on the prescribed boundary distribution. 
We believe that this general convergence theorem (which holds for 
more general problems than Dirichlet's) covers our t reatment  (sum- 
med up in equation (21)) of an irregular region R inside which a non- 
singular solution is sought. Outside R, the region of convergence of 
(21) will depend on the position of singularities, generally present, 
of the differential solution u*. 

It  should be remarked that  the rate of convergence at any point 
P (inside or outside R) is influenced by the nearness of P to these 
singularities. 

w 25. Note that our method in effect yields, not the Green's 
function for the di]/erentiat equation and domain, but an arbitrarily 
good approximation thereof - -  and the result is in a form well-suited 
to computation. Elsewhere we shall discuss the interesting integral 
equation analogue of (21), obtained by passing to the limit of 
infinitely many boundary points. As far as we know, this integral 
equation approach to the solution of linear boundary-value problems 
is new. 
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w 26. In this paper we have usually spoken in terms of second 
order elliptic equations in which the values of the unknown function 
are given along the closed boundary of the region. But considering 
the remarks we have just made concerning extensions of the techni- 
que, it is clear that higher order equations (involving, for example, 
the biharmonic operator) and other boundary conditions (involving 
the unknown function and/or several of its external derivatives) 
introduce no difficulties in principle. We reserve for a later paper 
explicit discussion of these matters, as well as eigenvalue problems. 

w 27. We conclude with two remarks. First, our use of stepping- 
ahead techniques allows a unified approach to the numerical solu- 
�9 tion of mixed problems (where the governing differential equation is 
sometimes elliptic, sometimes hyperbolic or parabolic in the region 
of integration). A good example of a mixed problem is computation 
of the transonic flow of a gas; in the numerical solution of this pro- 
blem it is usual at the present time to use iterative methods in the 
subsonic (elliptic) regime and stepping-ahead methods in the super- 
sonic (hyperbolic) regime. Our second remark consists of the obser- 
vation that, in solving a difference problem by our methods, we have 
in effect inverted a high-order matrix. This is the reverse of the usual 
"direct" procedure for the non-iterative solution of a difference 
equation, which consists of the systematic inversion of the high- 
order matrix. We thus have discovered, as a by-product of our 
research, a new method for inverting high-order matrices of simple 
(but non-trivial) structure. Indeed the only essential attribute of 
this structure seems to be that there should be zeros everywhere 
except on certain diagonals (if we order the points and the equations 
in the most obvious way); otherwise, the matrix elements may be 
fairly general. 
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