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In this paper, a tracking algorithm for the autonomous navigation of the automated guided 

vehicles (AGVs) operated in a container terminal is investigated. The navigation system is 

based on sensors that detect range and bearing. The navigation algorithm used is an interacting 

multiple model algorithm to detect other AGVs and avoid obstacles using information obtained 

from the multiple sensors. In order to detect other AGVs (or obstacles), two kinematic models 

are derived : A constant velocity model for linear motion and a constant-speed turn model for 

curvilinear motion. For  the constant-speed turn model, an unscented Kalman filter is used 

because of the drawbacks of the extended Kalman filter in nonlinear systems. The suggested 

algorithm reduces the root mean squares error for linear motions and rapidly detects possible 

turning motions. 
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N o m e n c l a t u r e  
a : Augmented value 

f [ k -  1, x ( k -  1) ] : Nonlinear  vector-valued 

function at time k - 1  

fxaftk) : Jacobian matrix 

G (k) : Noise transit ion matrix 

g [ k -  1, x ( k -  1) ] : Nonlinear  vector-valued 

function at time k-1 

H : Measurement matrix 

h[k, x (k) ]  : Nonlinear  measurement function 

K ( k ) :  Kalman filter gain 

M : Set of  modal  state 
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re(k): Scalar-valued modal  state at time k 

P{ .  } : Probabil i ty 

Px : Covariance of  x 

p : Nonlinear  transformation 

Q (k) : Process noise covariance 

R (k) : Measurement noise covariance 

W~ : Weights of  sigma points 

w (k) : Measurement noise sequence 

x (k) : System base state vector at time k 

: Mean of x 

z(k)  : Noisy measurement vector at time k 

$ ( k ) ,  ~1 (k) : Orthogonal coordinates of  the hori- 

zontal plane 

x : Scaling parameter 

/z~ : Mode probabil i ty 

l/k-l) : Process noise sequence 

~r~j : Model transition probabil i ty 

Z~ : Sigma points 

c0(k) : Yaw rate at time k 

~i : Measurement sigma point 
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1. Introduction 

Recent advances in electronics, sensors, infor- 

mation technologies, and automation have made 

the operation of a fully automated container ter- 

minal technically feasible (Ioannou et al., 2001). 

The port of Rotterdam is operating a fully 

automated container terminal, ECT (European 

Combined Terminal),  using automated guided 

vehicles (AGVs) and automated yard cranes to 

handle containers, whereas the port of Singapore, 

Thamesport of England, and the port of Hamburg 

are experimenting with similar ideas. 

The AGV is a vehicle that is driven by an 

automatic control system that takes the role of 

the driver. Sensors on the road/vehicle or infra- 

structure provide measurements about the loca- 

tion and speed of the vehicle, which are used by 

the automatic control system to generate the ap- 

propriate commands for the throttle/brake actua- 

tors in order to follow certain position and speed 

trajectories. AGVs are considered to be the most 

flexible type of material handling system. Their 

size ranges from small load carriers of a few kilo- 

grams to over 125-ton transporters. The vehicles' 

working environment ranges from small offices 

with carpet floor to huge harbor dockside areas. 

In container terminals, AGVs are used to re- 

place the manually driven trucks that transport 

containers within the terminal. Figure 1 shows 

an AGV, with a load, in the ECT terminal in 

Fig. 1 An AGV in the automated container terminal 
of ECT at Rotterdam 

Rotterdam. In this application, AGVs are auto- 

mated industrial trucks, which can be powered by 

electric motors and batteries or by conventional 

diesel engines. While the automation of vehicles 

and trucks on highways does not have the strong 

support of manufacturers due to liability issues 

and the complexity of the environment in which 

they have to operate, the use of automated trucks 

at low speeds in restricted areas such as a terminal 

or a warehouse is a completely different story. 

The low speed characteristics of AGVs together 

with the restricted area they operate in make the 

overall problem much simpler to solve. Therefore, 

the use of AGVs as container- handling devices 

in terminals is feasible from the point of view of 

technology, and has the strong potential to im- 

prove efficiency and save labor costs. 

An AGV system consists of a vehicle, an on- 

board controller, a management system, a com- 

munication system, and a navigation system. The 

navigation system provides guidance and naviga- 

tion to the AGV in the operating environment. 

The guidance and navigation can be based on a 

fixed-path or a free-path approach. 

In the fixed-path approach, the movement of 

an AGV is restricted to following a fixed path, 

and there is no flexibility in changing the guide- 

path. Examples of fixed paths include rail tracks, 

embedded wires, or other types of guide-ways. In 

the free-path method, the path of an AGV can be 

changed dynamically. The system is autonomous 

and is capable of detecting the path using online 

information, obstacle detection and collision av- 

oidance systems. 

The effectiveness of a navigation system de- 

pends on the interpretation of the information 

arriving from sensors, which provide details of 

the surrounding environment and obstacles. In 

particular, all these systems rely on the detection 

and subsequent tracking of objects around the 

AGV. Such detection information is provided 

by radar, lidar, laser scanner, and vision sensor. 

Before a controller can make a decision that 

enables the AGV to navigate autonomously, the 

motion of the surrounding object must be prop- 

erly interpreted from the available sensor infor- 

mation. 
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Many studies on the autonomous navigation 
and localization of  AGVs have appeared in the 
literature. Adam et al. (1999) presented a method 
of  determining the position and orientation of 
an AGV by fusing odometry with the informa- 
tion provided by a vision system. Zhang et al. 
(2000) introduced a novel navigation sensor 

using a position-sensitive detector to direct the 
vehicle along a predefined trajectory. The navi- 
gation sensor mounted on the vehicle picks up 
signals from floor marks and gives commands to 
make the vehicle perform linear or turning mo- 
tions. As well, Park et al. (2002) proposed a path- 
generation algorithm that uses the sensor scan- 
ning method. The scanning algorithm is used to 

recognize the ambient environment surrounding 
the AGV, which uses the information from the 
sensor platform. In (Lee et al., 2002), a land 
navigation system using global positioning system 
and reduced reckoning system was used. Lim and 
Kang (2002) investigated a technique for locali- 
zation of  a mobile robot by using sonar sensors. 
Localization is the continual provision of know- 
ledge of position that are deduced from it's a 
priori position estimation. Lee and Yi (2002) 

represented an investigation of a vehicle-to-vehi- 
cle distance control system using hardware-in- 

the-loop simulation (HiLS). HiLS method is 
useful in the investigation of driver assistance 
and active safety systems. Moon and Yi (2002) 

presented the implementation and vehicle tests of 
a vehicle longitudinal control scheme for stop and 
go cruise control. The control scheme consists of 
a vehicle-to-vehicle distance control algorithm 

and throttle/brake control algorithm for acceler- 
ation tracking. Xu et al. (2003) developed a safe, 
practical, and dynamic obstacle avoidance meth- 
od for AGVs. Jin et a1.(2003) investigated a 
sensor fusion technique for AGV navigation. A 
natural landmark navigation algorithm was uti- 

lized for autonomous vehicles operating in re- 
latively unstructured environments in (Madhavan 
and Durrant-Whyte, 2004). 

This paper describes the design of a tracking 
algorithm for the navigation of  an AGV for 
transporting cargo containers in a port environ- 
ment. In particular, in order for an AGV to navi- 

gate autonomously, a maneuvering-vehicle trac- 
king algorithm for detecting other AGVs (or 
obstacles) and avoiding a collision, is derived. 

The ability to accurately predict the motion of 
other AGVs (or obstacles) in the terminal envir- 
onment can improve the controller's ability to 
adapt smoothly to the behavior of those AGVs 
(or obstacles) preceding it. This ability to predict 
motions is dependent on how well the sensors of  
an AGV can detect other AGVs (or obstacles). In 
order to detect other AGVs or avoid obstacles 
using the object information obtained from mul- 
tiple sensors, tracking techniques based on the 
Bayesian approach are usually used (Bar-Shalom 
et al., 2001). The tracking of  a maneuvering target 

is already well-established in the target tracking 
literature. 

Techniques for tracking maneuvering targets 
are used in many tracking and surveillance sys- 
tems as well as in applications where reliability 
is the main concern (Bar-Shalom et al., 2001; 
Farina, 1999; Houles and Bar-Shalom, 1989; 
Li and Bar-Shalom, 1993; 1996; Lee, 2003). In 
particular, tracking a maneuvering target using 
multiple models can provide better performance 
than using a single model. Efforts in developing 

multiple-model algorithms have shown that sig- 
nificant gains in performance are possible using 
multiple models. A number of multiple model 
techniques to track a maneuvering target have 

been proposed in the literature: the multiple- 
model algorithm (Li and Bar-Shalom, 1996), the 
interacting multiple models (IMM) algorithm 
(Bar-Shalom et al., 2001; Li and Bar-Shalom, 

1993 ; Mazor et al., 1998 ; Simeonova and Semer- 
djiev, 2002; Lee et al., 2003; Kim and Hong, 
2004), the adaptive IMM (Efe and Atherton, 
1996 ; Efe et al., 1999 ; Jilkov et al., 1999 ; Munnir 
and Atherton, 1995), the fuzzy IMM (Ding et al., 
2001 ; McGinnity and Irwin, 1998), the adaptive 
Kalman filter (Efe et al., 1999), and others. 

Generally, target motion models can be divided 
into two subcategories : the uniform motion mo- 
del and the maneuvering model. A maneuvering 

target moving at a constant turn-rate and speed is 
usually modeled as a maneuvering model, and 
called a coordinated turn model (Bar-Shalom et 
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al., 2001; Dufour and Mariton, 1992; Efe and 

Atherton, 1996; Helferty, 1996; Jilkov et al., 

1999 ; Li and Bar-Shalom, 1993 ; McGinnity and 

Irwin, 1998). For  application to air traffic con- 

trol, a fixed structure IMM algorithm with a 

single constant velocity model and two coor- 

dinated turn models was analyzed (Li a,,a Bar- 

Shalom, 1993). And, for the tracking of  a man- 

euvering target, a validation method of a new 

type of  flight mode was presented in (Nabaa 

and Bishop, 2000). Nabaa  and Bishop (2000) 

validated a non-constant  speed coordinated-turn 

aircraft maneuver model by comparing their mo- 

del with the classic Singer maneuver model and 

a constant-speed coordinated turn model using 

actual trajectories. Semerdjiev and Mihaylova 

(2000) discussed variable-  and fixed-structure 

augmented IMM algorithms, whereas a fixed- 

structure algorithm only was discussed in (Li 

and Bar-Shalom, 1993), and applied to a maneu- 

vering ship tracking problem by augmenting the 

turn rate error. 

The drawbacks of the augmented IMM algo- 

rithm using extended Kalman filters (AIMM-  

EKF)  are as follows: First, the E K F  approxi- 

mates a non-Gaussian density with a Gaussian 

one (Katsikas et al., 1995; Tam et al., 1999; 

Togneri et al., 2001). Second, the AIMM ap- 

proximates the Gaussian mixture with a single 

Gaussian density. If these assumptions break 

down, the A I M M - E K F  may diverge. In this stu- 

dy, because of these drawbacks of the A I M M -  

EKF,  an unscented Kalman filter (UKF)  (Julier 

and Uhlmann, 1997; Julier et al., 1995; 2000; 

Ristic and Arulampalam, 2003), replacing the 

EKF,  is used for the curvilinear model. The algo- 

rithm itself uses the same AIMM logic, but the 

model-matched E K F  is replaced by the model-  

matched UKF.  

The objective of  this paper is to design an 

U K F  for curvilinear motions in an IMM algo- 

rithm to detect and avoid other AGVr for the 

autonomous navigation of an AGV in an autom- 

ated port. 

The contributions of this paper are as follows : 

First, in an automated container terminal, the 

IMM algorithm is provided as a navigation algo- 
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rithm for AGVs in navigating autonomously. 

Second, two kinematic models for the possible 

navigation patterns of AGVs are derived : A con- 

stant velocity model for linear motions and a 

constant-speed turn model for curvilinear mo- 

tions are discussed. Third, for the constant- speed 

turn model, an U K F  is used because of the draw- 

backs of the EKF.  Fourth, the suggested algo- 

rithm reduces the root mean squares error in the 

case of rectilinear motions and detects the occur- 

rence of  maneuvering quickly in the case of turn- 

ing motions. 

This paper is organized as follows: In Sec- 

tion 2, we provide the various navigation pat- 

terns of AGVs. A stochastic hybrid system is 

formulated, and two kinematic models are dis- 

cussed. In Section 3, we compare an U K F  with an 

E K F  for a constant-speed turn model in an IMM 

algorithm. In Section 4, we evaluate the perform- 

ance of these filters using Monte Carlo simulation 

under the various patterns. Section 5 concludes 

the paper. 

2. Problem Formulation 

In this section, after analyzing the navigation 

patterns of an AGV in a terminal, a stochastic 

hybrid system in the form of an IMM algorithm 

for detecting other AGVs using sensors (radar, 

lidar, laser scanner, sonar, vision, etc.) is formu- 

lated. Also, two kinematic models representing 

the analyzed navigation patterns are introduced. 

2.1 Navigation patterns 
Figure 2 depicts the various navigation pat- 

terns of  an AGV (Lee et al., 2003) : straight line 

and curve, cut- in/out ,  and u-turn. All  of  these 

patterns can be represented by a combination of a 

constant-velocity rectilinear motion, a constant- 

acceleration rectilinear motion, a constant angu- 

lar velocity curvilinear motion, and a constant 

angular acceleration curvilinear motion. As kine- 

matic models for describing these motions, two 

stochastic models will be investigated: one for 

rectilinear motion and the other for curvilinear 

motion. These typical navigation patterns .are 

described briefly as follows: 
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(i) Straight line and curve: In this situa- 

tion, the AGV detects a preceding AGV that fol- 

lows straight lines and curves on a curved road 

(Lauffenburger et al., 2003; Rajamani et al., 

2003). 

(ii) C u t - i n / o u t :  The cu t - in /ou t  indicates the 

situation in which a maneuvering AGV cuts in 

(or out) to (or from) the lane while the AGV 

is tracking other AGV. In this situation, the 

detection of up to three surrounding AGVs is 

assumed: one in front, one to the left, and one 

to the right. In this case, the target AGV changes 

its motion from a rectilinear motion to a curvi- 

linear motion and then back to a rectilinear 

motion. 

(iii) U- tu rn :  This situation occurs when the 

target AGV changes its driving direction by 180 ~ 

The u-turn consists of three routes as follows: 

The target AGV moves rectilinearly, undergoes 

a uniform circular turning of  up to 180 ~ with 

a constant yaw rate, and then converts to a 

rectilinear motion in the opposite direction. 
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Fig. 2 Various navigation patterns of AGVs 
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It will be shown in the sequel that a constant 

velocity model will capture both constant velocity 

and acceleration rectilinear motions without and 

with an addit ional  noise term, respectively. On 

the other hand, a constant-speed turn model will 

cover both constant angular velocity and angular 

acceleration curvilinear motions without and with 

a noise term, respectively. 

2.2 Stochastic hybrid system 
Fol lowing the work of Li and Bar-Shalom 

(1993), a stochastic hybrid system with additive 

noise is considered as follows: 

x(k)=f[k-l, x ( k - 1 ) ,  m(k)] 
(1) 

+ g [ k - 1 ,  x ( k - 1 ) ,  v[k-l, m(k)], m(k)] 

with noisy measurements 

z(k)=h[k, x(k), m(k)]+w[k, m ( k ) ]  (2) 

where x ( k ) ~ n x  is the state vector including 

the position, velocity, and yaw rate of the AGV 

at discrete time k. m(k) is the scalar-valued 

modal state (navigation mode index) at instant 

k, which is a homogeneous Markov chain with 

probabili t ies of transition given by 

P{mj(k+l)] mi(k)}=7ci~, 'Vm~, rnjEM (3) 

where P { .  } denotes the probabil i ty and M is 

the set of modal  states, i.e., constant velocity, 

constant acceleration, constant angular rate turn- 

ing with a constant radius of curvature, etc. The 

considered system is hybrid since the discrete 

event re(k) appears in the system. In the auton- 

omous navigation of AGV, re(k) denotes the 

navigation mode of the  preceding AGV, in effect 

during the sampling period ending at k, i.e., the 

time period (kk-1, th]. The event for which a 

mode mj is in effect at time k is denoted as 

m~ (k) ~ {  m (k) = mr } (4) 

z ( k ) ~  n* is the vector-valued noisy measure- 

ment from the sensor at time k, which is mode-  

dependent, v [ k - 1 ,  m ( k ) ] ~  n~ is the mode-  

dependent process noise sequence with mean 

i f [ k - l ,  m ( k ) ]  and covariance Q[k-1,  m ( k ) ] .  

w[k, m ( k ) ] ~  nz is the mode-dependent  mea- 

surement noise sequence with mean ~ [k, re(k)] 
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and eovariance R[k, m ( k ) ] .  Finally f ,  g,  and 
h are nonlinear vector-valued functions. 

2.3 Two kinematic  models 
The concept of  using noise-driven kinematic 

models comes from the fact that noises with dif- 
ferent levels of  variance can represent different 
motions. A model with high variance noise can 
capture:maneuvering motions, while a model with 
low variance noise represents uniform motions. 

The multiple-models approach assumes that a 
modal can immediately capture the complex sys- 
tem behavior better than others. 

Two kinematic models for rectilinear and cur- 
vilinear motions are now derived : First, assuming 
that accelerations in the steady state are quite 

small (abrupt motions like a sudden stop or a 
collision are not covered), linear accelerations or 
decelerations can be reasonably well covered by 

process noises with the constant velocity model. 
That is, the constant velocity model plus a zero- 
mean noise with an appropriate covariance re- 

presenting the magnitude of  acceleration can 
handle uniform motions on the road. In discrete- 
time, the constant velocity model with noise is 
given b y  

x(k) = 1 0 
0 1 ( k - l ) +  1/ 2 v(k-1) 

Looo 1 J  

(5) 

where T is the sampling time (0.01 sec), x(k) 
is the state vector including the position and 
veloei~ o f  the preceding vehicle in the longitu- 

dinal ($) and lateral (2/) directions at discrete 
time k, i.e., 

x(k)=[$(k)  $(k) 71(k) il(k)~' (6) 

with $ and r/ denoting the orthogonal coordi- 
nates o f  the horizontal plane; and v is a zero- 

mean Gaussian white noise representing the acc- 
elerations with an appropriate covariance Q. If  

v(k) is the acceleration increment during the 
kth sampling period, the velocity during this 
period is calculated by v(k) T, and the position 
is altered by v(k) T2/2. 
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Second, a discrete-time model for turning is 
derived from a continuous-time model for the 
coordinated turn motion (Bar-Shalom et al., 
2001). A constant speed turn is a turn with a 

constant yaw rate along a road of  constant radius 
of curvature. However, the curvatures of actual 
roads are not constant. Hence, a fairly small noise 

is added to a constant-speed turn model for the 
purpose of  capturing the variation of  the road 
curvature. The noise in the model represents the 
modeling error, such as the presence of angular 
acceleration and a non-constant radius of cur- 

vature. For a vehicle turning with a constant 
angular rate and moving with constant speed (the 
magnitude of  the velocity vector is constant), the 
kinematic equations in the (S, r/) plane are 

$( t )  = - c o 0 ( t ) ,  O(t) =coS( t )  (7) 

where ~( t )  is the normal (longitudinal) acceler- 
ation and ~)(t) denotes the tangential accelerati- 
on, and o9 is the constant yaw rate (co>0 implies 
a counterclockwise turn). The tangential com- 

ponent of the acceleration is equal to the rate 
of change of  the speed, i.e., ~ ( t ) - - - d ~ ( t ) / d t =  

d(coS(t))/dt, and the normal component is 
defined as the square of  the speed in the tangen- 
tial direction divided by the radius of the cur- 
vature of the path, i.e., ~(t)=-Oz(t)/S(t)= 
--cozSz(t)/S(t) where /2( t )=coS( t ) .  The state 
space representation of Eq. (7) with the state 
vector defined by x(t) = I S ( t )  r  r/(t) f / ( t ) ] '  
becomes 

where 

it(t) =Ax( t )  (8) 

A =  0 0  co 
0 0  

coO 

(9) 

is given by 

[1 sin cot 0 1 - - ~  cojt 

0 cos cot 0 - s i n  cot ! 
e = ! 

1 - - c o s ~ t  1 
CO 

sin cot 0 coscot  j 

The state transient matrix of the system, Eq. (8) 
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It is remarked that if the angular rate o9 in Eq. 
(7) is time-varying, Eq. (9) would be no longer 
true. In the sequel, following the approach in 
(Bar-Shalom et al., 2001), a "nearly" constant 
speed turn model in a discrete-time domain is 
introduced. In this approach, the model itself is 
motivated from Eq. (9), but the angular rate is 
allowed to vary. 

A new state vector by augmenting the angular 
rate co(k) to the state vector of Eq. (7) is defined 
as follows : 

x~(k)=[$(k) ~(k) v(k) $(k) co(k)] '  (10) 

where superscript a denotes the augmented value. 
Then, the nearly constant speed turn model is 
defined as follows (Bar-Shalom et al., 2001) : 

: ( k )  = 

l sinoJ(k-l)T o_ t -cos  
oJ(k-l) 

0 cosr 0 
1-cos oJ(k-1) T 

0 o)(k-l) l 

0 sin~0(k-l)T 0 
0 0 0 
�9 r 2 
T 0 0 1  

T 0 0 1  

T 2 va(k-1) 

o r 
0 0 

 -cos 7" II 
co(k-l) o 

-sin o)(k-l) T i 
sin~o(k-l) r : (k- l )  

~(k-l) 
cos r T 

0 (11) 

Evidently, both Eq. (5) and Eq. (11) are special 
forms of Eq. (1). In addition, it is reasonable to 
assume that the transition between the naviga- 
tion modes of an AGV has the Markovian prob- 
ability governed by Eq. (3). Consequently, the 
kinematic behaviors of  an AGV can be suitably 
described in the framework of the stochastic hy- 
brid systems. 

3. Proposed  U n s c e n t e d  K a l m a n  

Fi l ter  for Turn ing  M o t i o n s  

The concept (structure) of an IMM algorithm 
is referred to in (Bar-Shalom et al., 2001) and 
(Li and Bar-Shalom, 1993). In this study two 
models in the IMM algorithm are used: one for 

rectilinear motion and the other for curvilinear 
motion. The tracking procedure of the AGV in a 
rectilinear motion using Eq. (5) is carried out by 
the standard Kalman filter, which is not discussed 
in this paper. However, for tracking curvilinear 
motions, which requires the estimation of co with 
a new augmented model Eq. (8) in Sec. 2, an 
U K F  is used. 

3.1 The EKF for the constant-speed turn 
model 

Since the model in Eq. (11) is nonlinear, the 
estimation of the state, Eq. (10) will be performed 
via the EKF. The nearly constant-speed turn 
model of  Eq. (11) can be rewritten as follows: 

xa(k) =fa[xa(k-1), c o ( k - l ) ]  
+G(k-1)v ' (k-1)  (12) 

where the function fa(.) is known and remains 
unchanged during the estimation procedure. The 
noise transition matrix G(k-1) is the same form 
as that given in Eq. (11). To obtain the predicted 
state P:(klk-1), the nonlinear function in 
Eq. (12) is expanded in Taylor series around 
the latest estimate s  with terms up 
to first order, to yield the first-order EKF. The 
vector Taylor series expansion of Eq. (12) up to 
first order is 

x"(k) =f*Es  [ k - l ) ,  c0(k- 1)] 
+fA ( k - l ) [ x a ( k -  1) - s  I k -  1)] 
+HOT+ G(k- 1) . a ( k - l )  

(13) 

where HOT represents the higher-order terms and 

/,~ (k-l)=IV:/~ ~)']'l:o,c,-,J,-,, 
sin ~(k-1) T 

1 0 
~(k-l) 

0 cos &(k-l) T 0 
= l-cos &(k-l) T 

0 1 ~(k-~) 
0 sin~o(k-l)T 0 
0 0 0 

l-cos tb(k-l) T 
~(k-~) f~,l(k-~) 

-sin~(k-~)T /,o,~(k-~) 
sin&(k-l) T 
~(k-~) f,o,~(k-~) 

cos &(k-l) T /,,dk-l) 
0 1 

(14) 

is the Jacobian of the vector f evaluated at the 
latest estimate of  the state. The partial derivatives 
with respect to 09 are given by 
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Table 1 Summary of the EKF in an IMM algorithm (one cycle) 

79 

Filtering 

predicted estimate : 
predicted covariance : 

measurement residual : 

residual covariance : 
filter gain : 

updated estimate : 
updated covariance : 

likelihood function : 

mode probability : 

"2a(k[k-1) =f~(s  ~o(k-  1)) 
Pa(kl k - l )  =fg~ (k -~)Pg(k-1  Ik-~)f;~ (k- i )  + G ( k - 1 )  Q~ ( k -  1) G ' ( k -  1) 

v (k) ~ z  (k) - H g  ~ ( k l k -  1) 

s (k) = l ip  ~ ( k [k -  1) H ' + R  (k) 
K ~ (k) =P* ( k l k -  1) H'S  -~(k) 

s k) --s k -  l) +K~(k) v(k) 
P~(k] k) =P~(kl  k - 1 )  - K ~ ( K )  S (k) (K~(k) ) ' 

A =  N[  v ; O, S ] =12zcS l-~/2 e- ~ "s-~~ 
/ i A  

f,~, T$~(k-l[k-1)ces&(k-l)T ff(k-ilk-l)sindo(k-])T 
~(k-~) ~(k-~) ~ 

T~(k-ltk-I)s'm&(k-l) T i(k-tlk-l) (-l+~ ~(k-I) T) 
~(k-~) ~(k-~) 2 

^ 

foa=- T~(k-llk-l)sm~(k-l)- r#(k-llk-l)cos~(k-l) 

r~(k-~lk-~)sm ~(k-~) T ~(k-~tk-~) (~-c~ ~(k-~) T) /o~- 
(15) 

+ T~(k-llk-l)cos ~(k-l)T ~(k-llk-l)sin ~(k-l)T 

~(k-l) o)(k-l)' 

/.=T~(k-llk-l)c0s~(k-t)-T~(k-1 [k-l)sin~(k-1) 

Based on the above expansion, the state predic- 

tion and state prediction covariance in the E K F  
a r e  

~~176 ~(k-1)] (16) 

P~(klk-l) =f~, (k-l)~(k-1 [ k-  1)/~ (x- l) 
+G(k_l)Qa(k_l)G,(k_l  ) (17) 

where Qa is the covariance of the process noise 

in Eq. (12). The details of  the E K F  in an IMM 

algorithm during one cycle are given in Table 1. 

Remark 1: When target dynamics is described 

by multiple-switching models, the posterior den- 

sity of  the state vector is a mixture density (Bar- 

Shalom et al., 2001). The E K F  approximates the 

mixture components with the Gaussian proba-  

bility density function. The goal of  the IMM 

algorithm is to merge all mixture components 

into a single Gaussian distribution in such a way 

that the first and the second moment are matched. 

The main point is that for each dynamic model 

a separate filter is used. In this study, we use 

two Kalman-based filters for two stochastic 

models : one for rectilinear motion and the other 

for curvilinear motion. The results of these two 

model-matched filters are mixed before filter- 

ing. The outputs of the model-matched K a l m a n  

based filters at time th include : the state estimate 

s  covariance Pa(kJk )  and the model 

probabil i ty p ( k ) .  The overall output of  the IMM 

algorithm is then calculated using the Gaussian 

mixture equations. The drawbacks of the IMM 

algorithm using an E K F  are as follows : First, the 

E K F  approximates a non-Gaussian density by a 

Gaussian density (Katsikas et al., 1995; Tam et 

al., 1999 ; Togneri et al., 2001). Second, the IMM 

algorithm approximates the Gaussian mixture by 

a single Gaussian density. If  these assumptions 

break down, the IMM algorithm using an E K F  
may diverge. 

3.2 The UKF for the constant-speed turn 

model 

Because of the wel l -known drawbacks of the 

EKF,  the U K F  for the constant-speed turn model 

is used (Juliet et al., 1995 ; Julier and Uhlmann, 

1997; Julier et al., 2000; Ristic and Arulam- 

palam, 2003). 

Similarly to the EKF,  the U K F  is a recursive 

minimum mean square error estimator. But unlike 

the EKF,  which only uses the first-order terms 

in the Taylor series expansion of  the non-l inear  

measurement equation, the U K F  uses the true 

measurement model and approximates the distri- 

bution of  the state vector. This state distribution 

is still represented by a Gaussian density, but it is 
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specified with a set of  deterministically chosen 
sample (or sigma) points. The sample points 
completely capture the true mean and covariance 
of the Gaussian random vector. When propagat- 
ed though any non-linear system, the sample 
points capture the posterior mean and covariance 
accurately to the second order. The main building 
block of the UKF is the unscented transform, 
described below. 

The unscented transform is a method for cal- 
culating the statistics of  a random vector which 
undergoes a non-linear transformation. Let x ~  
~nx be a random vector, p :  ~ n x ~  ~-~ a non- 

linear transformation and y=p(x).  Assume that 
the mean and the covariance of x are s and 
Px, respectively. The procedure for calculating 
the first two moments of  y using the unscented 
transform is as follows (Julier et al., 2000) : 

(1) Compute ( 2 n x + l )  sigma points Zi and 
their weights Wi : 

Zo--2, Wo= n-~+ K, i=0, 

- ~ l 

Z'=x+(r 2(n~+~ "'" W~= 2 , i=1, nx (18) 

- ~ 1 
Z,=x-(V(nx+K)P~) W~=2(nx+K ) , i=n~+l, 2rig 

where x is a scaling parameter for fine tuning the 
higher order moments of the approximation and 

(~/(nx+x)Px)i is the ith row or column of the 
matrix square root of  (nx+X) Px. 

(2) Propagate each sigma point through the 
non-linear function 

~'~=P(Z;) ( i = 0 ,  ..., 2nx) (19) 

(3) Calculate the mean and covariance of y as 
follows : 

2 n  x 

; =  __X0wZ, 
2n,, (20) 

Next, the UKF for the constant-speed turn 
model is derived as follows : 

(1) Using Eq. (18), compute the sigma points 
z ~ ( k - I  I k - l )  and the weights W,-(i=O, " . ,  2n) 
corresponding to ~a(k-1 [ k - l )  and P ~ ( k - l [  
k+l). 
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(2) Predict the sigma points using the state 
equation, Eq. (12) as follows: 

x , (k lk -1)  = f a [ z ; ( k - 1 1 k - 1 ) ,  c 0 ( k - l ) ]  (21) 

(3) Compute the predicted mean and covari- 
ance of the state variable 2a(k]k-1) and 
pa(k[k - l ) ,  using the prediction sigma points 
z t ( k l k - ) ~ "  and their weights Wi( i=0 ,  ' . ' ,  
2n).  

2 n  

2~(klk- 1) =E W,,x~(klk- 1) 
i = 0  

2n 

1 a a Pa(k k-  )=Q +~W,. [z , (k lk-1)-x  (k[k-1)] (22) 

[ Z , ( k l k - l ) - x a ( k l k - l ) ]  ' 

(4) Predict the measurement sigma points ~ 
(klk-1) using Eq. (2), 

3~(k[k-1)=h[z , (k lk -1) ,  co(k) ] (23) 

(5) Predict the measurement and covariances 

2 n  

~(klk-1) =E ~,3,,(klk-1) 
i = 0  

2 n  

P~ =R (k) + ~  W,[3,(kl k -  1) -U(k l  k-1)] 

[3,(k I k-1) -~(kl  k-1)]' (24) 
2 n  

Pa=~W,[z,(klk-1) -2~(klk-1)] 

where P ~  and Pxaz are, respectively, the covari- 
ance matrix of the measurement and the cross- 
covariance of the measurement and state variable. 

(6) Compute the filter gain as 

Ka(k) = P~ ( P A ) - '  (25) 

Update the U K F  with measurement z(k) : 

2"(klk) =2~(ktk-1) 
+K~(k) [z(k)-U(k[k-1)] (26) 

Pa(klk) = P ~ ( k l k - 1 ) - K a ( k )  PAK'~(k) (27) 

Note that the U K F  requires the computation of 
a matrix square root in Eq. (18), which can be 
performed using the Cholesky factorization. 

Remark  2: In the unscented transformation, 
on which the U K F  is based, a set of  weighted 
sigma points are deterministically chosen so that 
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certain properties of these points match those 

of the prior distribution. Each point is then pro- 

pagated through a non-l inear  function and the 

properties of the transformed set are calculated. 

With this set of points, the unscented transform 

guarantees the same performance as the truncat- 

ed second order Gaussian filter, with the same 

order of calculations as an EKF but without the 

need to calculate Jacobians. 

4. S i m u l a t i o n s  R e s u l t s  

As described in this section, we considered a 

state estimation problem of an AGV in two 

dimensions. Simulations were executed to com- 

pare the performance of both IMM algorithms 

using the EKF and the UKF, respectively, for 

curvilinear motion. The performance of the two 

algorithms was compared with the use of Monte 

Carlo simulations. The maneuvering AGV tra- 

jectories were generated using the various pat- 

terns mentioned in Sec 2.1. Two kinematic mo- 

dels were used to track the maneuvering AGV : A 

constant-velocity model for rectilinear motion 

and a constant- speed turn model for curvilinear 

motion. We then compare the performance of two 

different IMM algorithms with these two models. 

4.1 The navigation scenario 
It was assumed that the AGV navigates recti- 

linearly in the beginning. The target initial posi- 

tions and velocities were differently set for each 

scenario. The single-target track of the maneu- 

vering AGV was also assumed to have been 

previously initialized and that track maintenance 

was the goal of the IMM algorithms. The results 

for 3 selected scenarios are presented, according 

to the cross-lane layout, in Fig. 2. 

(i) Scenario for straight line and curve: The 

target initial positions and velocities were (x0 = 

10 m, yo=lO m, s  m/s, :90=6 m/s, co=O~ 

Its trajectory was a constant velocity between 0 s 

and 500 s with a speed of 6 m / s ;  a turn with a 

constant yaw rate of co= --3~ between 500 s and 

848 s ; a constant velocity between 848 s and 1182 

s ;  a turn with a constant yaw rate of o)=3~ 

between 1182 s and 1531 s ; a constant velocity 

between 1531 s and 3049 s. 

(ii) Cut - in /ou t  scenario: The target initial 

positions and velocities were (x0=10m, y0=10 

m, :f0=0 m/s, p0=6 m/s, co=0~ Its trajectory 

was a straight line between 0 s and 333 s with a 

speed of 6 m/s ; a turn with a constant yaw rate of 

co=--1.2~ between 333 s and 376 s;  a straight 

line between 376s and 476s with a speed of 

6 m/s ; a turn between 476 s and 520 s with a yaw 

rate of co = 1.2~ a straight line between 520 s 

and 687 s with a speed of 6 m / s ;  a turn with a 

constant yaw rate of c0= 1.2~ between 687 s and 

730 s ; a straight line between 730 s and 830 s with 

a speed of 6 m/s ; a turn between 830 s and 874 s 

with a yaw rate of co= -- 1.2~ and a straight line 

from scan 874 s to 1200 s. 

(iii) U- turn  scenario: The target initial posi- 

tions and velocities were (x0=10m, y0=10m,  

20=0  m/s, p = 6  m/s, co=0~ This scenario in- 

cluded a non-maneuvering navigation mode dur- 

ing scans from 0 s to 333 s with a speed of 6 m/s, 

a 180~ lasting from scan 333 s to 411 s with 

a yaw rate of co=--4~ and a non-maneuvering 

navigation mode from scan 411 s to 747 s. 

4.2 Parameters used in the design 
The parameters used in the design are listed 

here. Subscripts "CV" and "CST" stand for "con- 

stant velocity" and "constant speed turn," respec- 

tively. The initial yaw rate of each navigation 

scenario was o9(0)=3~ 1.2~ and 4~ re- 

spectively. The error covariances of the initial 

state and covariances of process noise were as 

follows : 

pCV(o) =diag{0.50.1 0.5 0.1 }, Qcv-o .Ol I  

PCST(0) =diag{0.5 0.1 0.5 0.1 o~}, QCST=I 

where do~= (0.1)~ The measurement noise co- 

variance matrix was calculated as d~-----0.05 m 

and ff~ =0.005 m, respectively. 

The transition probabilit ies for the IMM algo- 

rithms using the EKF and the UKF, respectively, 

were represented in the Markov chain transition 

matrix 
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~ u ~  F0.9 0.1 ] 
=[Ol o9]" 

The initial mode probabil i ty  vectors/.t were cho- 

sen as follows: 

~ _  o~_Fo.sl - "  

4.0 

3.5 

~ 3.0 

I 2 . 5  

'~ 2,0 '.: ..... 

1.5 

4.3 Performance evaluation and analysis 1.0 

The RMSE of each state component was cho- 
0,5 

sen as the measure of  performance. The perfor- 

mance of the IMM algorithm with an EKF and 

that of  the IMM algorithm with an U K F  are 

shown in Figs. 3~8 ,  where the RMSE in the 

position and the velocity are plotted. The results 

presented here are based on 100 Monte Carlo 06 / 
runs. First  of  all, it is evident that the suggested ] 

algorithm has almost equal position and velocity 0.5 t estimation accuracy for all scenarios. The posi- 

tion RMSE of the IMM with an U K F  is evi- ~0.4~ 

L dently superior to that of the IMM with an EKF.  
0.3 

This is because, unlikely EKF,  U K F  does not :~ 

approximate nonlinear functions but directly pro- ~ 0,2 

pagates mean and covariance through the non- 

linear system equation. In addition, the IMM 01 

algorithm with an U K F  is characterized by 

lower-peak dynamic errors and a shorter re- 0.0 

sponse time. These conclusions were confirmed 

by the RMSE plot presented in Figs. 3~8 ,  re- Fig. 5 

spectively. 

' ,  iii' EK F 
................. UKF 

I i I i I 

500 t000 1500 ~ 2500 3000 
Time (s) 
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i 
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Comparison of the position errors in the case 
of straight lines and curves 
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Fig. 7 
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Figures. 9--14 show the average mode prob- 

ability of the IMM algorithm with an EKF and 

that of  the IMM algorithm with an UKF.  As can 

be seen from these Figures, the average mode 

probabil i ty of  IMM algorithms represents rapid 

detection for each driving mode. This is due to 

the mode adaptation of  the suggested IMM algo- 

rithms. 

5. Conclusions 

In this paper, a tracking algorithm for AGVs 

operated in automated container terminal was 

designed. As models to detect other AGVs, two 

kinematic models were derived:  The constant-  

velocity model for linear motion and the con- 

stant-speed turn model for curvilinear motion. 

For  the constant-speed turn model, an unscented 

Kalman filter was used because of  the drawbacks 

of  the extended Kalman filter in nonlinear sys- 

tems. The suggested algorithm reduced the root 

mean squares error for linear motions, and it 

could rapidly detect possible turning motions. 
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