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Cecilia HELLSTRÖM∗1 AND Deliang CHEN1,2

1Earth Sciences Centre, Gothenburg University, Gothenburg, Sweden

2National Climate Center, China Meteorological Administration, Beijing, China

(Received 2 September 2002; revised 3 July 2003)

ABSTRACT

A prerequisite of a successful statistical downscaling is that large-scale predictors simulated by the Gen-
eral Circulation Model (GCM) must be realistic. It is assumed here that features smaller than the GCM
resolution are important in determining the realism of the large-scale predictors. It is tested whether a
three-step method can improve conventional one-step statistical downscaling. The method uses predictors
that are upscaled from a dynamical downscaling instead of predictors taken directly from a GCM simula-
tion. The method is applied to downscaling of monthly precipitation in Sweden. The statistical model used
is a multiple regression model that uses indices of large-scale atmospheric circulation and 850-hPa specific
humidity as predictors. Data from two GCMs (HadCM2 and ECHAM4) and two RCM experiments of the
Rossby Centre model (RCA1) driven by the GCMs are used. It is found that upscaled RCA1 predictors
capture the seasonal cycle better than those from the GCMs, and hence increase the reliability of the
downscaled precipitation. However, there are only slight improvements in the simulation of the seasonal
cycle of downscaled precipitation. Due to the cost of the method and the limited improvements in the
downscaling results, the three-step method is not justified to replace the one-step method for downscaling
of Swedish precipitation.
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1. Introduction

The awareness of global warming caused by the en-
hanced greenhouse effect during the industrial period
has increased the demand of climate change scenarios.
On a global scale, such scenarios are best produced by
GCMs. At present, GCMs, due to their relatively low
spatial resolution, fail to reliably simulate the climate
at regional and local scales. However, climate scenar-
ios on regional and local scale are essential for impact
studies. As a consequence, various methods aiming
at downscaling the GCM output have been developed.
The methods can be divided into two groups: (1) dy-
namical downscaling, in which a high-resolution Re-
gional Climate Model (RCM) is nested within a GCM
(Giorgi, 1990); and (2) statistical downscaling (Karl
et al., 1990; Busuioc et al., 2001a), in which relation-
ships between observed large-scale and regional/local
climate are identified and applied to GCM output.

Both dynamical and statistical downscalings have

their own advantages and disadvantages. Dynamical
downscaling is essentially forced by a GCM through
boundary conditions at the boundary of a RCM do-
main, which allows the RCM to develop its own cli-
mate within the domain. Alternatively, the large-scale
features contained in the RCM simulation in the up-
per air can be forced towards the large-scale features of
the driving GCM, while the small-scale ones from the
RCM simulation, especially those near the surface, are
left untouched (Von Storch et al., 2000). The nesting
of the RCM within the GCM is based on the assump-
tion that the large-scale climate is well simulated by
the GCM. In Busuioc et al. (2001a), it was found that
the SLP variability of a North Atlantic-European sec-
tor is fairly well reproduced by the HadCM2 GCM.
However, in the present study it is shown that the
simulation of the atmospheric circulation over Scandi-
navia, represented by circulation indices of geostrophic
wind components and vorticity, is connected with sig-
nificant deficiencies. Due to its finer resolution, the
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small-scale variability, especially that near the sur-
face, is more realistically represented in the RCM than
in the driving GCM. It may be assumed that the in-
clusion of the small-scale information in the upscaled
large-scale field should have positive effects for scales
equal to and larger than the RCM resolution, includ-
ing scales equal to and larger than the GCM resolu-
tion. The RCM resolution increases the ability for
better representations of topography, water/land dis-
tribution, and local circulation systems. If this as-
sumption can be approved, it will open a new possibil-
ity to do better statistical downscaling with the help
of dynamical downscaling. Although the GCM-RCM
coupling here is one-way, there are two-way interac-
tions within the RCM domain. The need to perform a
statistical downscaling even when a dynamical down-
scaling is available can be justified by the facts: (1)
statistical downscaling can easily handle a variety of
scales including the station scale; (2) there are climate
variables (e.g., sea ice) for which it may be difficult
or even impossible to achieve realistic simulations by
current RCMs (Omstedt and Chen, 2001).

There are a number of factors contributing to un-
certainties in regional/local scenarios. First of all,
downscaling models are dependent on the skill of
GCMs to simulate the present and future large-scale
climate. However, even if the skills of different GCMs
are about the same, they can still produce different
scenarios (Räisänen, 2000; Barnett et al., 2000). Ad-
ditionally, different kinds of downscaling methods with
equal skill in simulating the present climate can give
divergent regional climate scenarios (Mearns et al.,
1999; Murphy, 2000). In statistical downscaling, the
reliability of the results depends on, for example, how
well the predictors are simulated by GCMs (Palutikof
et al., 1997; Winkler et al., 1997) and how stable the
connections between predictors and predictands are.

Very often, the statistical and dynamical down-
scalings are used independently, although RCM sim-
ulations have been used as predictors in statistical
downscaling by Charles et al. (1999). A statistical-
dynamical downscaling scheme was presented and ap-
plied to Alpine precipitation by Fuentes and Heimann
(1996; 2000). They used a regional model to simulate
the weather during the most typical multi-day episodes
of quasi-stationary circulation classes. The precipi-
tation climate was then calculated from the regional
model results which were statistically weighted with
the climatological frequencies of the circulation classes.
Here, another approach to combine the strength of the
two methods is presented. This study tests the ability
of such an approach to reduce the uncertainty in statis-
tical downscalings by taking advantages of dynamical

downscaling. What is tested here is the use of predic-
tors taken from upscaled RCM simulations (three-step
method) rather than directly from the GCM (one-step
method). The basic steps of the method are illustrated
schematically in Fig. 1. The method rests on the as-
sumption that the reliability of the predictors at the
large scale can be increased by upscaled RCM simula-
tions compared with GCM simulations.

The method is applied to monthly precipitation at
42 Swedish stations. This is done by comparing re-
sults from statistical downscaling using predictors up-
scaled from RCM simulations and directly from GCM
output. The comparison is based on how well the pre-
dictors from the RCM and GCMs represent the ob-
served seasonal cycle and interannual variability for
the present climate. Then, the reproductions of the
station precipitation created by the statistical and dy-
namical downscaling models are compared. The sim-
ulation of the seasonal cycle is examined since this is
a way to test the skill of the model in responding to
a basic and clear signal of external forcing. Also, a
correct simulation of the seasonal cycle is important
in impact assessment of, for example, agriculture, hy-
dropower, and dam constructions for which the timing
of the rain is critical. The quality of the reproduction
of interannual variability is essential in analyses of, for
example, extreme events. Further, the effects of in-
creased reliability of the predictors are examined in
terms of the spread of the precipitation scenarios ob-
tained by the dynamical and statistical downscaling
methods.

2. Data, models, and method

The statistical downscaling model is a multiple re-
gression model (Hellström et al., 2001), incorporating
monthly anomalies of the large-scale atmospheric cir-
culation and large-scale specific humidity at 850 hPa
(q850). A model for each month and station is devel-
oped by using NCEP reanalysis data (Kalnay et al.,
1996) for the period 1958–1997. The large-scale circu-
lation is represented by two geostrophic wind compo-
nents (u and v) and total vorticity (ξ), calculated from
monthly mean sea level pressure (MSLP) data on a
5◦ latitude by 10◦ longitude grid-point basis bounded
by latitudes 52.5◦–72.5◦N and longitudes 5◦–27.5◦E
(Chen, 2000). All the circulation indices have the units
of hPa per 10◦ latitude at 60◦N. The circulation in-
dices have been widely applied in Sweden (Blenckner
and Chen, 2003; Chen and Li, 2003; Hellström et al.,
2001; Omstedt and Chen, 2001). The large-scale spe-
cific humidity is an average over the area between 55◦N
and 70◦N and between 10◦E and 25◦E. The selection
of the area for q850 is based on how much the area-
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Fig. 1. Flowchart of the basic steps of the three- and
one-step downscaling methods.

averaged index contributes to the regression model.
The precipitation data used for fitting the statistical
model and for verification of the control simulations
are monthly time series of measurements at 42 Swedish
stations from 1958 to 1997. The data have been ho-
mogenized/corrected through the North Atlantic Cli-
matological Dataset (NACD) program (Frich et al.,
1996). The data have recently been updated and pro-
vided by the Swedish Meteorological and Hydrological
Institute (SMHI). Details of the stations are given by
Hellström et al. (2001). The positions of the stations
can be found in Fig. 2.

Four present day (control) and future (scenario)
precipitation climates are produced by the statisti-
cal model using predictors from simulations of two
GCMs and associated RCM experiments. The GCMs
used are HadCM2 (Johns et al., 1997; Mitchell
and Johns, 1997) and ECHAM4/OPYC3 (Oberhuber,
1993; Roeckner et al., 1996, 1999). A time slice of
10 years is used to represent the present and future
climates. All the RCM experiments are made with
version RCA1 of the Rossby Centre Regional Atmo-
spheric climate model for northern and central Europe
forced by HadCM2 and ECHAM4 (Rummukainen et
al., 2001; Räisänen et al., 2001). The model is run at
a 44-km horizontal resolution.

The MSLP and q850 data of the RCA1 experiments
are upscaled prior to the predictor calculations by be-

ing interpolated and aggregated to a 5◦ latitude by 10◦

longitude grid by a linear scheme. The scheme works
as a simple filter with equal weights for all grid points
within the 5◦ × 10◦ grid. The MSLP and q850 data of
the GCMs are interpolated in the same manner. The
seasonal cycles of the predictors from the reanalysis,
the GCMs, and RCA1 of the control runs are com-
pared. The observed seasonal cycles of precipitation
at the 42 stations for the period 1957–1998 are calcu-
lated and compared with the precipitation statistically
downscaled from the GCMs and RCA1 predictors as
well as those of the RCA1 and GCM experiments. Pre-
cipitation amounts at all the stations from the GCM
and RCA1 simulations are obtained by a linear inter-
polation to the coordinates of the 42 stations. In Fig.
2, the 42 stations are shown as well as the grids of
HadCM2 and RCA1.

3. Results and discussion

For the sake of briefness, the RCA1 experiments
driven by HadCM2 and ECHAM4 will be referred to as
DDH (Dynamical Downscaling of HadCM2) and DDE
(Dynamical Downscaling of ECHAM4), respectively,
in the following text. The statistical model applied
to the HadCM2, ECHAM4, DDH, and DDE predic-
tors will be referred to as GSDH (GCM based Statis-
tical Downscaling, with HadCM2 predictors), GSDE
(GCM based Statistical Downscaling, with ECHAM4
predictors), RSDH (RCA1 based Statistical Downscal-
ing driven by HadCM2), and RSDE (RCA1 based
Statistical Downscaling driven by ECHAM4), respec-
tively.

3.1 Seasonal cycles of the predictors

The seasonal cycle is one of the most important fea-
tures of climate variability and has been used widely in
validation of climate models (e.g., Covey et al., 2000).
The seasonal cycles of the modeled predictors by the
GCMs and the upscaled RCA1 results are compared
with those derived from the reanalysis. In order to
quantify the differences, some statistics are needed.
The correlation coefficient (R), variance (γ2; normal-
ized with respect to the observed variance), and root
mean squared errors (RMSE) are used to reveal the
similarities. While the correlation coefficient describes
how well the shape of the seasonal cycle is reproduced,
the bias tells us about the systematic deviations of the
annual precipitation and the variance reflects the inter-
monthly variability. The RMSE can be resolved into
two parts, one part that is related to differences in the
total mean (E0), or bias, and another which reflects
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Fig. 2. (a) The grid of the HadCM2 GCM (low resolution), the 42 stations used, and the four
regions. (b) The grid of the RCA1 (high resolution).
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Fig. 3. Pattern statistics (Taylor diagram) of the seasonal cycle of predictors of the GCMs and the
RCM runs. Standard deviations are normalized against observed data. (a) u; (b) v; (c) ξ; and (d)
q850.
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differences in the pattern of variations (E′). E′ is re-
lated to R and γ2 by the following equation (Taylor,
2001):

E′2 = 1 + γ2 − 2γR .

Figure 3 shows the correlation coefficients between
the reanalysis and the modeled predictors as well as
the normalized variance of the modeled predictors.
Differences between modeled and observed patterns of
variations (E′) are in the diagram proportional to the
distance between the observed point and the points of
the models (Taylor, 2001). In Fig. 4, the bias and the
total RMSE of the monthly values are plotted.

For ξ, which is found to be most strongly related
to precipitation in Sweden (Hellström et al., 2001),
great improvements in the correlation are evident in
the RCA1 experiments (DDH and DDE) compared
to the GCM runs. Somewhat higher correlation is
also found in u. It should be mentioned that u is
highly correlated with NAO, thereby making it an im-
portant factor in determining the regional and local
climate in Sweden (e.g., Chen, 2000; Busuioc et al.,
2001b). The correlation of the seasonal cycles of v
is higher for ECHAM4 than for DDE and about the
same for HadCM2 and DDH. The correlation coeffi-
cients related to q850 are all very high and the differ-
ences between the models are therefore insignificant.
It is found in the comparison of the RCA1 and GCM
experiments that the skill of the models in reproduc-
ing the intermonthly variability is on average about
the same for the GCMs and the RCA1. For u, the
variances in the DDH experiments are closer to the ob-
served ones than those in HadCM2. Also, DDH shows
better results than HadCM2 for v. The difference be-
tween the observed and modeled variance is smaller
in ECHAM4 than in DDE for ξ. The intermonthly
variability is generally lower in the DDH and DDE ex-
periments than in the corresponding GCMs. In short,
the RCA1 predictors are associated with smaller E′

than the GCM predictors with the exception of v and
q850 in DDE. Furthermore, all differences in correla-
tion and variance between the output of the GCMs
and those of the corresponding RCA1 runs are statis-
tically insignificant at the 95% level, except for ξ in
HadCM2 and DDH.

The bias is smaller in HadCM2 than in DDH for
all predictors except u. In general, the bias in v is
relatively small, however. DDE is associated with a
much lower bias than ECHAM4 for ξ and q850. It is
interesting to note that both of the RCA1 experiments
are associated with a loss of humidity compared with
the GCM experiments. This leads to a relatively large
negative bias in DDH. RCA1 has a positive bias in
precipitation, which may partly explain the systematic

loss of q850 (see below). Also, for the other predictors,
RCA1 tends to reduce the mean values, except for u
in DDH. With respect to the RMSE, RCA1 is superior
to the GCMs for vorticity.

3.2 Seasonal cycle of downscaled precipitation

It is expected that the improved seasonal cycles
of the predictors have positive effects on the statisti-
cal downscaling of the precipitation at the 42 stations.
However, the different influences on the bias have a
varying effect on the downscaled precipitation at dif-
ferent stations. To examine the combined effect of the
two sets of predictors from RCA1 and the GCMs, the
local precipitation at all the stations is calculated from
the statistical model using the two sets of predictors,
and is compared with that directly interpolated from
the GCMs and RCA1.

To simplify the comparison, the statistics calcu-
lated for the predictors are also calculated for the mod-
eled precipitation for four regions with similar precip-
itation variability (Fig. 2). The four regions were dis-
tinguished in an earlier work (Busuioc et al., 2001b) by
using EOF and cluster analysis of annual precipitation.
The four regions represent: (1) the south easternmost
part of Sweden (6 stations); (2) the southern part of
the country (18 stations; excluding region 1); (3) the
middle and the southern part of northern Sweden (12
stations; ∼61◦–66◦N); and (4) northernmost Sweden
(6 stations; ∼66◦–69◦N). In Hellström et al. (2001),
it was concluded that the statistical and dynamical
downscaling models are superior to the GCMs with
respect to their ability to reproduce the seasonal cycle
of the precipitation at the four stations/regions. It is
noted also that the GCMs fail to simulate the summer
maximum and the late winter-early spring minimum
found in the observed data. Generally, the statistically
downscaled cycles based on the GCM and RCA1 pre-
dictors follow the same patterns, but the RCA1-based
cycles are smoother and closer to the observed ones.

Since the improvements of the RCA1 predictors
compared to those of the GCMs vary according to pre-
dictor, the final effects of the two sets of predictors on
all the station precipitation values need to be assessed
individually.

The correlation coefficients between the observed
and modeled averaged monthly precipitation of all sta-
tions within the specific regions as well as the nor-
malized standard deviations (γ2) and E′ produced by
the statistical and dynamical downscaling models are
found in Fig. 5. The results directly interpolated from
the two GCMs are also shown. It is evident that the
differences between the three-step and one-step down-
scalings vary with region.
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Fig. 5. Pattern statistics (Taylor diagram) of the seasonal cycles of downscaled precipitation.
Standard deviations are normalized against observed data. (a) Region 1; (b) Region 2; (c) Region
3; and (d) Region 4.
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With respect to correlation, the three-step and one-
step methods produce about the same results. For
southern Sweden, the RSDE gives better results than
GSDE, and GSDH better than RSDH. The opposite
is true for the northern part of the country. The inter-
monthly variability is, for all regions, closer to the ob-
served in RSDE than in GSDE. The one-step method
based on the HadCM2 predictors produces an inter-
monthly variability closer to the observed than the
RSDH for all regions except Region 1. Totally, the
combined effect of R and γ2 gives somewhat lower val-
ues of E′ in the three-step method. All differences
in correlation and variance between the precipitation
derived from the one-step and three-step methods are
statistically insignificant at the 95% level.

The biases are generallylarger and more negative in
RSDH than in GSDH (Fig. 6).The negative biases are
probably connected to the negative bias in ξ and q850

used by DDH. RSDE has, for all the regions,a smaller
bias than GSDE. It should be noted that the biases in
the downscaled precipitation are still considered to be
small,since the maximum is only 4.4% of the monthly
averages.In terms of RMSE,the three-step method per-
forms worse than the one-step method in all regions,
except for RSDE-GSDE in Regions 3 and 4.

4. Conclusions

It is demonstrated that the seasonal cycles of large-

scale predictors can be improved in upscaled RCA1 re-
sults compared to GCM results. The increased skill in
reproducing the seasonal cycle is greatest for ξ and u
for both of the RCA1 experiments, driven by HadCM2
and ECHAM4, respectively.

Despite the improvement in the reproduction of the
seasonal cycle of, for example, ξ, there is only a slight
improvement in the simulation of the seasonal cycle
of precipitation. Considering this together with the
availability and cost of RCM experiments, the use of
the three-step method is not recommended.
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