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ABSTRACT

In dynamical systems theory, a standard method for passing from discrete
time to continuous time is to construct the suspension flow under a roof
function. In this paper, we give conditions under which statistical laws,
such as the central limit theorem and almost sure invariance principle, for
the underlying discrete time system are inherited by the suspension flow.
As a consequence, we give a simpler proof of the results of Ratner (1973)
and recover the results of Denker and Philipp (1984) for Axiom A flows.
Moreover, we obtain several new results for nonuniformly and partially
hyperbolic flows, including frame flows on negatively curved manifolds
satisfying a pinching condition.

1. Introduction

Let (X,u) be a probability space. Suppose that S: X — X is a measure-
preserving transformation and that ®: X — R is a measurable observation.
Consider the sequence of partial sums &y = Z;v:_ol ® o S7. Provided S is
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ergodic and ® € L'(X), Birkhoff’s ergodic theorem (or the strong law of large
numbers) states that

(SLLN) lim 2 = / ddy  ae.
N X

Under certain hypotheses, the central limit theorem (CLT) states that

(I)N —Nf <I>d/1, 1 ¢ .2 2
CLT lim — X " <l = / e 27 g
( ) N—)oo’u{ v N } \/271-0-2 o

The CLT has been established for large classes of dynamical systems. Usually,

the dynamical system X is assumed to have some hyperbolicity properties
(Axiom A or nonuniformly/partially hyperbolic; see, for example, [25, 27, 30,
31, 7, 11, 22]) or expansivity properties (for example, [28, 19]), and the observa-
tion ® is assumed to have certain regularity properties such as Holder continuity
or bounded variation.

SUSPENSTON FLOWS. There is a standard method for constructing continu-
ous time dynamical systems (or flows) from a discrete time dynamical system
S: X — X.

A measurable function r: X — R is called a roof function if r is positive
almost everywhere and r € L!. Define the suspension

X, ={(z,u) e X xR:0<u<r(z)}/ ~,

where (2,r(z)) is identified with (Sz,0). The suspension flow S;: X, — X,
is given by Si(z,u) = (z,u + t) computed subject to the identifications. (If
S: X — X is not invertible, then S; is a semi-flow, but we shall still speak of
suspension flows.)

Let 7 = [, rdu. Then p, = p x (/T is an invariant probability measure
for the suspension flow, where ¢ stands for the Lebesgue measure on the real
line. Given an L? observation ¢: X, — R, we consider the family of integrals
or = [y 6o Sidt,

Central limit theorems for suspension flows (convergence in distribution of
ﬁ(fﬁT -T er ¢du,)) were obtained by Ratner [25] for Holder observations in
the Anosov context. It follows from Bowen [3] that Ratner’s results hold for
general Axiom A flows. Denker and Philipp [9] gave a relatively elementary
proof of Ratner’s theorem, using the fact that the hyperbolic diffeomorphism
S: X — X satisfies strong statistical properties, in particular the almost sure
invariance principle (ASIP).
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In this paper, we give mild conditions under which the CLT for a general
suspension flow S;: X, — X, follows from the corresponding result for the
discrete dynamical system S: X — X. Our proof is not constrained to the
hyperbolic context and is more general, and simpler, than the original proof
of [25]. In addition, our proof does not rely on the ASIP. A major advantage of
our approach is that the roof function r need not be bounded. Hence, we are
able to prove the CLT in a number of situations where [9, 25] do not apply; see
Section 5.

We assume throughout that ¢: X, — R is an observation of mean zero, and
r € LX), ¢ € L(X,), where a,b are moderately large. We define

Then ®: X — R is a mean zero observation on X, and the aim is to deduce sta-
tistical properties of ¢ on the suspension flow from the corresponding statistical
properties of ® on the base dynamics.

CENTRAL LiMIT THEOREM. The first version of our main theorem is as
follows. In this result, we do not require invertibility of S: X — X.

THEOREM 1.1: Let S: X — X be an ergodic transformation. Suppose that
(1 —1/a)(1 —1/b) > %. Suppose that ® and r each satisfy the CLT. Then ¢
satisfies the CLT. Moreover, if the CLT for & has variance o > 0, then the
CLT for ¢ has variance 0 = o} T.
Remark 1.2: (a) The regularity hypothesis (1 — 1/a)(1 — 1/b) > 1 is optimal
in the sense that otherwise ® need not lie in L? (see Remark 2.4).

(b) The proof of Ratner [25] relies heavily on the additional assumptions that
(®,r) jointly satisfy a 2-dimensional CLT, and that ® € L.

(¢c) We do not require that the CLTs for ® and r are nondegenerate (they
may have zero variance). Moreover, the result remains true if ﬁ(m\z — N7)
converges in distribution, regardless of the limit distribution.

We have the following generalization of Theorem 1.1.

THEOREM 1.3: Let S: X — X be an invertible ergodic transformation. Sup-
pose that (1 —1/a)(1 —1/b) > L and that ﬁq)]\/ —aq G. Suppose further that
there exist a € (0,1], 3 € (0,1) with a8 < % such that
(i) W(I)N — 0 a.e. as N — oo (where @y = —Z‘]]X‘l ®o0S 7 for N <0),
and
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(i) w5 (ry — NT) converges in distribution as N — oc.

Then —=¢1 —q G/VFas T — .

Remark 1.4: (a) For invertible dynamical systems, the SLLN and the CLT hold
in backwards time (N,T — —o0) if and only if they hold in forwards time. Hence
in Theorem 1.1 it is not necessary to assume that S: X — X is invertible, since
we can pass to the natural extension. In particular, Theorem 1.1 is a special
case of Theorem 1.3 with a =1 and 8 = % Theorem 1.3 shows that the CLT
condition on r can be weakened when the SLLN condition on @ is strengthened.

(b) In many situations, including the hyperbolic setting, hypotheses (i) and
(i) of Theorem 1.3 are valid for all a, 3 > 1, so certainly af < 1.

(c¢) For ease of exposition, we have focused on convergence in distribution
for which the normalizing factors are v/N and v/T. It is easy to generalize
Theorem 1.3 to allow for different normalizing factors. Let ¢ > 0. Assume that
a,b > 1 satisfy (1 —1/a)(1 —1/b) > (1 — 1/c) and that a € (0,1], 8 € (0,1)
satisfy a8 < c. Let r € L%(X), ® € L"(X,) satisfy conditions (i) and (ii) of
Theorem 1.3 for the revised values of a and 3. If 3-®x —4 G, then -7 —4
G/7c.

CONJECTURE 1.5: The conclusion of Theorem 1.3 remains valid if, instead of
conditions (i) and (ii), there exists § € (0,1) such that

1

W(TN — N7) - 0 ae. as N — +oo.

OTHER LIMIT LAWS. Our results on the CLT extend in a straightforward way
to the functional central limit theorem (or weak invariance principle). For ex-
ample, suppose that S: X — X is ergodic, and let r € L>®(X) and ¢ € L?(X,).
Suppose that r satisfies the CLT. If ® satisfies the functional CLT, then so does
0.

We also consider almost sure results such as the law of the iterated loga-
rithm (LIL) and the ASIP, generalising and simplifying results of Wong [29]
and Denker and Philipp [9] respectively. The arguments are easier than for the
CLT.

We note that the corresponding results for time-one maps of hyperbolic flows
are more delicate than those for the flow itself. See [11, 22].

The remainder of the paper is organized as follows. Section 2 contains
an approximation result. Our main results on the CLT are proved in Sec-
tion 3. In Section 4, we prove the LIL and ASIP for suspension flows. In Sec-
tion 5, we apply our results to nonuniformly hyperbolic and partially hyperbolic
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flows, including frame flows on negatively curved manifolds satisfying a pinching
condition.

2. An approximation result

Throughout this section, we assume that r: X — R is a roof function, so r is
positive almost everywhere, and r € L'(X) with mean 7 = fX rdu. We assume
that S: X — X is measure-preserving and that r satisfies the SLLN, so

(2.1) ry = NF+o(N) as N — oo,

almost everywhere, where 7y (z) = r(z) + 7(Sz) + -+ + r(SVN " 1a).
It follows from (2.1) that limy_, 7ny = 0o almost everywhere. Given T > 0,
we define n[z,T] to be the largest integer n such that r,(z) < T. That is

(22) T'nlz,T) (x) <T< Tnlz, T]+1 (:E)

For almost every z € X, n[z, T is defined for all T > 0 and limr_, nfz, T] = o0
a.e. By the ergodic theorem, it follows easily (cf. [8, Lemma 11.2.1]) that

(2.3) lim

=7 a.e.
T— 00 TL[ZE, T] "

Given ¢: X, — R, we define ®(z) = for(x) ¢(z,u)du as usual, and ¥(z) =

for(x) |¢(z,u)|du. We have the following basic approximation result:

LEMMA 2.1: Suppose that 1 < a,b,p < oo, and (1 —1/a)(1=1/b) > (1 —1/p).
Let r € L8(X), ¢ € L*(X,). Then

(a) or(2,0) = @41, 1(2) + o(T'/?) as T — oo, for almost all x € X, and

(b) ﬁ(qﬁT(x,u) = ®pp,7(7)) = 0 as T — oc, in probability (on X, ).

Remark 2.2: Ifa = b = oc in Lemma 2.1, then ¢ (2, u), ¢7(x,0) and @, 71()
differ by amounts that are O(1) almost everywhere.
The remainder of this section is concerned with the proof of Lemma 2.1.

PROPOSITION 2.3: Suppose that 1 < a,b,p < oo, and (1 — 1/a)(1 —1/b)
(1 —1/p). Letr € L*X), ¢ € L*(X,). Then ®,¥ € L?(X) and ||®|,
1%l < [lrflallelle-

IN IV

Proof:  Assume 1 < a,b,p < 00, hence b < p (the other cases are easier).
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By Hélder’s inequality with 1/b' + 1/b =1, we obtain

r(z) 1/b' r(z) 1/b
v < ([ Taa) ([ et opa)

(z) 1/b
=@ ([t ora)

We apply Hélder’s inequality once more with 1/¢ + 1/d = 1 where d = b/p,
hence ¢ = b/(b — p), to obtain

r(z) p/b
IREZENN r(x)”“—”/b( / |¢<x.,t>|bdt> dy
(z) 1/d
-/ r(x)p“—“/b( / |¢<x,t>|bdt)
X 0

dp
1/c r(z) 1/d
< ([ rrenra) ([ [ sl
X X JO

which is finite provided that » € LP=D/=)(X) and ¢ € L*(X,).
Setting p(b — 1)/(b — p) = a leads to the required condition. [ |

Remark 2.4: The value of p is optimal, as can be seen from the following
examples. If a < oo, given r € L*(X), take ¢(z,t) = r(z)® D/ then ¢ €
L9(X,) and [|@]l, = 9], = 1737, where (1 = 1/a)(1 = 1/8) = (1 = 1/p). If
a = oo, take ¢(x,t) = c(x) with ¢ € L*(X) and supp(c) C {r > [|r]/o0/2}-

For fixed N > 1, it is easily proved by induction that
(2.4) Gry (2)(2,0) = Py (2).

Hence |¢7(2,0) — ®p(p 71 (7)| < A7(2), where Ar(z) = frTn[z.T](x) |¢oSi(x,0)|dt.

PROPOSITION 2.5: Suppose that r satisfies the SLLN (2.1) and ¥ € L?(X) for
some p > 1. Then Ay = o(T"/?) as T — oo a.e.

Proof: For N = n[z,T] compute that

ry+1(z) r(SNz)
Ar(a) < / 60 Sy, 0)|dt =/ 16051 0 8,y (o) (2. 0)|dt
r 0

~(z)

r(SNz)
:/ 60 S,(SNx,0)|dt = ¥(SVx).
0
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Since ¥ € LP(X), the ergodic theorem applies to ¥? € L!(X) so that U?(S"z) =
o(n) almost everywhere. Hence, ¥(S™z) = o(n'/?) almost everywhere. It fol-
lows that A7 = o(n[z,T]"/?) almost everywhere. By (2.3), Ar(x) = o(T'/?)
almost everywhere. |

Part (a) of Lemma 2.1 follows immediately from Propositions 2.3 and 2.5. To
prove part (b), compute that

T+u

T T
) = o Sy (x, u)dt = 0 Sypu(z,0)dt = o Sy (z,0)dt,
or(an) = [ soSirait= [ ooSua0it= [ so im0
and so by (2.4),
‘¢T($,U) - (I)n[x,T](x)‘ = |¢T(£E,U) - ¢Tn[z.T](x)(x'/0)|

T+u Tn[z.T](l”)
= |/ gz&ost(x,())dt—/ ¢ o Si(x,0)dt|
u 0
(2.5) < AT(CC) + BT(QS,U),

where Br(z,u) = [ |6 0 S;(x,0)|dt + [, |6 0 Si(x,0)[dt for u € [0,r(x)].

PROPOSITION 2.6: Ifr € L*(X), ¢ € L*(X,), and q > 0, then = Br converges
to zero in probability.

Proof: Tt suffices to estimate the first term in the definition of By, so we write
Br(z,u) = f;-'—u |¢ 0 Si(z,0)|dt. Define

r(z)
Vilz) = Br(z, r(x)) =/0 6o Sr(z,b)|dt.

Since St is measure-preserving, ||[Vr||1 = 7||¢||; and so Vy/T? — 0 in L'. In
particular, V7 /T? — 0 in probability. Fix ¢ > 0 and define

Er={xe X :Vp(x)/T?*>¢c}, Fr={(z,u) € X,: Br(z,u)/T?> c}.

Then pu(Er) — 0. Since Br(x,u) < Vr(z) and r € L', it follows that p,(Fr) <
(1/7) fET rdu — 0. Hence Br/T? — 0 in probability as required. |

Part (b) of Lemma 2.1 is immediate from equation (2.5) and Propositions 2.3,
2.5 and 2.6 (with ¢ = 1/p).
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3. Central Limit Theorem

In this section, we prove Theorem 1.3 extending the central limit theorem (CLT)
from observations on X to observations on the suspension flow X,.

Since two different measures p and p, are involved, the following device for
passing between X and X, is required.

LEmMMA 3.1: Let S: X — X be ergodic and let X, be the suspension with
respect to the L' roof function r. Let & X — R be an L? observation and set
By =Y, Do,

Define @N: X, > R by </I;N(x.,u) = Oy(z). If@N/\/N —q4 G on X, then
:I\)N/\/N —d G on X,

Proof: Tt follows from Eagleson [12, Section 4.2a] (see also [1, Section 3.6])
that @N/\/N converges in distribution to G relative to any probability measure
v that is absolutely continuous with respect to the underlying ergodic measure
pt. Taking v to be the measure with density r/7, we have [ NIV Ny [rdy, —
E(e™@) for all t € R. But

/X eitiN/\/NdMT:(l/F)/X/ eitq)N/\/Nd(qu):/Xein/\/NT/qu.
0

r

Hence [y et VN, = E(eiC) and so dy/vVN =4 G. |

Remark 3.2: The result of Eagleson [12] used in the above argument states
that central limit theorems for ergodic sequences are automatically “mixing in
the sense of Rényi” (a concept introduced in [26]).

Now let ¢: X, — R be a mean zero observation. We assume that r € L*(X),
¢ € L*(X,) where (1 —1/a)(1 —1/b) > . Recall that ®(z) = for(x) o(x,u)du
and define ®(z,u) = ®(z) as in Lemma 3.1. Let S: X — X and ®y, N € Z, be
as described in Theorem 1.3. Define

1 _
ﬁ(pm[m,T] (S[T/r]x)

LEMMA 3.3: Suppose that r € L*(X) satisfies the SLLN (2.1) and that

mlz,T] =nl[z, T] - [T/T] and Wr(z) =

L
VN

Wr -400n X and </I;N—>dG’oan asT,N — cc.

Then

1 ~
ﬁq)n[nﬂ —d G/\/% on X,.



Vol. 144, 2004 STATISTICAL LIMIT THEOREMS FOR SUSPENSION FLOWS 199

Proof: By (2.3), it is equivalent to show that

1 ~
—®, . r(z,u) =4 G
n[x, T] [ 7T]( )

on X,. We compute that

\/ﬁ(bn[z,'ﬂ (x,u) — \/W T/r] (x,u)
1 x ~
:m ((ﬁn[LT] («T,U) — (P[T/ﬂ (I./ U))
1 1
=I41II

By definition of @N, term I is independent of u and

1 VT

= m (‘I’[T/F]er[z,T] (z) = @7/m (x)) m \/_ 0 (S[T/’”] )
- %WT@?) —40 on X

by (2.3) and the hypothesis on Wr. Since r € L'(X), it follows that T —,4 0 on
X,.
Next, working on X,

"= (S ) (o)

The second factor converges in distribution. The first factor converges (by (2.3))
to 0 a.e. Hence IT —, 0 on X,. [ |

The key part of the argument is to verify that W —4 0. This can be carried
out on X, with no mention of the suspension X,.

LEMMA 3.4: Let r,® € L'(X), » > 0. Suppose that there exist a € (0,1],
B € (0,1) with af < % such that

(i) ‘N‘(v(I)N — 0 a.e. as N — £oo, and

(ii) +7(rny — NT) converges in distribution as N — oc.
Then Wr —,0 as T — oo.

Proof: Fix a > 0. We show that u(|Wr| >a) = 0as T — 0.
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Let ¢ > 0. By hypothesis (i), we can choose a set X C X with u(X) >1—¢
and No such that |7=®u| < € on X for all |[M| > Ny. For each value of T', we
define

Xp={re X :|m[z,T]| < No}, X} ={xeX:|mlzx,T]|> No}.

First, we estimate the contribution from X/.. For x € X/., we have

LN o qirgtmmeon - L g air/
|WT($)\§ﬁj:ZNO\‘I’ S7(S (x))\—ﬁ‘l’(s (),

where U = Z;V:O:zlvo |® o S7|. Since ¥ lies in L', there is a constant C' and
a subset Y C X with u(Y) > 1 — ¢ such that ¥(y) < C for all y € Y. Let
Yr = X5 0 (ST/T=1(Y). Then u(Yr) > p(Xh) — & (since S is measure-
preserving), and ¥ (ST/7(z)) < C for all # € Y7. Hence

wlx € Xy [Wr(z)| >a) < u(x € Yr: [Wr(z)] > a)+¢

1
<ulz €Yp: —=C >a)+e=c¢,

VT
for T sufficiently large. Therefore, we can choose Ty so that

w((Wr| > a) < u(x € X7 |Wr(x)| > a) +e, foral T > Tp.

Next, we estimate the contribution from X!. Let X/ = X% N (S!7/7)~1(X)
and note that u(X7%) > pu(X%) — ¢ (since S is measure-preserving). Hence,

W(Wr| 2 a) < pla € X9 2 [Wr(@)] > a) + 2.

Write
mle, T 1o
JT  |m[e, T][e "7

On X%, we have |m[x,T]| > No and so

Wr(z) = (S1T/7 ().

1

‘Wq)m[x7’]“](y) <e forallze Xé!v and Yy € 5(1

It follows from the definitions that

1 T ~
—— (T/7] 1
e e (8T (@) <& on Xg
Hence
[m[e, T][

VT

(Wr(z)] < e for x € X1,
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so that e 71
~ T
> < . mir, LI >
u(|Wr| _a)_u(xeXT T _a/5)+25
mlz, T 1/a
<n(qure 2 (@f2)'V°) +22

p(E TS (ajeyre) 42

IN

since a3 < . A direct calculation starting from hypothesis (ii) shows that the
sequence |m[x, T]|/T? converges in distribution (cf. [25, p. 188]). Denote the
limit distribution by v (seen as a probability measure on the real line). Then

(\m[%T]I

T 2 (@/2)') = vl (o/e)')

and hence there exists 7. > Ty such that
p(|Wr| > a) <w(lt] > (a/e)/®) + 3¢

for T' > T.. Since v(|t| > A) — 0 as A — oo, this completes the proof. |

Proof Theorem 1.3: Hypotheses (i) and (ii) of the theorem translate immedi-
ately into the corresponding hypotheses for Lemma 3.4. Hence Wy —4 0 on X.
By Lemmas 3.1 and 3.3, \/Lftfn[xj] —4 G/v/7 on X,. Finally, by Lemma 2.1(b)

with p = 2, #gﬁT —4 G/VF on X,. |

4. LIL and ASIP for suspension flows

In this section, we show how to extend the LIL and ASIP from observations on
X to observations on the suspension flow X,. As usual, ¢: X, — R has mean
zero and ®(z) = for(x) é(x, u)du.

We say that ¢ satisfies the LIL if

(LIL) lim sup __9r =0
Tooo V2T loglogT

a.e.

and similarly for ®.

THEOREM 4.1: Suppose that S: X — X is a measure-preserving transformation
and that S;: X, — X, is the suspension flow corresponding to a roof function
r: X — R satisfying the SLLN (2.1). Suppose that r € L*(X) and ¢ € L*(X,)
where (1 —1/a)(1—1/b) > 1.
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If ® satisfies the LIL with variance o?, then ¢ satisfies the LIL with variance

o? =ol/T.

Proof: Define ¢: (3,00) — (0,00) by ¢(T) = (2T loglogT) /2. Noting that
T — nlz,T] is a monotone surjection, we deduce that

limsup g(n[z, T]) @y, 1y (2) = 01 ace.
T—o0

By (2.3), limsupr_, o, ¢(T)®pp,7(x) = 0 ae. It follows from Lemma 2.1(a)
that

(4.1) limsup ¢(T)¢pr(x,0) =0 ae.

T—o00

Choose X' C X with pu(X') =1 such that (4.1) holds for all z € X’. Then

lim sup ¢(T)¢r (2, u) = limsup ¢(T) 7 4u(2,0) = limsup ¢(T)or(x,0) = o

T—o0 T—o0 T—o0
for all x € X' and u € [0, r(x)]. |

We say that ¢ satisfies the ASIP if (after redefining {¢7 | T > 0} on a richer
probability space without changing the joint distributions of ¢ ) there exists ¢ >
0 and a Brownian motion W with variance o2 such that ¢r = W (T)+o(T"/?~)
as T — oo almost everywhere. Similarly for ®. Many statistical laws including
the CLT and LIL are implied by the ASIP; see Philipp and Stout [24].

THEOREM 4.2: Let S;: X, — X, be the suspension flow corresponding to a
roof function r: X — R. Suppose that r € L%(X) and ¢ € L’(X,) where
(1—1/a)(1 —1/b) > %. Suppose further that

(4.2) ry = NF+0o(N'7%) as N = o

almost everywhere, for some § > 0.
If ® satisfies the ASIP with variance o?, then ¢ satisfies the ASIP with
variance 0% = o? JT.

Proof: By assumption (shrinking 4 if necessary), there is a sequence of random
variables {Sy, N > 1} equal in distribution to the sequence {®y, N > 1} such
that

(4.3) Sy = Wi(N) +o(N'/27%) as N = 0

almost everywhere, where Wy is a Brownian motion with variance o?.
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Thanks to condition (4.2), we can strengthen (2.3) to conclude that
(4.4) n[z,T] = T/T+o(T'2°) as T — oo,

almost everywhere, where for convenience we have replaced ¢ by 26.

Shrinking & once again as necessary so that (1 — 1/a)(1 —1/b) > % + 6,

Lemma 2.1(a) guarantees that

¢1(2,0) = @15, (2) + o(TY?70) as T — o0 a.e.
Moreover, r is finite almost everywhere, so for p-a.e. z and each u € [0,r(x)],
(45)  or(e,u) = 6rpu(,0) = R iy (8) + o(T270) as T — o

As in [24, p. 23], without loss we may identify ®x with Sy and we may
suppose that they are defined on the same probability space as ¢r and Wi.
Hence combining (4.3) and (4.5) yields

or(z,u) = Wi(n[z, T 4+ u]) + o(T?7%) as T — 0o a.e.

By equation (4.4), n[z, T +u] = T/F+0o(T'~%?) and so it follows as in [24, p. 10
and p. 24] that for any §' < 6,

Wi(nle, T +u]) = Wi(T/F) + o(T>7) = W(T) + o(TV/>~%),
where W is a Brownian motion with variance o2 = o7 /7. Hence
or(xz,u) = W(T) + o(Tl/z_al) as T — oo,
almost everywhere, as required. |

Remark 4.3: (a) Condition (4.2) is satisfied if r € L?(X) and r is cohomologous
in L? to a martingale [13, p. 238]. A result of Gordin [16] guarantees that r is
cohomologous to a martingale in a wide class of examples.

(b) Improved error terms in the ASIP for ® and in (4.2) can be used to obtain
an improved error term in the ASIP for ¢. So if ® satisfies the ASIP with error
o(N1/?) for some p > 2, then ¢ satisfies the ASIP with error o(T'/?"), for any
p' < p, provided that ry = N7 + o(N?/?) and (1 — 1/a)(1 —1/b) > (1 —1/p).

(c) When X is Axiom A, Holder observations satisfy the ASIP with error term
o(N'/*+e) for any a > 0; see [14]. Moreover, Holder roof functions satisfy the
condition in part (a) (cf. [9, 14]). Hence, when r and ¢ are Hélder, we obtain
the ASIP with error term o(7''/4+®) improving slightly upon the result of [9].
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5. Applications

HYPERBOLIC FLOWS. As discussed in the introduction, Ratner [25] established
the CLT for Holder observations on a hyperbolic basic set X, and also (by a quite
complicated argument) the CLT for Holder observations on the suspension X,
by a Holder roof function r. The CLT for general hyperbolic flows then follows
from Bowen [3]. In this paper (see Theorem 1.1), we have given an elementary
and general argument that yields the CLT for hyperbolic flows, based on the
CLT for hyperbolic basic sets. (See Remark 1.2 for a comparison of the two
proofs.)

NONDEGENERACY. The statistical limit theorems in this paper are said to be
degenerate if 02 = 0 (equivalently 67 = 0). In our abstract setting, it is not
possible to formulate useful criteria for nondegeneracy.

However, if ® is a Holder continuous observation on a hyperbolic basic set X
equipped with a Gibbs measure j, then it is well-known that ¢? = 0 if and only
if there is a constant Ky such that |®y|. < K for all N, which is equivalent to
the fact that ® is a Holder coboundary (see [14, §5] for an explicit statement).
Provided r and ¢ are Holder, so in particular ¢7(x,u) = ®,1,,71(x) + O(1), we
conclude that o2 = 0 if and only if there is a constant K such that |¢7]s < K
for all T'.

This condition for degeneracy has significant advantages over the L? condition
in [25]. For continuous observations, it means that ¢,(z,u) = 0 whenever
Sy(z,u) = (z,u) (equivalently, ®p(x) = 0 whenever S¥z = z) so we can
guarantee nondegeneracy by perturbing the observation along a single periodic
trajectory.

NONUNIFORMLY HYPERBOLIC FLOWS. The CLT has been established for cer-
tain classes of nonuniformly hyperbolic and partially hyperbolic diffeo-
morphisms. The CLT for the suspension flow follows from Theorem 1.1.

For example, Young [30, 31] proves the CLT for smooth enough observations
of a class of nonuniformly hyperbolic diffeomorphisms. By Theorem 1.1, we
have

COROLLARY 5.1: Provided r and ¢ are smooth enough, the CLT (and its
functional version) hold for suspension flows over the nonuniformly hyperbolic
transformations considered in [30, 31].

NONUNIFORMLY HYPERBOLIC DIFFEOMORPHISMS. The methods in this paper
apply also to nonuniformly hyperbolic diffeomorphisms (and more generally to
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induced transformations). The tower construction in Young [30, 31] realises
such diffeomorphisms as discrete suspensions over a uniformly hyperbolic base,
where the roof function r takes only integer values. Provided r lies in L2, the
results in this paper immediately yield the CLT. The condition that r is L?
is more natural and general than the condition in [31] (though the emphasis
there is on establishing rates of decay of correlations, which is a much harder
problem).

The application of the ideas in this paper to nonuniformly hyperbolic diffeo-
morphisms has been carried out recently by Gouézel [18] (our main results are
summarized in [18, Appendix A]). This provides a significantly simplified proof
of results in Gouézel [17].

A CLASS OF PARTIALLY HYPERBOLIC FLOWS. Suppose that A is a hyperbolic
basic set for a smooth flow S; with an equilibrium measure ua corresponding to
a Holder potential, and G is a compact connected Lie group with Haar measure
v. If hy: A = G is a smooth cocycle (hgsyt = hshy 0 Sg), then we form the G-
extension flow S; , on AX G, Si.n(y,9) = (St(y), ght(y)), with invariant measure
A X v. Such G-extensions are amongst the simplest examples of partially
hyperbolic flows. (We note that the arguments in [9, 25] do not seem to apply
to such flows.)

THEOREM 5.2: Let G be a semisimple compact connected Lie group and sup-
pose that A x G is an ergodic G-extension of a hyperbolic basic set A for a
hyperbolic flow. Then the CLT (and its functional version) hold for sufficiently
smooth observations ¢: A x G — R. Moreover, the LIL and ASIP hold for
sufficiently smooth observations.

Proof: By Bowen [3], A can be modelled as a symbolic flow X, where X is
a subshift of finite type, r: X — R is a Holder roof function, with equilibrium
measure i, where p is an equilibrium measure on X. Hence A x GG is realised as
X, x G = (X x @), with ergodic measure (i X v),. (We regard r as defined on
X x G but independent of the G-component.) Since A x G is ergodic, it follows
that p x v is an ergodic measure on X x G.

Dolgopyat [10, Corollary 4.8] proves rapid mixing for Holder observations on
X x G that are sufficiently smooth in the G direction and deduces the CLT
using [20]. The CLT follows also from [22] and so does the ASIP. By the results
in this paper, these results lift to the suspension (X x G), and hence to A x G.
|
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Remark 5.3 (Application to frame flows): Let V be a negatively-curved ori-
entable n-dimensional manifold, with unit tangent bundle M = SV. Let M be
the space of positively oriented orthonormal n-frames in TV. The frame flow on
M is an SO(n —1)-extension of the geodesic flow on M. Recall that SO(n—1) is
semisimple provided n > 4. Ergodicity of the frame flow has been proven by [4]
when n is odd, n # 7, and by [5, 6] in the remaining cases under a pinching
condition on the curvature. By Theorem 5.2, the ASIP etc. hold for sufficiently
smooth observations on such frame flows.

If G is not assumed to be semisimple, then the situation is more complicated.
Below, we describe some results for suspensions (X x @), where X is a hyperbolic
basic set for a diffeomorphism. Note that the hypotheses are now on X x G and
for this reason the results are considerably weaker than in the semisimple case.

Suppose that X is a hyperbolic basic set with Gibbs measure p and G is
a compact connected Lie group with Haar measure v. If S: X — X is the
underlying Axiom A dynamics and h: X — G is a smooth cocycle, the G-
extension Sp: X x G — X x G is given by Sy(z,9) = (Sz,gh(z)). Field et
al. [15] showed that the G-extension X x G is ergodic with respect to pu x v for
an open dense set of smooth extensions h: X — G. Such a G-extension S}, is
said to be stably ergodic.

For restricted classes of G-extensions (G semisimple covered above, but also
X Anosov infranilmanifold), Dolgopyat [10] proved that stable ergodicity im-
plies rapid decay of correlations, and hence the CLT, for sufficiently regular
observations ®: X x G — R.

COROLLARY 5.4: Provided r and ¢ are smooth enough, the CLT (and its func-
tional version) hold for suspension flows over the G-extensions considered in [10].

In the context of equivariant flows, it is natural to consider equivariant
observations [23, 14], and stronger results are possible.

THEOREM 5.5: Let G be a compact connected Lie group and suppose that Y xG
is an ergodic G-extension of a hyperbolic basic set Y for a hyperbolic flow. Let
p be a representation of G on the vector space R*, and consider mean zero
observations ¢: Y x G — R* of the form ¢(y,g) = p,v(y), where v: Y — RF
is Hélder. Then ¢ satisfies a k-dimensional CLT, and each one-dimensional
projection of ¢ satisfies the ASIP.

Furthermore, the CLT is degenerate (singular covariance matrix) if and only
if some component of ¢ is uniformly bounded, and the CLT is nondegenerate
for an open and dense set of equivariant Hélder observations ¢.
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Proof: As usual, we can reduce to the case where Y = X, is the suspension of
a subshift of finite type X and r is Holder. Then Y x G = X x G = (X X G)p.

Define ®(z, g) fo &z, g9,u)du = p,V(z) where V(z fo (2, u)du.
Then ®&: X xG — R* is a Holder equivariant observation and it follows from [14,
21] that ® satisfies the CLT. The CLT for ¢ follows from our main results and
the Cramer—Wold technique. Similarly, it follows from [14] and Theorem 4.2
that each one-dimensional projection of ¢ satisfies the ASIP.

As in the Axiom A case, the statements about nondegeneracy for ¢ follow
from the corresponding statements for ® which were obtained by Nicol et al. [23].
|

Remark 5.6: The ideas in [14, 23] were applied by Ashwin et al. [2] to provide an
explanation of hypermeander of spiral waves in planar excitable media. There,
the spiral tip undergoes Brownian-like motion in the plane. Theorem 5.5 bridges
the gap between discrete and continuous time [2, Section 5].
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