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Fault Diagnosis of Rotating Machinery Based on 
Multi-Class Support Vector Machines 
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Support, vecto] machines (SVMs) have become one of the most popular approaches to 

learnmg from examples and have many potential applications in science and engineering 

However, their applications in fault diagnosis of rotating machinery are rather limited Most of 

the published papers focus on some special fault diagnoses This study covers the overall 

diagnosis procedures on most of the faults experienced in rotating machinery and exammes Che 

performance of different SVMs strategies The excellent characteristics of SVMs are demon­

strated by comparing the results obtained by artificial neural networks (ANNs) using vibration 

signals of a fault simulator 
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1. Introduction 

Fault diagnosis of rotating machinery is in­

creasingly becoming important m manufacturing 

industry due to the demand to keep up with 

production and the need to have highly reliable 

machinery However, many of the techniques av­

ailable presently require a great deal of expert 

knowledge to apply them successfully Therefore 

simpler approaches are needed to allow relatively 

unskilled operators to make reliable decisions 

without the need of a specialist to examine the 

data and diagnose the problems Hence, there is a 

demand to incorporate techniques that can make 

decisions on the health of the machine autom­

atically and reliably By learnmg from known 

problems, such as unbalance, shaft misalignment 

and bearing defects, fault diagnosis can be carri­

ed out Artificial neural networks (ANNs) and 
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support vector machines (SVMs) are popularly 

used as diagnostic tools m machine health condi­

tion monitoring 

ANNs have been applied in automated de­

tection and diagnosis of machine conditions The 

techniques can be treated as generalization/clas­

sification problems and are based on learning 

pattern from empirical data However, traditional 

neural network approach has limitations on gen­

eralization and leads to models that can over fit 

the training data This deficiency is partly due 

to the optimization algorithms used in the ANNs 

for the selection of parameters and the statistical 

measurements used to select the model Many 

incremental and competitive learning networks 

were proposed to handle the problems mentioned 

above and to increase the classification perform­

ance In the literature, self-organizing feature map 

( S O F M ) (Kohonen, 1995), learning vector quan­

tization (LVQ) (Kangas and Kohonen, 1996), 

radial basis function (RBF) (Sundararajan, 1999) 

and adaptive resonance theory (ART) (Capenter 

and Grossberg, 1988) networks can be seen as the 

most basic schemes in competitive learning net­

work used in machine fault diagnosis 

SVMs are relatively new computing methods 
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which are based on statistical learning theory 

presented by Vapnik (1999) SVMs have recently 

attracted a great deal of interest in the machine 

diagnostic community for their high accuracy and 

good generalization capability (Surges, 1998) 

The main difference between ANNs and SVMs, is 

in the principle of risk minimization ANNs in­

corporate recursive algotithms that adjust system 

parameters such as weights during the learning 

process These algorithms adjust system parame­

ters based on a risk function such as empiiical 

risk minimization ( E R M ) During the learning 

process, the SVM uses a risk function known as 

structural risk minimization (SRM) which has 

been shown to be superior to ERM The ERM is 

based just on minimizing the error of the training 

data Itself If the training data is sparse and/or 

not representative of the underlying distribution, 

then the system will be poorly named and hence 

have limited classification performance (Vapnik, 

1992) The SRM allows the algorithm designer to 

take into account the sparseness of the data and 

minimizes the error of the upper bound of an 

expected risk The difference in risk minimization 

leads to better generalization performance for 

SVMs than ANNs 

SVM-based classification is a modern machine 

learning method that is larely used m fault diag­

nosis even though it has given superior results m 

image identification and face recognition (Osuna 

et a l , 1997, Burges, 1998) The possibilities of 

SVMs using binary classification in machine fault 

detection of damaged gears (Jack and Nandi, 

2002), rolling element bearings (Samanta, 2004) 

and reciprocating compressors (Yang et a l , 2005) 

are being attempted only recently There are still 

limited applications in 'real' engineering situation 

using the technique One of the reasons for the 

low popularity of SVM is essentially a two-class 

classifier, whereas formulations of othei classific­

ation structures like neural network classifiers 

allow straightforward extension to multi-class 

classification problems which is often faced m 

fault diagnosis A direct multi-class extension of 

SVM usually leads to a very complex optimiza­

tion problem and tedious computations There­

fore, multi-class problems are often solved by 
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training several binary SVM classifiers and fusing 

the outputs of the classifiers to find the global 

classification decision (Suykens et a l , 2002) 

The goal of this paper is to present a fault 

diagnosis scheme based on multi-class SVMs for 

a rotating machinery This paper offers a com­

parison between two kinds of algorithms, the 

SVMs and ANNs such as the SOFM {Yang et 

a l , 2000a), LVQ (Yang et a l , 2000b) and RBF 

(Yang et a l , 2002) Same data obtained fiom a 

fault simulator weie used to tram and test these 

algorithms 

2. Support Vector Machines 
(SVMs) 

SVM IS a relatively new computational learn­

ing method based on the statistical learning theo­

ry presented by Vapnik (1999) In SVM, original 

input space is mapped mto a high-dimensional 

dot product space called a feature space, and in 

the feature space the optimal hyperplane is deter­

mined to maximize the generalization ability of 

the classifier The optimal hyperplane is found by 

exploiting the optimization theory, and respecting 

insights provided by the statistical learning theo­

ry For detailed tutorials on the subject the reader 

can refer to references {Vapnik, 1999 , Burges, 

1998 , MuUer, 2001) and references cited therein 

In this section a brief outline of the method will 

be described 

2.1 Binary classification 
The SVM attempts to create a line or hyper­

plane between two sets of data for classification 

In a two-dimensional situation, the action of the 

SVM can be explained easily without any loss of 

generality Figure 1 shows how to classify a series 

of points into two different classes of data, class 

A (circles) and class B (squares) The SVM 

attempts to place a linear boundary represented 

by a solid fine between the two different classes 

and orients it in such a way that the margin re­

presented by dotted lines is maximized The SVM 

tries to orient the boundary such that the distance 

between the boundary and the nearest data point 

in each class is maximal The boundary is then 
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fix) = s i g ! i ( w x + ^ ) (3) 

Fig. 1 An example of classification of two classes by 

SVM 

placed in the middle of this margin between the 

two points The nearest data points are used to 

define the margins and are known as support vec-

toLS (SVs) represented by gray circle and square 

Once the SVs are selected, the rest of the feature 

sets can be discarded, since the SVs have all the 

necessary information for the classifier (Samanta, 

2004) 

Let {xi, y , ) , with 2 = 1, •, Af, be a training 

set 5 , each x,^R'^ belongs to a class by 3 ; , ^ 

{ — 1, 1} The goal is to define a hyperplane which 

divides S, such that all the points with the same 

label are on the same side of the hyperplane while 

maximizing the distance between the two classes 

A, B and the hyperplane The boundary can be 

expressed as follows 

wx+b=0, w^R", b&R i\) 

where the vector w defines the boundary, x is the 
input vector of dimension N and ^ is a scaUr 
thieshold At the maigins, where the SVs are 
located, the equations for classes A and B, le-
spectively, are as follows 

w - x + 6 = l, w x + 6 = - l (2) 

For Gaussian kernels every finite training set is 

linearly separable in feature space (Burges, 1998) 

Then the optimal hyperplane separating the data 

can be obtained as a solution to the following 

optimization problem (Scholkopf, 1997) 

find w G i ? ^ to minimize 

r (w) = l / 2 | | w | (4) 

subject to 

i ' ( w x , + ^))>l (z = l, 2, • •,N) (5) 

where A'^is the number of training sets 

However, if the only possibility to access the 

feature space is via dot products computed by the 

kernel, we cannot solve Eq. (4) directly since w 

lies in that feature space But it turns out that we 

can get nd of the explicit usage of w by forming 

the dual optimization problem {Scholkopf, 1997) 

Introducing Lagrange multipliers a,'^0, i = l , 2, 

• , N, one for each of the constraints in Eq (5), 

we obtain the following Lagrangian 

L(w, b, a ) = | | | w | P - 2 f f , y , ( w x . - 5 ) + 2 f f . (6) 
Z 1=1 t-\ 

The task is to minimize Eq (6) with respect to w 

and b, and to maximize it with respect to at At 

the optimal point, we have the following saddle 

point equations 

^ = 0 ^ = 0 
5w ' db 

which translate into 

ii) 

(8) 

As SVs correspond to the extremities of the data 

for a given class, the following decision function 

can be used to classify any data point in either 

class A or: B 
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From the first equation of Eq (8), we find that w 

is contained m the subspace spanned by Xi By 

substituting Eq (S) into Eq (6), we get the duai 

quadratic optimization problem 

Maximize 

N IN 

i c (cf) = S ff; —^2ffiCjy,yjX, • Xj (9) 

subject to 

a , ^ 0 ( j = ! , 2 , • ,N), jla^y^=0 (10) 
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Thus, by solving the dual optimization problem, 

one obtains the coefficient Oi which is required to 

express the w to solve Eq (4) This leads to the 

nonknear decision function 

/ { x ) = s i g n f 2ffiJ'j(x,-x) + ^ ( l l ) 

In cases where the linear boundary in the input 

spaces are not enough Jo separate the two classes 

properly, it is possible to create a hyperplane that 

allows a linear separation m the higher dimen­

sion In SVMs, this IS achieved through the use of 

a transformation $(x) that converts the data from 

an A'-dimensional input ^pace to Q-dimesisional 

feature space 

s = * { x ) (12) 

where x e i ? * and sGi?« 

The SVM classifier is to take the input feature 

set and map it into a higher dimensional space 

using a non-linear function called a kernel The 

reasoning for mapping into a higher dimensional 

space IS based on a theory developed by Cover 

known as the Cover theoicm (Cover, 1965). This 

theorem basically states that if a pattern recogni­

tion problem is mapped into a high enough di­

mensional space, then the classes will be Imeaiiy 

separable and will hence allow a simple linear 

discriminate technique to separate the classes 

Figure 2 shows the transformation fiom input 

space to feature space where the nonlinear boun­

dary has been transformed into a lincas boundaiy 

in the feature space 

Substituting the tiansformation Eq (12) into 

Eq (3) gives the decision function as, 

/ ( x ) = s i g n ( | ] f f j . , ( $ ( x ) - * ( x , ) ) + 6 ) (13) 

The kernel function i f (x , y ) = $ ( x ) - $ ( y ) is 

used to peifoim the transformation into higher-

Opiimal Unear 
hyperplane feaiure 
section space 

input 
feature 
set 

Input space 

• 
® 

• 

Non-linear 
kernel 
mapping 

- / ' 

dimensional featuie space The basic form of 

SVM is obtained after substituting the kemel 

function in the decision function Eq (13) as 

follows 

fix) =sign S f ty i / f (x , X,) +b 
\ 1—1 

(14) 

Any function that satisfies Mercer's theorem 

(Osuna et a l , 1997) can be used as a kernel func­

tion to compute a dot product m feature space 

There aie different kernel functions used in 

SVMs, such as linear, polynomial, Laplacian 

RBF, chi-square and Gaussian RBE, which avoid 

the computational burden of explicitly represen­

ting the feature vectors The selection of an ap­

propriate kernel function is important, since the 

kernel function defines the feature space in which 

the training set examples will be classified As 

long as the kernel function is legitimate, an SVM 

will operate coirectly even if the designer does not 

know exactly what features of the training data 

aie being used m the kernel-induced feature 

space The defmition of legitimate kernel function 

)S given by Meicei's theorem the function must 

be continuous and positive definite Human ex­

perts often find it easier to specify a kernel func­

tion than to speedy explicitly the training set fea­

tures for being used by the classifier The kernel 

expresses pnoi knowledge about the phenome­

non being modeled and encoded as a similarity 

measure between two vectors In this work, li­

near, polynomial and Gaussian RBF kernel func­

tions were evaluated and formulated as shown in 

Table 1 

2.2 Multi class classification 

The above discussion deals with binary classi­

fication where the class labels can take only two 

values ± 1 Many leal-world problems, how­

ever, have moie than two classes for example, in 

fault diagnosis of lotating machmciy theie are 

Table 1 Formulation for used in kernel functions 

Kernel K{x, y) 

Fig. 2 Transformation to linear feature space from 

nonlinear input space 
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Linear 

Polynomial 

Gaussian RBF 
( x - y + l ) " 

exp{-(| |x-y| |72tf^)} 
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several fault classes, such as mechanical unba­

lance, misalignment and bearing faults Multi-

class classification problems can be solved using 

one of the voting schemes, which are based on 

combining binary classification decision func­

tions Various approaches, such as one-against-

all (Bottou et a l , 1994, Hsu and Lin, 2002), 

one-agamst-one (Knerr et a l , 1990, Friedman, 

2003 , KrePel, 1999), directed acyclic graph (Platt 

et a l , 2000) and binary tree (Schwenker, 2000) 

have been developed to decompose a multi-class 

problem into a number of binary classification 

problems 

The earliest usage of SVM multi-class classifi­

cation is piobably the one-against-all (rest) 

method (Knerr et a l , 1990 , Friedman, 2003). To 

obtain ^-class classifiers, it is common to con­

struct a set of binary classifiers / j , •••, /*, with 

each trained to separate one class from the rest 

and combine them by performing the multi-class 

classification according to the maximal output 

before applying the sign function. The flow chart 

of the working process is shown in Fig 3(a) 

Here the ith SVM is trained with all of the data 

set m the nh class with positive labels and all 

other examples with negative labels In the classi­

fication phase, the classifier with the maximal 

output defines the estimated class label of the 

current input vector, 

Another frequently used method is the one-

agamst-one method In this method, for k-

classes, will results in k{k—\)l2 binary classi­

fiers as shown m Fig 3(b) The number of classi­

fiers is usually larger than the number of one-

agamst-all classifiers For instance, if ^ = 1 0 , one 

needs to tram 45 binary classifiers rather than 10 

classifiers as m the method above Although this 

requires a larger training time, the individual 

problems that need to be trained are significantly 

smaller Furthermore, if the training algorithm 

scales superhnearly with the training set size, it is 

possible to save processing time This is related to 

the runtime execution speed. To classify a test 

pattern in this work, we need to evaluate all 45 

binary classifiers and classify them according to 

the classes which get the highest number of votes 

A vote for a given class is defined as a classifier 
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Data input 

SVM 1 
iCi/Others U 

(-) 

CI 

'\XC2/0(hers3^.. ' 

C2 
(+) 

(-) 

'̂  
Condition decision 

(-) 

iCZ/Others^)^ 
C8(-

(a) One-agamst-all approach 

Only one ol max(No of C I C2 C8) 

Yes ( 

Decision Non-DsciSion 

(b) One-agamst-one approach 

Fig. 3 Classification strategy of multi-class SVM 

putting the pattern into that class The individual 

classifiers, however, are usually smaller in size 

(they have fewer SVs) than they would be m the 

one-again St-all approach This is because, (i) the 

training sets are smaller and (u) the problems to 

be learned are usually easier, since the classes 

have less overlap If k is large and we need to 

evaluate the k{k—\)/l classifiers, then the res-

ultJtig system may be slower than the correspond­

ing one-against-all SVMs 

To solve the SVM problem one has to solve 

the quadratic programming (QP) problem of Eq 

(9) under the constraints of Eqs (lO) and ( l l ) 

Vapnik (1982) describes a method which used 
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the projected coiijugiitc gr;idicnt algorithm to 

solve the SVM-QP problem. Sequential [ninimal 

optitnization (SMO) proposed by Piatt {1998) is 

a simple algorithm thai can be used to solve the 

SVM-QP problem without atiy additional matrix 

storage and without Lising the numerical QP 

optimization steps. This method decomposes the 

overall QP probtctn into QP .sub-problems using 

the Osutia's theorem to ensure convergence. In 

this paper the SMO is used as a solver and de­

tailed descriptions can be found in Piatt (1998), 

Smola and Scholkopf (1998), fiurges (1998) and 

Keerthi and Shevade (2002). 

3. SVM-based Diagnosis System 

3.1 System structure 

The block diagram o la multi-class SVM based 

fault diagnosis system is sliown in Fig. 4. The 

system consists ol' three sections : data acquisi­

tion, feature extraction and selection, and train­

ing and testing for fault diagnosis. The raw titne 

signal is obtained from the Machinery Fault Si­

mulator shown in Fig. 5. The features of the data 

are extracted through the discrete wavelet trans­

form and feature extraction algorithms (Yang et 

al., 2004a). Wavelet transfortn is more effective 

than FFT in tertns of data compression and is 

Machinery 

Dala Acquisition 

I 
Feature Exiractlon 

Training process 

fT::^ 
Training Data Set 

Testing process 

Kernel Transform 

Optimal Hyperplane 

Supp 
Vecfo 

Testing Dala Set 

Kernel Transform 

orl 
ors Decision 

Classification Result 

Fig. 4 Block diagram of a multi-class SVMs classi­
fier system 

highly tolerant to the presence of additive noise 

and drift in the sensor responses. Feature selec­

tion techiriqiie is applied to rank the importance 

of input features from the extracted features. 

Finally, the SVMs are trained and used to classify 

the machinery faults. 

3.2 Data acquisition 

Experiments were performed on a small test rig 

(Machinery Fault Simulator) shown in Fig, 5 

which can simulate most of faults that can com­

monly occur m a rotating rnachincry. such as 

misaligntnent, unbalance, resonance, ball bear­

ing faults and so on. The machine has a range of 

operating speeds up to 6000 rpm. The fault simu­

lator has a motor, a coupling, bearings, discs and 

a shaft. In this work the faults to be analyzed are 

the bearing faults and structural faults such as 

unbalance and misalignment. The faulty bearings 

used in the experitnents were rolling clement bear­

ings with a damage on the inner race, the outer 

race, a ball and the combination of these faults, 

respectively. The parallel misalignment and angu­

lar misalignment were simulated by adjusting 

the height and degree of the simulator base plate 

using thin shims, respectively. Adding an unba­

lance mass on the disc leads to mechanical unba­

lance. A total 8 classes were analyzed in this 

experiment and detailed descriptions of the faults 

are shown in Table 2. 

Acceleration in the radial direction was mea­

sured by an accelerometer located on top of the 

Fig. 5 Machinery fault simulator 
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852 Bo-Suk Yang, Tian Han and Won-Woo Hwang 

Tabic 2 Description 

Fault type 

Normal 

Outer nice defect 

Inner race detect 

Ball detect 
Complex bearing delect 

Angular misalijinment 

Parallel misalignment 

Unbalance 

Label 

CI 

CI 

C3 

C4 

C5 
Cb 

C7 

C8 

Mult 

of 

pk 

each fault condition 

Description 

No fault 

A spalling on the outer raceway surface 

A spalltng on the inner raceway surface 

A spaliing on the bail surface 

defects with an inner, outer race and ball defect 
Angular eccentricity : O.V 

Parallel eccentricity : 2 mm 

Mechanical unbalance: 578g-mm 

0 E 

0 A 

a 
~ o.ri 

E 
^ -0.2 

(a) Normal condition 

0 3 0 4 

T i m I- Is I 

(c) Unbalance 

0 6 0 7 

(b) Parallel misalignment 

(d) Bearing inner race fault 

Fig. 6 The vibration signaLs from the machinery fault simulator 

right blearing housing. The shaft speed was ob­

tained by a laser speedometer. Twenty cont inuous 

measurements were recorded for each condit ion. 

The maximurn acquisition frequency rate was 5 

kHz and the sampling number was I63S4. A 

mobile DSP analyzer was used to perform data 

acquisition and the data was stored in a notebook 

computer. Satnples of the raw vibration signals 

are shown in Fig, 6. The wavefortn of normal 

condit ion is quite clear about the period of run­

ning speed. In the faulty bearing wavelbrm, there 

are many impulses related (o the inner race defect. 

3.3 Feature extraction 

Features describing various anributes of the 

fault condit ion were extracted and a classifier 

used these attributes to assign a label to each 

fault. Therefore, the classification performance 

depends hea \ i ly on the quality of the feature 

e\tracted ' O b et al.. 2004 ' , 

In order to itnprove signal to noise rat io. 1-D 

discrete wavelet transform was used to decompose 

the time signal. The discrete wavelet transform 

i D W T ) permits a systematic decomposit ion of a 

sianal into its sub-band le\els. The analysis of the 

Copyright (C) 2005 NuriMedia Co., Ltd. 
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data was performed using ihe M A T L A B 5.1 

Wavelet Toolbox. (Misiti ct al., 1996). Twenty 

t ime-waveform signals for each class were pro­

cessed using the Daubeches-10 (db-iO) wavelet 

(Daiibeches, 1992) to estimate the condit ion. The 

s u b - b a n d (level) or the mult i - resolut ion analysis 

(MRA) was performed by dividing them into ten 

sub -bands in the frequency range from 0-5 kHz. 

Levels I to J (0.625-5 kHz) in MRA arc the most 

dominant band and other sub -bands cannot dif­

ferentiate the difference between normal and faul­

ty condit ions. Hence, the feature extraction from 

levels I to 3 (D1-D3) could be very effectively 

realized, (n Fig. 7, levels 1, 2 and 3 of wavelet 

coefficients for different condit ions (C1-C8) un­

der considerat ion correspond to 2.5-5 kHz, 1.25-

2.5 kHz and 0.625-1.25 kHz frequency bands, re­

spectively. 

The wavelet transformed signal and the origi­

nal signal weie then estimated by eight ieature 

parameters such as mean, standard deviation. 

RMS, shape factor, skewness, kurtosis, crest factor 

and entropy estimation. Figure 8 shows typical 

results of feature extraction of the time signals. 

Finally, a total 32 feature parameters (four kinds 

CI C2 C3 C4 C5 C6 C7 CB 

Fig. 7 Wavelet transform of vibration signal under 

different conditions 

1.0-

0.8-

0.6-

0.4-

o.n-

i L - l a i ; \ \-
• Mean 
D RMS 

, 1 ' i ' 1 ' 1 ' 1 • 1 • 1 ' 

CI C2 C3 C4 C5 C6 C7 C8 

(a) MEHH and RMS 

.: . . ob :.- • Skewness 
Om : ° Kurtosis 

CI C2 03 C4 C5 CB C7 08 

(c) Skewness and kurtosis 

01 C2 C3 C4 C5 C6 C7 OS 

(b) Shape factor and crest factor 

CI C2 C3 C4 C5 06 07 08 

Id) Entropy estimation and entropy error 

Fig. 8 Feature extraction of the time waveform signal 
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Table 3 Attribute label of each input feature 

Feature 

Mean 
RMS 

Shape factor 
Slcewness 
Kurtosis 

Crest factor 
Entropy estimation 

Entropy error 

Time waveform 

1 
2 
3 
4 
5 
6 
7 
8 

Attribute label 

Wavelet level 1 

9 
10 
1! 
12 
13 
14 
15 
16 

Wavelet level 2 

17 
18 
19 
20 
21 
22 
23 
24 

Wavelet level J 

25 
26 
27 
28 
29 
30 
31 
32 

of signals, eight parameters) were obtained as 

shown in Table 3 

3.4 Feature selection 
Too many fcdtures can cause cures of di­

mensionality and peaking phenomenon (Bishop, 

1995 , Raudys el a l , 1991) that greatly degrade 

classification accuracy since some features are 

essential, some are less important, some oi them 

may not be mutually independent and some may 

be useless Also too many features can be a bur­

den, as it requires a large amount of time to cal­

culate Thus feature selection is necessary to re­

move garbage features and pick up the significant 

ones for fault diagnosis Usually 5 to 12 parame­

ters are sufficient to perform the calculation and 

provide sufficient accuracy (Yang et a l , 2000a , 

2000b) In order to remove the redundant and 

irrelevant features from the feature set, a careful 

analysis of the feature set must be carried out The 

objective is to identify the features that show high 

variability between different classes and thus help 

m distinguishing between tJiem In order to solve 

this problem, an evaluation technique (Yang et 

a l , 2004) IS used to select feature parameters that 

can represent the fault features from using all 

parameters and is described as follows 

Step 1 Calculate the relative average value of the 

sampling data for the same class d^ and then 

obtain the average distance of 8 classes dai- The 

equation can be defined as follows 

d,,= 
N 

2 Nx{N-l) 
{m, « = 1 , 2, 

.,j{m) -p,J.n)\ 
(16) 

where N is the sampling number of each class 

(N=20), p,j IS the value of zth feature undei 

^th class 

J M 

where M is the number of class (M=8) 

(17) 

Step 2 Calculate the average distance of mter-

class daz 

'^^' MX(M-1)-Si'^"''" ^"•"' (18) 
(m, M=l , 2, • , M, m^n) 

where pai,m and pat.n are the average values of 
the sampling data under different class 

pa..j=4j11p,An) {n=l2,-,N) (19) 
iV n=l 

Step 3 Calculate the ratio daJd'ai 

Step 4 Select the eight largest feature parame­

ters ff„ z = l to S Bigger a, represents a well 

selected feature This requires a small dai and a 

large da, 

at = daJda: (20) 

N, m^n) 

where at {i = l, , î ) is the effectiveness factor 

of the features and k is the number of selected 

features 

Given a„ one can now establish a raking me-

thodology among the individual feature com­

ponents The useful features are expected to show 

high values of «,, indicating a good mter-class 

spread m the classifier 

Copyright (C) 2005 NuriMedia Co., Ltd. 
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3.5 Fault diagnosis 

The four classifiers used in this work were 

SVMs, SOFM, LVQ and RtiF networks (Yang et 

a!, 2004b) Same examples were used to compare 

the effectiveness among these networks The fea­

tures selected from feature selection algorithm 

were used as input vectors The bieakdown of 

the classification process consisted of 80 samples 

for the training set and 80 samples for the tes­

ting set (ten samples for each cJass) In the traj-

nmg process, the networks were trained until the 

mean square error is below 0 01 or the maximum 

epochs (=10000) were reached 

4 Simulation Results 

4.1 Effecf of kernel functions 

The performance of a SVM depends to a great 

extent on the choice of the kernel function to 

transform a data from input space to a higher 

dimensional feature space (Smola et a l , 1998) 

The choice of kernel function is data depen­

dent and there are no definite rules governing its 

choice that might yieJd a satisfactory perform­

ance Table 4 presents results of SVM with the 

three kernel functions defined in Table 1 and 

used the same eight selected feature examples In 

Table 4, d is the degree of the polynomial The 

width of the RBF kernel parameter is given by o 

and can be determined in general by an iterative 

pioccss selecting an optimum value based on the 

full feature set (Scholkopf, 1997) These kernels 

aie also well accepted foi constructing SVM and 

provide excellent results for real-world applica­

tions (Strauss and Steidel, 2002) We have inves­

tigated the construction of multi-class classifiers 

using the one-against-one method and the one-

against-all method The most important criteiion 

for evaluating the performance of these methods 

IS their classification success rate The results 

in Table 4 show that the performance of one-

against-one classifiers is better than that of one-

against-all classifiers from the view of classific­

ation accuracy and tiainmg time The overall 

success sdtio of class classification ranged from 

98 125 to 100% foi tiainmg and 88,75 to 98 75% 

for testing Among these classifiers, Gaussian 

RBF IS the best with high training and testing 

accuracy The detailed process of one against all 

method is illustrated m Table 5 Some SVs are 

used many times for different classes Thus the 

total SVs are not equal to the summation of each 

class of SVs 

4.2 Effect of feature selection 
Figure 9 shows the computation results of effec­

tiveness facto I ff, of 32 feature parameters From 

the magnitude of the effectiveness factor, some of 

the feature parameters weie selected They were 

entiopy error of the time waveform signal and 

Table 4 Fault classification results due to kernel and multi-class classification strategy 

Kernel 

Linear 

Polynomial 

(^ = 1) 

Polynomial 

Polynomial 

(^ = 3) 

Polynomial 

Gaussian RBF 

((J=0 168) 

Multi-class 

approach 

One vs one 

One vs all 

One vs one 

One vs all 

One vs one 

One vs all 

One vs one 

One vs all 

One vs one 

One vs all 

One vs one 

One vs ali 

Classification rate (%) 

Training i Testing 

100 

98 125 

100 

98 125 

100 

100 

100 
100 

100 
too 

100 

100 

93 75 

90 00 

93 75 

90 00 

92 5 

90 00 

93 75 

88 75 

93 75 
91 25 

98 75 

92 50 

Number of 

SVs 

44 

55 

41 

55 

37 

38 

37 
32 

36 
36 

43 

44 

Tiaining time 

is) 
125 

1210 

0 93 

20 56 

0 94 

28 31 

0 94 

22 45 

0 98 
62 66 

3 37 

9 90 
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Ke 

Number 

of SVs 

Number 

of error 

Success 

Table 5 Perlbrmnnce comparisons for one-

SVMl 

SV1V12 

SVMJ 

SVM4 

SVM5 

SVM6 

SVM7 

Tola! 

CI 

C2 

C3 

C4 

C5 

C6 

C7 

CK 

-ate (%) 

Linear 

4 

10 

4 

6 

17 

18 

7 

55 

0 
2 

1 
2 

0 

3 

0 

0 

90.0 

f / = l 

4 

10 

4 

6 

17 

18 

7 

55 

0 

1 
1 

0 
3 

0 

0 

90.0 

against-all method 

Polynomial 

d = 2 d = 3 d=A 

4 4 5 

7 

3 

6 

9 

7 7 

3 3 

4 5 

7 9 

10 8 7 

5 5 6 

38 1 32 36 

0 0 0 
1 

1 

1 

-1 1 

2 1 

3 1 

0 0 0 

4 2 3 

0 0 0 

0 

90.0 

0 0 

88.75 91.25 

Gaussian RBF 

cr=0.168 

21 

20 

21 

21 

iO 

6 
22 

44 

0 

1 

0 

4 

1 

0 

0 

0 

92-50 

(D 

UJ 

12-

10-

e-

4-

2-

0- 1 

—l-\-A-A-^-A--X-X-\-^^--

111 

i ; 

.I.;ll JL i f l . . ...Il 
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 

Number of feature 

Fig. 9 Elfecliveness factor of features 

wavelet transform level 1 ; RMS, crest factor, 

entropy estimaltoti and entropy error of wiiveiet 

transform level 2 ; RMS and entropy estimation of 

wavelet transl'orm level 3. The selected features 

were used as the input vectors of the classifiers for 

fault diagnosis, 

Table 6 .shows the classification results for 

SVM using ihe RBF kernels and the onc-against-

one method with the selected features. In each 

case, the test success, number of SVs and training 

time for the selected fcattires were compared with 

the results used in all features without feature 

selection. In Table 6. the charge of the test suc­

cess and training time are listed against the num­

ber of retained features. When the features are dis­

carded, the training performance monotonicalJy 

decreases, while the test performance increases 

slightly at the beginning. This can be explained 

by the reduced o\er-fitting effects due to smaller 

number of features. A drastic reduction of fea­

tures, however, can lead to a decrease in the test 

performance (Hermes and Buhmann. 2000 . Fig­

ure 10 shows the influences of the number of 

selected features on the test success and training 

time. It can be seen that when the number of 

selected features lakes a small \alue e.g.. 2 . the 

test success rate is very low I62 .596L The success 

rate increases with increment of the number of 

selected features and remains at a maximum value 

of 100% in a certain range (i.e., 12-24L It tends 

to decease as the number of features continues to 

increase- On the other hand, the training time 

increased almost linearly with increase in the 

number of selected features. The results are very 

encouraging as the technique shows a significant 

reduction in size of the feature vector in the fea­

ture extraction process. It is particularly useful 
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Table 6 Peri'ormance coiiipurisons of SVMs with feature seleetioii by using RBF kernels and one-against-one 
method 

No. of 

features 

2 

4 

6 

8 

10 

12 

16 

24 

8 

32 

Inptil features 

16,24 

8,16,22,24 

8,16,22,23,24,31 

8,16,18,22,23,24,26,31 

6,8,16,18,22,23,24,26,31,32 

6,7,8,14,16,18,22,23,24,26,31,32 

2,5,6.7,8,14,15.16,18,21,22,23.24, 
26,31,32 

1,2,3,4,5,6,7,8,10,12,13,14,15,16, 

18,21,22,23,24,26,29,30.31,32 
Time waveform (1-8) 

All (1-32) 

Kernel 
width a 

0,142 
0.50 

0,152 

0.i6S 

0.162 

0.145 

0.10 

0.2S 

0.25 

0.60 

Test success 

{%) 

62.50 

96,25 

96,25 

98.75 

98.75 
100 

100 

100 

98.75 

97.50 

No. of 

SVs 

54 

49 

4! 

43 

48 

49 
53 

56 

51 

67 

Training 

time (s) 

1.87 

2.09 

2.21 

3.37 

2.85 

3.91 
4,62 

7.07 

3.23 

7.49 

Fig. 

00-

95-

90-

85-

SO­
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Nurnber of selected features 
10 Performance of SVMs for different nu 

of selected features 
mber 

Table 7 Classification re.sults of SVMs, SOPM, 
LVQ and RBF networks 

Classifier 

Success rate (%) 

SOFM 

93 

LVQ 

93 

RBF 

89 

SVMs 

100 

maximum classification success rate for the SVMs 
was 100% and for the SOFM, LVQ and RBF 
networks were 93%, 93% and 89%, respectively. It 
can be concluded from Table 7 that the SVMs 
perform significantly better than the SOFM. LVQ 
and RBF networks. 

5. Conclusions 

to reduce the training time in order to improve the 

classification performance of the SVM classifier. 

4.3 Performance comparison of SVMs and 
ANNS 

In order to verify the effectiveness and robust­
ness of the proposed classification approach, 
the authors compared the classification results 
between the SVMs and other traditional neural 
networks, such as the SOFM, LVQ and RBF 
networks. The above results were obtained from 
multi-class SVMs using the one-against-one 
classifier and the one-against-all classifier with 
the linear, polynomial and Gaussian kernels. The 
classification results of the SVMs, SOFM, LVQ 
and RBF networks are shown in Table 7. The 

This paper shows that the proposed SVMs 

based fault diagnosis approach for rotating ma­

chinery is superior to many traditional intelligent 

networks. The experiments have demonstrated 

that this approach can successfully diagnose any 

condition and the average fault diagnosis ac­

curacy is above 90%. Although the mechanical 

behavior of the each fault results were comple.v 

and non-stationary, the wavelet transform has 

been demonstrated to be a useful signal processor 

to extract different time-frequency features of sy­

mptoms of various fault conditions. It is shown 

thai using only the important features for classi­

fication can obtain high success rate and re­

duces the training time of the SVMs classifier. 

When the same class on fault diaenosis of rota-
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ting machinery, the success rate of SVMs can 

reach 100%, while the SOFM, LVQ and RBF 

networks were 93%, 93% and 89%, respectively 

The one-against-one SVM classifier using a 

Gaussian RBF kernel shows superior perform­

ance m comparison with the previously published 

classifiers and the one-agamst-all SVM classifier 

The high performance of the SVMs is attributed 

primarily to its inherent generalization capability 

This allows the SVMs to be optimized based on 

the amount of training data. SVMs hold signifi­

cant promise in the diagnosis of rotating machin­

ery due to their ability to give optimal perform­

ance with a limited training data for application 

in real industry 
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