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Complex interfacial physics arising from geometric curvature associated with surface tension
as well as phase transformation make it a formidable task to design an accurate, reliable, and
yet simple method for direct computation of multiphase flows. Hybrid methods mixing conven-
tional, Volume-of-Fluid, Level Set, Phase Field, and Front Tracking methods have recently
become popular in an attempt to overcome the shortcomings of each method alone. We de-
veloped the Level Contour Reconstruction Method (LCRM) as part of a hybrid method for
treating the complex interface geometry associated with general three-dimensional multiphase
flows. The main idea in that work focused on a simple and robust algorithm especially suited
for dynamic interfaces in the three-dimensional case by combining characteristics of both Front
Tracking and Level Set methods. In this article we describe a modification to the LCRM which
introduces a high order interpolation kernel during the course of the interface reconstruction
along with a new hybrid surface tension formulation. With this we can essentially eliminate
any mass redistribution between regions of differing curvature and reconstruct the interface
accurately and smoothly. The improvement with high order reconstruction is also noticeable vis
a vis spurious currents which are further decreased by two orders of magnitude over the previous
linear reconstruction method. Moreover, there is no disturbance concurrent with reconstruction
and the solution fidelity is not influenced by the reconstruction time step. This High Order Level
Contour Reconstruction Method retains the simplicity of the original LCRM and avoids com-
plicated interface smoothing procedures.

Key Words : Numerical Simulation, Front Tracking, Surface Tension, Parasitic Currents,
Multiphase Flow, Computational Fluid Dynamics
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Ca= Unaxpt/ 0 . Capillary number

Subscripts
1 > Fluid 1
2 > Fluid 2

1. Introduction

Direct simulation of multiphase flow has drawn
ever increasing attention for numerous important
engineering applications from industrial flows to
biological fluid interactions. Despite its impor-
tance, complex interfacial physics from geometric
curvature associated with surface tension as well
as phase transformation still make it a formidable
task to come up with an accurate, reliable, and yet
simple method.

The method using fixed grids to represent the
velocity field with additional specific advection
schemes in order to preserve the sharpness of in-
terfacial front are popular due to their simplicity.
These methods are further divided into the front
capturing type : Volume-of-Fluid (VOF) (Brackbill
et al., 1992 ; Lafaurie et al., 1994 ; Scardovelli and
Zaleski, 1999), Level Set (Osher and Fedkiw, 2001 ;
Son, 2001), and Phase Field (Jamet et al., 2001),
which represent the interface implicitly and the
Front Tracking type (Tryggvason et al., 2001 ;
Unverdi and Tryggvason, 1992a, 1992b), which
explicitly track the interface. Each of the above
methods has some advantage over the others and
varying degrees of success in modeling general
two-dimensional multiphase problems over wide
parameter ranges. On the other hand, it is still dif-
ficult to conduct full direct simulations for three
—-dimensional multiphase flows, even with current
computer resources. Thus accuracy under limited
memory and computational time is an essential
feature in developing a numerical algorithm. Re-
cently, there have been efforts to construct hybrids
among the above mentioned methodologies with
the intention of facilitating simulations of general
three-dimensional problems.

Lagrangian front tracking schemes are well
known to maintain sharp interface structures and
mass conservation since they preserve material
characteristics. On the other hand, front tracking

schemes pose many difficulties in reconstruction
of the interface especially in three-dimensions for
the necessary operations of addition/deletion, break-
ing, and merging of the computational interface
elements. When fluid filaments become too thin,
VOF methods tend to form irregular interfaces
which are not smooth and even discontinuous in
the attempt to maintain local mass conservation.
Level Set methods lose/gain a significant amount
of mass lowering the accuracy and ultimately com-
promising the entire solution. Several researchers
have worked to improve the accuracy of the geo-
metrical information in the VOF method and nu-
merous attempts have been made to improve mass
conservation in level set methods using a variety
of reinitialization techniques and higher order
ENO/WENO convection schemes.

A number of hybrid methods have appeared in
recent years. Sussman and Puckett (2000) pro-
posed a coupled of Level Set/Volume-of-fluid
(CLSVOF) method in order to alleviate some of
the geometrical problems of the VOF method. It
combines the accuracy in mass conservation of
VOF and convenient description of topologically
complex interfaces of the Level Set function. The
resulting scheme still remains Eulerian, not incor-
porating any of the Front Tracking characteristic
and still not accurate in under-resolved regions
by blindly applying the VOF local mass con-
straint.

Enright et al. (2002) combine Lagrangian mar-
ker particle and Eulerian Level Set methods to
accurately rebuild the zero level set field near the
interface. This allows the Level Set method to
obtain a subgrid scale accuracy near the interface
and better mass conservation properties in under-
resolved regions. The lack of connectivity be-
tween marker particles makes the implementation
much easier than Front Tracking and unsatis-
factory description of interface geometry can be
overcome by using the Level Set function which
maintains nice geometric properties. Marker par-
ticles are randomly positioned near the interface
and are passively advected by the flow. Their
“particle level set” method compares favorably
with VOF and Front Tracking in mass conserva-
tion and interface resolution, respectively.
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Aulisa et al.(2003) present a new hybrid meth-
od which combines markers and Volume-of-
Fluid algorithms. Two distinct markers of grid in-
tersection and mass conservation have been used
to describe the interface. Both markers are ad-
vected numerically to update the volume fraction.
The conservation markers inside each cell keep
the local volume fraction to the reference value
while the intersection markers, which locate the
interface on the grid lines, eliminate the necessity
of remeshing the system. Thus they obtain both
smooth motion of the interface by marker methods
and good mass conservation as in the standard
VOF method.

As an alternate hybrid method, we developed
the Level Contour Reconstruction Method (LCRM)
(Shin et al., 2005 ; Shin and Juric, 2002 ; Shin,
2002) for very general complicated three-dimen-
sional multiphase flows. The main idea was fo-
cused on simplicity and a robust algorithm espe-
cially for the three-dimensional case. It combines
characteristics of both Front Tracking and Level
Set methods since it primarily uses Lagrangian
elements (line for 2D and triangles for 3D) to
describe the interface and its motion but period-
ically regenerates this interface from contour field
values such as the indicator function or distance
function as in the Level set method if available.
The Level Contour Reconstruction Method is
basically a Front Tracking type method which
tracks the implicitly connected individual inter-
face elements. At the same time, we take advan-
tage of the fact that the interface can also be re-
presented by an Eulerian function field (indicator
function, /(x), in our case). Reconstruction of
the interface at a certain level set of the indicator
function enables us to naturally, automatically,
and robustly model the merging and pinch off
of interfaces as in the Level Set method. It also
retains the subgrid accuracy of interfacial motion
of Front Tracking while eliminating the burden
of bookkeeping of the logistic information of neigh-
boring elements as is necessary in original Front
Tracking and which incurs a large memory and
calculation cost. The interface tension has also
been formulated in a hybrid form in Shin et al.
(2005) for more accurate representation of the

effect of curvature, and a corresponding reduction
in the parasitic currents to a minimal level.

During the reconstruction, the interface is re-
located using a linear interpolation of the given
indicator function field. We found that recon-
struction using this linear interpolation intro-
duces a small disturbance which eventually dies
out very quickly after a few time steps. This in-
dicates that the reconstructed interface is continu-
ous but not smooth with linear interpolation. The
effect is usually negligible since reconstruction is
not performed at every time step. But this slight
perturbation may cause instability of the solution
for simulations requiring frequent reconstruction
of the interface, especially with low resolution.
Moreover, slight discrepancies in the interface
points can induce undesirable results where the
exact location of the interface is extremely impor-
tant. In this paper, we will present a method to
increase the accuracy and smoothness of the Level
Contour Reconstruction Method by introducing a
high order interpolation kernel during interface
reconstruction.

The remainder of this paper is organized as
follows. The next section includes a brief descrip-
tion of the LCRM and a description of the new
high order interface reconstruction method. We
describe the governing Navier-Stokes equations
in the subsequent section. We then present test
cases to demonstrate the accuracy of the new
scheme compared to other existing methods.

2. Numerical Development

2.1 High order level contour reconstruction
method

We will start with a brief description of the
Level Contour Reconstruction Method. The com-
plete details can be found in Shin et al.(2005),
Shin and Juric (2002) and Shin (2002). In the
Front Tracking method a stationary Eulerian
volumetric mesh is supplemented by a moving
Lagrangian interface mesh. The Level Contour
Reconstruction Method is a simplified version of
the Front Tracking method. The interface is com-
posed of non-stationary, not logically but im-
plicitly connected computational points to form
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a two-dimensional surface or one-dimensional
line for 3D or 2D problems respectively. The in-
terface elements are periodically discarded and
then reconstructed on a certain level contour of
the characteristic indicator function.

The Indicator function, I, has essentially the
same characteristics as the Heaviside function and
can be found by solving the following Poisson
equation with a standard FFT package such as
FISHPAK on a uniform Cartesian grid which
takes negligible time compared to pressure itera-
tion :

V=V -G (1)

where the distribution, G, is geometric informa-
tion computed directly on the interface and then
distributed onto an Eulerian grid.

G:L(t)nfaf(X_Xf>dS (2>

and ny is the unit normal to the interface. Here,
x;=x(s,#) is a parameterization of the inter-
face I'(¢), and 8;(x—x,) is a three-dimensional
Dirac distribution that is non-zero only when
X=X . Hereafter, we will denote the indicator
function calculated from equation (1) as Jorg.
The level contour of the indicator function
which satisfies the exact location of the original
interfacial points before reconstruction is not how-
ever, in general a constant value. At a specific
time step and given a complete set of tracked in-
terface elements, we can obtain the indicator func-
tion value at each element point by interpolating
the original grid indicator function values to sur-
face element points. We then redistribute these
local indicator function values back to the nearest
grid locations. The idea is to use this local in-
dicator function value at the surface to reconstruct
the element at that cell location. There may be
more than one surface element in one cell. In-
dicator function value at each interfacial element
can be found by standard interpolation tech-
nique and we will denote this value as I, .. After
having interpolated the indicator function values
to the surface for all the elements, observe that
each cell is affected by several elements, Iy, with
areas, As.. Thus the local contour value to use
for reconstruction, Jjocqs, at that location is calcu-

lated by distributing this value back onto the
Eulerian grid

; lp,eASe

C oy e 3

Ilacal(l,],k> ZAse ( )
e

Thus we generate a localized contour level field,

Liocai (2,7, k), which will be used to reconstruct

the element at that cell location (Shin et al., 2005).

Finally we draw a contour line/surface of zero

value with linear evaluation function, EX(x),

E* (X> :2[Iorg(iaja k) _Ilocal(iaja k”ﬂx_xg) (4)

&
Here, x is the evaluation point, Xg is the grid cell
center, and the integral is performed across a
small multiple of the mesh spacing in each direc-
tion. P(x—Xg) is a tensor product of one-dimen-
sional Linear interpolation kernels, L, given by :

P(x—xg)

_ . . Ay O

=L (x—xg;00) L(y—ye; Ay) L(y—ye; AY)
with grid spacing Ax,Ay, and Az. The Linear
interpolation kernel is defined by :

| x| | x|
— 12 o<l o
La:n={"n""n=t
0, otherwise

where /% is the grid spacing in each direction.
Hereafter, we will refer to this as the linear re-
construction procedure as compared to the high
order reconstruction which will be discussed be-
low.

The linear reconstruction always generates a
small perturbation near the reconstructed inter-
face since we used a linear interpolation kernel
function, which is continuous but not smooth, to
locate the zero level of the evaluation function,
even though the surface can be reconstructed ac-
curately with small mass redistribution between
different curvature regions by using the localized
indicator function value. Furthermore, the values
of indicator function interpolated from the Iioca
(7,7,k) field at the original interface points do
not exactly match the value interpolated from the
given original indicator function, Io.e (7,7, %). We
interpolated the indicator function value from the
original interface points and then redistributed
this back to the grid, so that the final local in-
dicator function field is a somewhat averaged
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value since each cell can be affected by several
elements.

This perturbation eventually dies out since the
reconstruction is usually not performed every time
step during the course of a simulation. Thus the
global sense of the error can usually be consid-
ered to be minimal. But for some problems which
undergo abrupt change of interfacial motion from
a surface tension dominant equilibrium state to
a dynamic flow regime with large deformation,
rupture, and coalescence, frequent reconstruction
becomes necessary. The reconstruction time step
usually depends on the specific problem at hand
and the optimal time step can be difficult to ob-
tain. With excessive reconstruction, the small
disturbances from reconstruction can drive the
interface to unphysical locations and the solution
will depend on the chosen reconstruction fre-
quency. The problem becomes worse for small
length scales without sufficient resolution, which
turns out to be a frequent scenario for three-
dimensional simulations.

We had taken advantage of the fact that we
have two separate representations of the interface
position : 1) the explicitly tracked interface ele-
ments and 2) the certain level contour of the in-
dicator function which has a value of one in one
phase and zero in the other. Thus, beginning with
a given indicator function field we can deposit a
collection of interface elements on the certain con-
tour level or, conversely, beginning with inter-
face elements we can solve the Poisson equation
for the indicator function. To locate a contour
line/surface in the indicator function field, we
need two ingredients: a level contour value at a
specific location and the evaluation function to
compute the field level. A continuous and smooth
contour level can be obtained using B-spline in-
terpolation functions. B-spline interpolation allows
smoothing of the, possibly noisy, data (Monaghan,
1985). The Indicator function value at an arbi-
trary location can be found by :

I(x) =§Iorg(z',j, k) S (x—xg) (7)

Here, S(Xx—Xg) is a tensor product of one-di-
mensional B-splines, M, given by :

S(x—xg)
=M (x—2x¢; Ax) M(y—yg ; Ay) M (y—ye ; Ay)

We used both the cubic B-splines Ms(x ; 4) and
quintic B-splines Ms(x ; 4) suggested by Torres
and Brackbill (2000),

b o
Ms(x s ) = %<2_%>3’ 1s%s2 (9)
0, otherwise
and
Ms(x 5 h)
(3—%)5—6(2 %)115(1 %),og%gl,
:1%0 (3—%)5—6@—%)5, IS%Q (10)
ki) 2ol
0, otherwise

We can obtain the evaluation function field,
E*(x), which gives a zero contour level at
interface reconstruction from :

*(x)
:g[lorgu,].,k) _Ilocal<i,j,k>:|s<x_xg> (ll)

t

The evaluation field, E*(x), has continuous
and smooth properties along the zero contour
level. But if we compute the evaluation function
value at the original interface point, the resulting
value is still not exactly zero but very close due to
the manner of calcuating liocar (7,7, k).

To get a more precise location for the recon-
structed interfacial elements, we correct by add-
ing a trial function field, ¥;;,, which will satisfy
the zero contour value at the original interface
point. The corrected Eulerian evaluation field
function is defined by :

EH(X> :Z[IGrg(iaja k) _[lacal(iaja k) ] S<X_Xg)

&g
(12)

2 WS (x—x4)
There are several ways of approximating the trial
function, ;.. We assumed a ¥;;, function de-
scribed by :
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w}ijNE OIpS (xg—xXp) (13)

Here, x, are the location of original interface
points before reconstruction, &8I, is the incre-
ment needed at the original interfacial points,
and the intergration has been performed through-
out the entire given element, respectively. After
rearrangement of equations (12) and (13), the
final form of the system of linear equations which
satisfies a zero level of the evalution function is:

;%} OIS (xg—Xp) S (X—Xg)

=SV Lo (. F) T 5.0 S (x—xe) ¥

The idea here is similar to the Point Set Method
of Torres and Brackbill (2000). However, they
construct a new indicator function by adding a
function interpolated directly from interface points
to interface points :

[(X) :Nz oIS (X_XP) +Lorg (X) (15>

This was used to find the vaule of 8, which
would give a constant indicator function value
throughout the interfacial points. This proves
useful in two-dimensional simulations but will
require a tremendous amount of work in three-
dimensions. The computational effort needed to
find the first part of the left hand side of equation
(15) is N, for a single grid location. For the en-
tire computational domain, Ny X NxX N, X N; com-
putations are required. This would most likely
be impractical to perform for three-dimensional
simulations unless additional information for in-
terface point locations is provided.

Equation (12) is a more convenient form which
can be treated efficiently for function evalution.
We distribute the 81Ip increment thoughout the
domain to construct the Eulerian field trial func-
tion and then interpolate this back to the original
interfacial points to force the zero contour of
Torg (7,7, k) ~Liocai (1,7, k). Equation (14) can be
rewriten in simple form as below :

@[6]P,m:|:b(-xp,m>, m=1,,Np (16>

We calculate the 6lp,» using a Newton iteration
scheme :

mel. N, 17

where / is the iteration index and J is the Ja-
cobian matrix of partial derivatives of the error
with respect to the 8Ipn. These derivatives are
difficult to calculate since equation (17) is im-
plicit in regard to 0lp» and the subsequent ma-
trix inversion would also be computationally ex-
pensive, thus a simple form of the Jacobian is
used,

J=a"1 (18)

where I is the identity matrix and ¢ is a constant
which determines the rate of convergence of the
iteration. At the optimum value of g, different
for different physical parameters, the iteration
converges rather quickly to a tolerance of e=107°
in 10 to 100 iterations. The computational over-
head associated with equation (12) is usually neg-
ligble compared to the pressure iteration in cases
with an optimum value of @. Optimum values
for @, which range roughly between 1 and 10, are
generally different for the problem at hand and
have to be determined through numerical experi-
ment. The tolerance is calculated by

e=max (|85 1), m=1,-,Np (19)

The high order Level Contour Reconstruction
Method bears great resemblence to the Point Set
Method of Torres and Brackbill (2000). They
used points rather than the line or triangular ele-
ments which we use in our Level Contour Re-
construction Method. Because we utilize higher
dimensions in the front description, calculation of
geometric quantities such as curvature, normal,
and tangent associated with the interface becomes
much more straightforward to implement.

Fig. 1

Interface regularization during reconstruc-

tion: (a) Attaching to grid edge. (b) Reloca-
tion to correct position
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2.2 Regularizing the surface elements

In general, the reconstructed interface contains
elements of non-uniform size as seen in Figures
2(a) and 3(a) because the location of recon-
struction is confined to the edge of each grid cell.
The irregularity of element size does not produce
any problem with the high order reconstruction
but increases the required memory by generating
insignificant size elements without any additional
accuracy enhancement. Usually elements of the
size of the spatial grid size are recommended.
Thus in terms of memory optimization it is pre-
ferable to generate elements of roughly uniform
size.

We regularize the interface elements in the fol-
lowing two steps : First we draw an approximate
contour line neglecting relatively small elements.
As can be seen in Figure 1, we draw a new line,
which passes through the edge of the cell when the

Y oo,

u_

ot
T

&

T

(a) (b)
Fig. 2 Two-dimensional interface reconstruction :
(a) Using regular reconstruction method
(b) After regularizing the interface element dur-
ing reconstruction
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(a) (b)
Fig. 3 Three-dimensional interface reconstruction :
(a) Using regular reconstruction method
(b) After regularizing the interface element dur-
ing reconstruction

distance from the reconstructing point to the edge
of each cell, dl, is less than a specified criteria.
We call this process “attaching to the grid”. Be-
cause the first step is simply a rough approxima-
(11) to

locate the reconstructed interface. The next step is

tion, we can use either equation (4) or

to relocate this approximate contour line/point to
the exact interfacial location depicted by equation
(12) by movement in the normal direction.

After these two steps, the size of the recon-
structed interface elements may not be exactly the
same but they are quite uniform as can be seen
from Figures 2(b) and 3(b). The range of ele-
ment sizes is usually 1.0 or 1.5 times the spatial
grid size. By regularizing the interface elements,
we can reduce the number of elements to 70%
of that of the previous reconstruction procedure
without sacrificing the accuracy. This is quite
important in three-dimensional cases where re-
sources are highly restricted.

2.3 Governing Equations

The governing equations for isothermal, incom-
pressible multifluid motion can be expressed in a
single field formulation as :

V-u=0 (20)
ou
( o +u-Vu>
=—VP+pog+V:u(Vu+vu®) +F

Here, u is the velocity, Pthe pressure, g the gravi-

2D

tational acceleration, and F is the local surface
tension force at the interface which can be de-
scribed by the hybrid formulation developed in
Shin et al.(2005) as

F=0xVI (22)

where ¢ is the surface tension coefficient (as-
sumed constant here) and x; is twice the mean in-
terface curvature field calculated on the Eulerian

grid.
The expression for the curvature, #;, is give by :
_ FL ‘G
= 56-G (23)
where
FL:f Olcfnfo (X_Xf) ds (24)
I(t)
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Material property fields can be described using
the indicator function, I (x,#). For example, the
density is calculated by :

o(x,t) =p1+ (p2—p1) I (x, 1) (25)
where the subscripts 1 and 2 refer to the respective
fluids. A similar equation is used to define the
viscosity, (L

The interface is advected in a Lagrangian fash-
ion by integrating

dxs _
T =V (26)

where V is the interface velocity vector.

The method used to solve for the fluid velocity
and pressure is the projection method of Chorin
(1968). We use a first order, forward Euler inte-
gration in time. For the spatial discretization, we
use the well known staggered mesh (MAC meth-
od) of Harlow and Welch (1965). The pressure is
located at the cell centers while the x,y and z
components of velocity are located at the respec-
tive faces. All spatial derivatives except the con-
vective term are approximated by standard second-
order centered differences. The convective term is
discretized using a 2°¢ order ENO procedure (Shu
and Osher, 1989 ; Sussman et al., 1998). On the
staggered grid, quantities needed at cell centers
are linearly interpolated from cell faces and vice
versa. The detailed solution procedure and dis-
cretization of governing equation can be found in
(Juric and Tryggvason, 1998 ; Shin et al., 2005 ;
Shin and Juric, 2002).

3. Results and Discussion

In this section we perform a few tests of the
high order Level Contour Reconstruction Method
focusing on precise relocation of the interface
points, local mass conservation, and spurious cur-
rents associated with reconstruction. For discus-
sion below we will refer to Equation (12) as the
high order reconstruction method and Equation
(4) as the linear reconstruction.

3.1 Mass conservation
As we found in our earlier work (Shin et al.,
2005; Shin and Juric, 2002 ; Shin, 2002), the

Level Contour Reconstruction using a constant
contour (indicator function) value leads to un-
physical mass distribution from high curvature to
low curvature regions, especially without suffi-
cient grid resolution. By increasing resolution or
using a localized indicator function value (Shin et
al., 2005), we could minimize this error to an
acceptable range.

We reconstructed a circle with radius of 0.25
in a 1X1 box domain using 25X25 resolution in
each x and y direction. Figure 4 shows the rela-
tive % error of the reconstructed radius, (Rrecon—
Rorg) / Rorg X 100, for both linear reconstruction
and high order reconstruction. While the linear
reconstruction gives a 0.6% perturbation after
reconstruction, the high order reconstruction is
far better than linear reconstruction. The error is
almost negligible for the quintic B-spline, Ms. By
using high order reconstruction, we can relocate
the interface points very accurately and smoothly
after reconstruction.

We repeated the simulation of Shin et al.(2005),
placing two distinctive circular surfaces together
in a 1 X1 box to evaluate both local volume con-
servation and accurate interface relocation. The
larger, low curvature surface has a radius of 0.25
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Fig. 4 % relative error of reconstructed radius,

(Rrecon— Rorg) / Rorg X 100, using both linear
and high order reconstruction. A circle with
radius of 0.25 in 1X 1 box domain using 25X
25 resolution. The error is almost negligible
for the quintic B-spline, Ms
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while the smaller, high curvature surface has a
radius of 0.05. We perform one reconstruction
step and then check how much mass is redistri-
buted between the two different sized circles as a
function of grid resolution. We also investigate
the radius of both the large and small circle after
reconstruction. Both linear reconstruction using a
constant or localized indicator function value and
high order reconstruction are considered. With a
coarse 25X25 mesh the diameter of the small
circle is spanned by only about two grid cells and
the interface consists of only 6 elements.

To quantify the error, convergence results for
both circles are plotted in Figure 5. We plot the
volume change of the small circle as compared to
the total volume. The amount of area change of
the small circle using the high order reconstruc-
tion is about one order of magnitude smaller than
linear reconstruction using the local indicator func-
tion value, which is already one order of magni-
tude smaller than using a globally constant value.
It is interesting to note that the amount of area
loss of the circle with small radius is exactly the
same as the area gain of the larger circle in the
case of linear reconstruction. So the mass is re-
distributed from the high curvature region to the

10 T
= -Linear using localized |,
E 10° —e—Linear using constant |,
é —#-High order reconstruction
i K] 4
'g 10
o A
8 107 -
g ’,l’ /Ar
& -
S, 3 -
< 10 A
= -
e
10‘4 - ..2 .
10 10 10
h
Fig. 5 Mass redistribution between two different size

surfaces vs grid resolution. Two distinct cir-
cular surfaces, radii of 0.25 and 0.05, are
placed in a 1 X1 box. We perform one recon-
struction step and then check how much mass
is redistributed between the two different size
circles as a function of grid resolution

low curvature region. But for the high order re-
construction, the area change between the larger
and smaller circle is not the same. The larger
circle is relatively well resolved so most of the
error is confined to the smaller circle for high
order reconstruction. There is virtually no mass
redistribution associated with high order recon-
struction which means the error issues mainly
from the number of grid points used to resolve the
interface.

We can more clearly see the accuracy of the
high order reconstruction in Figure 6. This is the
plot of maximum relative % error of the re-
constructed interface radius of the smaller circle
after both linear and high order reconstruction.
As can be seen in the figure, the position of the
interface is not improved much by linear recon-
struction using a localized indicator function val-
ue even though the local mass conservation has
been greatly improved. The accuracy of the re-
located interface has been dramatically improved
by using high order reconstruction. With increas-
ing resolution, both bicubic and quintic B-spline
reconstruction become comparable to each other.

We need to reconstruct the surface several times
during a typical simulation (but not every time
step) since interface elements usually deform ir-
regularly as they follow the flow field. Figure 7
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Fig. 6 % relative error of reconstructed radius of

smaller circle, (Rrecon— Rorg) /Rorg X100, for
different resolution using both linear and
high order reconstruction
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shows the effect of repeated reconstructions on
the mass redistribution. The simulation geometry
is exactly the same as above and we use the lowest
resolution, 25X25 grid. We plot both the initial
interface and the interface after 100 consecutive
reconstructions. The initial and final reconstructed
interfaces are nearly indistinguishable when using
the high order reconstruction method (Figure 7
(b)) but with linear reconstruction using the
local indicator function value, the shape of the
circle has been distorted considerably (Figure 7
(a)). As we discussed before, the resolution is
extremely low for this test and such a result can be
expected because the error in mass redistribution
has not been improved much at this lowest reso-
lution for the linear reconstruction using loc-
alized [ as compared to higher resolution. The
high order reconstruction shows more uniform
improvement over a wide span of resolution. This
is a worst possible case scenario since, in actual
computations, we do not reconstruct the interface
at every time step but about every 100 to 1000
time steps depending on the particular problem.

We calculated the rise of a single bubble to
validate the accuracy of current method. We used
a domain of size 8R X8R X8R with density ratio
of 1000, viscosity ratio of 100, Reynolds number
of 1.34, and Weber number of 14.3 as used by
Ryskin and Leal (1984). They obtained terminal
bubble rise velocity of 0.374 using body fitted grid

(a) (b)
Fig. 7 Mass redistribution between two different size
surfaces with 100 consecutive reconstructions.
Two distinct circular surfaces, radii of 0.25
and 0.05, are placed in a 1 X1 box with 25X
25 grid resolution. (a) Linear reconstruction
using local indicator function value (b) High

order reconstruction using quintic B-spline

structure. In our current simulation, a relatively
coarse grid, 34 grids in each direction and a time
step of 107% have been used to capture interface
motion. As can be seen from Figure 8, the rise
velocity of the bubble reaches a steady state value
of 0.365 and within 5% error compared with
the results calculated by Ryskin and Leal (1984).
Total mass loss during the simulation was less
than 0.2%. The rising velocity by linear recon-
struction shows comparable result compared to
high order reconstruction. But we need to point
out that high order method doesn’t require vol-
ume matching procedure after interface reconstruc-
tion which is the case for linear method. More-
over, high order reconstruction generates more
stable result by reconstructing relatively smooth
interface. The simulation breaks down near ¢=
10 as can be seen from Figure 8(a) for linear

05
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03
0.25¢

velocity

0.2
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0.1 samanas
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X " 4R
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Fig. 8 Rise of single bubble (a) Bubble rise velocity
(b) Steady state interface shape for single
bubble rise with high order reconstruction
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reconstruction.

We conclude that with the high order recon-
struction method, we can maintain the accuracy
and smoothness of the interface even with the
lowest possible resolution which can often be the
case for three-dimensional simulations in prac-
tice.

3.2 Parasitic currents

Spurious or parasitic currents become an im-
portant problem in two-phase modeling since
they impose limitations in the application of in-
terface methods to two-phase flows. Parasitic cur-
rents plague all interface methods and numerous
attempts at remediation have been implemented in
order to reduce or eliminate these currents. In
using the hybrid formulation of the surface ten-
sion force (Shin et al., 2005), we can suppress
spurious currents to a minimal level compared
to the regular Front Tracking formulation. We
will check the effect of high order reconstruction
on parasitic currents and compare with other
endeavors.

As we discussed in Shin et al.(2005), if the ini-
tial interface is a circle or sphere with uniformly
distributed elements along the interface, we can
maintain the parasitic currents at zero machine
for any value of Laplace, La, number even up
to infinity thanks to the exact discrete balance of
the pressure gradient with the surface tension
force. This being given, all of the subsequent tests
presented here are for interfaces with non-uni-
formly distributed elements, which would be the
case after interface reconstruction, or for an in-
terface initially out of equilibrium progressing to
equilibrium, which requires repetitive reconstruc-
tion, as in the decaying oscillations of a droplet.

In Figure 9, we repeated the calculation in
Figure 8 of Shin et al.(2005). We placed a 2D
circular drop with a radius of 0.25 in a 1 X1 do-
main resolved by a 50X50 grid with all other
properties set to unity and a time step of 1072 has
been used. The Laplace number, La=ocpD/(Z,
(related to the Ohnesorge number by La=1/
On?) is set to 250 and Unax, the magnitude of the
maximum velocity, has been obtained for both
linear and high order reconstruction. Since it is
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Fig. 9 Parasitic currents in a 2D equilibrium static
drop calculation for a drop of radius R=0.25
in a 1 X1 domain resolved by a 25X25 grid
with a Laplace number, L=250. Interface

reconstruction every Af=100

not possible to generate a strictly uniform distri-
bution of surface element sizes with our recon-
struction technique at this point, we now focus
on the effect of the surface reconstruction, which
will act as a perturbation of the interface. Recon-
struction has been performed at fixed intervals of
every Af=100 and we can observe in Figure 9
that spikes occur in accordance with reconstruc-
tion but die out quickly and the parasitic cur-
rents tend to further decrease with linear recon-
struction using localized indicator function val-
ues. But using high order reconstruction, there is
virtually no perturbation during reconstruction
and we can maintain orders of magnitude smaller
parasitic currents throughout the simulation. This
behavior is quite important since it can be diffi-
cult to find an optimal reconstruction time and
multiple reconstructions during a short span of
time may need to be performed. We still have
some amount of spurious current even though it is
at an essentially negligible level. This is due to the
non-uniformity of interface element sizes after
reconstruction.

In Figure 10, we repeat the 2D droplet os-
cillation experiment of Torres and Brackbill
(2000) . The figure shows a plot of kinetic energy,
I/Z/pu-udV, versus time for simulations on a

doubly periodic [0, 0.01]% domain resolved by a
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Kinetic energy vs time for a 2D oscillating
drop. The ellipse, x%/0.0032+%/0.002°=1,
is placed in a doubly periodic [0, 0.01]2
domain resolved by a 64 X64 grid. The den-
sity and viscosity inside the ellipse is 1000.0
and 0.001, respectively. The density and vis-
cosity outside the ellipse is 1.0 and 107%,
respectively, and ¢=0.1. The number of in-
terface elements is about 400 for the calcula-
tion without reconstruction and about 125
with reconstruction. We reconstruct the in-
terface every 10" time step for linear recon-
struction using localized indicator function
values and every time step for high order
reconstruction using the quintic B-spline,

Ms

64X 64 grid. The interface is initially the ellipse
x%/0.003%+v%/0.002°=1. The density and viscosi-
ty inside the ellipse is 1000.0 and 0.001, respec-
tively. The density and viscosity outside the el-
lipse is 1.0 and 107", respectively, and ¢=0.1.
Time step of 107° has been chosen for the simu-
lation. The number of interface elements is about
400 for the calculation without reconstruction and
about 125 with reconstruction. We reconstruct the
interface every 10" time step for linear recon-
struction using localized indicator function values
and every time step for high order reconstruction
using the quintic B-spline, Ms. This is just about
a worst possible case since we would not recon-
struct the surface this often in an actual com-
putation. Although the frequency of oscillation
remains almost the same, the reconstruction using

the linear kernel tends to dampen the oscillations
as can be seen in Figure 10. But using high order
reconstruction, there is virtually no difference to
the case without reconstruction which is compa-
rable to that in Torres and Brackbill (2000) who
used the curl projection formulation to reduce
parasitic currents. We conclude that the high
order reconstruction does not introduce any pe-
rturbation and the result is independent of the
frequency of reconstruction.

Popinet and Zaleski (1999) suppressed the
parasitic currents in their Front Tracking method
by improving the pressure gradient calculation
in grid cells cut by the interface. They found that
the Laplace number, La, is correlated to a di-
mensionless measure of the parasitic current, the
capillary number, Ca= Upnaxy/ 0.

We performed comparisons with the calcula-
tions shown in Table I of Popinet and Zaleski
(1999). A circle with diameter of 0.4 is located
in 1X1 box resolved by a 32X 32 grid. Periodic
boundary conditions in the x direction and re-
flecting conditions in y direction have been used.
The density and viscosity ratio is set to unity and
the maximum amplitude of the parasitic currents
was measured after 250 characteristic time scales
(#=tpnyso/ D) with time step of 107°. They also
tested the convergence of the method by increas-
ing the grid resolution for the case of L a=12,000.

We reconstructed the interface 50 times dur-
ing the entire simulation with high order recon-
struction using the Ms kernel. The pressure gradi-
ent correction in Popinet and Zaleski (1999) in-
dicates a consistent level of Ca~ O(107%) with
increasing La from 1.2 to 12,000. As can be seen
in Figure 11(a), our high order reconstruction
gives a slightly better result but almost the same
order of Ca of O(107%). High order reconstruc-
tion also shows quadratic convergence as we in-
crease grid resolution (Figure 11(b)). The simu-
lation is carried out for a relatively long time
(2500 characteristic time scales) to obtain con-
verged values. As shown in Figure 11(b), the
order of Ca number is comparable to that of
Popinet and Zaleski (1999) except for low reso-
lution. For the coarsest mesh, 16X 16 mesh has
been used and thus only 6 grid cells in each
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direction are used for representing the interface.
With this extremely low resolution, high order
reconstruction loses quadratic convergence char-
acteristic since it is influenced greatly by both
Eulerian grid resolution and Lagrangian interface
spacing but still shows linear convergence.
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Fig. 11 Parasitic currents in a 2D equilibrium static

drop compared with results from Popinet
and Zaleski (1999). A circle with diameter
of 0.4 is located in 1X1 box resolved by a
32X 32 grid. Periodic boundary conditions
in the x direction and reflecting conditions
in y direction have been used. The density
and viscosity ratio is set to unity and the
maximum amplitude of the parasitic currents
was measured after 250 characteristic time
scales (¢ =tpnyso/ D). (a) Amplitude of the
parasitic currents for various Laplace num-
ber (b) Effect of spatial resolution on para-
sitic currents

Renardy and Renardy (2002) proposed an
algorithm for improving the surface tension com-
putation and thus reducing the parasitic currents
in VOF methods. They calculated the interface
curvature from an optimal fit for a quadratic
approximation to the color function over groups
of cells near the interface. Using this, parasitic
currents are reduced by two orders of magnitude
compared to conventional VOF-CSF (Brackbill
et al., 1992) or VOF-CSS (Lafaurie et al., 1994 ;
Scardovelli and Zaleski, 1999) methods. We re-
peated the simulation in table I of Renardy and
Renardy (2002). We placed a spherical drop cen-
tered at (0.5, 0.5, 0.5), with radius of 0.125 and
surface tension of 0.357 in a 1X1X1 box. The
boundary condition is no slip at the top and
bottom walls, and periodic in the x and y direc-
tions. Both fluids have equal density of 4 and
viscosity of 1. The initial velocity field is zero and
a time step of 107° has been used for the simu-
lation. The exact solution is zero velocity for all
time. Figure 12 shows the L, L1, and L, norms
of the velocity field for the spurious currents.
Each norm is slightly higher because the interface
after reconstruction is usually more irregular in
three-dimensions than two-dimensions, but the
convergence rate is almost the same as the results
from Renardy and Renary (2002). Because of the
same reason as Figure 10(b), the results slightly
deviate for lowest grid resolution.

Shirani et al.(2005) developed a method re-
ferred to as pressure calculation based on the
interface location (PCIL) for VOF methods. It
calculates the pressure force at each interfacial
cell face using the exact pressure due to the por-
tion of the cell face occupied by each fluid. They
devised a special form of the pressure at the cell
face for different orientations of an interface. By
doing this, they can reduce the spurious current
by up to three orders of magnitude compared to
conventional methods. We compared our method
to Shirani et al.(2005). The drop which has a
radius of 0.25 is placed in a 1X1 box resolved
by a 66X66 mesh and a time step of 10~° has
been chosen for the simulation. The material pro-
perties have been taken for a water droplet in air
(01/ 02=830.545, t11/ 15=54.945) . The Ohnesorge
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number based on the water properties is 1.17 X
107%. As we can see in Figure 13, the maximum
value of the spurious current is almost three
orders of magnitude lower than that of Shirani
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Fig. 12 Velocity norms of spurious current vs grid
resolution compared to results from Renardy
and Renardy (2002). Spherical surface drop
centered at (0.5, 0.5, 0.5), with radius of
0.125 and surface tension of 0.357 in 1 X1X
1 box. The boundary condition is no slip at
the top and bottom walls, and periodic in x
and y directions. Both fluids have equal

density of 4 and viscosity of 1
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Fig. 13 Maximum spurious velocity compared to

results from Shirani et al.(2005). The drop
which has a radius of 0.25 is placed in 1X1
box. A 66X66 mesh and a time step of 107°
has been chosen for the simulation. The ma-
terial properties have been taken for a water
droplet in air (01/0:=830.545, 14/ 1,=>54.945)

et al.(2005).

We conclude that parasitic currents, although
not negligible, are small in the standard front
tracking method (Tryggvason et al., 2001 ; Unverdi
and Tryggvason, 1992a, 1992b), generally of or-
der O(10™"). By using the hybrid formulation
(Shin et al., 2005), we reduce this to about one
order smaller, O(107%) and render the scheme
stable to the perturbations generated by the re-
construction. We can further decrease this value
to O(1077) by using the high order reconstruc-
tion method without introducing any disturbance
during reconstruction.

4. Conclusions

Even though the linear reconstruction method
using a localized I value has good overall per-
formance with local mass conservation, it has a
relatively large error in the exact interface loca-
tion after reconstruction. This usually leads to
instability of the solution where repetitive recon-
struction is necessary. By using high order recon-
struction, we can eliminate the mass redistrib-
ution between two distinct interfaces or widely
differing curvature regions and relocate the in-
terface accurately and smoothly. The improve-
ment using high order reconstruction is evident
in tests of the magnitude of spurious currents.
Usually reconstruction introduces a disturbance
which dies out quickly when using the hybrid
surface tension formulation (Shin et al., 2005).
But since there is virtually no perturbation caused
by the high order reconstruction, the parasitic
currents are almost two orders of magnitude
smaller than with the linear reconstruction meth-
od. Using the high order reconstruction method,
we can achieve an accurate surface shape even
with exceptionally low grid resolution without
worrying about the reconstruction time step. This
can be very important in 3D simulations where
the use of sufficient grid resolution is restricted
due to the available computational resources.

We point out that our LCRM does not include
any optimal fit or approximation of the interface
surface. The procedure is extremely simple as dis-
cussed previously and the results are comparable
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to other methods which use complicated proce-
dures for smoothing the interface.
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