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Accurate smsmm analyses of large deformable moving structures are still unsolved problems 

m the field of earthquake engineering In order to analyze these problems, the nonlinear finite 

element method formulated by the absolute nodal coordinate approach Is nonced Because, this 

formulatmn has several advantages over the standard procedures on mass matrix, elastic forces 

and damping forces in the case of large displacement problems But, it has not been fully studied 

to bmld frame structure models by using beam elements in the absolute nodal coordinate 

formulatton In this paper, we propose the connecting method of the beam elements formulated 

by the absolute nodal coordmate The coordinate transformation mamx of th~s element ls 

introduced Into the frame structure Th~s beam element has the characteristic that the mass 

matrix and bending stfffiness matrix are constant even ff m the case of large d~splacement 

problems, and this characterlstm Is being kept after the transformation In order to verify the 

proposed method, we show the numerical simulation results of frame structures for a vibration 

problem and a large displacement problem 

Key Words:Fim.te Eleraent Method, Beam, Absolute Nodal Coordinate Approach, Frame 

Structure, Seismic Analysis 

1. Introduction 

There are many reports on the methods to 

formulate flexible beam element which under- 

goes large displacement and large rotation (De 

Veubeke, 1976, Huston, 1981, Huston, 1991, 

Slmo, and Vu Quoc, 1986, Iura and Atluri, 
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1995, Houke et al ,  1998) Recently, the absolute 

nodal coordinate formulation was proposed by 

Shabana et al (1996, 1998) 

Th~s formulatmn employs nodal slopes instead 

of employing infinitesimal or finite rotatmns at 

the beam nodes whtch are used m the traditional 

formulations The authors proposed a new for- 

mulatlon for elastic force calculation whtch is not 

dependent on the element coordinate 

From this, the bending stiffiness matrix of a 

beam element whichout using *he rotauonal ma- 

trix has been obtained for a large displacement 

and rotation probtem, and consequently a nine 

constant Rayle~gh damping was introduced m 

the structural analysis (Takahasht and Shlmtzu, 
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1999" Takahashi et al., 2002). There have been 

many studies for developing flexible elements by 

making use of the absolute nodal coordinate ap- 

proach. This approach is not completed but is 

still developing. For this reason, there are many 

studies on theoretical formulation but a few stu- 

dies for applying the absolute nodal coordinate 

formulation to practical structural problems. As 

one of the application examples, Terumichi mo- 

dels a rail in railway vehicle problems by the 

absolute nodal coordinate formulation and ob- 

tained satisfactory results (Ikuta et al., 1999). But 

he only uses the straight beam model connected 

by many straight beam elements. There are no 

such other examples in the two dimensional frame 

structures so far. Since the absolute nodal coordi- 

nate formulation uses the slopes as nodal coordi- 

nates instead of using the angles which are used 

in the standard linear finite element (FE) formu- 

Lation, the standard coordinate transformation 

matrix for the linear FE formulation can not be 

used when element matrices are assembled. The 

frame structure can be modeled by the DAE by 

using the constraint equation of node connec- 

tion, but it may be convenient for us to model 

the structure, by a new coordinate transforma- 

tion matrix for the absolute nodal coordinate 

approach. There are no such reports on the study 

of frame structure modeling and analysis by using 

the beam dement formulated by the absolute no- 

dal coordinate formulation. There are few experi- 

mental verifications on the structures formulated 

by the absolute nodal coordinate formulation by 

means of actual scale structural models. 

This paper describes a formulation of frame 

structure by means of the absolute nodal coordi- 
nate beam clement for practical problems. A 

method to connect beam elements is proposed by 

assembling the superposition of the element ma~ 

trices with a new developed coordinate trans- 

formation matrix for the absolute nodal coordi- 

nate. Equations of motion of the frame structure 

can be described by ordinary differential equa- 

tions with constant mass and bending stiffness 

matrices in large displacement problems. Since 

the formulation can treat large displacement and 

large rotation problems under infinitesimal de- 
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formation, this may be applied for a moving 

flexible structures which change their shape with 

time. To verify the usefulness of the proposed for- 

mulation, simulations have been conducted. The 

results are compared with the results of tradi- 

tional FE analysis and seismic experiment. 

2. Formulation for Beam Element 
by Absolute Nodal 

Coordinate Approach 

We define the global coordinate system O 

X Y ,  and consider the uniform slender beam in 

this coordinate system as shown in Fig. [. The 

beam has length I, cross sectional area A, mass 

density O. The global position vector r of an 

arbitary point p on the neutral axis of the beam 

can be written as 

r = S e  (l) 

e is the vector of nodal coordinates 

e =  [el  e~ e3 e4 es e~ e7 e d  r (2) 

where el and e2 are the translational coordinates 

at the node at A, e~ and eG are the translational 

coordinates at the node at B, e3 and e4 are the 

spatial derivatives of the displacements of the 

node at A defined in the XYcoord ina tc  system, 

and e7 and es arc the spatial derivatives of the 

displacements of the node at B defined in the X Y  

coordinate system. 

We assume Bernoulli Euler theory for the 

beam. The shape function S is written as 

Y 
a'2. 

O ....... X l,- 

Fig, I Deformation of beam 
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where x is a distance from point A to p, and ~ - -  

x/l. 
The kii:etic energy of the beam is defined as 

7"= 2 prTi" dx !s 

and B in F ig. 1. then the axial strain of  the beam 

can be written as 

I~ l 

_ ,,"l,e.~- e,) 2 ~ ( e ~ - e z )  2 
I 

(8) 

where, ]a(=;", .es re~)2+(er,-e2) ~) is the cur 

rent length of the deformed beam and [ is the 

length of  the undeformed beam. Substituting from 

Eq. (8) into Eq. (7), the axial strain energy can 

be obtain, and the vector of  the element genera- 

lized elastic forces for the axial deformation can 

be written as 

where i" is the global vdoc i ty  veclor of an a,bi-  

trary point p on the beam eternen~ defined as 

f Se  (5'., 

Substituting Eq. (5) into Eq. {4). the mass matrix 

M can be obtained as follows. 

13 ~. 0 

0 13 

It/ 

M = A d  9 0 :31 

0 

13l .. /e 

tt/ ~0 t3l 0 
210 0 �9 0 -420 

0 _'f0 0 , 0 -:i:0 
F 13! 1 "~ 

i05 0 4,7 0 - la0  0 
/z 0 131 ga 
t05 420 0 - - 1 7  

13 tll 
0 3)- 0 > 0 

13/ t3 I I /  
N o 35 o-~ 

]1/ 0 1" 
0 -210 I05- 0 

/'-' I : / [" 
-K0 o 2i0 0 Yg 

i0 

Next we explain 1he derivation of  elastic forces 

withoul local element frame. At first, let tts coKI- 

sider the elastic fnrces for the axial deformation of 

the beam. The strain energy {]~ is defined as 

(.[,-5-(Uo E A s  dx (7) 

where .5" is the modulus of  Elasticity and c is 

the strain for the axial deformation. Now, it is 

assumed that the del~rmation of  the beam is 

infinitesimal, and the length of the deformed 

beam is equal to lhe distance between point A 

F~=Kle (9) 

where, 

1 0 0 0 - - 1  0 0 0  

0 1 0 0  0 1 0 0  

0 0 0 0 0  0 0 0  

0 0 0 0 0  0 0 0  

�9 - 1  0 0 0  1 0 0 0  

0 - - 1 0 0  0 1 0 0  

0 0 0 0 0  0 0 0  

0 0 0 0 0  0 O0 

(.10) 

Next. le* L,S consider elastic forces for the [n~ 

finitesimal bending deformation.  The strain ener- 

gy fit for the bending deformation is defined as 

I ( = 2 -[Jo Eta;e g x  ( l t) 

where ] is ti~e second moment of  area and /c is 

the curvature of  the deformed beam. The fbllow- 

ing relationsip is used in order to obtain the strain 

enmgy for the bending deformation (Takahashi  

and Shimizu, 1999) 

(12) 

Substituting Eq. 12) imo Eq. ( l l ) .  the vector of  

the elclnent generalized elastic forces for the ben- 

ding deformation can be lead as 

/ 8Ut  \ r  
F '=~ 3e ) Kte (13) 
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whet, 

, o~S r OzS 

12 0 6l 0 -12  0 6l 

0 12 0 61 0 -12  0 6l 
61 0 4l z 0 - 6 I  0 2l z 0 

0 61 0 41 a 0 - 6 l  0 21 a 

-12  0 - 6 l  0 12 0 - 6 I  0 

0 12 0 -61  0 12 0 - 6 l  

6/ 0 2l 2 0 - 6 l  0 4l 2 0 

0 6l 0 2l ~ 0 -61  0 4I ~ 

The bending stiffness matrix K~ is symmetric con- 

stant matrix. Finally, the vector of the element 

generalized elastic forces can be obtained as 

F e - F ~ + F t  (16) 

The equation of motion of the absolute nodal 

coordinate formulation with Rayleigh damping 

effect (Takahashi et al., 2002) which is limited to 

bending modes is written as 

M i i + F . + F ~ - Q  (17) 

where, 

F . -  (aM+/5'K,) + (18) 

(~4) 
Y 

~ I 
O 

(15) 

3. F r a m e  S t r u c t u r e  M o d e l  

3.1 Joint at straight part 

Let us consider the connection method of  

beam elements at the straight part as shown in 

Fig+ 2. In this case, the connection point P and Q 

have same nodal coordinates, then it is possible to 

combine these elements to each other without the 

coordinate transformation matrix. The equations 

of motion of the two elements can be written as 

M<~)i~(')=Q u>-  (Kl" +K~Z)) e TM (19) 

M(~)i!(a>=Q (2> (Kt2) +KI~)) e (2) (20) 

where, the suffix (o means the element number. 

In order to simplify the description of the equa- 

tion, we described the mass matrix and the st iff  

ness matrix of 8X8 matrix by using 2 •  matrix 

as follows. And the nodal coodinate vector and 

element l Q P element 2 
0 = 0 0 - < 3  

x , /  

O O O 

Fig. 2 

-~X 

Joint at straight part 

generalized force vector are described as follows 

by using 2 • 1 vector. 

13 o 

13 o 
11/ gg o 

11l 
o 2~ 

M(')=A~i ~0 0 

0 

13l 
-420 0 

ill ~0 13l 
5~ o o 42oo 

Ill 9 13/ 
~ 2m 0 TG 0 -420 
12 131 l z 

1-1o5 o ~ o - ~ o  
13I 

0 -~lla~a 0 1 0 5 0  
13[ 13 Ill 
420 0 g 0 - 2 1 0 ~  

13/ 13 111 
0 420 0 ~- 0 - 2 1 0  (21) 
1~ I 11 12 

o +4o ~ - ~  ~ m+ 
11/ ]2 j 

- ~  o ms 
t3/ ]+ 

0 -420 {/ ]g 0 

[Mi{' Mt~)Mt~ > M{9] 

rMti , Mi+ ) Mtl ) M <  
[M~{ + M(~+ > M~ > MZ >] 

K~)=KI,) + K? ) 

IKI~> KI~)Ki~)Kt2]  

=/Kk~ > Kkk)KZ ) K+~' / 
/K+i > K~+ ) KZ > K+~' / 
lK~t > K ~  > K ~  ) K l g ]  

(22) 

= [ei~ > eW eW eW]" (23) 

The equation of  motion of connected beams 
can be written as 

M~+R+=Q (25) 

where, the nodal coordinate vector, the mass 

matrix, the stiffness matrix and generalized force 

vector can be described as follows. 
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M 

R =  

e~2 ) ~12~(L) 

e(l)  ~(2) 5(~ r 
e "" 

el2 et? 
e(2) ~(2) 56 ~fiS 

eli' ei~' 

MIP MI~' MI~' Mii' 0 0 

Mt{ ) M~ ) M~' Mt~ ) 0 0 

MtP Mt~' M~)+MI] ' MI~'+MI~2 ) Mi{ ~ M~' 

4L I,.43 �9 ~,,21 ~,.. - , , ,22 ~,.~ Mi~ ) 

�9 K~P Ki~ ) K~ ) Ki!~ ) 0 0 

Knl K<L) ~(t) ,.~:(2) [rtt)_~_~I2) to(2) ~:(2) 
41 42 1~.43 T 1~.21 1~.44 T 1%22 1~23 IF~24 

0 0 'c~) ' : (~ ~=<2) Kt~ ~ i~,31 1~,32 [~,33 

1%42 ~tX43 ILK44 

(26) 

(27) 

(2s) 

e < ,  ~(2) (30) 56 r 

The global slope coordinates of the point P and 

the point Q are described by using the angle 0 a n d  

axial strain ~ of the connect ion point as follows. 

e~ ' ) -  (, +&')) cos 0, 

e~ 1)= (1 + e~ 1)) s in  01 

o'~ e) = ( 1 + ~cz)) COS 6 

where, 0, and & means the angle, and s~ ) and e~? ~ 

mean the axial strain at the point  P and the point 

Q as shown in Fig. 3. Here, we assume that the 

axial strain is infinit.esimal in our sLudy, these 

equations can be written as 

e } ' -  (I + & ' )  cos g - c o s  8~ 

Q =  

) 

%!; 
(I) - L  ~ (  2 ) 

6 / ~ 1 2  

78 -I- ' ~ 3 4  

Q (2) 
78 

(29) 

3,2 Joint at corner part 

Let us consider the connection method of beam 

elements at the corner part as shown in Fig. 3. In 

this case, the coordinate transformation matrix is 

necessary to connect these beam elements. Since 

the translational coordinates of the point P and 

point Q are same, the following equation can be 

obtained. 

,,,j 
o f -  

/ 
o--"" 

I, .5," 
O 

Fig. 3 Joint at corner part 

e~ ~ -  ( 1 + E& 1~) s i n  0~ - s i n  0~ 

e~ 21= (1 +&2~) cos &=cos  ~9, 

e~ z~ -- ( 1 + ~r s in  & = s i n  8:,. 

e~ ay and r can be wrkten as follows by using the 

angle & and 0r 

e~ *>- cos 0~- cos ( 8, + 8c) 
=--cos 01 cos ~)~-sin 01 sin ~ 

el 2~ =s in  & - s i n  ( 0, + &) 
=s in  01 cos 8~ cos 0L sin & 

where, 8c means the connection angle of two 

beam elements shown in Fig, 3, and this is a con- 

slam value. Then, coordinates e~ ~) and c4 (a~ can be 

described by the coordinates e~ ~) and e~f x) and con- 

nection angle 0,: as 

i c o s  

Ld"l  / sin 
C O S  

= s in  

0 r  0c I c o s ~ i  

0c cos & JLsin 
Oc - - s i n  O~ I e-~ 1)] 

Oc c o s & J L e ~  u 

(31) 

Consequendy,  the coordinate transformation ma- 

trix of the beam element 2 to connect with the 

beam elemenl 1 can be written as 
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A =  

10  0 0 0 0 0 0 -  

0 l  0 0 0 0 0 0  

0 0 c o s & - - s i n ~ 0 0 0 0  

0 0 s i n ~  c ~  0 0 0 0  
O0 0 0 1 0 0 0  

0 0  0 0 0 1 0 0  

0 0  0 0 0 0 1 0  

0 0  0 0 0 0 0 1  

(32) 

Since the angle @e is a constant, the coordinate 
transformation matrix A of the beam element 

formulated by the absolute nodal coordinate 

becames constant matrix even in the large dis- 

placement problem. 

The equation of motion of two beam elements 

after the connection can bc written as 

M e T K e = ( ~  (33) 

where, 

~=  [et~), ell) e~), e~s)e~), e~)] 2, (34) 

Mil' Mll I Mi~ ) Mt[ ) 0 0 

Mtl ~ Mt~ ~ M~ ~ Mt~ ~ 0 0 
~i - -  Mtl) M[~ i ~ ) + ~ I I ~  Mt2 +lVIt~ I M[~)l~II~ t 

M~I) MI[) i l [ ) + ~ i t ~  Ml~)+l~it~ ) i~it~ l~l~ 1 (35) 

o o l~t~ ~ Mt~ ) ~t~ ~ ~ff4 ~ 
0 0 ~l~ ~ ~ r ~II~ ~ ~ 4 2  ~Lt43 

Kt] ~ Kt~ ) Kt~ ~ Kt~ ) 0 0 
K~ ) K~ ) K ~  } K~  ) 0 0 
I ~  ) Kt~ ) K~ ) +I~t] ~ Kt~ ) +~t~ ) ~t~ > ~t] ) 
L~.41 

o o Rt~ ) l~g ~ f~)  f~i) 

Q =  Q~i) + Qt~ ) (37) 

fig' 

l~l(~> : A  rM<~>A (38) 

~[I~)-ArK~)A (39) 

Q(2) = A r Q  (~) (40) 

The equation of motion of  the connected beam 

C o p y r i g h t  ( C )  2 0 0 5  N u r i M e d i a  C o . ,  l a d .  

elements can be described as an ordinary dif- 
ferential equation by using the coordinate trans- 

formation matrix for the absolute nodal coordi- 

nate formulation, Since the coordinate transfor- 

mation matrix is constant, the mass matrix and 

the bending stiffness matrix of Eq. (33) arc con- 

stant even in the large displacement problem. 

4.  N u m e r i c a l  S i m u l a t i o n  

a n d  E x p e r i m e n t a l  R e s u l t  

4.1 Vibration problem 
In this section, we examine the validity of the 

flame structure modeling for the beam element for- 

mulated by the absotute nodal coordinate. Fig. 4 

shows the I/8 scale model of the container crane 

on a shaking table for the seismic experiment. 

The seismic characteristics of" the container crane 

were investigated from the experiment in I997 
(Kanayama, and Kashiwazaki, 1998; Kuribara 
and Kobayashi, 2000). Fig. 5 shows the analytical 

Fig. 4 Experiment of crane model (1/8 scale) 

I dd  m 

Fig, 5 Simulation model of crane 
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model of this structure. The table and both legs of 

the crane are connected by lhe revolute joints in 

this model. 

Fig. 6(a) shows the horizontal acceleration of 

the shaking table. We used this d,'tza from the 

observed earthquake at Hachinohe harbor in Ja- 

pan in 1968. The maximltm value of this accere- 

lation was set to l~69 n~./s ~, and the lime axis x~.~*s 

1/8 times of the original dala. Fig. O(b) shows 

the experimental seismic response at the point P 

in Fig. 5. From this experimental result, we can 

observe that the I sl mode oflhis model is 1.69 Hz. 

and Ihe dampi*~g Jatio of this mode is 0.18~. In 

order to make the simulation modeh the coeffi- 

cient a(=2~'~cul) of the damping matrix C= :aM 

is se~ to 0.0373. We use ~he software "MATLAB" 

to make simulation programs. F ig  6(c) and (d) 

show the simulation results at the point P by 

the linear finite element method iFEM) and the 

proposed method. 

The frequency of 6Hz  is included fi'om 3sec 

to > sec in the experimental resuh, but thls is 

no~ i n c l uded  in bo f l l  simulalion results. Because 

the .~m~,lysis model is differenl in detail to the real 

model. The small difference can be confirmed in 

the expm imenlal resuh and the simulation results, 

but these resuhs ave good agreement with each 

other [t is proven that the proposed method is 

effective tbr the modeling of the frame strucn~re. 

4.2 Large displaceme. i  problem 
Next. we examine the validity of the proposed 

method for the large displacement problem. Fig. 

7 shows the example model of fiee l~dling of a 

2 (} 15 

].5 

t 

!l+ 
.... o.. ~ u!! i ~,, ,~ 
f~ ;, �9 

:5 c i i l j ,  I , 
..C,_ -(L5 I 

I i O  

1.5 

2-0f) ~(~ 

( a )  l n p u l  t a b l e  a c c e l e r a t i o n  

15 

2~ 
.e .L 

.,< 

(5 

1 . 0  J 

! I ' ' ' ' ': ' 

( 7 5 .  :: ' ' " : :+; 

, ,  : '; : �9 : i  
I j ---. , .~:, +" ,,j: . " l ; ' :  : : 

I O .  p 

15 

15 

1{3 

Tim,; b ]  

b ~ Exper imermf i  result at P 

[5 

< 

i .() 

0 . h  

C) 

I .o 

i :: : i  

, i  .n 

1.13 

(1.) 

( 3 -  
r , 

I 

, .L ~ i I L 

- I g  I ' ~  
t) hi) L 5 t l g I I~ 

I h~'lc INI l"imc iN] 

(c) S imu lauon  result at P ( F E M )  ,d) S imu la t ion  resuh at P (AN,:-:',, 

Fig. 6 Comparison of resttlt~; 

Copyright (C) 2005 NuriMedia Co., Ltd. 



290 Yoshitaka Takahash?, Nobuyuki Shimizu and Kohei Suzuki 

~J 

,Y 

" J l l , ' /  

Fig. 7 

3 t n  
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Analysis model 

-i  

6 F .................................. ' ...... 

4 ' 3 .0s/  Os / , ] . ~ <  �9 . 

-2 1.5s 
/ '  

I" 

-4 ~2,0s 

.{'3 . . . . . . . . . . . . . . . . . . . . . . . . . . .  + ,~ �9 
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Fig. 8 Simulation result (RecurDyn) 

 .o/st . . i Os 

/ + 

, / 

+4 ~ A 0 s  i 

_6 + 
-6 -4 -2 0 2 4 

XLm] 

Fig. 9 Simulation result (proposed method) 

flexible pendulum. This pendulum has the rectan- 

gular corner part, and this model is connected to 

ground by the revolute joint. The beam has a 

mass density of 10 kg/m a, a modulus of elasticity 

of 5 • 10 s N/m 2 and no damping effect. The cross 

section of the beam element is square, and the 

cm. The pendulum is divided into size is 1 c m •  

6 elements. 

In order to verify the proposed method, we 

calculated this problem by using the MBD soft- 

ware "RecurDyn" Figs. 8 and 9 show the deform- 

ed shapes of the pendulum at different time. It can 

be seen that the results of the proposed method 

and RecurDyn software are fairly in good agree- 

ment, From these results, it can be confirmed that 

the proposed method is effective for the large 

displacement problem. 

5 ,  C o n c l u s i o n s  

This paper proposed a formulation of frame 

structures by making use of the beam element 

described by the absolute nodal coordinate pro- 

cedure. This beam element uses not the angles but 

the slopes as the nodal coordinates. Beam element 

connection can not be performed by assembling 

the matrix superposition of the beam element by 

the traditional FE transformation matrix. Though 

the connection can be made by using constraint 

equations, equations of motion of the whole sys- 

tem become differnetial algebraic equations. In 

this paper, the coordinate transformation matrix 

was first derived and the matrix was introduced 

when the element matrices are assembled to con+ 

nect the beam elements in structural analysis. The 

obtained equations of motion become ordinary 
differnetial equation not DAE. The constant mass 

and bending stiffness matrices are formulated for 

large displacement problem. 

To verify the proposed method, a vibration 

problem and a large displacement problem were 

solved and the result was compared with the res- 

ults of the seismic experiment and the linear FE 

method, These results show in good agreement, 

thus the proposed method was confirmed to be 

effective for dynamical problems. Since the meth- 

od can apply for the analysis of the frame strut- 
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ture model with rigid body motion, analysts of 

falling behavior of the cranes, simulation of large 
displacement excttation of a large scale shaking 

table, and analysis of structural behavior due to 

the movement of soil foundation caused by lique- 
faction, etc can be performed 

References 

De Veubeke, B F,  1976, "The Dynamics of 
Flexible Bodies," International Journal for Engt- 
neermg Science. 14, pp 895~913 

Honke, K and Inoue, Y et al, 1998, "A Study 
on the Stmu!.ation of Flexible Lll~k Mechames," 
Transactton of the Japan Soctety of Mechanic- 
al Engineers, 64 620, C, pp 1176-1183 (m Japa- 

nese) 
Huston, R L,  1981, "Multi body Dynamics 

Including the Effect of Flexlbdlty and Comph- 

ance," Computer and Structures, 14, pp 443-451 

Huston, R L ,  1991, "Computer Methods in 

Flexible MulUbody Dynamics," International 
Journal for Numerical Methods in Engineering, 

32, pp 1657~1668 
Ikuta, S, Terumlchl, Y and Suda, Y,  1999, 

"Study on Flexible Multlbody Dynamms with 
Moving Mass," JSME Proceedings of Dynamtes 
and Design Conference ( Vof A), 99-7, pp 205~ 

208 (in Japanese) 
lura, M and Atluri, S N ,  1995, "Dynamic 

Analysis of Planar Flexible Beams with Finite 
Rotatmns by using lnemal and Rotating Fra- 
mes," Computers & Structures, 55-3, pp 453~ 

462 
Kanayama, T and Kashlwazakt, A ,  1998, "An 

Evaluanon of Uphftlng Behavlm of Container 

Cranes Under Strong Earthquakes," Transaetzon 

o f the Japan Soctety of Mechamcal Engineers, 64 
-618, C, pp 480--486 (in Japanese) 

Kunbara, H and Kobayashl, N ,  2000, "An 

Approach to the Contact Problem fm Objects 

with Complex Configuration," Transactwn of the 

Japan Society of Mechamcal Engineers, 66-646, 

C, pp 1816--1822 (m Japanese) 
Shabana, A A,  1996, "An Absolute Nodal 

Coordinate Formulation for the Large Rotation 
and Deformanon Analysis of Flexible Bodies," 
Technical Report #MBS96-]-U1C, Department 
of Mechanical Engineering. Umversity of Ithno~s 
at Chwago 

Shabana, A A,  Husslen, H A and Escalona, 
J L ,  1998, "Apphcatmn of the Absolute Nodal 
Coordinate Formulatmn to Large Rotation and 
Large Deformation Problems," ASME Journal 

of Meehamcal Destgn, 120, pp 188~ 195 
S~mo, ] C and Vu-Quoc, L ,  1986, "On the 

Dynamics of Flexible Beams under Large Over- 

all Mot ions - -The  Plane Case Parts I and 
lI," ASME Journal of Applied Mechanics, 53, 

pp 849-863 
Takahashl, Y and Shlmlzu, N ,  1999, "Study 

on Elastic Forces of the Absolute Nodal Coor- 
dinate Fmmulatlon for Deformable Beams," 
ASME Proceedings of Design Engineering Tech- 
meat Conferences, VIB 8203 

Takahashl, Y,  Shtmlzu, N and Suzukt, K ,  
2002, "Introduction of Damping Matrix into Ab- 
solute Nodal Coordinate Formulation," JSME/ 
KSME Proceedings of the First Asian Con e ~ence 

on Mutttbody Dynamics, pp 33~40. 

Copyright (C) 2005 NuriMedia Co., Ltd. 


