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Accurate seismic analyses of large deformable moving structures are sull unsolved problems
m the field of earthquake engineering In order to analyze these problems, the nonlinear finite
element method formulated by the absolute nodal coordinate approach 1s noticed Because, this
formulation has several advantages over the standard procedures on mass matrix, elastic forces
and damping forces 1n the case of large displacement problems But, 1t has not been fully studied
to build frame structure models by using beam elements 1n the absolute nodal coordinate
formulation In this paper, we propose the connecting method of the beam elements formulated
by the absolute nodal coordinate The coordinate transformation matrix of this element 1s
mtroduced mnto the frame structyre This beam element has the characteristic that the mass
matrix and bending stiffiness matrix are constant even f 1n the case of large displacement
problems, and this characterisuc 1s beng kept after the transformation In order to verify the
proposed method, we show the numerical simulation results of frame structures for a vibration
probiem and a large drsplacement problem
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1995, Honke et al, 1998) Recently, the absolute
nodal coordinate formulation was proposed by
Shabana et al (1996, 1998)

This formulation employs nodal slopes nstead
of employing infinitesimal or finite rotations at

1. Introduction

There are many reports on the methods to
formulate flexible beam element which under-

goes large displacement and large rotation (De
Veubeke, 1976, Huston, 1981, Huston, 1991,
Simo, and Vu-Quoc, 1986, Iura and Atluri,
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the beam nodes which are used in the traditional
formulations The authors proposed a new for-
mulation for elastic force calculation which 1s not
dependent on the element coordinate

From this, the bending stffiness matrix of a
beam ¢lement whichout using the rotational ma-
trix has been obtamned for a large displacement
and rotation problem, and consequently a time
constant Rayleigh damping was iniroduced
the structural analysis (Takahasht and Shimizu,
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1999 : Takahashi et al, 2002). There have been
many studies for developing flexible elements by
making use of the absolute nodal coordinate ap-
proach. This approach is not completed but is
still developing. For this reason, there are many
studies on theoretical formulation but a few stu-
dies for applying the absolute nodal coordinate
formulation to practical structural problems. As
one of the application examples, Terumichi mo-
dels a rail in railway vehicle problems by the
absolute nodal coordinate formulation and ob-
tained satisfactory results {lkuta et al., 1999). But
he only uses the straight beam model connected
by many straight beam elements. There are no
such other examples in the two dimensional frame
structures so far. Since the absolute nodal coordi-
nate formulation uses the slopes as nedal coordi-
nates instead of using the angles which are used
in the standard linear finite element (FE) formu-
lation, the standard coordinate transformation
matrix for the linear FE formulation can not be
used when clement matrices are assembied. The
frame structure can be modeled by the DAE by
using the constraint equation of node connec-
tion, but it may be convenient for us to model
the structure, by a new coordinate transforma-
tion matrix for the absolute nodal coordinate
approach. There are no such reports on the study
of frame structure modeling and analysis by using
the beam element formulated by the absclute no-
dal coordinate formulation. There are few experi-
mental verifications on the structures formulated
by the absolute nodal coordinate formulation by
means of actual scale structural models.

This paper describes a formulation of frame
structure by means of the absolute nodal coordi-
nate beam clement for practical problems. A
method to connect beam elements is proposed by
assembling the superposition of the element ma-
trices with a new developed coordinate trans-
formation matrix for the absolute nodal coordi-
nate. Equations of motion of the frame structure
can be described by ordinary differential equa-
tions with constant mass and bending stiffness
matrices in large displacement problems. Since
the formulation can treat large displacement and
large rotation problems under infinitesimal de-
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formation, this may be applied for a moving
flexible structures which change their shape with
time. To verify the usefulness of the proposed for-
mulation, simulations have been conducted. The
results are compared with the results of tradi-
tional FE analysis and seismic experiment.

2. Formulation for Beam Element
by Absolute Nodal
Coordinate Approach

We define the global coordinate system O-
XY, and consider the uniform slender beam in
this coordinate system as shown in Fig. | The
beam has length /, cross sectional area A, mass
density ©. The global position vector r of an
arbitary point p on the neutral axis of the beam
can be written as

r=Se (1)
e is the vector of nodal coordinates
e=[e e ez 04 65 @ 27 )7 (2)

where e; and & are the translational coordinates
at the node at A, e; and & are the translational
coordinates at the node at B, ey and e are the
spatial derivatives of the displacements of the
node at A defined in the XY coordinate system,
and e7 and es arc the spatial derivatives of the
displacements of the node at B defined in the XY
coordinate system.

We assume Bernoulli-Euler theory for the
beam. The shape function 8 is written as

.
»

2] X

Fig. 1 Deformation of beam
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where x is a distance from point A to p, and £=
x/ L.
The kinetic energy of the beam is defined as

N

N RS .

= fd.

1 2'gfor T dx (4;

where I is the global vetocity vector of an arbi-
trary point p on the beam clement defined as

r=8¢é (5

Substituting Eq. (5} into Eg. {4). the mass matrix
M can be obtained as follows.
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Next we explain the derivation of elastic forces
without local element frame. At first, let us con-
sider the elastic forces for the axial deformation of
the beam. The strain energy {J; 1s defined as

Uek [(EA& d (7)

where K is the modulus of clasticity and & is
the strain for the axial deformation. Now, it is
assumed that the defermation of the beam is
infinitesimal. and the length of the deformed
beam is equal to the distance between point A
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and B in Fig. 1. then the axial strain of the beam

can be written 4s
la—1
E;:,,@' - -
{
. — (8)

Vie—e) tles—e)®
i

where, Li=yles—en?+ (es—e)?) is the cur-
rent length of the deformed beam and [ is the
length of the undeformed beam. Substituting from
Eq. (8) into Eq. (7}, the axial strain energy can
be obtain, and the vector of the ¢lement genera-
lized elastic forces for the axial deformation ¢an

be wriiten as

Fz:Kle {9)
where,

1 0 00—-10 00

01 000 —100

O 0 000 0 00

FAg| 0 0 000 0 00
=i 10
K. e | =10 001 0 00 (o)

0 —1000 1 00

0 0 000 0 00

00 000 O 00

Next, let us consider elastic forces for the in-
finitesimal bending deformation. The strain ener-
gy [/; for the bending deformation is defined as

!
U= ; fo EIE dx ()

where [ is the sccond moment of area and & is
the curvature of the deformed beam. The follow-
ing relationsip is used in order te obtain the strain
energy for the bending delformation (Takahashi
and Shimizu, 1999)

hz:(( (2‘182 e)T(—gz;e) (12)

Substituting Eq. {12} inte Eq. {11}, the vector of

the element generalized elastic forces for the ben-

ding deformation can be lead as

F,:(%%)T:K,e (13)
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wher,
o FEN\T/ FS
K= e(5e) (Gr)es e
(12 0 6 0 —120 6/ 0
0 12 0 6 0 —120 6/
6/ 0 4F 0 —6] 0 2% 0
_EI| 0 61 0 4P 0 —6] 0 2P
K= Pl—=120 —6/0 12 0 —6/ 0 {s)
0 —120 =610 12 0 —6/
6/ 0 2% 0 —61 0 4% 0
L0 6/ 0 212 0 —6] 0 4]

The bending stiffness matrix K, is symmetric con-
stant matrix. Finally, the vector of the element
generalized elastic forces can be obtained as

¥.=F;+F. (16}

The equation of motion of the absolute nodal
coordinate formulation with Rayleigh damping
effect (Takahashi et al., 2002) which is limited to
bending modes is written as

Mé+F.+F.=Q {7
where,

Fo={(aM+ 8K, & {18}
3. Frame Structure Model

3.1 Joint at straight part

Let us consider the connection method of
beam clements at the straight part as shown in
Fig. 2. In this case, the connection point P and Q
have same nodal coordinates, then it is possible to
combine these elements to each other without the
coordinate transformation matrix. The equations
of motion of the two elements can be written as

MPD = — (K +KP) e (19)
M@e®=Q® — (K@ + K@) e (20)

where, the suffix “ means the element number.
In order to simplify the description of the equa-
tion, we described the mass matrix and the stiff-
ness matrix of 8 X8 matrix by using 2X2 matrix
as follows. And the nodal coodinate vector and

element | Q P clement 2
= 5 o _
y <
O O O
X

@]
Fig. 2 Joint at straight part

generalized force vector are described as follows
by using 2 X1 vector.
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=l el"es"| efef?| e el | e el ] ¢

=[ely eff eff e¥]”

QV=[Qff Q¥ Q¥ Q1" (24)

The equation of motion of connected beams
can be written as

(23)

Me+Ke=Q (25)
where, the nodal coordinate vector, the mass

matrix, the stiffness matrix and generalized force
vector can be described as follows.
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3.2 Joint at corner part

Let us consider the connection method of beam
elements at the corner part as shown in Fig. 3. In
this case, the coordinate transformation matrix is
necessary to connect these beam elements. Since
the translational coordinates of the point P and
point Q are same, the following equation can be
obtained,

o
Fig. 3 Joint at corner part

1
eée’

eif (30)
The global slope coordinates of the point P and
the point Q are described by using the angle #and
axial strain ¢ of the connection point as follows.

e"={(1+e&h’)cos 6
ed'=(1+e§"sin 4
e =(1+e&f") cos B
e’ = (1+&?)sin 6

where, 4 ard & means the angle, and £§’ and ef
meun the axial strain at the point P and the point
Q as shown in Fig. 3. Here, we assume that the
axial strain is infinitesimal in our study, these

equarions can be written as

e =114 elf") cos Bh=cos &

ef’={1+ & sin h=sin &

= (1+e¥) cos h=cos &

={1+¢&¥)sin =sin

ef® and e can be written as follows by using the

angle & and #..
eP=cos h=cos (O + &)

=co8 B cos &.—sin & sin &

e =sin b=

=sin & cos -

=sin{th+ &)
-cos fhsin 8.

where, . means the connection angle of two
beam elements shown in Fig. 3, and this 1s a con-
stant value. Then, coordinates o8 and e can be
described by the coordinates ¢ and ef” and con-

nection angle &. as

Leéz’ cos O —sin GCHCDS 91‘
e |sinfé: cos & |[sinf D)
| cos & —sin O, et
sin d. cos & He‘é”

Consequently, the coordinate transformation ma-
trix of the beam clement 2 to connect with the
beam element 1 can be written as
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1o o 0 0000
01 0 0 0000
00cos & —sinf. 0000
00sinf. cosf 0000
A_oo 0 ¢ 1000 (32)
00 0 0 0100
00 0 0 0010
00 0 0 0001

Since the angle & is a constant, (he coordinate
transformation matrix A of the beam element
formulated by the absolute nodal coordinate
becames constant matrix even in the large dis-
placement problem.

The equation of motion of two beam elements
after the connection can be written as

Me+Ké=Q (33)
where,
e=efl, ef, eff, ¥, e, eB]" (34)

M ME M MiY 0 0|
MY ME MY ME 00
_ | M) M MEP+ M M+ MR M

M=\ v vy My~ 018 Mg+ mig g | O
0 0 MY My  MP MY
. $ MPMZ
(K Ki¥ K% Ky 0 0
K K K& K& ¢ 0

K= K& K8 Kéé“rI:{ﬁ’ K&i’+1§i§’ I:ii%’ K@ (36)
@ EKY KY+K% K@+R? K9P K@

0 0 I:{é%’ K% R RY
00 K& R%® K@ K®
Q¥
QL

. Qerng
| g+ (7
Qs
Q#
M?=A"M®A (38)
K?=ATK®A (39)
Q¥=ATQ® (40)

The equation of motion of the connected beam

elements can be described as an ordinary dif-
ferential equation by using the coordinate trans-
formation matrix for the absolute nodal coordi-
nate formulation. Since the coordinate transfor-
mation matrix is constant, the mass matrix and
the bending stiffness matrix of Fq. (33) are con-
stant even in the large displacement problem.

4. Numerical Simulation
and Experimental Result

4.1 Vibration problem

In this section, we examine the validity of the
frame structure modeling for the beam element for-
muliated by the absolute nodal coordinate. Fig. 4
shows the 1/8 scale model of the container crane
on a shaking table for the seismi¢ experiment.
The seismic characteristics of the container crane
were investigated from the experiment in 1997
(Kanayama, and Kashiwazaki, 1998 ; Kuribara
and Kobayashi, 2000). Fig. 5 shows the analytical

Fig. 4 Experiment of crane model (1/8 scale)

144 m

Lo

/ -4 /

Fig. 5 Simulation model of crane
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model of this structure. The table and both legs of

the crane are connected by the revolute joints in
this model.

Fig. 6{a) shows the horizontal acceleration of

the shaking table. We used this data trom the
observed earthquake at Hachinohe harbor in Ja-
pan in 1968, The maximum value ol this accere-
lation was sel 1o [.69 m/s% and the time axis was
1/8 times of the original data. Fig. 6{b) shows
the experimental seismic response at the point P
in Fig. 5. From this experimental result, we can
observe that the 15t mode of this model 15 1.6% Hz.
and the damping ratio of this mode is 0.18%. In
order to make the simulation model. the coeffi-
cient @t =2&w:) of the damping matrix C=aM
1s set to 0.0373. We use the software "MATLAB"
to make simulation programs. Fig. 6(c) and (d)

20

R
P

0y

Y

]
05 f,

Ave.jnusti

Eli';"l‘n' ;

o

<Y s 10 s
Time is|

{a) Input table acceleration

|

-

Agc, [nrs

05

1.4

[RTINEY

fc) Simulation result at P (FEM)

show the simulation results at the point P by
the linear finite element method {FEM) and the
proposed method.

The frequency of 6 Hz is included (rom 3 sec
to Ssec in the experimental result, but this is
not included in both simulation results. Because
the analysis model 1s different in detail to the real
model. The small difference can be centirmed in
the experimental result and the simulation results,
but these results arc good agreement with each
other. [t is proven that the proposed method is

effective for the modeling of the frame structure.

4.2 Large displacement problem

Next. we cxamine the validity of the proposed
method for the large displacement problem. Fig.
7 shows the example model of free falling of a

Ace, (s’

i 15

/\

Timw is]

b} Experimental result at P

mss

Ace,

Time §5]

rd} Simulation result at P TANC!

Fig. 6 Comparison of results
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Fig. 7 Analysis model

m]
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-6 -4 -2 0 2 4 6
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Fig. 8 Simulation result {RecurDyn)

o

Ym]
=

S

T

2] "‘/\ \].Ss 1

2.0s

6 4 20 2 4 6
X[m]

Fig. 9 Simulation result (propoesed method)
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flexible pendulum. This pendulum has the rectan-
gular corner part, and this model is connected to
ground by the revolute joint. The beam has a
mass density of 10 kg/m°® a modulus of elasticity
of X 108 N/m? and no damping effect. The cross
section of the beam clement is square, and the
size is 1 ¢m X1 em. The pendulum is divided into
6 elements.

In order to verify the proposed method, we
caleulated this problem by using the MBD soft-
ware “RecurDyn” Figs. 8 and 9 show the deform-
ed shapes of the pendulum at different time. It can
be seen that the results of the proposed method
and RecurDyn software are fairly in good agree-
ment. From these results, it can be confirmed that
the proposed method is effective for the large
displacement problem.

5. Conclusions

This paper proposed a formulation of frame
structures by making use of the beam element
described by the absolute nodal coordinate pro-
cedure. This beam element uses not the angles but
the slopes as the nodal coordinates. Beam element
connection can not be performed by assembling
the matrix superposition of the beam element by
the traditional FE transformation matriz. Though
the connection can be made by using constraint
equations, equations of motion of the whole sys-
tem become differnetial algebraic equations. In
this paper, the coordinate transformation matrix
was first derived and the matrix was introduced
when the element matrices are assembled to con-
nect the beam elements in structural analysis. The
obtained equations of motion become ordinary
differnetial equation not DAE. The constant mass
and bending stiffness matrices are formulated for
large displacement problem.

To verify the proposed method, a vibration
problem and a large displacement problem were
solved and the result was compared with the res-
ults of the seismic experiment and the linear FE
method. These results show in good agreement,
thus the proposed method was confirmed to be
effective for dynamical problems. Since the meth-
od can apply for the analysis of the frame struc-
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ture model with rigid body motion, analysis of
falling behavior of the cranes, simulation of large
displacement excitation of a large scale shaking
table, and analysis of structural behavior due to
the movement of so1l foundation caused by Lique-
faction, etc can be performed
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