
Acta Informatica 26, 131-192 (1988)

�9 Springer-Verlag 1988

High Level Tree Transducers
and Iterated Pushdown Tree Transducers

J o o s t Engelfr iet and H e i k o Vog le r*
University of Leiden, Department of Mathematics and Computer Science, P.O. Box 9512,
NL-2300 RA Leiden, The Netherlands

Contents

1. Introduction . 131
2. Preliminaries . 137
3. Grammars with Storage, Simulation of Storage Types, and Pushdown Operators 141
4. High Level S Transducers and Iterated Pushdown S Transducers 154
5. Substitution of Applicative Terms . 158
6. Applicative Terms and Iterated Pushdowns . 168
7. Characterization of High Level Tree Transducers 179
8. Some Consequences . 186
References . 191

Summary . n-level tree t r ansduce r s (n_>_0) c o m b i n e the features of n-level tree
g r a m m a r s and of t o p - d o w n tree t r ansduce r s in the sense tha t the de r iva t ions
of the tree g r a m m a r s are syn tax -d i r ec t ed by inpu t trees. F o r runn ing n,
the sequence of n-level tree t r ansduce r s s tar ts wi th t o p - d o w n tree t r ansduce r s
(n = 0) and m a c r o tree t r ansduce r s (n = 1). In this p a p e r the class of t r ee - to - t ree
t r ans la t ions c o m p u t e d by n-level tree t r ansduce r s is cha rac te r i zed by n- i tera t -
ed p u s h d o w n tree t ransducers . Such a t r a n sduc e r can be cons ide red as a
regu la r tree g r a m m a r of which the de r iva t ions are syn tax -d i r ec t ed by n-
i t e ra ted p u s h d o w n s of t rees; an n- i te ra ted p u s h d o w n of trees is a p u s h d o w n
of p u s h d o w n s o f , . . of p u s h d o w n s (n t imes) of trees. In par t i cu la r , we invest i-
gate the to ta l de te rmin is t ic case, which is re levant for syn tax -d i r ec t ed seman t -
ics of p r o g r a m m i n g languages .

1. Introduction

In this p a p e r n-level tree transducers are i n t r o d u c e d as a na tu r a l ex tens ion of
t o p - d o w n tree t r ansducers [R o u , Tha , E n g l] (n = 0) and m a c r o tree t r ansduce r s
[Eng3, C o u F r a , E n g V o g l] (n = 1). The unde r ly ing idea of this gene ra l i za t i on

Offprint requests to: J. Engelfriet

* The work of the second author has been supported by the Netherlands Organization for the
Advancement of Pure Research (Z.W.O.). The second authors present address is Lehrstuhl f'dr Infor-
matik II, RWTH Aachen, Federal Republic of Germany

132 J. Engelfdet and H. Vogter

is the same as in the extension of regular tree grammars [Bra, GeeSte] (n=0)
and context-free tree grammars [EngSch, Fis] (n= 1) to n-level tree grammars
[Dam]. Actually, an n-level tree transducer can be considered as an n-level
tree grammar of which the derivations are syntax-directed. Since top-down tree
transducers are equivalent to the generalized syntax-directed translation schemes
of [AhoUlll,2] (cf. [MarVer, Vogl]) and macro tree transducers generalize
top-down tree transducers in the sense that the handling of context is possible,
the high-level tree transducers also provide a metalanguage for describing parts
of the semantics of programming languages. Using them, even context informa-
tion of functional type (such as environments) can be handled, whereas for
macro tree transducers the context information has to be of some basic type.
The reader is refered to [Eng4] for a detailed discussion of tree transducers
as formal models of metalanguages for syntax-directed semantics.

From the program schematic point of view an n-level tree transducer can
be considered as a system of reeursive function procedures that compute trans-
formations on trees. Each function procedure has one "syntactic" parameter
and it delivers a result of functional type up to level n (i.e., a basic element
or a function of functions of ... of functions on basic elements). The name
"syntactic" parameter originates from the use of (high-level) tree transducers
as a metalanguage for describing syntax-directed semantics; its value is a (pointer
to a) subtree of the input tree of the transducer. As an example, such a function
procedure A may be of type T~--*((Tn--* Ta)x (Tn x Ta~Tn)~(Ta~Td)), where T~
and Tn denote the sets of trees representing the basic values of syntactic objects
and of semantic objects, respectively. Since the result of A is of level 2 (it is
a function of functions), A may be part of an n-level tree transducer for any
n >2. By designating a main function procedure of type Tx~ Tn (delivering a
result of level 0), an n-level tree transducer computes a translation of trees.
Thus, the initial value of the syntactic parameter of the main function procedure
is the input tree of the transducer. Because of their relevance to syntax-directed
semantics, our main interest is in the total deterministic n-level tree transducer,
which computes a total function T ~ Tn. However, we also study the nondeter-
ministic case, because it is easier to treat; then a relation in Tz x Tn is computed.
For the interested reader, an example of a (total deterministic) two-level tree
transducer, relevant to the denotational semantics of programming languages,
is presented at the end of the introduction.

The main result of this paper is the equivalence of the high-level tree trans-
ducers and the iterated pushdown tree transducers, in the sense that they compute
the same class of translations. Such iterated pushdown tree transducers can
be considered as systems of recursive function procedures that have one parame-
ter consisting of a pushdown-like datastructure, and that deliver a result of
basic type (level 0). More precisely, the parameter ranges over pushdowns of
pushdowns of . . . of pushdowns of (pointers to) the input tree of the transducer,
and, hence, it is also called a syntactic parameter. Using this characterization
result we also show that high-level tree transducers can compute the composition
of any number of translations defined by attribute grammars [Knu]. (We note
that it is shown in [CouFra] that macro tree transducers can simulate attribute
grammars, viewed as tree transducers [EngFil, ChiMar, CouFra].)

High Level Tree Transducers 133

Since in [EngVog3] the macro tree transducers are characterized by push-
down tree transducers (in which the syntactic parameter ranges over pushdowns
of pointers to the input tree), the present paper should be considered as a
direct continuation of the work in [EngVog3]. Our main result is inspired by
the characterization of n-level tree grammars by n-iterated pushdown tree
automata [DamGue2], and of n-level string grammars by n-iterated pushdown
automata [DamGoe] (and we also give alternative proofs of these results). We
use the same methods and tools as in [EngVog3], but many ideas and concepts
in this paper are based on those in [Dam, DamGoe, Gue, DamGuel,
DamGue2].

For the description of both high-level tree transducers and iterated pushdown
tree transducers, we use the unifying concept of "grammar with storage", intro-
duced in ['Eng5, EngVog3]. A storage consists of configurations, predicates that
test the configurations, and instructions that transform configurations. Roughly
speaking, the type of grammar used determines the type of the results of the
function procedures, whereas the type of storage used determines the type of
their syntactic parameter. In this formalism of grammars with storage, n-level
tree transducers are n-level tree grammars with a storage of type "tree", denoted
by TR, and the n-iterated pushdown tree transducers are 0-level (or: regular)
tree grammars with a storage of type "n-iterated pushdown of trees", denoted
by P"(TR) (where P is an operator on storage types called the pushdown opera-
tor). The configurations of TR are trees; for every such configuration, the label
of the root can be tested and a direct subtree can be selected. The configurations
of P~(TR) are pushdowns of pushdowns of. . . of pushdowns (n times) of (pointers
to) trees, cf. [Gre, Mas, Eng6, DamGoe, EngVog3].

The main advantage of formulating both high-level tree transducers and
iterated pushdown tree transducers in the framework of grammars with storage,
is the fact that we can prove our characterization result inductively (rather than
having to provide an immediate construction). To show this we sketch the main
lines of the proof. In the first step, every n-level tree transducer (which is an
n-level tree grammar with storage of type TR) is transformed into an equivalent
0-level tree grammar with a storage of type "n-level applicative term of trees",
denoted by n-AT(TR). Since n-AT(TR) exactly reflects the rewriting mechanism
inherent in n-level tree grammars, this first step is intuitively straightforward
(cf. [DamGuel, 2]). For the second, major step we use the concept of simulation
of storage types [Eng6, EngVog3] and the so-called "Justification Theorem"
(cf. Theorem 4.18 of [EngVog3]). This theorem says that, whenever two storage
types S~ and $2 are equivalent (for short: S~=-$2) in the sense that S~ can
simulate $2 and vice versa, then the class of translations computed by grammars
with storage of type S~ is equal to the class of translations computed by gram-
mars (of the same type) with storage of type $2. Thus, to prove the characteriza-
tion it would suffice to show that n-AT(TR) and P~(TR) are equivalent storage
types. However, for technical reasons, we need a variation Pbex of P, where
bex stands for "bounded excursion", and we show that n-AT(S)=P~,ex(S) for
an arbitrary storage of type S. This equivalence is proved inductively: for every
storage of type S, (n+ 1)-AT(S)=-Pb,x(n-AT(S)). The latter equivalence may be
seen as the kernel of our proof: one functional level is replaced by one level

134 J. Engelfriet and H. Vogler

of pushdowns. Finally, we show that the 0-level tree grammars with storage
of type P~ex(TR) compute the same class of translations as 0-level tree grammars
with storage of type P*(TR).

This paper is organized in 8 sections of which the second contains preliminar-
ies. In Sects. 3.1 and 3.2 the two concepts of "grammar with storage" and "stor-
age type simulation" are recalled from [EngVog3], and in Sect. 3.3 the notion
of coding is introduced as a special case of storage type simulation. In Sect. 3.4
the pushdown operators P and Pbex are defined, and it is shown that Pbe~ preserves
the equivalence of storage types. The main devices of this paper are formalized
in Sect. 4 (for arbitrary storage of type S): n-level S transducers and n-iterated
pushdown S transducers. In Sect. 5 we demonstrate that the rewriting mechanism
of n-level S transducers can be completely captured by the storage of type
"n-level applicative term of S", i.e., n-AT(S), and in Sect. 6 the equivalence of
n-AT(S) and P~,~(S) is shown. Section 7 contains the main result of the paper:
the equivalence of n-level tree transducers and n-iterated pushdown tree trans-
ducers. Finally, in Sect. 8 some consequences of the results proved in this paper
are pointed out, e.g., the characterization of n-level tree transducers by the n-fold
composition of macro tree transducers, and hence by the composition of attri-
bute grammars.

Conceptually, the paper may be divided into three parts. The first part
(Sect. 3) concerns concepts of general automata theory. The reader who is already
familiar with these concepts, can skip this part on first reading. The second
part (Sect. 4-Sect. 6) contains the definitions of high-level S transducers and
of iterated (bounded excursion) pushdown S transducers, respectively, and the
proof of their equivalence. The third part (Sect. 7) is dedicated to the special
case of high-level tree transducers: it contains the proof of their equivalence
with iterated pushdown tree transducers.

An extended abstract of this paper can be found in [EngVog4]. Some of
the proofs are presented in more detail in Part 4 of EVog3].

Example. In this example we informally discuss a 2-level tree transducer M
that performs type checking for programs of a small block-structured language,
called CHECK. For a CHECK program, M checks whether the types in assign-
ment statements are correct. It is well known that type checking cannot be
captured in the derivations of context-free grammars; in the literature, usually
attribute grammars are used to perform this analysis, cf., e.g., IWat].

Of course, since tree transducers are schematic devices, which transform
trees into trees, we can at most expect that, for the abstract syntax tree of
a CHECK-program P, M generates a tree tp such that the interpretation of
te in an appropriate semantic domain yields the answer of checking P. However,
to exclude the trivial solution, in which the whole checking is shifted into the
semantic domain, we try to work as much as possible on the syntactic level.

The syntax of CHECK is given by the context-free grammar GCHECK, which
is specified by the following productions.

r~: P~program D; S end
r2: D~var l:T

High Level Tree Transducers 135

r3: D ~ D ; v a r I : T
r4: S - - } I = I

rs: S--*beginD; S end
r6: S---}S;S
r 7 : I--}a
r8: I--*b
r 9: T ~ i n t
rio: T~bool

where P, D, S, I, and T are nonterminals, and the other symbols are terminal.
An example program P of CHECK is the following.

program var b: bool; var a: int;
begin var b: int; b:=a end;
b..=a end

Let T~ denote the set of abstract syntax trees of CHECK-programs. The abstract
syntax tree t of P is shown in Fig. I.

The first assignment b = a of P, which occurs in an inner block, is correct,
whereas the second statement gives a type conflict. Now we present the 2-level
tree transducer M that performs type checking of CHECK-programs. M is
described in the terminology of program schemes as a system of recursive func-
tion procedures over the following three semantic domains: T Y P E = {int, bool,
undef}, BOOL = {true, false}, and IDENT = {a, b}.

Function procedures of M:

Check-prog:
Envir:
Inenv:

Check:
Id:

Ty:

Tx~BOOL
T~--*((IDENT~TYPE)~(IDENT ~TYPE))
~--,(IDENT--,TYPE)
Tz~((IDENT--,TYPE)~BOOL)
Tz~IDENT
Tz--,TYPE

P--program O~ S end

J
O~O~ var I:T

/ \ \
D--vat I : T l~a T~int

/ \
l--b T-- bool

S--S;S

/
s - ~ g ~ D~ S ~_dd
/ \

D--var I:T S- - l := l

/ \ / \
I ~ b T ~ i n t I ~ b I - - a

Fig. L Abstract syntax tree t of a CHECK-program P

S - - I : = I

/
I ~ b

\

136 J. Engelfriet and H. Vogler

For example, the function procedure Check has a syntactic parameter of type
"abstract syntax tree" and delivers a result of functional level 2 and of type
(I D E N T ~ T Y P E) ~ B O O L ; a value of this result computes a boolean for each
"environment", which is a function giving types to identifiers. Check-prog is
the main function procedure of this system. In the definition of a function proce-
dure, basic function symbols (of A) may be involved that are interpreted as
operations over the semantic domains. We use the following basic function
symbols: equal, and, cond, int, bool, undef, a, and b of which the interpretation
should be obvious (e.g., cond is interpreted as function of type BOOL x TYPE
• T Y P E ~ T Y P E and cond(b, q, tz)=if b then tt else t2). We note that the con-

stants int, bool, and undef denote themselves.

Definition of function procedures:
We use the formal (semantic) parameters Ym and YEN of type IDENT and
I D E N T ~ T Y P E , respectively.

Check-prog [program D; S end] = Check IS] (Envir [D] (Inenv [D])),
Envir [var I: 7"] YEN YID =

cond (equal (Id [11, Ym), Ty [TJ, YEN (Y~D)),
Envir [D; vat I: T] YEN YtD =

cond (equal (Id [I], YlD), Ty [7"], Envir [D] YEN YID),
Inenv [var I: T-J YID = undef,
Inenv [D; var I: T] Ylo = undef,
Check l i t :=121 Y~N = equal (yen (Id lit]), yEN(Id [I2])),
Check [begin D; S end] YeN = Check IS] (Envir [D] YEN),
Check [$1 ; $2] YEN = and (Check IS 1] YEN, Check [$2] YEN),
Id [a] = a, and Id [b] = b,
Ty lint] = int, and Ty [bool] = bool.

Note that, in the usual way, the expression Envir[...]yENyiD denotes
Envir(...)(yEN)(ylo) (and similarly for Check[. . .] YEN). It should be clear that
these function definitions are close to the usual denotational semantics notation.
In Sect. 4 part of this example is given in our notation of tree transducers.

Finally, we show parts of the computation that our system M performs
on the abstract syntax tree t of P. We use the following abbreviations: t = rt (decl ~,
r 6 (stat 1, stat2)), decll = ra (rz (r8, rt 0),/'7, r9), stat t = r5 (decl2, stat3), decl2 = r2 (rs, r9),
star 2 = r4(ra, rT), and stat3--stat2.

First we type check the second statement stat2 of P (using the abbreviations
eo and et for Inenv[declt] and for Envir[decl~] Co, respectively):

Check [stat2] (Envir [decll] eo)
= equal (ca (b), el (a))
= equal (cond (equal (a, b), int, cond (equal(b, b), bool, unde0),

cond (equal (a, a), int, cond (equal(b, a), bool, undef))).

Interpreting this tree yields false, which indicates the type conflict in stat2.

High Level Tree Transducers 137

and

equal equal

cond cond cond cond

/ \ \ / \ \ / / \ / \ \
equal int concl equal int cond equal int cond equal int cond
I \ I\ / \ \ / \ \ ,, o , / \ \ : / \ \

equal int cond equal int cond equal bool undef equal bool undef
, , \ \ / \ \ , , ,,

equal bool undef equal booI undef
/ \ / \

b b b a

Fig. 2. Output tree t e computed by checking P

In a similar way the first statement statt of P is checked:

Check [stat 1] e ~ = equal (cond (equal (b, b), int,
cond (equal(a, b), int, cond(equal(b, b), bool, under))),
cond(equal(b, a), int, cond(equal(a, a), int,
cond(equal(b, a), bool, undef)))), and this tree is interpreted by true.

Thus Check-prog[t] = Check[rr(stat~, stat2)] e~-- and (Check[stat~] e~,
Check[stat2] e~)=te where the tree tp is shown in Fig. 2. This means that M
transforms t into te. Clearly, tp is interpreted by false, and hence the 2-level
tree transducer M detects a type conflict. []

2. Preliminaries

For most unexplained notions we refer the reader to [EngVog3]. That paper
will from now on be cited as [EV]. However, for the convenience of the reader,
we recall in Sect. 2.1 some of the most frequently used notions from [EV].
In Sect. 2.2 the concepts of derived types [Mai] and of applicative terms are
defined formally.

2.1 Basic Notations

The set {0, 1, 2 } of non-negative integers is denoted by nat. For every k>0,
[k] is the set {1, ..., k} ~_nat. The empty string is denoted by 2.

Let R, Rx, and R2 be three relations. The inverse, the domain, and the
range of R are denoted by R-1, dam(R), and range (R), respectively. The compo-
sition of R1 and R2, denoted by RIoR2, is the set {(x, y)l(x, z)~R1 and (z, y)~Rz
for some z}, and the n-fold composition of R is denoted by R". The transitive
closure and the reflexive, transitive closure Of R, are denoted by R § and R*,
respectively. The notations are extended in an obvious way to classes of relations.

Very often, the concept of substitution of objects into strings or trees is
used. Let v be a string (or tree), let U and U' be arbitrary sets, and let 0

138 J. Engelfriet and H. Vogler

o b

Fig. 3. Picture of the trees (a) tt =tr(tr(=(), b), a) and (b) t2 = tr(tr(ct0, fl0), =())

be a mapping from U to the power set of U'. Then v[u*--O(u); ueU] denotes
the set of strings (or trees) obtained from v by replacing every occurrence of
u in v by an element of O(u), where different occurrences may be replaced by
different elements of O(u). Almost in every situation, O(u) is a singleton, which
is specified by its element.

A ranked set is a pair (A, rank), where d is a (possibly infinite) set of symbols
and rank: A ~ nat is a mapping. If A is finite, it is called a ranked alphabet.
If rank is understood from the context, then (A, rank) is also denoted by A.
For every n>0 , the set of symbols of A with rank n is denoted by A,. For
a ranked set (A, rank) and a (usual) set A, the set of trees over A indexed
by A, denoted by T,~(A), is tlae smallest set T which satisfies the following two
properties. (i) A_~T. (ii) If trod with rank(tr)=k, and tl tk~T, then
tr(tx , tk)ET. The set of trees over A, denoted by Ta, is Tn(~). Figure 3 shows
how we draw (indexed) trees in examples. Let A be a ranked alphabet containing
the symbols tr, ct, and fl of rank 2, 0, and 0, respectively; let A = {a, b}. Figure
3a is a picture of the indexed tree tt =tr(tr(~(), b), a) in Td(A), and Fig. 3b shows
the tree t2 =a(tr(~(), fl()), ~()) in T,~.

The yield of a tree t in Tn, denoted by yield (t), is the concatenation of
its leaves from the left to the right. Formally, (i) for tr~,d0, yield (a ())=a and
(ii) for tr~ Ak with k > 1 and tl tk ~ T~, yield (tr(q , tk))= yield (t t)... yield (t~),
where, for strings w 1 , wk, their concatenation is denoted by wt ...Wk. The
mapping yield is extended to relations R c A x Ta, where A is an arbitrary set,
by defining yield (R)= {(s, w)l(s, t)~R and yield (t)=w}. This notation can be
extended to classes of relations in an obvious way. Throughout this paper 12
denotes a countably infinite ranked set such that for every n > 0, 12, is infinite.

We assume the reader to be familiar with regular grammars and context-free
grammars, regular tree grammars, and context-free tree grammars (for formal
definitions see [HopUll], [GecSte], and [EngSch], respectively). For context-free
tree grammars we briefly recall the basic notions. A context-free tree grammar
G is a tuple (N, A, Ain, R), where N and A are (disjoint) ranked alphabets of
nonterminals and terminals, respectively, Ain, T N is the initial term, and R is
a finite set of rules of the form A(Yl , yk)~ ~, where k>O, AeNk, ~TN~a(Yk),
and Yk = {Yx Yk}. Note that we allow G to have an initial term rather than
only an initial nonterminal. However, this does not increase the generating

High Level Tree Transducers 139

power of context-free tree grammars. The set of sentential forms of G, denoted
by SF(G), is the set TNv,t. The (01-) derivation relation of G, denoted by ==(G)~,
is a binary relation on SF(G) defined as follows. For ~t, ~2eSF(G), r
iff there is a rule A(y~, ..., y k) ~ in R for some k>O, AeNk, and (eTN~,n(Yk),
there is a ~eTN~,n({z}) in which z occurs exactly once and z does not occur
in a subtree of the form B((1,...,(~) of ~ (with BEN,), and there are
~'1 r such that ~l=~[z,,--A(~'~, . . . ,~)] and ~ 2 = r 1 6 2
ie[k]]]. The language generated by G, denoted by L(G), is the set
{teT, tlAi,==(G)=~*t}. A regular tree grammar is a context-free tree grammar
such that every nonterminal has rank 0.

The classes of regular (or right-linear) grammars, context-free grammars,
regular tree grammars, and context-free tree grammars are denoted by REG,
CF, RT, and CFT, respectively. In general, for X~{REG, CF, RT, CFT}, we
use the same notations for specifying X-grammars as for a context-free tree
grammar, i.e., an X-grammar is specified by a tuple (N, A, A~,, R), where N
and A are disjoint alphabets of nonterminals and terminals, respectively, A~,
is the initial term, and R is a finite set of rules. Note that, depending on X,
the sets N and A may or may not be ranked alphabets. For X~{REG, CF,
RT}, as usual, the initial term is a single nonterminal. The set of sentential
forms, the derivation relation, and the generated language of G are denoted
by SF(G), ==(G)=~, and L(G), respectively. The class of languages, which is gener-
ated by X-grammars, is also denoted by X. We also consider X-grammars
with infinite sets of nonterminals and rules. The notions of sentential form,
derivation relation, and generated language are defined in exactly the same
way as for ordinary, finite X-grammars.

Every regular tree language over a ranked alphabet A can be accepted by
a total deterministic bottom-up tree automaton A=(P, A, 6, F), where P is a set
of states, F__ P is the set of final states, and 6 is a family {6,1aeA } of mappings
such that, for every ~ e Ak with k__> 0, 6,: pk ._. p. The function 6: T n ~ P is defined
in the usual way recursively on the structure of the tree in Ta, and L(A)
= {re Talr(t)~F}. From the accepting point of view, regular tree languages are
also called recognizable tree languages and the corresponding class RT of tree
languages is also denoted by RECOG.

2.2 Applicative Terms

Here we formally define the concepts of derived types and applicative terms.
Most of the definitions are taken over from [Dam].

Let Q be a set of types. Then, a string w~Q* of length k is viewed as a
mapping w: Ik] ~ Q . Thus, w(i) is the i-th letter ofw. A Q-set is a pair (V, type),
where V is a set and type: V ~ Q is a mapping. For every qeQ, V ~
={yeVItype(y)=q}. For every weQ* of length k, we define V w
={(Yl ,?k)lyieV w") for every leek]}, and thus V~={()}. For two Q-sets
(V1, typel) and (V2, type2), we write VI~_V2 iff V ~ V~ for every qeQ; and
if V 1 and V2 are disjoint, then V1 u 1:2 denotes the Q-set (V1 u V 2, type), where
for every y~ Vi with ie{1, 2}, type (?) = typei(y).

140 J. Engelfriet and H. Vogler

If there is no confusion the Q-set (V, type) will also be denoted by V and
the mapping "type" will be understood. The fact that an element y~V has
type q, i.e., type (y)= q, is abbreviated by y: q.

For a set V of symbols and an arbitrary set 4, V (~) denotes the set
{y(q~)ly~ V, ~b~q~}. If (V, type) is a Q-set, then (V (~) , type') is also a Q-set,
where for every y(dp)eV(qr~), type'(y(~b))=type(7). The mapping type' is also
denoted by type. The same formalism is used, if V is a ranked set instead of
a Q-set.

The concept of derived types allows to denote the type of functions and
also of high level functionals. For every set Q of types, we define the set
D(Q)=Q*x Q. Then the set of derived types over Q, denoted by D*(Q), is the
set U{O"(Q)ln>O}, where D~ and for every n>O, D"+t(Q)=D(D"(Q)).
D§ denotes the set U {D"(Q)ln> 1}.

The level of a derived type TeD"(Q) with n~0, denoted by level(T), is n.
For any D*(Q)-set (V, type), the level of y~V, denoted by level(y), is
level (type (7)). For n > 0, the set {y ~ V [level(y) = n} is denoted by V ="; similarly
we use the denotation V -~".

We note that every derived type T~D"(Q) with n > 0 can be uniquely written
as r=(~n (a2, (al, q))...) with ~i~(D i- I(Q)). for every 1 <i<n and q~Q.

Applicative terms are of central importance in this paper. They represent
the symbolic application of objects of derived types to arguments of appropriate
type. Let V be a D*(Q)-set. The D*(Q)-set of applicative terms over V, denoted
by AT(V), is the smallest D*(Q)-set AT which satisfies (i) and (ii).

(i) V_AT.
(ii) Let ~D"(Q)* of length k with n, k>0. For every j~[k], let ~f iAT ~~

Let v~D"(Q) and let ~0~AT (~'v). Then ~o(~t , ~)~AT' .
It is easy to see from (i) and (ii) that every applicative term ~ A T (V) has

a unique decomposition ~=Y~,. . .~l with y~V, r>=0, and each ~'~ is a tuple of
applicative terms. The element y is called the top of ~ and is denoted by top(l).
If ~ A T (V) v for some v~D"(Q), then 7~V ~ for some T=(ar (al, v)...) with
ai~D,+,-l(Q)., and for every it[r], ~'~AT(V) "*.

From now on let Q = {q}. We illustrate the notions concerning applicative
terms by an example.

Example. Let 7: ((q, q)(2, q), (qq, q)), a: ((q, q), (2, q)), v: (2, (q, q)), 6: (q, q), ~: (2, q),
and r : q be elements of a D*(Q)-set V. Clearly, 7, a, and v have level 2, 6 and

have level 1, and fl has level 0. By part (i) of the definition of applicative
terms, 6~AT(V) ~q'*~. Since fleAT(V) *, it follows from part (ii) that fi(fl)~AT(V) ~.
In the same way it can be checked that ~=y(6, a(6))(a(), vO(fl))~AT(V) ~, where
0 is the empty list of parameters. The unique decomposition of ~ is Y~'2~
where (2=(6, 0-(6)) and ~'~ =(a(), v0(fl)); thus top(~)=y. []

We consider every D(Q)-set (V, type) as a ranked set (V, rank): for 7~V,
if type (y)= (qk, q) with k_>_ 0, then rank (y)= k. Hence, for a D (Q)-set V and a
Q-set W, AT(Vw W) ~ is the set of trees over V indexed by W, i.e., AT(Vw W) *
= Tv(W). In particular AT(V)~= Tv. Actually, this connection between applica-
tive terms and trees can be generalized in a very natural way. Let n >0 and
let V be a D*(Q)-set. Then every applicative term over V of level n can be

High Level Tree Transducers

/s

o b

Fig. 4. Tree-form of an applicative t e r m

14I

represented as an indexed tree: the labels of its nodes are applicative terms
over V each of level n + 1, and it is indexed with symbols of V each of level
n. This point of view is formalized as follows.

Definition. Let n > 0 and let V be a D*(Q)-set. The ranked set associated with
(V, n) is (AT(V) ="+l, rank) and, if ~eAT(V) ="+1 with ~: (~, v) and the length
of cc is k > 0, then rank (~) = k. []

Lemma. Let n>O and let V be a D*(Q)-set. Then AT(V)="=Tv,(V="), where
~ = AT(V)=,+ 1, the ranked set associated with (V, n).

Proof Follows immediately from the definition of applicative terms. []

The indexed tree, which corresponds to an applicative term ~ in the sense
of the previous lemma, is called the tree-form of ~ (cf. [DamGue2]). As an
example, we describe the tree-form of the applicative term

=y(6, o-(~))(~(), v()(fl)) of level 0, of the previous example. The tree-form of
consists of a root of rank 2 labelled by ~1 =7(6, a(6)), and two direct subtrees.

The left subtree only consists of a leaf labelled by ~2 = ~, and the right subtree
consists of a root labelled by ~ 3 = v 0 and a leaf labelled by fJ (note that fl
is an element of the " index" set V=~ The tree-form of ~ is shown in Fig. 4a.

Of course, also the applicative terms ~x, ~2, and ~3 (of level 1) have a tree-
form. Hence, ~ can be drawn as an indexed tree of indexed trees over V (cf.
Fig. 4b; the number of circles surrounding an applicative term indicates its
level!). In all subsequent examples we draw applicative terms in this " i terated"
tree-form, i.e., also sub-applicative terms are drawn in tree-form. We note that,
if V only contains symbols of level n, then the tree-form of an applicative term
over V of level 0 is a tree of trees o f . . . of trees (n times) of symbols of V.

3. Grammars with Storage, Simulation of Storage Types,
and Pushdown Operators

This section recalls from [EVJ the two main tools which we use to prove the
characterization of n-level tree transducers: grammars with storage (Sect. 3.1)

142 J. Engelfriet and H. Vogler

and storage type simulation (Sect. 3.2). We refer the reader for a broad discussion
of these concepts to Sect. 3 and Sect. 4 of [EV]. In Sect. 3.3, we introduce
the concept of coding of storage types as a special case of simulation. Finally,
in Sect. 3.4, we recall from [EV] the definition of the pushdown operator, define
a modification of it (called "bounded excursion"), and prove that this modified
operator preserves the equivalence of storage types.

3.1 Grammars with Storage

The idea of the concept "grammars with storage" goes back to a suggestion
of l-Sco] in which he advocates the strict separation of the concepts of program
and storage type. In Scott's sense a program is a flowchart which can test
and transform the configurations of a storage by means of predicates and instruc-
tions, respectively. In [Eng5] this concept is generalized by allowing context-free
grammars as program, and in [EngVog2, EV] macro grammars and context-free
tree grammars serve this purpose. There the concept of"grammars with storage"
is heavily exploited in order to achieve a pushdown tree transducer characteriza-
tion for the macro tree transducer.

3.1. Definition. A storage type S is a tuple (C, P, F, m, I, E), where C is a non-
empty set of (S-)configurations, P and F are sets of (S-)predicate- and (S-)instruc-
tion symbols, respectively, m interprets every peP as a mapping m(p): C--* {true,
false} and every f s F as a partial function re(f): C--*C. Finally, I is a set of
input elements and E is a set of encodings, where every encoding is a partial
function e: I ~ C. []

In the rest of this paper S denotes the storage type (C, P, F, m, I, E) /f
not specified otherwise. In the usual way m is extended to the set BE(P) of
boolean expressions over P, where true and false are the boolean constants.
We use "predicate" and "instruction" as shorthands for "predicate symbol"
and "instruction symbol", respectively, and we say that S contains an identity
if there is an instruction f e F such that re(f) is the identity on C.

The tree storage type is of particular importance in this paper. It has trees
as configurations and captures in its predicates and instructions the possibility
of testing the label of the root of a tree and of selecting a direct subtree of
a tree. Note that f2 is the infinite ranked set mentioned in Sect. 2.1.

3.2. Definition. The tree storage type TR is the sforage type (C, P, F, m, I,
E), where C=T~, P={root=tr l t rE~}, F={seli l i>l}, and for every t
=6(tl tk) in C with 6E(2 of rank k > 0 and tl, ..., tk~Ta, m(root=a)(t)=
(6=tr), m(seli)(t)=t i if i<k, and undefined otherwise, I=C, and E = {ele is the
identity on T~ for some finite subset 27 of f2}. []

A grammar with storage computes a translation from the set of input ele-
ments of the storage type to the set of terminal trees or strings of the grammar.
Hence, we call such a device an X(S)-transducer, where X is the class of gram-
mars used and S is the storage type. In the rest of this section, the modifier

High Level Tree Transducers 143

X ranges over {REG, CF, RT, CFT}. However, after having recalled in Sect. 4
the definition of n-level tree grammars, we use Definitions 3.3-3.5 also for X = n-
T, where n-T denotes the class of n-level tree grammars.

3.3. Definition. An X(S)-transducer M is a tuple (N, e, A, A~,, R), where

- N, A, and Ain are alphabets of nonterminals, terminals, and the initial term,
respectively, as defined for X-grammars

- e~E is the encoding of M
- R is a finite set of rules; each rule is of the form O-o if b then (, where

O ~ is a rule of a usual X-grammar, b~BE(P), and (can be obtained
from r by replacing every occurrence of a nonterminal B by B (f) for some
f~F, i.e., ~ ['B*- -B(F) ;B~N] .

An X(S)-transducer is deterministic if for every c~C and every two different
rules O ~ i f bt then (1 and O---,if b2 then (2, m(bt)(c)=false or m(b2)(c)
= false. 12]

If r: O ---, ifb then ~ is a rule of an X(S)-transducer M and A is the nonterminal
in O, then r is an (A, b)-rule of M, b is the test of r, and ~ is the right-hand
side term of r. If b = true, then we abbreviate r by O ~ (. The construct O ~ if
b then (~ else (2 abbreviates the two rules O ~ i f b then ~1 and O - - * i f not

b then (2-
The translation computed by an X(S)-transducer is defined via the notion

of associated grammar.

3.4. Definition. Let M = (N , e, A, Ai,, R) be an X(S)-transducer. The X-grammar
G(M)=(N', A, A, R') associated with M is defined by N'=N(C) , A is any
element of N, and R' is obtained as follows.

If O--*if b then ~ is in R, then for every c~C such that m(b)(c)=true and
such that every instruction occurring in ~ is defined on e, the rule O (c) ~ ('
is in R', where O(c)=O[A*--A(c) ; A~N] and ~'=([B(f)*--B(m(f)(c));
BeN, f~F]. []

Note that an associated grammar may have infinitely many nonterminals
and infinitely many rules. Recall from Sect. 2.1 that, for an X-grammar G,
SF(G) denotes the set of sentential forms of G.

3.5. Definition. Let M = (N , e, A, A~,, R) be an X(S)-transducer and let G(M)
= (N', A, A, R') be the associated X-grammar.

(i) The set of sentential forms of M, denoted by SF(M), is the set SF(G(M)).
(ii) The derivation relation of M,==(M)=>c_SF(M)x SF(M), is defined by

==(M)=~ = ==(G (M))=, .
(iii) The translation computed by M, denoted by z(M), is the set {(u, v)lueI,

v ~ , and Ai,(e(u))==(M)~*v} where �9 is, depending on X, the set of strings
or trees over A, and for every c~ C, Ai. (c) = Ai, [A ~ A (c) ; A ~ N].

(iv) M is total, i fdom(z(M))=dom(e). []

Two X(S)-transducers are called equivalent if they compute the same transla-
tion. The class of translations computed by (total deterministic) X(S)-transducers
is denoted by X(S) (D,X(S)). If the involved transducers have only one nonter-

144 J. Engelfriet and H. Vogler

minal, then the class of computed translations is indexed by "one", e.g., DtX,, e (S)
denotes the class of translations computed by total deterministic X(S)-transduc-
ers that have one nonterminal.

By considering the trivial storage type So, which has only one configuration,
no predicates, and the identity as instruction, an X(So)-transducer can be
regarded again as a generating device, and in fact as an X-grammar.

3.6. Definition. The trivial storage type So is the tuple ({c}, ~, {id}, m, {c},
{m(id)}), where m(id)(c)=c. []

3.7. Lemma. For Xe{REG, CF, RT, CFT}, range (X(So))=X.

Proof. Lemma 3.9 of [EV]. []

3.2 Simulation of Storage Types

The second main tool for proving the desired characterization of n-level tree
transducers is the simulation of storage types, which is formalized as a relation
< . We recall the formal definition of S-flowcharts (for predicates and instruc-
tions) and of < from I-EV].

3.8. Definition. Sid denotes the storage type (C, P, F u {id}, m', I, E), where
idCPwF, m' restricted to P u F is equal to m, and m'(id) is the identity on
C. []

3.9. Definition. An S-flowchart is a deterministic REG(SJ-transducer such that
all its rules have the form A--* if b then B(~b), where A and B are nonterminals,
b~BE(P), and q~eFu{id}. []

Sometimes it is convenient to apply two instructions ~bl and q~2 in one
rule. Hence, we allow a rule of the form A-* if b then B(~bt; q52) , which denotes
the rules A-*i f b then [B; ~bz](~b~) and [B; q~2]-*B(~b2), with a new nonter-
minal I-B; ~b2].

Since the encoding and the terminal alphabet of an S-flowchart co are not
relevant for our purposes, we denote the corresponding components in co by
- . The class of S-flowcharts is denoted by FC (S). We need two different varia-
tions of S-flowcharts: one for the simulation of predicates and another for the
simulation of instructions. To describe the flowcharts for instructions we define
the notion of a path containing an instruction.

3.10. Definition. Let c o = (N , - , - , A i n , R)eFC(S) and let n > l . If, for every
ie[n], A i _ 1 ~ i f b~ then A~(~b~) is in R, then ~r=(Ao, b~,A~,~l b,,
Ai, c~i bn, A~, dpn) is a path of co from A o to A,. rr contains an instruction
if there is an ie[n] such that dpieF. []

The set of paths of co from A to B is denoted by PATH(CO, A, B), where
A, BeN.

3.11. Definition. Let co = (N, - , --, Ai., R) be an S-flowchart.

(i) co is an S-flowchart for predicates if {true, false} _~ N and the left-hand
side of every rule is different from true and false.

High Level Tree Transducers 145

(ii) co is an S-flowchart for instructions if s top~N, the left-hand side of every
rule is different from stop, and every path in PATH(to, Ai,, stop) contains an
instruction. []

The classes of S-flowcharts for predicates and for instructions are denoted
by P-FC(S) and F-FC(S), respectively.

3.12. Definition. Let to~P-FC(S)u F-FC(S) with initial nonterminal Ai..

(i) to induces an operation on C, denoted by oper (to), which is the relation
{(ct, c2)~C x ClAin(cl)=(to)=~ * x @2) with x~D} where D = {true, false} if
to~P-FC(S), and O = {stop} otherwise.

(ii) If toeP-FC(S), then the predicate induced by to, denoted by pred(to),
is the relation {(cl, x)~Cx {true, false}lAi~(ct)==(to)=>*x(c2) for some
c2eC}. []

Note that oper(to) and pred(to) are partial functions. Now we recall the
definition of the simulation relation from [EV]. It is based on the direct simula-
tion relation (Definition 4.6 of lEVI). If not specified otherwise, then, for i~ { 1, 2},
Si is the storage type (C~, Pi, F/, mi, It, E3.

3.13. Definition. Let S~ and $2 be two storage types.
St is directly simulated by $2, for short St<dS2, if ltc_I2 and there is a

partial function h: C2 ~ C1 called the representation function such that

1. for every ex~Ex there is an e2~E2 such that
1.1.1. dom(el)=dom(e2)
1.1.2. e2(I2)~_dom(h)
1.2. for every u~dom(e2), h(e2(u))=et(u),

2. for every P~P1 there is an toeP-FC(S2) such that
2.1.1. for every c2edom(h): oper(to)(c2) is defined
2.1.2. oper (to) (dora (h)) _ dora (h)
2.2. for every c2~dom(h): h(oper(to)(c2))=h(c2) and

pred (to)(c2) = m 1 (P)(h (c2)),
3. for every f~F t there is an ~ F - F C (S 2) such that

3.1.1. for every c2 ~dom(h): m 1 (f)(h(c2)) is defined iffoper(to)(c2) is defined
3.1.2. oper (to) (dora (h)) _ dora (h)
3.2. for every c2sdom(h) such that mt(f)(h(c2)) is defined,

h(oper(to)(c2))=ml (f)(h(c2)). []

If h(c2)=ct for ct~Ct and c2~C2, then we say that "ct is represented by
c2" or "c2 represents c 1 ", and if an encoding e 1 of E 1 and an encoding e 2
of E2 satisfy requirement 1 of the previous definition, then we say that "e~
is simulated by e2". Similar shorthands are used in the case that requiremen~t
2 and 3 hold.

Note that even for a flowchart co for predicates we have defined an operation
oper(to), because sometimes the representing configurations have to be trans-
formed before a simulating test can be applied. However, in many simulation
proofs of this paper, the flowchart to, which simulates a predicate p, contains
only one rule of the form Air ~ if b then true (id) else false (id) , where b is

146 J. Engelfriet and H. Vogler

a boolean expression. Then we only construct this b and say that "p is simulated
by b".

Very often it is essential that the simulated storage type uses only a finite
number of predicates and instructions, and one encoding. This property is cap-
tured in the notion of finite restriction.

3.14. Definition. A finite restriction of S is a storage type U = (C, Py, Ff, m f,
I, {e}), where P~ and F: are finite subsets of P and F, respectively, m: is m
restricted to PIw F:, and eeE. []

3.15. Definition. (i) S1 is simulated by $2, denoted by S~ <$2, if for every finite
restriction U of S t, U < d $2.

(ii) If SI<S2 and $2<=$1, then $1 and $2 are equivalent, denoted by
S 1 ~ S 2 . []

The relation < is reflexive (Theorem 4.10 of [EV]) and transitive (Theorem
4.20 of I-EV-J). Hence -- is an equivalence relation on the class of storage types.

The following theorem formalizes the intuitively clear consequence of a par-
ticular storage type simulation for the classes of transducers, which work on
these storage types.

3.16. Theorem. "Justification Theorem" (Theorem 4.18 of [-EV]): For X ~ { REG,
CF, RT}, if $1 <-$2, then X(St)c_X(S2) and DtX(SI)~DtX(S2). []

3.3 Coding of Storage Types

The coding of storage types is a special case of simulation in the sense that
the form of the flowcharts for the simulation of predicates and instructions
is very restricted. Actually, the control of these flowcharts is superfluous, because
they only specify one boolean expression and one instruction, respectively.

3.17. Definition. S l is directly coded by $2', denoted by St ~_~dcS2, if S l _-<aS2
and
- - in requirement 2 of Definition 3.13, the flowchart co contains only one rule,

of the form A i n - - ~ i f b then true (id} else false (id) for some b~ BE(P2), and
- - in requirement 3 of Definition 3.13, the flowchart 09 contains only one rule,

of the form Ai, ~ stop (g) for some g~F2. []

If we prove St<=dcS 2 for two storage types, then we will only specify the
boolean expression b and the instruction g, which determine the flowcharts
for the simulation of a predicate p and an instruction f, respectively. In this
situation we say that "p is coded by b" and " f is coded by g".

Coding of storage types is obtained from direct coding in the same way
as simulation is obtained from direct simulation.

3.18. Definition. (i) St is coded by $2, denoted by St ~_~cS2, if for every finite
restriction U of St, U<dcS2.

(ii) If St <r and $2<~S t, then St and $2 are coding equivalent, denoted
by St=r []

High Level Tree Transducers 147

Obviously, <c is reflexive. Since boolean expressions are closed under the
construction of boolean expressions, i.e., BE(BE(P))=BE(P), it is also easy to
see that < c is transitive.

The coding relation is stronger than the simulation relation in the sense
that if S~<~$2, then S~<$2. The fact that, in the coding of storage types,
a predicate and an instruction are coded by one boolean expression and by
one instruction, respectively, has the consequence that in the justification theo-
rem the property of a transducer having only one nonterminal is preserved.

3.19. Theorem. I f S1~__r then RTone(St)~RTone(S2) and OtRTone(Sl) ~ -
Ot RTo,e(S2).

Proof The construction is straightforward. In an RT(S1)-transducer with one
nonterminal every predicate and instruction of S~ has to be replaced by the
corresponding S2-predicate and S2-instruction, respectively, provided by the cod-
ingS1__<cS2. []

3.4 Pushdown Operators on Storage Types

Now we recall from [EV] the formal definition of the concept of the pushdown
operator on storage types [Gre, Eng5, Eng6, EV]. Given a storage type S,
the "pushdown of S" is again a storage type of which the configurations are
pushdowns of a special form: every square contains besides a usual pushdown
symbol also a configuration of S. We also recall from lEVI the definition of
a variation of P, viz. the bounded excursion pushdown operator Pb~," We prove
that Pbe~ is monotonic with respect to the simulation relation (cf. Lemma 3.23),
and hence, Pbex preserves the equivalence of storage types. This property is
needed (in Sect. 6) in the inductive proof of the equivalence of the storage types
"n-level applicative term of S" and "n-iterated bounded excursion pushdown
of S" (cf. the discussion in the Introduction).

3.20. Definition. Let S be the storage type (C, P, F, m, I, E). The pushdown
of S, denoted by P(S), is the storage type (C', P', F', m', I', E'), where
C'=(FxC) § and F is a fixed infinite set of pushdown symbols (intuitively,
the top of the pushdown is at the left),

P' = {top = 717 ~ F} w {test (P) IP ~ P},
F '= {push (7,f)lveF,f~F} w {pop}

w {stay (~,,f) ly~F,f~F} w {stay ()lr u {id},

for every c '=O, e)fl with fieF, c~C, and [3eC'w {2}
m'(top = y)(c') =true iff fi=y
ra' (test (p)) (c') = m (p) (c)
m'(push(7,f))(c')=(7, c0(6, c)fl, if re(f) is defined on c and cl =m(f)(c),

and undefined otherwise
m' (pop) (c') = fl if fl ~: 2 and undefined otherwise
m'(stay(y,f))(c') ---(7, Cl)fl if re(f) is defined on c and ct =m(f)(c),

and undefined otherwise

148 J. Engelfriet and H. Vogler

m'(stay(7))(c') = (r, c)fl
m'(id)(d) =(3, c)f,
I' = I, and
E'= {).ueI.(~,o, e(u))l~,o eF, eeE}. []

The mapping test: P---, {test (p) [P~P} is uniquely extended to BE(P) such
that it is a boolean homomorphism.

Naturally, the pushdown operator can be iterated: P~ and for every
n ~ O, P" +1(S)= P(Pn(S)). We denote P(So) by P. For more remarks, in particular
for a broad discussion of the storage type s P(TR) and p2(TR), we refer the
reader to [EV]. Here we only mention that the operator P is monotonic with
respect to the simulation relation < (cf. Theorem 4.22 of [EV]), i.e., for two
storage types S 1 and S 2, if $1 _-< $2, then P(S1) <- P(S2) .

As mentioned in the introduction, we have to use a modification of the
pushdown operator in order to give an inductive proof of the main characteriza-
tion result. The appropriate modification is the operator Pb,x on storage types,
where "bex" stands for bounded excursion: for every s torage type of the form
Pb,x(S) with an arbitrary S, the number of excursions that can be initiated from
each square of a configuration of Pb~(S) has to be bounded. This property
of bounded excursion was introduced by van Leeuwen [vLe] in order to show
that his preset pushdown automata, when restricted to be bounded excursion,
accept all EOL languages. We recall the formal definition of Pbex from Sect.
5.2 of [EV].

3.21. Definition. The bounded-excursion pushdown of S, denoted by Pbex(S), is
the storage type (C', P', F', m', I', E') where

C'=(F x C x nat x nat) +,
P'={top=~lr~r} u {test(p) lp~e},
F'= {push(r,f)lrer, f eF} w {pop}

u {stay(~)l~,eF} w {stay},

and for every c'=(6, c, i, k)fl with 6~F, c~C, i, k>O, and 3 ~ C ' w {2},

m'(top = y)(c') =(3 =~),
m'(test(p))(c') = m(p)(c),
m'(push(y,f))(c')=(~, m(f)(c), O, k)(6, c, i+ 1, k)fl if re(f) is defined

on c and if i + 1 < k, and undefined otherwise,
m' (pop) (c') = fl, if fl ~= 2, and undefined otherwise,
m'(stay(y))(c') =(y, c, i+ 1, k)fl, if i + 1 =<k, and undefined otherwise,
m' (stay)(c') = (3, c, i + 1, k)fl, if i + 1 __< k, and undefined otherwise,
I' = I ,
E ' = {; turI ' (7o, e(u), O, mx)lTo~F, e~E, mx>=O}. []

We call the third component and the fourth component of every pushdown
square s the excursion counter and the excursion bound of s, respectively. An

High Level Tree Transducers 149

excursion which only consists of a stay or a stay(y) instruction, is called a
trivial excursion. Note that the excursion bound is not changed by the applica-
tion of instructions. Hence, for an X(Pbr M, the excursion bound
for every pushdown square, which will occur during a computation, is fixed
by the encoding of M.

Intuitively, it is clear that Pbo~(S) is a weaker storage type than P(S) in
the sense that Pb~(S) is simulated by P(S). The idea of the simulation is that
for every square s of a Pb,~(S)-configuration, the value of the excursion counter
of s is stored in the pushdown symbol of s and updated appropriately. We
leave the formal construction to the reader.

3.22. Lemma. Pbex(S)<P(S).

In the rest of this section we prove the monotonicity of the operator Pbex
with respect to the simulation relation, i.e., for two storage types $1 and $2,
if $1 < Sz, then Pbex(Sl)__< Pb,~(S2)-

Although the operators P and Pbcx seem to be closely related, the proof
of the monotonicity of Pb~ is much more involved than the proof of the same
property of P (cf. Theorem 4.22 of [EV]). The essential problem arises in the
simulation of the predicate symbols. To make this difficulty clear, we first provide
some notations. Let U' be a finite restriction of Pbcx(S~). Clearly, U' induces
a finite restriction U on S~, and since $1_-<$2, U is directly simulated by $2.
Assume that h is the involved representation function. In particular, U' contains
only a finite number of predicates test (Pl) test(p,), where p~ p, are the
predicates of U. Then, for every such predicate p j, there is an S2-flowchart
~(pj) which simulates pj.

In the proof of the monotonicity of P, every predicate test (pj) is simulated
by a P(S2)-flowchart, which is obtained from the S2-flowchart co(pi) by replacing
every S2-instruction f by stay (y,f) with an appropriate y. A similar straightfor-
ward technique cannot be used here, because instructions that are performed
on one particular square increment its excursion counter, and hence, in general,
the counter cannot be bounded during the execution of w(pj). A solution for
this problem is to replace every S2-instruction f of ~o(p~) by p u s h (# , f) with
a dummy symbol ~ , and to pop the sequence of squares with =~ from the
pushdown, as soon as the execution of this modification co (p j)' of co (p~) is finished,
i.e., a truth value is computed. Clearly, the excursion counter of every "dummy
square" is bounded by 1. However, after the execution of the Pb~x(S2)-flowchart
co(pj)', also the excursion counter of the topmost pushdown square was incre-
mented (by the first push instruction). Now assume that another predicate of
the form test (p) has to be simulated starting with the result of the previous
simulation. Then, after simulation, the excursion counter of the topmost square
was again incremented. Since Pb,x(S2) must be able to simulate an arbitrary
number of successive predicates, again the excursion counter cannot be bounded.
Roughly speaking, we solve this problem by executing for every pushdown
square the flowcharts W(pl)', ~o(pr)' only once and by storing the results
into the corresponding pushdown symbol. This causes only a finite number
of additional excursions, proportional to r. Then, a predicate is simulated just
by looking at the information stored in the pushdown symbol.

150 J. Engelfriet and H. Vogler

... i c, , , i . . , imx .

I I

11)

7" c2,2 0 rnx'

:#: 1 mx'

:ld: . . . 1 rex'

. C2,1 . . . rex'

(2.11 (2 .2) 12.r)

r 62,2 0 rex' [T, ~;l] C2, 2 2 ITtX' [T , ~] 62, 2 2r rex'

. . . 1 mx" St . . . 1 m x ' :1. . . . 1 m x '

Fig. 5. Simulation of push (7,f) by a Pb==(Sg-flowchart; (1) execution of co(f)', (2./9 execution of
co(pj)' forje[r]; ~t =(pred(a~(Pl)) (c2.2), true true) and ~= (pred(~o(pl)) (c2.2) pred(~o(p,)) (c2.2))

We want to make this more precise. Let c't, 1 be a configuration of U' and
let (6, cl. t, v, rex) be an arbitrary pushdown square of c't. t (5: pushdown symbol,
c l . t : Sl-configuration, v: excursion counter, mx: excursion bound). Let c2. t
be a representation of c~.t, i.e., h(c2,:)=c~.~. Then, in every representation
c' of ' we add the sequence ~ of truth values to 6, where 2 , 1 C I , I ,

=(pred(og(pl))(cz. 0, .. . , pred(co(p,))(c2.0). Note that, since pj is simulated by
og(pj), it follows from requirement 2.2 of Definition 3.13 that pred(og(pj))(c2, x)
=m(pj)(ca, t), where m is the meaning function of U.

But how are the sequences ~ installed in the pushdown squares ? Immediately
after the application of a push instruction the sequence of truth values is comput-
ed, that corresponds to the S2-configuration of the new topmost square. So,
let us have a closer look at the simulation of a push instruction. For this purpose
we let c't, ~ =(5, c~, ~, v, rnx)~ and assume that the application of the instruction
push(T,f) to c'l,x yields the configuration C'I,2=(T, Cl,2,0, mx)(5, CI,I,
v+ 1, rex)ft. Since U < d S 2 , there is an S2-flowchart o~(f) which simulates f. The
simulation of push(%f) is divided into two steps (cf. Fig. 5). First, the new
S2-configuration c2,2, which represents c t,2, is computed via a modification
o~(f)' of o~(f). In w(f)' every S2-instruction g is replaced by push (# , g). Thus
a whole sequence of pushdown squares of the form (# , c, 1, rex') is produced,
where the value of the excursion counter of the topmost one is 0, until finally
c2,2=oper(09(f))(c2, t) is computed (rnx' is the new excurs ion bound, whose
value is discussed in a few seconds). Let us denote the topmost square of the

High Level Tree Transducers 151

produced Pbox(S2)-configuration by s. (Note that it follows immediately from
this way of calculating o~(f) that the instruction pop of U' can be simulated
by a sequence of pops until a symbol is found, which is not equal to 41: .)

In the second step of the simulation of push(v,f), the truth values
pred(og(pl))(c2.2) pred(o~(p,))(c2.2) have to be computed and added to the
pushdown symbol V in square s. For this purpose, the flowcharts o9(pl)', og(p,)'
are executed one after the other, where og(pj)' is obtained from (o(pj) as explained
above for o~(f). First, co(p1)' is started. If, for some j~[r], the execution of
09 (p j)' is finished and a nonterminal B e {true, false} is reached, then the informa-
tion B is reported down to s by popping the #-rubbish and by entering B
into thej- th component of the sequence of truth values, which is being prepared
in the square s. Note that the computation of the truth values adds 2r more
excursions starting from s (a push and a stay for each pj). Actually, the new
excursion bound rex' is mx+ 2 r + 1, where the addition of 1 has only a technical
reason. In this way the symbol of every pushdown square (except in the rubbish
part) contains the appropriate sequence of truth values.

However, this does not hold "in the beginning": if c~ is a representation
of a result of the encoding of U', then we cannot assume that the truth values
of the ~o(pi)'s are already present. But, of course, we must be able to simulate
predicates like test(p~) on ch. How do we solve this problem? We split the
simulation of test(pj) into two cases. If the sequence ~ of truth values is already
present in c~, then test (p~) is simulated just by looking at the j-th component
of ~. If it is not yet there, then test(p j) is computed in the same way as it
is computed when a new square is created by a push instruction (see above).
Hence, the value of the excursion counter of the bottom square must also be
allowed to exceed mx by 2 r + 1. But this possibility of making 2r extra excursions
from the bottom square can be misused: the simulation of an instruction ~b
of U' may be defined on ch (in which ~r is not yet computed), although ~b is
not defined on the Pbex(S~)-configuration, which is represented by c~; e.g., if
mx=O, then U' should not apply any push, stay(v), or stay to any result of
the encoding of U'. In order to avoid this misuse, we also have to split the
simulation of the instructions push(v,f), stay(y), and stay into two cases (similar
to the two cases of the simulation of test (Pi))- This has the effect that the 2 r + !
extra excursions are always consumed before the "real" simulation starts.

3.23. Lemma. For i~{i, 2}, let Si=(C~, ~, F~, mi, Ii, Ei) be two storage types.
I f $1 <$2, then Pbex(S1)< Pbe~(S2).

Proof. Assume that $1 < $2. Let U' be a finite restriction of Pbex(Sl) with encoding
e't=2u~Ii.(Vo, el(u),O, mx) for some encoding e ~ E l and some mx>O. Let
{Px , Pr} and Ff={V~, ..., V~} with r, x > l be the finite sets of predicates of
S~ and of pushdown symbols, respectively, occurring in U' (note that an element
pj of the first set occurs in U' in the form test(pj)). U' induces a finite restriction
U on $1, and since SI<S2, U<nS2. Let h: C2~C~ be the involved repre-
sentation function and let m~ be the meaning function of U. We show that
U' ~aPbex(S2).

Define the set TEST of all sequences ~ of truth values with length r,
i.e., T E S T = {true, false}'. We can assume without loss of generality that

152 J. Engelfriet and H. Vogler

F: x TEST G E We abbreviate the boolean expression t o p = ? 1 o r . . .o r top=2:~
by "initial".

Let mx'=mx+(2r+ 1). Then define the representation function h': C~--+ C'1,
where C~ is the set of configurations of Pbex(Si), as follows.

dom(h') = {(~o, c, O, mx')lcedom(h)}
w {s,+ ~ ,a.s,...~al s~ ln > O,

for every ie[n+ 1], si=([Ti, ~i], c~, vi, mx')
with ?ieF:, ~ieTEST, ciedom(h),
and for every j e [r], ml (pj)(h(c3)= (~,)j where (~r3j is the
j-th component of ~r,
and 2 r + l<vi<mx' ,

and for every ie[n], fl ie({#} x C2 x {1} x {mx'})*}.
Let c'=S,+xfl, s, . . . f llStedom(h') be as above. Then h'(c')=s',+lS',...S'l,

where for every i e [n + l] , s'i=(~i,h(ci),vi-(2r+l),mx). Finally, for c'
=(?o, c, O, mx')edom(h'), h'(c')=(?o, h(c), O, mx).

We show that h' satisfies the requirements 1-3 of Definition 3.13. Before
doing so, we introduce the Pbcx(S2)-flowchart CSEQ which computes the
sequence of truth values of Pt , -- . , P, as described in the discussion preceding
this lemma. CSEQ can be viewed as a kind of macro, which will be later embed-
ded into other flowcharts.

For every je I'r], let the S2-flowchart co(p j), which simulates p j, be determined
by (Nj, - , - , A~., Rj). Then CSEQ=(/V, - , - , q~,/~), where

.N= {q~lje[r]} u{[B, j , i]l B e U {N~lje[r]},je[r], and ie{0, 1}}
u {[B,j]IBe U {Njlje[r]} a n d j e [r] }
t.: {end}

and/~ is determined by (i)-(iii).
(i) "simulating co (p j)": For every j e r r]

- - if At. ~ i f b then B (g) in R j, then q j--+ if test (b) then ~ is in /~, where
= [_B,j, 1] (p u s h (# , g)> if g # i d , and [B,j, 0] (id> otherwise.
The third component in [B, j, i] indicates whether an excursion is made
during the simulation of co (p j) or not.

- if A-+ i f b then B (g) in Rj, then for every ie{0, 1}
FA, j , /] ~ if test (b) then ~ is in/~,
where ~ = IB, j, 1] (push (4~, g)) if g 4: id, and rB, j, i] (id) otherwise.
(ii) "reporting truth values downwards": For every jeer] and Be{true,

false},

[B, j, 1]--* if t o p = 4t= then [B,j, 1] (p o p) else [B,j] (i d) and
[B,j, 0] --, [B,j] (s tay) are in/~.

(iii) "entry of truth values": For every Be {true, false}, j with 1 < j < r, T e F I ,
and geTEST,

[B, 1] --* if top=T then q2 (stay([~, ~t~])),
where ~t 1 = (B, true t rue)eTEST,

[B, j] --* i f top = [% ~I] then qj+ 1 (stay([~, g(] *- B)])), and
[B, r] --* i f top = [% ~r] then end (stay(I-V, g(r ~ B)]))

High Level Tree Transducers 153

are in /~, where ~(j ~ B) is obtained from ~ by replacing the j-th component
by B./7(r ~ B) is obtained similarly.

This completes the definition of CSEQ. It is an easy observation that the
result of the application of CSEQ to a configuration (~, c2.1, v, mx')~ of Pbe~(S2)
with c2.1~dom(h) is ([~, ~I], c2.1, v+2r , mx')fl, where for every component /7i
of/7,/7 i = pred(co(pj))(c2.1) = ml (pj)(h(c2.1)). By using this flowchart we now prove
that h' satisfies the requirements 1-3.

Requirement I. The encoding e'2=2u~I2.(~o, e2(u), 0, rex') of Pbc~(S2), where e t
is simulated by e2, satisfies the requirements.

Requirement 2. Every predicate ~b of U' is simulated by a Pbex(S2)-flowchart
for predicates, which is determined by its set R of rules.

~b=(top=y): A in~ i f initial then q l (i d) else l o o k (i d) is in R, / ~ R , end
--+look(stay) is in R, and look--+if b then t rue (id) else fa lse(id) is in
R, where the test b is the disjunction of all predicates top = [~:,/7] for/TeTEST.

q~=test(pi): Ai.--+if initial then ql (id) else l o o k (i d) is in R, /~_R, and the
rules end ~ look (s tay) and look ~ if b then true (i d) else false (id) are in
R, where b is the disjunction of all the predicates t op=[y , g] with y~F:
and/TeTEST such that the j-th component of/7 is "true".

Requirement 3. Every instruction ~b of U' is simulated by a Pbc~(S2)-flowchart
for instructions, which is determined by its set R of rules.

~b = push(~,f): Let co(f) = (N : , - , - - , Ain, R:) be the S2-flowchart which simu-
lates f. We assume that CSEQ,~w=(Nn~ ql.no*, /~**w) is a copy of
CSEQ such that/V~,~, and/V are disjoint; end,~,, is the copy of the nontermin-
al "end" of CSEQ. Intuitively, CSEQ and CSEQ** w are used for the compu-
tation of the truth values for the topmost square before (if necessary) and
after the application of q~, respectively.

- A in - -+ if initial then q l (i d) else sim (id) is in R,/~ _~ R, and end ~ sim (s t ay)
is in R.

- I fA--+ifb then B (g) in co(f),
Case 1. if g ~ id, and
Case i. 1. if B # stop, then

~ ~ i f test (b) then B (p u s h (# , g)) is in R,
where ~ = sim if A = Ain, and ~v = A otherwise.

Case 1.2. if B = stop, then
--+ if test (b) t h e n qt.~w(push(y, g); s tay)

is in R with ~ as in Case 1.1.
Case 2. if g = id, and
Case 2.1. if B~estop, then

~ if test (b) then B (i d) is in R and ~ as in Case 1.1.
Case 2.2; if B= stop, then

A--+ if test (b) then q~ (stay(y)) is in R.
(Note that co(f) cannot only contain the rule Ai,--+ if b then stop (id) . This
is forbidden by definition of flowcharts for instructions.)

154 J. Engelfriet and H. Vogler

-- /~cw ~ R
-- end~,w ~ stop (id) is in R.

~b = pop: Ai~ ~ A (pop) and
A ~ if t o p = 4~ then A (pop) else s top(id) are in R.

~b=stay(7): Ai~--*if initial then q l (i d) else s im(id) is in R, /~___R, and, for
every 6~F s and ~reTEST, the rules end --. s im(s tay) and sim ~ if top = [6, ~]
then stop(stay([v, ~r])) are in R.

q~ = stay: Ai, ~ if initial then q l (id) else sim (id) is in R , / ~ _ R, and the rules
end ~ sim (s tay) and sim ~ stop (s tay) are in R.

Actually, Case 2.2 in q~=push(~,,f) causes the presence of the 1 in
mx'= mx+ (2 r + 1). In order to avoid the misuse of this extra excursion on those
pushdowns, for which the test "initial" is true, the value of the excursion counter
is incremented by 1 before the real simulation of an instruction or predicate
~b is started (beginning with the nonterminal sim). This incrementation takes
place in the "bridge rules" end ~ sim (s tay) and end ~ look (s tay) , respective-
ly. []

4. High Level S Transducers and Iterated Pushdown S Transducers

In this section the two main devices of the paper are defined: for every n > 0
and every storage type S, we define the n-level S transducer and the n-iterated
pushdown S transducer. For S = TR, the n-level tree transducer and the n-iterat-
ed pushdown tree transducer, respectively, are obtained. An n-level S transducer
is an X(S)-transducer where X is the class of n-level tree grammars. These
tree grammars were introduced in [Dam] to model ALGOL68-1ike programs
with finite mode. We recall the definition of this grammar class and give three
examples of high level S transducers to illustrate this concept. An n-iterated
pushdown S transducer is an X(Pn(S))-transducer where X is the class of 0-level
(i.e., regular) tree grammars and Pn(S) is the n-iterated pushdown of S (cf. Defini-
tion 3.20).

We slightly modify the definition of n-level tree grammars given in [Dam]
by allowing an initial applicative term rather than only an initial nonterminal.
By the usual technique of adding an extra rule with the initial term as right-hand
side, it can be shown that the definitions are equivalent.

For terminology concerning types and applicative terms see Sect. 2.2. Recall
that, for convenience, there is only one basic type, i.e., Q = {q}.

To manage the substitution involved in high level tree grammars, we define
a set of parameters Y in such a way that for every derived type in D* (Q) there
are infinitely many parameters of this type. Then we can use such a formal
parameter, say of type z, to represent and substitute applicative terms of type z.

4.1. Definition. (i) The D*(Q)-set of parameters, denoted by Y, is the tuple
(Y, type), where Y={yi,~li>l and T~D*(Q)} and type: Y-*D*(Q) is defined
by type (Yi. ~)= z.

(ii) For n > 0 and ~,eD~(Q) * of length k>0 , the list of parameters
(Y1,~1~, ..., Yk.~tk)) is denoted by y~.

High Level Tree Transducers 155

(iii) For n >0, cteD"(Q)* of length k, and applicative terms (~, ..., (k
of type ~(1) ~(k), respectively, [y, *--((1 (k)] abbreviates
[Yl.,<~) +-- (1 Yk. ,tk) *-- (k], to be used in substitutions. []

Now we are ready to define the n-level tree grammars.

4.2. Definition. Let n>0 . An n-level tree grammar G is a tuple (N, A, Ai,, R),
where
- N is a finite D* (Q)-set of nonterminals such that for every A e N, level (A)< n
- A is a finite D (Q)-set (i.e., ranked alphabet) of terminals (with N r~ A = 0),
- AI~AT(N) q is called the initial term, and
- R is a finite set of rules, each of the form

(*) Ay,m...y,2y~l--+(,

where A~N" with ~=(~m, ...(cc2, (cd, q))...), m>0 , and (e A T (N u A w Y)q.
Since Y,,,... Y,2 Y, z follows uniquely from type(A), we can abbreviate
Ay,m... Y~2 Y,~ by A ̂ . Note that A ̂ and (are of level 0. IS]

The class of n-level tree grammars is denoted by n-T.
Next we define the derivation relation ==(G)=~ of an n-level tree grammar

G for the outside-in (OI) mode (this was shown to be sufficient in Corollary
6.6 of [Dam]; see also I-DamGuel]). ==(G)=~. is a binary relation on the set
SF(G) of sentential forms of G, which is the set of applicative terms of type
q built up out of nonterminals and terminals. A derivation step ~==(G)=~r
according to a rule A ̂ -+ (consists of two phases. First, an outermost occurrence
of A in ~1 is replaced by ~, where outermost means: not occurring in a parameter
position of another nonterminal. Second, the actual parameters are substituted
for the parameters occurring in (.

4.3. Definition. Let G = (N, A, A~,, R) be an n-level tree grammar with n > 0.
(i) The set of sentential forms of G, denoted by SF(G), is the set AT(N w A)L

(ii) The (0I-) derivation relation of G, denoted by ==(G)=-, is a binary relation
on SF(G) and is defined as follows.

For ~i, ~2~SF(G), ~I==(G)=~2 iff
there is a rule A ^ ~ (in R, and A~N" with

z=(am, ...(ct2, (al, q))...)~Dm(Q) for some m>0 ,
there is a r ~ AT (N w A w {y 1. q})q, where y 1. q occurs exactly

once in if, but not in a sub(-applicative)-term ~/of
with top (r/)~N, and

for every i~[m], there is a ~[~AT(NuA) ~i,
such that ~1 = ~ [_vl,q ~ A ~, ... ~ ~'1]

and ~2 = ~ ~Yl, q ~" ~ ~Yo~i ~'- ~ti'~ i E [m]]] .

(iii) The language generated by G, denoted by L(G), is the set
{t~T, jlAin==(G)=~*t}. []

Note that Ta =AT(A) q. The class of tree languages generated by n-level tree
grammars is also denoted by n-T. Obviously, 0-T and 1-T are the classes of
regular tree languages and context-free tree languages, respectively.

156 J. Engelfriet and H. Vogler

4.4. Proposition. RT=O-Tand C F T = 1-T.

We now define the n-level S transducer as an X(S)-transducer with X = n - T
(cf. Definition 3.3).

4.5. Definition. For n__>0, an n-level S transducer is an n-T(S)-transducer. []

We write "n-level tree transducer" rather than "n-level TR transducer". We
could also have called them n-level top-down tree transducers, in the sense
that every X(TR)-transducer works on its input-tree in a top-down fashion,
by definition of the storage type TR.

Since every context-free tree grammar can be viewed as l-level tree grammar
and vice versa, it is immediately clear that, for every storage type S, CFT(S)= 1-
T(S). Note that, in our definition, a context-free tree grammar can start from
an initial tree consisting of nonterminals.

4.6. Fact. CFT(S)= 1-T(S) and RT(S)=O-T(S). Totality, determinism, and the
number of nonterminals are preserved.

Hence, in particular, 0-T(TR) and 1-T(TR) coincide with the class
of tree translations induced by top-down tree transducers [Tha, Rou, Engl]
(Corollary 3.20 of lEVI) and by (OI-) macro tree transducers IEng3, CouFra,
EngVogl] (Theorem 3.19 of [EV]), respectively.

By consider the trivial storage type, n-T(So)-transducers turn back into gener-
ating devices.

4.7. Lemma. range (n-T(So)) = n-T.

The following three examples illustrate the concept of X(S)-transducer in
the situation that X is the class of 2-level tree grammars. In particular, in the
third example, par t of the CHECK-example (cf. Introduction) is formulated
in the notational framework of high level tree transducers.

4.8. Example. (i) The storage type count-down is the tuple (nat, {null}, {dec},
m, nat, {2n~nat-n}) and for every n>0, m(null)(n)=true iff n=0, and
m (dec)'(n) = n - 1 if n > 1.

Define the (nondeterministic) 2-level count-down transducer M
= (N, e, A, Ain, R) as follows.

N = {ain , A, B, +} with Zin: q, A: ((q, q), (q, q)), B: (q, q),+ : ((q, q)(q, q), (q, q)),
e = 2n~nat- n,

A ={a, 6, $, a, b} with a: (qa, q), 6: (q2, q), and $, a, b: (2, q),

and R contains the following rules.

Ai. -o A (dec) (B (dec)) (a 0),

and the same rule for b instead of a,

A(yl,~.q))(yl.q)--+if not null then
A (dec) (+ (dec) (B (dec), Yl, Cq, q)))(6 (a O, Y a, a)),

High Level Tree Transducers 157

and the same rule for b instead of a,

A(yl .(q.q))(y,.~) ~ if null then c5 ($(), YI.~. o(Yl,q)),
+(Yl,~q,q), Y2,(q, qI)(Yl,q) "~ a(Yl,<q.,)(yl.q), $0, Yz.(q.~(YLq)), and
B(YLq)-* YLq.

Let us now look at a computation of M which starts with A~, (3) . We abbreviate
the tree 6(b(), cS(b(), a0)) by t. The derivation relation ==(M):*- is abbreviated
by =~.

Ai. (3)=~.A (2)(B(2))(a())
=~-A (1>(+ (I>(B(I>, B(2>))(b(b(), a()))
=.'-A(0)(+ (0)(B(0>, +(I>(B(1) , B(2))))(t)
=~($(), + (0)(B(0) , + (I>(B <1>, B (2)))(t))
~6($() , a(B(O)(t), $(), +(I>(B(1) , B(2))(t)))
=.2 ~($0, a(t, $(), a(B<l>(t), $(), B(2)(t))))
=*'6($0, a(t, $0, a(t, $0, B(2)(t))))
=~($(), a(t, $0, a(t, $0, t))).

It can be proved by induction that yield (r(M))= {(n, v)ln>= 1 and v=($w)" with
w~{a,b}"}.

(ii) Define the deterministic 2-level tree transducer M=(N, e, A, Ain, R) as
follows (cf. Lemma 7.1 of [Dam]).
N ={Ain, A} with Ai.: q and A: ((q, q), (q, q)), e is the identity on T~ where
Z= {a, ~} and a e ~ l , ~SZo, and
A = { f , a} with f : (q, q) and a: (2, q).

Since we believe that the reader is now familiar with the use and the interpre-
tation of subscripts of parameters, we abbreviate Yl.q and Yl,(,.q~ by y and
z, respectively. Then R contains the following rules.

Ain --' if root = a then A (sel 1) (A (sell > (f)) (a ()),
Ain ~ if root = ~ then f (f (a())),

A (z)(y) --, if root = a then A (sel 1) (A (se l l) (z)) (y),
A (z)(y) --* if root = ~ then z(z(y)).

If we interpret monadic trees as strings, then it can be proved by induction
that T (M) = {(o" c~, fm a)[n > 0 and rn = 22"}. M is total, because dora (z (M)) = Tz
=dom(e) (cf. Definition 3.5(iv)). Since, for every macro tree transducer (i.e.,
1-T(TR) transducer), the height of an output tree is exponentially bounded
in the height of the corresponding input tree (Theorem 3.24 of [EngVogl]) ,
z(M) is an example of a translation, which cannot be induced by macro tree
transducers, i.e.,

z(M)~2-T(TR) but z(M)r 1-T(TR).

(iii) At the end of the introduction, we have shown a system of recursive
function procedures that was used to perform the type checking in a small
block-structured programming language called CHECK. Here, we repeat two
equations of this system in the notational framework of high-level tree transduc-

158 J. Engelfriet and H. Vogler

ers. According to our typing conventions, the type of the result of Check is
changed into (IDENT --* TYPE) -o (2 ~ BOOL). The considered equations are
the following:

Envir ED; var I: T] YEN Y~D = cond (equal (Id [I], Y~D), Ty E T],
Envir [D] YEN YxD), and

Check Ebegin O; S end] YEN = Check E S] (Envir I-D] YEN)"

They turn into the following rules of a 2-level tree transducer:

Envir (YEr~)(y~D) --* if root = r 3 then cond(equal(Id (sel2) , YlD), Ty (sel3),
Envir (sel l) (YEN) (YID)), and

Check(yEN)0 ~ if root = r5 then Check (sel2)(Envir (self)(YEN))0,

respectively. []

After having introduced high-level S transducers, we now define iterated
pushdown S transducers in the terminology of grammars with storage.

4.9. Definition. For every n > 0, an n-iterated pushdown S transducer is a 0-level
P"(S) transducer. []

An n-iterated pushdown TR transducer is called an n-iterated pushdown
tree transducer. For the sake of convenience, 0-level P~,e~(S) transducers are also
called n-iterated pushdown S transducers. However, if the difference between
the unbounded and the bounded variation becomes important, then the precise
denotation will be used.

Now we can formalize the main aim of the present paper, which is the
characterization of n-level tree transducers by means of n-iterated pushdown
tree transducers: for every n>0,

n-T(TR)=O-T(P~,,x(TR)) (Theorem 7.1) and
D, n-T(TR)=D t n-T(P"(TR)) (Theorem 7.12).

For n= 1, i.e., for macro tree transducers, both characterizations are already
proved in [EV].

4.10. Theorem. 1-T(TR)=0-T(Pbex(TR)) and D, 1-T(TR)= D, 0-T(P(TR)).

Proof. In Theorem 8.3 and Theorem 8.2 of FEV] it is proved that CFT(TR)
= RT (Pbex (TR)) and Dt CFT(TR)= D, RT(P (TR)), respectively. Then, the present
theorem follows from Fact 4.6 of this paper. []

5. Substitution of Applicative Terms

In Theorem 1 of [DamGuel] the equivalence of n-level tree grammars (called
level-n grammars there) and level-n stack automata is proved. A level-n stack
automaton M, introduced in [DamGuel] , works on an input tree like a finite
top-down tree automaton [Rou, Tha, Engl]. However, every state which occurs
in a computation of M has an auxiliary storage, of which the configurations

High Level Tree Transducers 159

are applicative terms. The kernel of the transitions of M is the substitution
of applicative terms of different types at different levels. Since the control of
M can be viewed as a regular tree grammar, one might say that the main
feature of n-level tree grammars is the substitution of applicative terms. In this
section we support this claim by verifying it for n-level S transducers (recall
that range (n-T(So))= n-T, Lemma 4.7). For this purpose, the storage of level-n
stack automata is generalized to a storage type operator, called "n-level applica-
tive term of S" (for short: n-AT(S)). Then the above mentioned claim is formally
expressed in the equation n-T(S)=O-(n-AT(S)) (cf. Theorem 5.13), which says
that the substitution power inherent in n-level S transducers is entirely captured
by the storage type n-AT(S). For S=So this is the result of [DamGue l] ;
n-AT(S0) was formalized as a storage type in [DamGue2], called n-TREEPD.
We note that the level-n stack transducer of [DamGue l] differs from our n-level
tree transducer: the second is an n-T(TR)-transducer (equivalent, as will be
shown, to the 0-T(n-AT(TR))-transducer), and the first is equivalent to the 0-
T(TR x n-AT(S0))-transducer, where • is the obvious product operation on
storage types (see [DamGue2], where arbitrary 0-T(TR • S)-transducers are
studied).

As a reservoir of symbols of derived types, we fix for the rest of this paper
the D*(Q)-set (2 , typez) such that, for every ~tD*(Q), type~ l(z) is an infinite
set. See Definition 4.1 for terminology on parameters.

5.1. Definition. Let n > 1. The n-level applicative term of S, denoted by n-AT(S),
is the storage type (C', P', F', m', I', E'), where

C' = AT(~-~" (C)) q and ~,=<"= {TtS[level(7)< n},
P ' = {top = T [~ t ~ -<"} w {test (p)lptP},
F ' = {push (01 (tAT(.V, =<" (F) u Y)q},

and for c'=6(c)r162 such that types(f)=(~k,...(~l,q)...), and
~itAT(-W=<"(C))~ for every it[k],

m' (top = 7)(c') = true iff 6 = 7,
m' (test (p))(c') = m (p)(c),

for ~ = ([Y,i +-- ~i; i t [k]] [f ~ m(f)(c);ft F],

m'(push(0)(c') = ~, if ~ tC ' , and undefined otherwise,

I' = I, and
E'= {2utl.t? (e(u))lntAT(~<=") q and erE}

with r/(e(u)) = r/[~ *-- y (e(u)) ; 7 ~=<"]. []

The storage type n-AT(So) is denoted by n-AT. Note that the application
of an instruction of the form push(() to 6(c)~k...~l is closely related to the
application of the rule r: 6" ~ ~ of an n-level tree grammar, where the symbols
of ~ are viewed as nonterminals (cf. Definition 4.3): the second phase of the
derivation step via r, which is the substitution of applicative terms, is captured
by the application of push (0-

160 J. Engelfriet and H. Vogler

b

Fig. 6. One-to-one correspondence between sentential forms of (a) a terminal restricted n-level S
transducer and (b) a 0-level n-AT(S) transducer with the only nonterminal .. The S-configurations
are dropped for convenience

Now we formalize and prove the relationship between n-level S transducers
and 0-level n-AT(S) transducers. However, before discussing the general case,
we study a particular case, in which the relationship between the transducer
classes is quite apparent: every sentential form of a transducer of one class
can be viewed as a sentential form of a transducer of the other class and vice
versa. The two involved transducer types are the following: "terminal restricted"
n-level S transducers and 0-level n-AT(S) transducers with only one nonterminal.
An n-level S transducer is terminal restricted, if in the right-hand side of every
rule no terminal symbol occurs in the argument positions of a nonterminal
or a parameter. In the rest of this section, for every k>O, Xk={X~, ...,Xk}
is the Q-set of auxiliary substitution variables.

5.2. Definition. Let n > 1 and let M = (N, e, A, Ain, R) be an n-level S transducer.
M is terminal restricted if for every rule in R, the right-hand side is of the
form t[Xi+--(i; i t [k]] , where t e A T (A u X k) q, k>O, and for every i t[k],
(i ~ A T (N < F > u Y) L []

It is an easy observation that every derivable sentential form ~ of a terminal
restricted n-level S transducer has the form t[xi',--~i; i t [k]] , where t is an
applicative term over terminals and the substitution variables xl, . . . , xk, and
~1 ~k are applicative terms over N<C>, where N is the set of nonterminals
of the transducer. Now the one-to-one correspondence between the sentential
forms of the involved transducers becomes obvious (cf. Fig. 6; the nonterminals
have the types A: ((q, q)(2, q), (qq, q)), B: ((q, q), (2, q)), D: (2, (q, q)), H: (2, q), and
J : q; the ranks of the terminals are obvious). Roughly speaking, the applicative
terms ~1 ~k of ~ are viewed as configurations of n-AT(S) and vice versa.
Hence, the nonterminals of the terminal restricted n-level S transducer corre-
spond to the ~-symbols of the 0-level n-AT(S) transducer. More precisely,

= t I-xi ~ ~; i t I-k]] is a derivable sentential form of a terminal restricted n-level
S transducer iff ~' = t [x~ ,-- �9 <~>; i t [-k]] is a derivable sentential form of a 0-level
n-AT(S) transducer with the only nonterminal , .

High Level Tree Transducers 161

In the next definition the relation between two particular transducers (one
of each of the discussed classes) is formalized in such a way that the described
one-to-one correspondence holds. Then, the equivalence of such transducers
is an immediate consequence (cf. Lemma 5.4).

5.3. Definition. Let n > l . Let Ma=(NI , el, A, A~n, R t) be a terminal restricted
n-level S transducer and let M2 = ({*}, e2, A, *, R2) be a 0-level n-AT(S) transduc-
er with one nonterminal * (of type q).

M 1 and M2 are related if
- e2=2ue l .A~ .<e l (u))
- - R 2 -- {* ~ if top = A and test (b) then t [xi ~ * (push (~i)>; ie I-k]] [A" ~ if b

then t[xi',--~i; ie [k]] is in R1 for some t e A T (A w X k) ~ and
~ , e A T (N , (F > u Y)q}. []

5.4. Lemma. Let MI and M2 be defined as in Definition 5.3. I f M1 and M2
are related, then z(Mt) = z (M2) .

Now the general case is treated. First, we show that the terminal restriction
of n-level S transducers does not decrease their transformational power (cf. Lem-
ma 7.12 of [Dam]). In case S has an identity id, the proof is easy: just replace,
in the right-hand side of a rule, each terminal 6 by 8(id) , where S" is a new
nonterminal, and add the obvious rule for ~. Unfortunately, this does not work
in general, because it is not clear which instruction to use in place of id. This
forces us to work out a more complicated construction. To explain our construc-
tion, let M be an arbitrary n-level S transducer. For every nonterminal of M
of level greater than 1, we prolongate the list of parameters of level 1 by the
number of terminal symbols of M. The terminal symbols are kept (in the form
of new nonterminals) in the extra parameter positions. Then, the non-desired
terminals, which occur in the argument position of nonterminals and parameters
in the right-hand side of a rule of M, are represented by the appropriate new
parameters. To apply this trick also to a nonterminal A: z of level 0 or of
level I, we first replace A everywhere by the applicative term A'()() and A'(),
respectively, where A': (2, (2, ~)) and A': (2, z), respectively (note that the applica-
tive terms have again type ~). Clearly, for this purpose we have to assume
that n >__ 2. But note that the characterization of l-level tree transducers by 0-level
(1-iterated) pushdown tree transducers is already given in Theorem 4.10. Hence,
to obtain our main result also for n = 1, there is no need to prove I-T(S)=O-T(I-
AT(S)). However, 1-T(S)=O-T(1-AT(S)) will be proved explicitly in Sect. 6 (cf.
Corollary 6.6).

5.5. Lemma. Let n > 2. For every n-level S transducer there is an equivalent termi-
nal restricted n-level S transducer. Determinism and totality are preserved.

Proof. Let Mt =(NI, e, A, Ai,.1, RI) be an n-level S transducer. We use ()" with
r > 0 , to abbreviate a sequence 0 0 - - - 0 of r empty lists. First, we construct
an n-level S transducer M'~=(N;, e, A, A'i . . , R'~), in which every nonterminal
has at least level 2.

- IV; = (N t - N ~ l) w { A ' l A e N ~ 1 } is the D*(Q)-set such that, if A: �9 with

162 J. Enge l f r i e t a n d H . V o g l e r

l eve l (3)= i< l , then A' is of level 2 with type (2,3) if i=1 and (2,(2, 3)) if
i = 0 (note that there are 2 - i 2's)

- - A[., t =Ain, 1 [A ~ A'()r(A); A eN~ 1] where r(A)= 2-level(A)
- - if A ^ --,if b then ~ is in Rx, then O ^ --,if b t h e n ~[A(f)*--A'(f)()rta);

A~N~t, fsF] is in R'I, where 6)=A' if AeN~ 1, and O = A otherwise, and
r(A) as above.
It is obvious that z(M1)=z(M'~) and that determinism and totality are pre-

served. Thus, we may now assume that every nonterminal of M t has at least
level 2. Next we construct the terminal restricted n-level S transducer M z
=(N2, e, A, A i n , 2 , R2) , equivalent to M1. Let A ={31 , J,} for some r > 1, and
for every i~[r], 6i: 3(0.

We define inductively the mapping $: D*(Q)~ D*(Q) that inserts uniformly
at subtypes of level 1 the sequence z(1), . . . , z(r).

(i) For every z=(~, v)tDP(Q) with p > 2 and a=~(1). . .~(k) for some k > 0 ,
$(z) =($(a(1)). . . ~k(a(k)), ~b (v)).

(ii) For every 3 =(a, v)tDP(Q) with p = 2 , $(z)=(~(1)... 3(r)cq v).
(iii) For every 3=(~, v)tDP(Q) with p < 1, $(z)=3.

Now we define/72, Ai., 2, and R2.

-- N2={YITtNI wA} is the D*(Q)-set such that, if ~tN1, then
type (7-) = ~k (type (~)); if 7 t d with ? = 6 i for some i t [r], then type (~ = z (/).

-- Ai., 2 = r 1) where r AT(N 0 ~ AT(N2) is the mapping defined as follows.
For ~tAT(NI) with the decomposition A~m ... r
if there is an i~[m] such that (i is a sequence of applicative terms of level
1 with (i = (~i, 1 , ~, k) for some k > 0,

then r (0--.4q~((,,)... ~((,+ 1) e~(~-- 1)-.-qS((l),
where ~= (~-1 ,3-~, r t) r

otherwise r where q~ is the extension of r to sequences
over AT(N0 defined componentwise. Note that, if there is an it[m] with the
mentioned property, then i t {1, 2}.

- The set of rules R2 is determined by (i) and (ii).

(i) For every 6 tA with 6: (qk,.q) for some k > 0 , 5 ̂ ~ 3 (y l . q ,Yk,~) is in
R 2 �9

(ii) If A ^ --*if b then (is in R1 and (=t[xi*--(i; i~[k]], where k>0 ,
t t A T (A u Xk) q, and for every i t [k], (ieAT(N1 (F) u A u Y)q with
top ((i) e N i (F) w Y, then .4 ̂ ~ i f b then ~' is in R2, where ~' = t [x i *- r i t [k]].
The mapping r AT(N1 (F) w A w Y) ~ AT(N2 (F) w I0 is defined as follows.

For (t A T (N I (F)wA w Y) with the decomposition ~('=---~'1, if there is an
it[m] such that ~" is a sequence of applicative terms of level 1 and ('t
= ((~. 1 , (i. k) for some k > 0,

then ~b'(r 0~ ' (~,) . . . ~ '(~+ 1) r
where ~-----(Y1,,~1) , Y,.,lo, r 1) r

High Level Tree Transducers 163

otherwise ~b'(()=0q~'(~',,)... ~'(~'0, where q~' is the extension of ~b' to sequences
over AT(Na (F) w A u Y) and the value of 0 depends on y: if y = A (f) , then
0 = A (f) ; if y=5~, then 0=y~,,(o; if 7=y j . , with z~D(Q), then 0=y~+,. , ; other-
wise 0 = y.

This completes the construction of Ms. F rom the definition of N 2 and R2
it follows immediately that M 2 is terminal restricted. Moreover, determinism
is preserved. It is straightforward to prove that z (M0=z(M2) . Since M~ and
M2 share the encoding e, this implies that totality is preserved. []

The subsequent example illustrates that the idea behind the construction
of the previous lemma is really simple, but perhaps buried a bit under the
technicalities.

5.6. Example. Let M =(N, e, A, A~,, R) be the 2-level count-down transducer of
Example 4.80). We apply the construction of Lemma 5.5 to M and obtain
the following terminal restricted 2-level count-down transducer M2
=(Nz, e, A, Zin, 2 , R2).

N2 = { A~., A, B, +, 5, ~, $, 5, b-},

where Ai.: (at (2, q)),
A: (at~,m(q, q), (q, q)),
/3: (at (q, q)),

: (at~m(q, q)(q, q), (q, q)),
5: (qqq, q),
S': (q q, q),
$:(2, q),
5: (2, q), and
b-: (~, q),

where ~tr q)(qq, q)(2, q)(2, q)(2, q).

A~.,: = ~ . (5 , ~, $, a, b-)().

The rules of R 2 a r e determined by (i) and (ii).

(i) 5 ^ ~(r(yl ,q, Y2,~, Y3,q),
3-" --' ~(Yuq, Y2,q),
~ " --, $(),

5" ~ a0, and
b-" o b () .

(ii) We use some abbreviations: Yt for "Yl.tqq~,q), Y2,(qq, q), Ya,(a,~), Y4,t~.q),
Ys.t~.q)", and y,, Y6, Ys, Y,, Y~ for "Yl.tqqq.~)", "Y2.(qq, q)", "Y3,tZ, q)", "Y4.(J..q)",
"Ys.tz.q~", respectively. Then the following rules are also in R~.

.~i, (y,)()~ .4 (dec)(y , , /3 (dec) (y,))(y~ ()),

164 J. Engelfriet and H. Vogler

and the same rule with Yb instead of yo,

A(yt.L, Y6, (q. ,1)) (Yl.,_q) ~ if not null then
A (dec) (Yt, + (d e c > (Yt, B (d e c) (Yt), Y6, (,I,,~)))(Y#(Ya(), Yl.q)),

and the same rule with Yb instead of y.,

-4(Yt, Y6, tq. 4)) (Y 1, ~) "* if null then c5 ($ (), Y6. t~, q)(Y t, q)),
+(Yt, Y6,~q,~), YT.t,~.q))(Yl.~)'+tr(Y6.tq.q)(Yl.,~), $0, YT,tq,~)(YI,~)), and
B(Y,)(Yl,q) ~ Yl,q.

This completes the construction of M 2. We leave it to the reader to check
how, e.g., the computat ion of M2 which corresponds to the one shown in Exam-
ple 4.8 (i) would look like. []

Since every n-level S transducer can be transformed into a terminal restricted
transducer, we can now construct the related 0-level n--AT(S) transducer (just
by following the requirements of Definition 5.3) which is equivalent to the origi-
nal transducer (by Lemma 5.4). The formal construction and the proof are left
to the reader.

5.7. Lemma. For every n > 2, n-T(S) ~_ O-T(n-AT (S)) and Dt n-T(S) ~_
Dt O-T(n-AT(S)). []

No w we turn to the converse direction, namely the simulation of O-T(n-
AT(S))-transducers by n-level S transducers. Starting from a 0-level n-AT(S)
transducer M, we want to construct a terminal restricted n-level S transducer
M' such that M' and M are related. But for this purpose, M may only have
one nonterminal. Hence, we first code the nonterminals of M into the storage
type n-AT(S). In order to show that this is possible, we introduce an operator
on storage types which adds finite information to the storage type configurations.
By showing that n-AT(S) is closed under this operator, we have proved that
the nonterminals of M can be coded into n-AT(S), because they form finite
information.

5.8. Definition. S with finite information, for short Sfi., is the storage type (C',
P', F', m', I, E'), where C'= C x J and J is an arbitrary, but fixed infinite set,
P '=Pu{ in fo=j l j~J} , t '={ (f , info:=j)lf~F and j~J}, and for every
c'=(c, k)~C' and peP, m'(p)(c')=m(p)(c), m'(info=j)(c')=(k=j),
m' ((f info,=j)) (c') = (m (f)(c), j) if m (f) is defined on c, and undefined otherwise;
finally, E'={2u~I.(e(u),j)le~E and j~J} . []

Although the set J in the previous definition is infinite, it is justified to
talk about finite information: every X (Sti.)-transducer can only use finitely many
elements of J.

Before proving that n-AT(S) is closed under the operator fin, we convince
the reader that, for a 0-level S transducer with an arbitrary storage type S,
there is an equivalent 0-level Sfi. transducer with only one nonterminal.

5.9. Lemma. O-T(S) ~_ O-To. e(Snn) and Dt O-T(S) ~_ D, O-Ton e (S~i,).

High Level Tree Transducers 165

Proof Let M = (N , e, A, A~,, R) be a 0-level S transducer. Note that AineN.
We construct the equivalent 0-level Sfi. transducer M'=({ .} , e', A, *, R') by
defining e'=2uel-(e(u), Ai,) (note that we can assume that N~_J), and if A--*
if b then (is in R with (=t[x~*--A~(fi>; i e [k]] for some t e A T (A u X k) ~,
A~ , AkeN, and f~, . . . , fkeF, then �9 in fo=A and b then ~' is in R', where
(' = t [x~ ~ * ((f~, info :=A~)>; ie [k]].

Obviously, M' and M are equivalent and if M is total deterministic, then
M' is total deterministic. []

The proof of n-AT(S)ri,<cn-AT(S) involves a "Rounds- l ike" construction
(Theorem 7 of [Rou]) similar to the one for high-level grammars on p. 175
of [Dam] (cf. also Lemma 5.4 of [EV] and Construction 1 of [DamGuel]) .
Actually, we believe that the next lemma really captures the essence of Rounds'
construction in terms of storage types. Every finite restriction U of n-AT(S)ri,
induces a finite subset .Is of J. A current piece of finite information j is coded
into a configuration (= y (c) ~k... ~1 of n-AT(S) by addingj to y and by prepar-
ing for every sub-applicative term of (as many copies as there are elements
in J:. Then a sub-applicative term ~ with finite information j is coded by the
correct copy of ~, namely the one with j associated to the top symbol of ~.

5.10. Lemma. For every n >_ 1, n-AT (S)fin _-< c n-AT (S).

Proof Let U be a finite restriction of n-AT(S)ri, and let J:= {Jr j,} be the
finite subset of J induced by U. Let e1 =2uel.(e(u), j l) be the encoding of U
where e is an encoding of n-AT(S).

We define the mapping copy: D*(Q)~D*(Q) as follows. For
z=(am, ...(ctl, q)...)eD*(Q) of level m>O, copy(z)=(copy [ctm], ...
(copy[a l] , q)...) of level m, where for every ~=a(1)...~(k)eOi(Q) with i, k>O,
co py I-a] = copy (~ (l))r.., co py (~ (k))'.

Let ~ : be the finite set of symbols of S 5, involved in U. Define the D* (Q)-set
(~' , type'> with ~ ' = { [7 , J] l T e ~ : andjeJ:} and for every [7 , j]eS ' , type'([y,j])
=copy(typ%(7)) (recall that typez is associated to .Z). We can assume that ~'
is a subset o f - =~".

Define the mapping g: AT(~-<-"<C>)x J/~AT(~.<="<C)) inductively on the
structure of the applicative terms. For ~eAT(~-<"<C>) with the decomposition

<c>

g(~, j) = [y, j] <c) ~'s .-- ~"1, where for every ~'= (~, ck),

('=(g(~l , J t) , g(~l,J,), ..., g(~k,J,) , g(~k,J,))"

Note that g is injective. Hence, we can define the representation function
h: AT(~<-"<C>)~AT(~<-"(C>)• to be the inverse of g in the usual way:
dom(h) = range(g) and if ~ e dom (h), then h (0 = g-1 (~). We prove that h satisfies
the requirements 1-3 of Definition 3.17.

Requirement I. The encoding e2=2ueI.g(e(u),jl) of n-AT(S) satisfies the re-
quirements.

166 J. Engelfriet and H. Vogler

c,:I ,J2)

Ig

/ \
[~ , J l] [~ ,Jz]

'+ + I

,+I<~>

[~,J+l

l g

[~.J2ll~,Jl] [~.J2)

Fig. 7. Coding of finite information in 2-AT(So)

Requirement 2. Every predicate ~b of U is coded by a boolean expression b(ck).
q~ = (info =j): b (q~) is the disjunction of all predicates top = [7, j] where 7 e 3, z.
~b = (top = 7): b(~b) is the disjunction of all predicates top = IV, J] where J~Jz"
~b = test (/9): b (tk) = test (p).

Requirement 3. Every instruction ~b =(push (0,J) of U is coded by an instruction
f(~b). For the construction of f(~b), we define a mapping g': AT(~--<"(F)w Y)
x J: ~ AT(E --<" (F) w Y) in a similar way as g is defined.

If (~AT(~-<" (F) w Y) with the decomposition ~ , . . . ~'t and

if r =7 (f) , then g'((, j) = [?,J] (f) ~ . . . ('~, and
if ~b =y,.+, then g'((, j) "-~" Yp, copy (r)~s "'" ('l,

where p=(i-- i) r+j and for every ~'=((1, -.., (k),

7' =(g'(~l ,Jl) , ..-, g'((l,J,), --., g'((k,J,) , g'((k,J,)).

Then f (qS)= push (g'((, j)). []

To support the readers understanding we code finite information into the
storage type 2-AT(So) following the constructions of the previous lemma.

5.11. Example. Consider a finite restriction U of 2-AT(So)fi. and let E r
be the set of symbols involved in U. Let J:= {jl,j2}- Hence, r=2 .

Consider the U-configuration c1=(r with the applicative term r
=71(72, 73)(7,0. For convenience we have dropped the configuration c of So.
The types of the symbols are determined as follows.

r t : ((q, q)(q, q), (q, q)),
72, 7a: (q, q), and

Y4: q.
We apply the instruction ~b=(push (0,Jl) with (=?a(YLtq.q)(74)) to c 1 and show
how this application is coded by 2-AT(So). The corresponding commutative
diagram is presented in Fig. 7.

High Level Tree Transducers 167

The result of the application of ~b to cl is the 2-AT(So)f~,-configuration
c'1=(r with ~'~=)'3(Y2()'4)). Before we apply g to c~, we compute, as an
example, the type of [Ya,Jl] in detail.

t y pe ([)' 1, J t]) = co py (type- ()' 1))
= copy(((q, q)(q, q), (q, q)))
= (copy [(q, q)(q, q)], (copy [q], q))
=(copy((q, q))2 copy((q, q))2, (qq, q)),
=((copy [q], q)2(copy [q], q)2, (qq, q))
=((qq, q)2(qq, q)2, (qq, q))=((qq, q)4, (qq, q)).

Hence, for every j~ {Jl, J2},

[) ' , , j]: ((qq, q)4, (qq, q)),

[)'2,J], [Y3,J]: (qq, q), and

[)'4,J] : q-

The result of the application of g to ct is the 2-AT(S0)-configuration

c2 = [71,J2]([72,Jt], [72,J2], [)'3,Jr], [73,J2])(tl, t2)

where t i= [y4,j;] for i~{1, 2}.
The instruction ~b is coded by f(~b)= push (g' ((, J 1))= push ((') with

('=[)'3,jl](yl,(qq.q)(tl, t2), y2,(qq, o(tt, t2)) and ti as above.
Applying f(~b) to c 2 yields the 2-AT(So)-configuration

c'2 = [73,jt]([Y2,j ,](t , , t2), [72,J2](t,, t2))-

In fact, g(c'O=c'2. []

5.12. Lemma. For every n > 1, O-T(n-AT(S)) ~ n-T(S) and
D, 0- T(n-AT (S)) ___ D, n- T(S).

Proof. By Lemma 5.9, for every 0-level n-AT(S) transducer, there is an equivalent
0-level n-AT(S)nn transducer with only one nonterminal. Since n-AT(S)ri, can
be coded by n-AT(S) (Lemma 5.10), this means, together with Theorem 3.19
(and Fact 4.6), that there is an equivalent 0-level n-AT(S) transducer with one
nonterminal. Note that Theorem 3.19 can be applied only if the involved storage
types are in the coding relation.

Now let M=({.} , e, A, *, R) be a 0-level n-AT(S) transducer with e=Au~I .
q <g(u)) for some r/~AT(~----") and some encoding g of S. By an easy transforma-
tion (cf., e.g., Lemma 3.30 of [EV] for a similar transformation of X(P(S))-
transducers), we can achieve that the tests of rules of M have the form top = 7
and test (b) where b is a boolean expression over P.

Next we construct the terminal restricted n-level S transducer M'
=(N, e', A, Ai,, R') which is related to M as follows: N={7~E<"I) ' occurs in
M} where the types are preserved (note that N' is finite), e '=g , Ain=rl, and
if , ~ i f top=), and b then (is in R with ~= t [x i~* (push ((~)> ; i t [k]] for

168 J. Engelfriet and H. Vogler

some teAT(A k..)Xk) q, k~_~0, and (1 (k6AT(S=<"(F) u Y)~, then y" - , i f b then
(' is in R', where ('=t[xi~-(i; i t [k]] .

It is an easy observation that M and M' are related. Hence, by Lemma
5.4, M and M' are equivalent. If M is total deterministic, then M' is total deter-
ministic. []

Now, for every n_>_2, we have obtained the characterization of n-level S
transducers by means of 0-level n-AT(S) transducers and thereby verified the
claim that the substitution power inherent in the control of n-level S transducers
is captured by the storage type n-AT(S). The corresponding characterization
for n = 1 is shown in Corollary 6.6.

5.13. Theorem. For every n>=2, n-T(S)=O-T(n-AT(S)) and Dtn-T(S)
=DtO-T(n-AT(S)).

Proof Lemma 5.7 and Lemma 5.12. []

6. Applicative Terms and Iterated Pushdowns

In Sect. 5 the rewriting mechanism of n-level S transducers was captured by
the storage type n-AT(S), and thereby the characterization of n-T(S) by O-T(n-
AT(S)) (cf. Theorem 5.13) was obtained. Here we show the equivalence of the
storage types n-level applicative term of S (n-AT(S)) and n-iterated bounded
excursion pushdown of S (P~c~(S)). Then it follows from the Justification Theorem
3.16 that O-T(n-AT(S))-transducers and O-T(P~,o~(S))-transducers are equivalent.
Hence, in total, the equivalence of n-level S transducers and n-iterated pushdown
S transducers is induced: n-T(S) = O-T(Pf, ex (S)) (cf. Theorem 6.15).

The equivalence of n-AT(S) and Pf, ex(S) is proved via an intermediate storage
type. Informally, n-AT(S) can be viewed as the n-fold application of the storage
type operator "tree-pushdown" (TP); formally, we show that, for every n> 1,
n-AT(S)-TP"(S) (cf. Corollary 6.12). The essential idea behind this equivalence
is the (iterated) tree-form of applicative terms (cf. Sect. 2.2). Since TP and Pbo~
are equivalent storage type operators, i.e., for every storage type S, TP(S) = Pbc~(S)
(Theorem 5.13 of [EV]), the equivalence of TP"(S) and P~,~(S) (cf. Corollary
6.14) then follows from the monotonicity of Pb~ and TP (Lemma 3.23).

The concept of tree-pushdown was introduced in [Gue] and formalized as
a storage type in [DamGue2]. Before we explain how the equivalence of n-AT(S)
and TP"(S) is obtained, we recall the formal definition of the tree-pushdown
of S from [EV]. A special set of substitution variables Z = {zl, zz, z3 } is
used. For every k>O, Zk={Zl, ..., Zk}. Recall from Sect. 2.1 that ~2 is an infinite
ranked set.

6.1. Definition. Let S=(C, P, F, m, I, E) be a storage type. The tree-pushdown
of S, denoted by TP(S), is the storage type (C', P', F', m', 1', E'), where

- C ' = T~<c>
- P ' = {call=J[ref2} u {test(p)[psP}
- F ' = {expand(0[(e Ta<F>(Z)}

High Level Tree Transducers 169

- for every c '=a(c) (q , ..., tk)eC,
m'(call = 6)(c') = true iff 6 = a,
m' (test (p)) (c') = m (p) (c),
for c" = ~ [zl ~- ti; i~ [k]] I f ~- m (f) (c) ; f~ V],
m'(expand (~))(c') = c" if c" E C', and undefined otherwise

- I ' = I

- E'={2u~l .~(e(u)) la~Tn, e~E} with a(e(u))=a[y~7(e(u)) ; ~ 2] . []

Note that, by convention, if yeQ is of rank k, then for every f ~ F and
every c~C, ~ (f) and ~ (c) are also of rank k. We abbreviate TP(So) by TP.
In the usual way we define TP ~ (S)= S and for every n > 0, TP"+ I (S)= TP(TP" (S)).

6.2. Lemma. TP is monotonic with respect to the simulation relation, i.e., for
two storage types $1 and S2, if $1 <=$2, then TP(S0<TP(S2) .

Proof This follows immediately from TP(S) = Pb~x(S), where S is an arbitrary
storage type S (Theorem 5.13 of [EV]) and from the monotonicity of Pb~x (Lemma
3.23). []

The equivalence of n-level applicative term of S and n-iterated tree-pushdown
of S (i.e., TP"(S)) is proved by using an inductive statement in which, informally
speaking, one level of n-AT(S) is replaced by one application of the operator
TP. Formally, for every n > 1, (n + 1)-AT(S)-TP(n-AT(S)). By considering only
the involved sets of configurations, this statement says that applicative terms
over Z =<"+ ~ (C) of type q can be represented by trees over ~(AT(~=<"(C))q) ,
and vice versa. The first direction of representation is closely related to the
concept of tree-form of applicative terms over a D* (Q)-set V (cf. Sect. 2.2). How-
ever, the tree-form of an applicative term in AT(=-<"+ t - - (C)) q is a tree indexed
by elements of ~=<"+l (C)q (recall that AT(~=<"+ t (C)) ~= T~v(~<"+ t (C) q) with
the ranked set 7~=AT(,~ <"+t (C))=~). Hence, in order to take advantage of
the tree-form concept in the present situation, we first have to show that symbols
of level 0 (i.e., symbols of ~=<"+1 (C)q) are not essential in (n+ 1)-AT(S). More-
over, the tree-form of an applicative term is a tree over AT(~ <"+ ~ (C)) = ~ rather
than a configuration of TP(n-AT(S)), i.e., a tree over (2(AT(~=<"(C))q). The
necessary type decrementation and the addition of a " dummy" tree-pushdown
symbol of appropriate rank to every "label" in A T (~ < " (C)) q is taken care
of in the proof of (n + 1)-AT(S)< TP(n-AT(S)) (of. Lemma 6.7). In the following
definition and lemma the first problem is handled.

6.3. Definition. Let n > i. The n-level applicative term of S without constants,
denoted by n-AT+(S), is the storage type defined exactly as n-AT(S) except
that --=<" is replaced by ~=~'"-- {?eSl 1 =<level(~,)_< n}._ []

6.4. Lemma. For every n> 1, n-AT(S)=~n-AT + (S).

Proof Obviously it suffices to prove that n-AT(S)<r Every symbol
of a finite restriction U of n-AT(S), which is of level 0, is represented by

the applicative term ~'0, where 7': (2, q). Then the encoding of U and every
predicate and instruction of U is coded by itself modulo the replacement of
~,: q by ~'(). We leave the formal proof to the reader. []

170 J. Engelfriet and H. Vogler

Note that the technique of lifting the level of an object of a derived type
is applied in Lemma 5.5 to nonterminals.

Since the inductive statement does not cover the proof of n-AT(S)=TP"(S)
for n-- 1, we prove this case separately.

6.5. Lemma. 1-AT(S) = cTP(S).

Proof. Since 1-AT(S)-c 1-AT+ (S), it suffices to show that 1-AT+ (S)-cTP(S).
These two storage types are the same, apart from small differences in terminolo-
gy. Note that their sets of configurations AT(S 1" l(C))q and Ta<c> are equal.
Clearly, t op= 7 and push (0 correspond to call =7 and expand (0 (where y,.~
corresponds to zi), respectively. []

As a corollary to the previous lemma we can now fill a small gap of Sect. 5:
the equivalence of l-level S transducers and 0-level 1-AT(S) transducers.

6.6. Corollary. 1-T(S) = 0-T(1-AT(S)) and Dt 1-T(S) = Dt0-T(1-AT(S)).

Proof. In Theorem 5.5 of [EV] it is proved that CFT(S)= RT(TP(S)). Hence,
by Lemma 6.5 and the Justification Theorem, CFT(S)= RT(1-AT(S)). Then the
statement of this corollary follows from Fact 4.6. Since all the mentioned results
preserve totality and determinism, also the second equation follows. []

Now let us turn to the simulation of (n+I)-AT(S) by TP(n-AT(S)),
which forms the first part of the inductive statement. Since (n+I) -AT(S)=,
(n+ 1)-AT+(S), let us consider a configuration ~ of (n+I)-AT+(S). Note that
~ A T (3 l'n+ l(C))a and ~l.n+ t (C) does not contain symbols of level 0. Hence,
the tree-form of ~ is a (non-indexed) tree over AT(Z1'~+i(C)) =~, cf. Sect. 2.2.
Then, the representation rep(~) of ~ is defined inductively on the structure of
the tree-form of ~. If ~o(tl tk) is the tree-form of ~ for some
Go ~ AT (~ 1. ~ + i (C)) = 1 and k __> 0, then rep (~) = *k (~'o) (rep (t l) rep (tk)), where
*k is a fixed (dummy) symbol in ~ of rank k. The applicative term ~'o over
Z=<~(C) of type q is obtained from 4o by replacing every symbol y ~ l . ~ + ~
by the symbol ~Z-<n and the type of f is computed from the type of 7 by
an appropriate type decrementation. Thereby, ~'o becomes an applicative term
of level 0 and hence an n-AT(S)-configuration. Since rep is injective, the represen-
tation function h of the simulation can be defined as the inverse of rep.

It is easy to see that the predicates top = y and test (p) of n-AT(S) are simulated
by test(top = ~) and by test(test(p)), respectively. Since the substitution of applica-
tive terms for parameters of level 0 is simulated by the substitution of tree-
pushdowns for variables in Z, it is also intuitively clear, that an instruction
of (n + 1)-AT(S) can be simulated by a TP(n-AT(S))-instruction. For an example
of the representation consider Fig. 8 (the types of the involved symbols are
defined in Example 6.8; cl and c2 are configurations of the storage type S).

This discussion suggests that (n+I)-AT(S) can even be coded by TP(n-
AT (S)). But, if we compare the encodings of both storage types, then we recognize
that this is not true. Let 2u~I.~(e(u)) be an encoding of TP(n-AT(S)), where
~ Ta and e is an encoding of n-AT(S). Hence, for u~I, to every node of
the same applicative term e(u) is associated. But obviously, the encodings of
(n+ 1)-AT(S) do not have a similar property. Hence we have to use a small

High Level Tree Transducers 171

.0 @

b

Fig. & a applicative term in AT(-~t'2 (C)) q, b tree over Q(AT(N t' ~(C)) ~)

trick to obtain, for an encoding e 1 =2uel.rl(e(u)) of (n+ 1)-AT(S), an appro-
priate encoding of TP(n-AT(S)). Assume that, e.g., r ep(r /)=*2(4 t}(.o (~2) () ,
*0 (43)()) for some 6~EAT(S -<" (C}) q. Then we combine the different applicative
terms 4~ into one term ~k=$(41, 42, 43), where $: (qqq, q) is a new symbol in
S ~", and the encoding e~ of TP (n-AT (S)) is the function 2 u e I-sel t (~k')(sel2 (~k'),
sel 3 (t.k'}) with ~k'= ~k (e(u)) and selL, sel2, and sel 3 are new symbols of f2 indicat-
ing which subterm of t is the correct one (where selt has rank 2, and sel 2,
sel 3 have rank0). If an (n+l)-AT(S)-instruction ~b is simulated on e2(u)
for some u, then first, the subtree 41 is selected by the instruction
expand(,2(push(yl .q))(z t , z2)) and second, ~b is simulated in the usual way.
The need for this simulation in two steps destroys the possibility of coding
(n+I)-AT(S) by TP(n-AT(S)). In Example 6.8 the constructions of the next
lemma are illustrated.

6.7. Lemma. For every n> 1, (n+ 1)-AT(S)<TP(n-AT(S)).

Proof. By Lemma 6.4 and the transitivity of -<d (Lemma 4.19 of [EV]) it suffices
to prove that, for every finite restriction U of (n+ I)-AT+ (S), U <,~TP(n-AT(S)).
Let ~z_cE L"+I be the finite set of symbols used in U. Furthermore, let el
=2u~I.rl(e(u)) be the encoding of U with r/~AT(..~i)q and e~E. Define the
mapping dec: D+(Q)~D*(Q), which decrements the level of a type, as follows.
For every k>___0, dec((q k, q))=q, and for every (c(, v)~D+(Q) with (z~D + (Q)k for
some k > 0 , dec((cz, v))=(dec(~(1)).., dec(~(k)), dec(v)).

By means of this type decrementation we define the finite D* (Q)-set (~ , type),
where ~ = {~1 ?~EI} and type (7")=dec(type-(7)). (Note that, since every symbol
? in ~ r has at least level 1, dec is defined on typez(y).) W.l.o.g. we can assume
that ~_cE ---<~. The isomorphism ~: EI---}~ is extended to the isomorphism ~
AT(EI) =~ ~AT(.~) q in the obvious way. The extension to the isomorphism
AT(E I (C))= 1 __} AT(~ (C}) q is also denoted by ~

172 J. Engelfriet and H. Vogler

For the definition of the representation function, we construct the set of
subterms of r/ of level 1, i.e., the set of labels of the tree-form of 11. Formally,
define the mapping set: AT(-=:)q~PS, where PS is the powerset of AT(~) q,
as follows. Let r ~ and ~=~o(~t ~k) for some ~o~AT(~:)* with
v=(q k, q) and k>0 , and ~1 , ~keAT(S:)q; then set (4)
={(o}~3set(~1)u. . .uset(~k) . Let set(t/)={4 t 4r} for some r > l . The
number r determines the type of the additional symbol $~S --<" at which we
want to hang the 4i's:

$: (qr, q).

Define the ranked set Z = {sely~[r]} with se l f iZ k if r/i: (qk, q). We can assume
that ~_~ ~2.

The function g : I ~ A T (F . ~ " (C)) q is defined by g(u)=~(e(u)) with

=$(4 , 4,)-
Now we define the representation function

h: Tr~<~,> ~ AT(~ ---"+ ~(C)) q with ~=AT(~-<~(C)) q

and prove that h satisfies the requirements of Definition 3.13.

dom (h)= T,(T,,) with r = {*k (~) [k > 0 and ~ e A T (E / (C)) of type (qk, q)}

where .k~f2 of rank k, not in ~7, and ~ ' = 27(range (g)).
Let t~dom(h).

(i) If t = * k (~) (t t , . . . , t~) with k>0 , ~ A T (E : (C)) of type (qk, q), and
t 1 tk~dom(h), then h(t)= ~(h(tl) h(tk)).

(ii) If t=sel i (g(u))(t 1 , tk), k>O, u~dom(g), and tt tk~dom(h), then
h (t) = (r/i) (e (u)) (h (t l) h (tk)), where (r/i) (e (u)) i s obtained from r/i in the same
way as 17 (e(u)) is obtained from r/.

Requirement I. Before we define an encoding e 2 which simulates et, we define
a partial function tree: AT(~ :)*~ T o which provides the "init ial" tree-push-
down (corresponding to r/). Let ~ A T (~ r *. Then, as usual, r r
for some k > 0 and some G0, i t , r If ~o=4i for some j~[r], then tree(i)
-- seli(tree(~ 0 , tree(~,)).

Now it is an easy observation that the encoding e2 = 2u~l.(tree(r/))(g(u))
satisfies the requirement 1 of Definition 3A3.

Requirement 2. Every predicate q9 of U is simulated by a TP(n-AT(S))-flowchart
co for predicates.

qS=(top=y): For every se l f iZ with r/i: (qi, q) for some k>0 ,
Zin ~ if call = seli then A (expand(.k (push(y h ~)) (zt, . . . , Zk)))

Ai~ ~ if b ~ e n A (id) , and
A ~ if test(top = ~ then true (id) else false (id)

are rules of t~, where b is the conjunction of all boolean expressions of the
form not(call =seli), where selfiZ.

~b = test (p): ~b is simulated by the boolean expression test (test (p)).

High Level Tree Transducers 173

Requirement 3. Every instruction push (() is simulated by a TP(n-AT(S))-flow-
chart co for instructions. For every se l f iS with r/j: (qk, q) for some k>__0,

Ain ~ if call = selj then Ain (expand (*k (push (y j, q)) (zt , Zk))) and

Ain ~ if b then stop <expand(~,b (0))

are rules of 09, where b is defined as in requirement 2. The mapping
r where F' denotes the set of instructions of
n-AT(S), is defined inductively as follows.

(i) For yl,qeY, q~(yi.q)=zi.
(ii) For ~=~o(~1 , ~k)~AT(Y,I(F> u Y)~,

~ (if) = *k (push (~'o)> (~b (~1) ~b(~k)) with

Here we only provide a proof of requirement 3.2 and that only for trees
in T,___ dom(h) (see above). Actually, the correctness of this case follows immedi-
ately from the next statement (*) for which we assume that 3.3.1 and 3.1.2
are true. The meaning functions of (n+ 1)-AT(S), TP(n-AT(S)), n-AT(S), and
S are denoted by ml, m 2, m', and m, respectively. The sets of instructions of
the latter two storage types are denoted by F' and by F, respectively.

For every ~ A T (~ I (F > u Y)q and every c'~ T, ,
(.) if m l(push(~))(h(c')) is defined, then

h (m2 (expand (~b (~)))(c') = m t (push (~))(h (c')).

The proof is by induction on the structure of ~. Let c'= *i (~'> (tt , tk)~ T|

If ~ r Y, then there are two cases.

Case I. ~ 3 ~ (F>: Actually, this case cannot occur, because ~: q and every sym-
bol o f . ~ s (F > has at least level 11

Case 2. ~ = Yi. q: h (m 2 (expand (~b (Yi. q))) (c')) = h (ti)
= m t (push (y~, q))(* (h (t t) , h (tt))) = m t (push (Yi, q))(h (c')).

Now let ~=~o(~t , (~) with p > 0 and assume that the statement holds
for ~t (a- Let ~=y<c>~v . . . ~ t with /~>0, ?: (a#, ...(czl,(q~, q))...), and
~i~AT(Ef(C>) ~i. Hence, h(c')= ~(h(tl) h(tk)) =~ <c> ~ . . . ~ (h(tt) , h(tk)).
For every ~ ~ D* (Q)~ with s > 0, we denote (dec (cz (I)) dec (~ (s))) by dec (a).

h (m2 (expand (~b (0)) (c'))
= h(m2(expand(%(push(~'o))(~b((~) , q~((a))))(*~ <(>(tt , t~)))
= h(% (push (~'o)) (~b (~,) ~b ((a)) [] ,),

where [] t = [zi *- tl; i~ [k]] [push (~k) ,-- m' (push (~b)) (~'); push (t~) ~ F']
= h(*p (m'(push (r (q9 (~l) [] ~ ~b(~) l i t))
='h(% (~'o []2> (~b(~,) [] , r [],)),

where []2 = [Ya,~,0 ~- ~ ; ir [#]] [f ~ m (f) (c) ; f ~ F]
= ~o [] 3 (h (m 2 (expand (~b (~ l))) (c')), ..., h (m 2 (expand (~b (~)))(c'))),

where [] 3 = [Y~i ~- ~i; i~ Lu]] I f ~ m (f)(c); f ~ iv]
= ~o []3 (mi (push (r t))(h (c')), ..., mi (push (~a))(h (c')))

(by induction hypothesis)

174 J. Engelfriet and H. Vogler

push (~)
D

hi
CZ: oper (~1 c~, :

G

h

Fig. 9. Simulation of 2--AT(So) by TP(1 --AT(So))

=Co []3(C, [], ,---, L [],),
where []4 = [Y~i ~ ~i; ie [p]] [.yj. q ~- h(ti);je [k]] [f ~ - m(f)(c); feF]

= Co (C ~, ---, C~) [3 ,
=ml(pUsh(())(h(c')). []

6.8. Example. We illustrate the simulation of 2-AT(So) by TP(1-AT(So)). Let
~: ((q, q)(2, q), (q, q)), a: ((q, q), (2, q)), 6: (q, q), and a: (2, q) be symbols of •1.2.
The corresponding elements of ~ are ~: (qq, q), ~: (q, q), "~: q, and ~: q. Let U
be a finite restriction of 2-AT + (So) with encoding el = 2 u e I. r/(e (u)). Since et (u)
has a fixed value, viz. ~/(c) where c is the configuration of So, we denote et (u)
by cl. Assume that r/=~(6, a)(a(), a(6)0). Then set(r/)={fh,7/2,f/3} with 01
=y(3, ~), 02=~, and f/3=6(~). Hence, r = 3 and $: (q3, q). Since for every ueI,
e(u)=c, g(u)=$(~(c)($(c), ~(c)), ~(c), O(c)(~;(c))). Before determining the
encoding e2 by which el is simulated, we compute tree(r/): tree(r/)=Sell(sel2(),
sel30). Hence, e2 = 2 u e I - s e l t (g(u))(sel2 (g(u))(), sel 3 (g(u))()). Since g(u) has
a fixed value, we can denote e2(u) by c2. It is easy to see that h(c2)=ct.

N o w we apply the instruction push(() with (=6(id)(yL(q.q)(Y2,q)) to c1.
The result is the applicative term c'1=6(c)(6(c)(a(c)(6(c))())). (is trans-
formed by ~b into "1 (push(~(id))) (* l (push(yLq))(z2)). Let 09 be the flowchart
that simulates push(0, and let c~ = oper (r (c2). Then, c~
= *t (~ (c)) (' 1 ($ (c)) (sel3 (g(u))0))- It is easy to check that h(e~) = c'1. Figure 9
shows the corresponding commutative diagram. []

The following lemma proves the other direction of our inductive statement,
viz. TP(n-AT(S))<=(n+ 1)-AT(S). Now we can even show that TP(n-AT(S)) is
coded by the (n + 1)-level applicative term of S.

High Level Tree Transducers 175

The first idea one has in mind, is to apply the construction of the previous
lemma (without the problem with the encoding), but in the other direction.
Additionally, the label of every node of a TP(n-AT(S))-configuration has to
be incorporated into the associated n-level applicative term ~. However, this
construction does not work as we want to point out at the following incomplete
example. For i~{0, 1}, let -ieI2~. Let cS~Z -<" of type (q, q), let ~AT(~----" (C)) q,
and let t be a tree over O (A T (~ " (C)) ~) . Hence, c l = - l (3 (c) (~)) (t) is a
possible configuration of TP(n-AT(S)). The application of the instruction ~b
=expand(-1(push(yl ,~))(-o(push(yl ,q))())) to cl yields the configuration
c ~ = - t (r 1 6 2 Roughly speaking, ~b copies ~ such that each copy is
associated to symbols of different rank, i.e., to symbols - ~ and - o of rank 1
and of rank 0, respectively. Using the straightforward construction, c'~ is repre-
sented by c~ = ~ (~'o), where ~'~ is the applicative term of type (q~, q) " representing"
- i (~) . Note that ~'o and ~1 have different types. Since ~ occurs only once
in the representation of ct, it is now easy to see that there is no instruction
~b' of (n+ I)-AT(S) which simulates ~b, i.e., which provides two copies of r with
different types.

To overcome this problem we use a "Rounds-like" construction. For every
sub-term ~' of an applicative term ~, which is associated to a tree-pushdown
symbol in a configuration of TP(n-AT(S)), as many copies are prepared as there
are tree-pushdown symbols. Then, according to the rank of that tree-pushdown
symbol, to which ~' is associated after the application of an instruction, the
copy with the correct type can be chosen. An example which illustrates the
formal construction, can be found after the next lemma.

6.9. Lemma. For every n > 1, TP(n-AT(S)) <=,(n + I)-AT(S).

Proof. Let U be a finite restriction of TP(n-AT(S)) with encoding e 1. Let O:
={Tt)'r} and E :={6 t 6~} be the finite subsets of symbols of f2 and
~ " , respectively, which occur in U. We have to show that U<d~(n+ 1)-AT(S),
i.e., there is a representation function h: AT(Z --<"+l<C>)q~ Tv, with

= t2 (AT(E ~" (C)) q) for which the requirements 1-3 of Definition 3.17 hold.
We define the mapping inc(y): D*(Q)~D+(Q), for every),~12:, as follows.

If z=(atm, ...(ctl, q)...)~O*(Q) for some m>0, then inc(y)(~)=(inc[~m], ...
(inc[~l], (qJ, q))...) with j=rank(y), and for every ~=~(1)...~(k)~Di(Q) *
and k>0, incl-~] abbreviates the sequence inc(yt)(~(1))...inc(yr)(~(1))...
inc (y 1)(~ (k)) ... inc (y,) (~ (k)) (note that, if k = 0, then inc [~] = 2).

We use this incrementation of the level of types to introduce a finite D* (Q)-set,
namely (~ , type) with ~={.I-~,,~5]l~ef2 : , 6 ~ : } and type([y,~])=inc(?)
(typez(~5)). We can assume that ~_~-< '+ 1.

We define for every y~f2: the mapping ~ on AT(Z:(C)) , which copies every
sub(-applicative-)term r times. For every zeD*(Q), the one-to-one mapping
~7: AT(~: (C))~ ~ AT(E -<~+ ~ (C))" with v = inc(y)(z) is defined inductively as fol-
lows. If ~ A T (E : (C >) ~ has the decomposition t S (c) ~ . . . ~ , then y(~)
= [~ , ~] (c) (~ . . . (~ and for every i ~] , ~'~ abbreviates the sequence
(y~ (~(1)) ~(~(1)) ~t (~(k~)), ..., y~(~(k~))), where k~ is the length of ~ and
~(j) is the j-th component of ~.

We use the mappings y to define the one-to-one mapping g:

176 J. Engelfriet and H. Vogler

Tv,, ~ A T (~ ~-n + t <C>)q with ~ ' = f2: <AT(S/<C>)q> inductively. For y e O:of rank
k > 0 , ~eAT(S.r <C>) q and tl tk~ Tw,, g(y <~>(tl , tk))=f~(~)(g(tO, ..., g(tk)).

Finally, we define the representation function h: AT(S---"+ 1<C>) q --+ T~, with
~g = f2 <AT(- ~--<n <C>)~> to be the inverse ofg. We show that h satisfies the require-
ments of Definition 3.17.

Requirement I. Let e, =2ueI.~<e(u)> for some eeE. It is an easy observation
that e2=2ueI.g(~<e(u)>) is an encoding of (n+ 1)-AT(S) and that it satisfies
the requirements.

Requirement 2. The predicates ca l l=y and test (top=tS) of U are coded by the
boolean expressions top=[y , 61] or . . .o r t op= [y , 6~] and top=[yx , 6] o r . . .o r
top = [y,, 6], respectively, and the predicate test(test(p)) of U is coded by test(p).

Requirement 3. Let expand(0 be an instruction of U where (~T| with
= {y (push(~b))lyef2:, ~b~AT(ff : (F) w Y)q} and rank(y (push(~b)))= rank(v).
Define the one-to-one mapping g': T, (Z) --* AT (~ --<"+1 (F) w Y)~ (similar to g)
for y of rank k>0 , by g'(y(push(q~))(t~, ...,tk))=~'(~b)(g'(tl) ,g'(tk)) and
g'(zj)=yj.~, and for every yi~f2.r, the one-to-one mapping ~): A T (S : (F) u Y)'
~ A T (- ~ " + 1 (F) u Y)~ with v=inc(yj)(~) is defined inductively (similar to 7j)

by ~j(6 (f) [u'-" ~t)= [YS, c5] (f) ~'#_ .. ~t, and Y~)(Y,,k (,'." ~t)=Yo.p ~r#... ~'1 where
o - = (i - - 1) . r + j and p=inc(ys)(x); ~ is obtained from ~ in the same way as
is obtained from ~. Then push(g'(0) codes expand (~).

Here we provide a formal proof of Requirement 3.2 under the assumption
that 3.1.1 and 3.1.2 hold. Let mr, m2, m', and m denote the meaning functions
of TP(n-AT(S)), of (n+'I)-AT(S), of n-AT(S), and of S, respectively. The sets
of instructions of the latter two storage types are denoted by F' and by F,
respectively. Before starting the main proof of 3.2, we formalize the intuitively
clear fact that, for every y~f2:, y and ~' correspond to each other.

(*) For every <b~AT(~, f (F)~ Y), c~C,
(c~p (~1, q)...)~D*(Q) with p>=0, r ~u~AT(E : (C))
with ~: ai for every l e V I , and D~f2:,
Y)(q~) [Yi.r ~ ~"; i t [p]] [c]f = yi(q5 [.y,, ~ ~,; i t Lu]] [c]y),
where [c]z abbreviates [f ~ m(f)(c); f ~F].

The formal proof (by induction on the structure of q~) is left to the reader.
Requirement 3.2 follows immediately from the next statement.

(**) For every ~ T , (Z) and t~T~,,,
m2 (push (g' (~))) (g (t)) = g (m ~ (expand (~)) (t)).

We prove this statement by induction on the structure of ~. Let t
= y (r ..., t~), k>O, ~=a(c) r and or: (~# (~1, q)...).

(= z~: m2 (push (g' (0)) (g (t))
= m 2 (push(y~. ~))(y(~)(g(t~) , g (tk)))
=g(t~)
= g (m~ (expand (z~))(t)).

= c~ (push(~b))(~ ~,) with v > 0 and assume that (**) holds for ~ , ~,.

High Level Tree Transducers 177

First wecompute g(t).

g(t)=g(y<r , tk))
=~(~)(g(tl), . . . , g(tk))
= [7, tr] <C> ~ . . . ~1 (g(t~) g(tk))

with [y, a] : (inc [ct/0 (inc [~ 11, (qk, q))...).
Then m 2 (push (g' (~)))(g (t))
= m2 (push (~"(q~) (g' ((t) g'(~v))))(g(t))
= ~"(~b)(g'(~l) , g'(~v)) I l l [c]y,

where []1 = [Yi,r ~- ~i; i~ I/t]] [y~, ~ *- g(ti); i~ [k]]
and [c] i = I f , - - m (f)(c); f ~ F]

= (3' (#,) [] ~) (g' ((,) [] , [c] ~, . . . , g' (~v) [1, [c] ~),
where [] 2 = [Yi'.~ t-q ~ #i; i ~ [u]] [c]~.
(this equality holds, because ~"(tk) contains no Yi.q)

= $'(q6 [y~i.-- ~i; ie [#]] [c]y)(m2(push(g'(~l)))(g(t)) mz(push(g'(~,)))(g(t)))
(this equation holds by (.))

= ~(m' (pus h (q6)) (4)) (g (m t (expand (#t)) (t)), ..., g (ml (expand ((,)) (t)))
(by induction hypothesis)

= ~'(m'(push (~b))(r [13) g((~ []3)),
where [] 3 = [zj ~- ti; j ~ [k]] [push (~k) , - m' (push (~b)) (~); push (~k) ~ F']

= g(t5 <m'(push (q5))(~)> ((! []3 , (~ []3))
=g(mt (expand(())(t)). []

6.10. Example. Here we illustrate the coding of TP(2-AT(So)) by 3-AT(So). Let
~1: ((q, q)(q, q), (q, q)), t52, c53: (q, q), and 64: q be elements of ~ f and let Of
= {72, 70} where 72 has rank 2, and Yo has rank 0. Consider the configuration
c1=y2<tl>(7o<t2>(), 7o<t3>()) of TP(2-AT(So)) with tl=6t(62,63)(c54) and
t2--t3=c54. For the sake of convenience we have left out the configuration
c of S 0. An an exercise we compute type ([72, c~1])=inc(72) (type,(f1)) in detail:

inc(y2)(((q , q)(q, q), (q, q))) =(inc[(q, q)(q, q)], (inc [q], (qq, q)))
= (inc2 inco inc2 inco, (inc(y2)(q) inc(yo)(q), (qq, q)))

with inc~ = inc(y~)((q, q)) for i~ {0, 2}
=(~2 "Co 32 Zo, ((qq, q)(2, q), (qq, q)))

with z~=((qq, q)(2, q), (q~, q)) for i~{0, 2}.

For the computat ion of g(ct) we also precompute, for i~{0, 2}, inc(yi)((q, q))
=(inc[q] , (qi, q))=((qq, q)()., q), (qi, q)) and inc(y~)(q)=(q/, q).

Hence, for ie{0, 2}, [7i, ~2], [71, ~3]: ((qq, q)(2, q), (q~, q)) and [yi, c~4]: (q~, q).
Then g(c~) = ~2(t ~)(g(),o <t2> ()),

g(Yo<ta>()))=[72, c~](t2.2, to.2, t2.3, to, a)(t2.4, to,4) (to.#(), to.4()) with ti.~
=[y, , c5~] for ie{0, 2} andj~{2, 3, 4}.

Now we apply the instruction q5 =expand(y2<q~>(yo<q~>() , zz) to c~, where
q~ = push (Yz. t~, ~)(YL ~))- (The identity of So is dropped.) This yields the configura-
tion c'~ =72 <c53(6~)>(y0<c53(c5~)>(), Yo<CS#>()) �9 The instruction ~ is coded by ~'
= push (Y3., (Y x. t~, ~), Y2. ta. ~)) (Y4. ~. (Y L t~. ~), Y2, ta. ~) (), Y2. ~)) with z = inc (72) ((q, q))
=((qq, q)(2, q), (2, q)) and z' =inc(70)((q, q))=((qq, q)(2, q), (2, q)). If we apply q~'
to g(c0, then we obtain the configuration c'2=t'2(t'o, [y0, c54]()), where for

178 J. Engelfriet and H. Vogler

c1:

C2:

,,

c~-

l g

c~,:

Fig. 10. Coding of TP(2-AT(So)) by 3-AT(So)

i~{0, 2}, t'i= [~'i, t53]([~2, ~,](), [~'0, fi4]())- It is easy to compute that g(c't)=c'2.
In Fig. 10 the corresponding commutative diagram is shown. []

The previous two lemmata prove the inductive statement.

6.11. Lemma. For every n >= 1, (n + 1)-AT(S)= TP(n-AT(S)).
From this statement the equivalence of n-level applicative terms of S and

n-iterated tree-pushdown of S follows immediately.

6.12. Corollary. For every n>= 1, n-AT(S)- TP"(S).
Proof. The proof is by induction on n. For n = 1, the equivalence follows from
Lemma 6.5. Assume that n-AT(S)-TP"(S) holds. By monotonicity of TP
(Lemma 6.2) it follows that TP(n-AT(S))-Tpn+I(S). Since (n+I) -AT(S) -
TP(n-AT(S)) (Lemma 6.11), it follows that (n+ 1)-AT(S)-TP"+I(S). []

As a consequence of this storage type equivalence and the Justification Theo-
rem, we obtain the characterization of n-T(S) in terms of O-T(n-AT(S))-transduc-
ers.

6.13. Theorem. For every n>_ 1, n-T(S)=O-T(TP"(S)) and Dtn-T(S)=
D,O-T(TPn(S)).

Proof. By Theorem 5.13 and Corollary 6.6, for every n > I, n-T(S)= O-T(n-AT(S)).
By Corollary 6.12 and Theorem 3.16, for every n > l , n-T(S)=O-T(TP"(S)) is
proved. Since total determinism is preserved in the mentioned theorems, also
the second equation is obtained. []

High Level Tree Transducers 179

In Theorem 5.13 of I-EV] the equivalence of TP(S) and Pbe~(S) for arbitrary
S is proved. From this equivalence and the monotonicity of Pbex (Lemma 3.23),
the equivalence of n-iterated tree-pushdown of S and n-iterated bounded excur-
sion pushdown of S easily follows. The second statement of the next corollary
follows similarly from the monotonicity of P (Theorem 4.22 of I-EV]).

6.14. Corollary. For every n_>_ 1, TPn(S)-- P~ex(S). I f S contains an identity, then
TP n (S) = W (S).

Finally, we obtain our main general characterization result: the equivalence
of n-level S transducers and n-iterated pushdown S transducers.

6.15. Theorem. For every n>=l, n-T(S)=O-T(P~,~(S)) and D,n-T(S)=
DtO-T(P~,~(S)). I f S contains an identity, then "bex" can be dropped.

Proof. Follows immediately from Theorem 6.13, Corollary 6.14, and Theorem
3.16. []

Note that So has an identity. Thus, for S=So, we reobtain the result of
IDamGue2] that n-T=O-T(W), formulated in a different way (cf. the introduc-
tion). For the monadic case, we also reobtain the characterization of n-level
string grammars by 1-way pn automata [DamGoe]. This is explained further
in Sect. 8.

The present section is closed with an easy consequence of the previous theo-
rem: the Justification Theorem for n-level S transducers.

6.16. Theorem. Let Sl and $2 be storage types. For every n>O, if S 1 <$2, then
n-T(SI) ~- n-T(S2) and D t n-T(SO c_ D t n-T(S2).

Proof. Assume that St =<$2. Then, by monotonicity of Pb~x (Lemma 3.23), for
every n>_0, P~,r is proved by induction on n. By Theorem 3.16,
O-T(P~**(St)) ~_O-T(P~e,(S2)) follows, and n-T(Sl)c_ n-T(S2) is proved by Theorem
6.15. Since the mentioned theorems preserve determinism and totality, the second
statement of the present theorem is obtained. []

7. Characterization of High Level Tree Transducers

After having developed in the previous two sections the characterization of
n-T(S) by O-T(P~,ex(S)) for arbitrary storage S, we can now state the main result
of this paper concerning the nondeterministic case: the characterization of n-level
tree transducers by means of n-iterated pushdown tree transducers.

7.1. Theorem. For every n > 1, n-T(TR) = 0-T(P~ex(TR)).

Proof. Immediately from Theorem 6.15. []

Since we are mostly interested in the total deterministic case, we spend in
the rest of this section some more effort at obtaining a "cleaner" characterization
of D, n-T(TR) in the sense that the restriction on the iterated pushdown (namely
to be bounded excursion) can be dropped (cf. Theorem 7.12). Note that this
does not follow from Theorem 6.15, because TR does not have an identity.

The proof of this characterization involves a number of results of I-EV-J,
but also some new ones. In the following we derive (by way of discussion)
the proof-tree of Theorem 7.12 in a "top-down" manner. This motivates the

180 J. Engelfriet and H. Vogler

new results and thus helps the reader to understand the subsequent formal
"bot tom-up" treatment, in which the new results are proved and combined
with the needed results of [EV]. In particular, this procedure illucidates the
reason why we have to study the restriction of P(S) to be bounded excursion
in order to get rid of it.

For the proof of Theorem 7.12, we show the equality of Dt 0-T(Pcex(TR))
and DtO-T(P"(TR)) (cf. Lemma 7.11; for n= 1, cf. Lemma 5.15 of lEVI). To
obtain this equality, we first characterize D, 0-T(Pcex(TR)) by the n-fold composi-
tion of the total deterministic macro tree transducer (cf. Lemma 7.10), i.e., by
Drl-T(TR)", and then use the fact that the latter class coincides with
Dr 0-T(P"(TR)), which is proved in Theorem 8.12 of I-EV].

The characterization of D, 0-T(P~,x(TR)) by Dr 1-T(TR)" follows by straight-
forward induction from the statement: if S is closed under look-ahead, then
D,O-T(Pbr (cf. Lemma 7.9; see also Corollary 8.11
of [EV]), and from the fact that, for n > 1, P~,x(TR) is closed under look-ahead
(cf. Lemma 7.8). Since Lemma 7.9 is immediate from results of [EV], the only
thing we have to prove is Lemma 7.8.

The concept of look-ahead for storage types is introduced in [Eng5] and
is formalized as an operator on storage types, i.e., if S is a storage type, then
"S with look-ahead" is one too. This enriched storage type contains predicates,
so called look-ahead tests, by which properties of "successors"
m(f,)(...m(f2)(m(fO(c))...) (for some instructions ft , f2 , f , of S) of an S-
configuration c can be tested without changing c. We recall the formal definition;
cf. also Definition 6.5 of [EV].

7.2. Definition. Let S = (C, P, F, m, I, E) be a storage type. S with look-ahead,
denoted by SLA, is the storage type (C, P', F, m', I, E), where m' restricted
to P w F is equal to m, P ' = P w { (A , H) I H is a CF(S)-transducer and A is
a nonterminal of H} and for every c~ C, m'((A, H))(c)= true iff there is a wsZ*
such that A (c)==(H)=~* w, where Z is the terminal alphabet of H. []

A predicate like (A, H) of SLA is called a look-ahead test and H is called
a look-ahead transducer.

The notion "S is closed under look-ahead" means that S can handle its
look-ahead tests, or precisely, that SLA is equivalent to S, i.e., SLA--S (note
that S < SLA is trivial). Hence, continuing to enlarge the proof-tree of Theorem
7.12, we have to show that for every n>=l, P~,~(TR)LA--P~,~(TR) (cf. Lemma
7.8). For P rather than Pb~, the corresponding result has been shown in [EV]
and actually, the proof of Lemma 7.8 follows the same lines. It consists of
two parts. First, we prove that Pbr < Pb,x(SLA) (cf. Lemma 7.6) and second,
that Pb,x(TRL,0 is equivalent to Pbex(TR) (cf. Lemma 7.7). Then the "crucial
direction " of Lemma 7.8 is proved by induction on n by using these two
lemmata and the monotonicity of Pb,~ (cf. Lemma 3.23).

Now we have reached the leaves of the proof-tree of Theorem 7.12 (viz.
Lemma 7.6, Lemma 7.7, and Lemma 7.9) and we can move back to its root,
by first proving its leaves. We start with Lemma 7.6.

In the proof of Pb,~(S)LA<Pb,x(SLA) a comparison of dom(CF(Pb,~(S))) and
dom(CF(S)) is involved, because a look-ahead test (A, H), where H is a

High Level Tree Transducers 181

CF(Pb,x(S))-transducer, should be simulated by a Pb,x(SLA)-flowchart in which
look-ahead tests of the form (B, H ') are allowed, where H' is a CF(S)-transducer.
For our purpose it suffices to show that dom(CF(Pbc~(S)))~_dom(CF(S)),
although we could even prove equality.

7.3. Lemma. dom(CF(Pbcx(S)))__c_ dom(CF(S)).

Proof Since Pbc~(S)<=P(S) (Lemma 3.22), we obtain from the Justification Theo-
rem 3.16, dora (CF (Pb~ (S))) _ dora (CF (P (S))). Then the statement of this lemma
follows from Lemma 6.11 of lEVI, which shows: dom(CF(P(S)))
= dom(CF(S)). []

Rather than using the previous lemma immediately in the proof of Pb,x(S)LA
<Pb,x(SLA), we simplify this proof by allowing the look-ahead transducers of
the simulating storage type to be CF(Pb~ (S))-transducers (instead of only CF (S)-
transducers). This gives rise to a modification of the look-ahead on storage
types (cf. also Definition 6.12 of lEVI, in which the indexed look-ahead of
S is defined).

7.4. Definition. Let SLA=(C, P, F, m, I, E). The bounded indexed look-ahead
of S, denoted by Sbi-LA is the storage type (C, P', F, m', I, E), where m' restricted
to P u F is equal to m, P ' = P u { (A , y, v, mx, H)[H is a CF(Pb~(S))-trans-
ducer, A is a nonterminal of H, y~F, rex>O, and O<v<mx}, and for
every c~C, m((A,v,v, mx, H))(c)=true iff there is a ws2~* such that
A ((~, c, v, mx))==(H)=~* w, where 2; is the terminal alphabet of H. []

Allowing bounded indexed look-ahead tests instead of usual look-ahead
tests does not increase the power of the storage type. In the proof of this fact,
Lemma 7.3 plays the essential role. We note that the proof is a modification
of the proof of Lemma 6.13 of lEVI.

7.5. Lemma. Sbi_ LA ~ c SLA"

Proof Since Sbi-L~ is defined as an "enrichment" of SEA , we only have to prove
Sbi_LA=~cSLA. Let U be a finite restriction of Sbi-LA and let m I and m 2 be the
meaning functions of Sbi_LA and of SEA , respectively. We show that U~deSLA
with the identity on C' = (F x C x nat x nat) + as representation function h. Clear-
ly, we only have to code a bounded indexed look-ahead test (A1, ~, v, mx,
H I) of U by a boolean expression b over predicates of SLA. In the sequel
we construct one look-ahead test of SLA which already serves this purpose.

Let H1=(N, e 1, Z 1, --, RI) and let Cl={c~Clml ((A 1, y, v, mx, H1))(c)
=true}. We transform C1 into the domain of a CF(Pbe,(S'))-transducer H'~ by
defining S'=(C, P, F, m, C, {idc}) and H'I=(N[, e'l, T,1, "1, R'I), where idc
is the identity on C, N~=N1u{*ili~[v]} and the *i are new nontermi-
nals, e'l = 2u~C.(7, idc(u), 0, rex), and R' 1 = R 1 w {*i ~ *i+ 1 (s tay) l ie[v-l]} u {, ,
-*A 1 (stay)}. Since (by definition) H'~ starts with the excursion counter equal
to 0, the extra rules .~-~ ,~+l (s tay) are used to increase this counter upto
v, before the derivation of H1 is started. Now it is easy to see that C1
= dom(~(H't)).

Hence, by Lemma 7.3, there is a CF(S')-transducer H~ such that
dom(z(H'l))=dom(T(H'~)). Let H~=(N2, idc, N2, A2, Rz). But obviously,

182 J. Engelfriet and H. Vogler

dom(z(H'2))={ceClthere is a wsZ* such that Az(c)==(H2)=~*w} where H2
is the CF(S)-transducer (N2, - , Z2, --, R2). Since {c~Clthere is a w~S,~ such
that A2(c)==(n2)=~,*w}={csC[m2((A2, n2))(c)=true}, it is clear that
(A 2, H2) is the desired boolean expression b, or in other words, that the look-
ahead test <A 2, H2) codes the bounded indexed look-ahead test (A t, ~, v,
mx, Hi). []

The proof of ebex(S)LA~_~ebex(SLA) is very similar to the proof of P(S)L A
< P(SLA) (Theorem 6.14 of [EV]). We briefly recall the idea of the construction.
Actually, since SLA = Sbi-LA and since Pbe~ is monotonic, we only have to show
how Pbe~(S)LA is simulated by Pbc~(Sbi-LA)- This amounts to simulate a look-ahead
test (A , H) on Pbe~(S), where H is a CF(Pbe~(S))-transducer, by a
Pbc~(Sbi_LA)-flowchart CO for predicates. For this purpose a computation of H,
which starts from A (c ') for some Pb~(S)-configuration c'=(~,, c, v, mx)fl, is split
into two parts. In the first part, only those steps of the computation are consid-
ered, which do not test the rest-pushdown ft. Roughly speaking, this part is
simulated by the bounded indexed look-ahead test (A, ~, v, rex, H') on S, where
H' is just a small modification of H. In the second part, the computations
on the rest-pushdown 8 are collected; they start from Ai (8) for some nontermin-
al A~ of H. The flowchart o9 has to check now, whether Ai(8) can derive a
terminal word. This information is captured in the so-called termination behav-
iour of 8, which is written in the topmost pushdown square of the representation
of c'. The termination behaviour of a pushdown 8 is a sequence of bits which
tells for every nonterminal Ai of H whether (A , H) is true on fl or not. Clearly,
the termination behaviour of a pushdown 8 can be computed simultaneously
with the growth of 8 in an inductive way.

7.6. Lemma. Pbex(S)LA ~ Pbex(SLA).

Proof. By Lemma 7.5 and monotonicity of Phi, (Lemma 3.23), it suffices to
prove that Pbe~(S)L^~Pbe~(Sbi_LA). Let U be a finite restriction of Pb~(S)LA with
encoding el =2u~l.(~, e(u), O, mx) for some ~ F , encoding e of S, and mx>O.

Since, by Definition 7.2, the excursion bound of a CF(Pb~(S))-transducer
H is irrelevant for the result of a look-ahead test (A, H), where A is a nontermin-
al of H, we can assume that e~ is the encoding of every look-ahead transducer
occurring in the look-ahead tests of U. Since U contains only finitely many
look-ahead tests, we can take the disjoint union of the involved look-ahead
transducers in the usual way, and thus we can assume that all the look-ahead
tests of U share the same look-ahead transducer H.

In order to replace a Iook-ahead test (A, H) of U by the correct bounded
indexed look-ahead test (cf. the discussion before this lemma), the value of the
excursion counter of the topmost pushdown square of the currrent
Pbe~(S)-configuration has to be known. We store this information, for every
pushdown square, in the corresponding pushdown symbol. Whenever the "real"
excursion counter is incremented, also its "copy" is updated.

Now the constructions of the representation function and of the simulating
flowcharts proceed in the same way as in Theorem 6.14 of I-EV]. Since, roughly
speaking, every instruction is simulated by an instruction of the same type,

High Level Tree Transducers 183

the property of U of being "bounded excursion" is preserved by this construc-
tion. The formal definitions of the representation function and of the simulating
flowcharts is left as an exercise to the reader. []

The second leaf of the above mentioned proof-tree of Theorem 7.12 is the
equivalence of Pbe~(TRLA) and Pbe~(TR). Of course, it suffices to show that
Pbex(TRLA) can be simulated by Pb~x(TR). Hence, every predicate test((A, H)),
where H is a CF(TR)-transducer, must be simulated by a Pbe,(TR)-flowchart
co for predicates. What does this intuitively mean? In the particular case that
S=TR, the definition of SLA (Definition 7.2) is equivalent to the definition of
regular look-ahead I-Eng2] (cf. remark after Definition 6.5 of I-EV]). Hence,
a look-ahead test of TRLA checks, whether a tree is in a regular tree language
or not. Now recall from Definition 3.9 that co is a deterministic
REG(Pb~x(TR)id)-transducer. Since REG(P(TR))-transducers are very close to
the checking-tree pushdown transducers of [EngRozSlu] (cf. the discussion of
P(TR) in Sect. 3.3 of lEVI), we could call co a "checking-tree bounded excursion
pushdown transducer". Then Pb,,(TRLA)< Pb~x(TR) can be reformulated as fol-
lows: deterministic checking-tree bounded excursion pushdown transducers
are closed under regular look-ahead. Actually, for the unbounded version of
these transducers, this closure property has been shown in Theorem 4.7 of
[EngRozSlu], and in fact, as a first approximation, we can take over the proof.
However, the bound on the number of excursions in the pushdown requires
a special treatment. In the sequel we explain our construction informally.

For every predicate test((A, H)) (with look-ahead test (A, H)) of a finite
restriction U of Pb~(TRLA), the set R of trees on which (A, H) is true is a
regular tree language. Thus, we can associate with every look-ahead test (A, H)
a total deterministic bottom-up finite tree automaton B=(Q, S, 6, F) such that
L(B)=R. Then the predicate test((A,H)) can be simulated by the
Pb~(TR)-flowchart cot~st, where cotest imitates the automaton B on a (sub)tree
by a depth-first tree-walk on t: first cotest marks the topmost pushdown square
s and runs down into the tree. Then it simulates B in a bottom-up fashion
until the state q=6(t) is computed. If q~F, then teR, i.e., (A, H) is true on
t. Up to now, this is a repetition of the construction used in [EngRozSlu].
But now we have to deal with the problem that the excursion counter of the
pushdown square s is increased by co,~t, whereas the application of test((A, H))
does not increase the excursion counter. We solve this problem as follows (cf.
the proof of the monotonicity of Pbe, in Lemma 3.23): whenever a new square
s with some (sub)tree t is pushed, the result of every look-ahead test on t is
computed and put into square s. (Note that, since we consider a finite restriction
U of Pbex(TRLA), there are only finitely many predicates of the form test ((A, H)).)
Then the simulation of test((A, H)) becomes even simpler: the result of this
predicate can be tested from the pushdown symbol of s.

7.7. Lemma. Pb,~(TRLA) = Pbe~(TR).

Proof. It suffices to prove Pb~(TRLA)<Pbe~(TR). Let U be a finite restriction
of Pbex(TRLA) with encoding e 1 = 2 t ~ T a. (~, e (t), O, rex) and e: To ~ T~ is the iden-
tity on 2~ for some ranked alphabet 2~. Let Ff be the finite set of pushdown

184 J. Engelfriet and H. Vogler

symbols occurring in U. Let (A1, Ht}, .. . , (A,, H ,) be the look-ahead tests
involved in predicates of U with r > 0 . If r = 0 , then the simulation is trivial.
Assume that r > l . For every iE[r], the set R~={teT~lm((A~,H~})(t)=true}
equals dom (~(H~)), where m is the meaning function of TRLA and the CF(TR)-
transducer H~ is the same as H~, except that A~ is the initial nonterminal. Since
the domain of a CF(TR)-transducer, which is the domain of a top-down tree
transducer (cf. Fact 4.6 and Corollary 3.20 of IEV]), is a regular tree language
[-Rou, Tha, Engl] , there is a total deterministic bottom-up tree automaton B~
= (Qi, ~, tS~, F~) such that L(B~)= R~.

Now it is easy to construct a P(TR)-flowchart (/)test (fo r instructions) such
that for every ~,~F and t~T~, oper (ogtest)(0,, t))=([~, ~r], t) where ~r~{0, 1}" and
for every iel-r]: ~(0=1 iff t~Ri; a~test computes for every subtree t' of t the
state sequence (ql , q,) in which for every i~[r], q~=~Si(t'). We leave the formal
construction to the reader.

It is obvious that ogt,st can also be considered as a Pbcx(TR)-flowchart, because
the number of excursions taken from every pushdown square is bounded by
mxtest=2-max27+l, where max27 is the maximal rank of a symbol occurring
in 2~: computing the state sequence (q~ qr) of a direct subtree t" of any
subtree t' of t and putting it into the square at the root of t' takes one excursion
each (the latter one is a trivial stay (tS) excursion). Since there are at most max S
(direct) subtrees of t', this motivates the term 2.maxZ. This bound holds for
every square except the one which is associated with the root of t. For entering
the sequence of look-ahead test results ~ into this square another (trivial) excur-
sion has to be made. Hence, oper (O)test)((y , t, 0, mxt~t)) =([y, ~], t, v', mxtcst), where
v ' = 2 - r a n k (a) + 1 and a is the root of t.

This discussion induces that we have to take mx '=mx+mx ,~ , as bound
for the simulating storage type Pb~(TR). But now it is possible that the extra
excursions mXtest--V' are misused in the following sense: the simulation of, e.g.,
a push instruction is possible, whereas the application of the push instruction
itself to the represented configuration is undefined, because the excursion counter
has reached already mx. In order to avoid this misuse, we make n = r e x ' - v '
dummy excursions via a sequence of stay instructions. This is formalized in
the Pbe~(TR)-flowchart co+ which tests the rank of the root of the tree, that
is contained in the topmost pushdown square, and then applies the appropriate
number of stay instructions.

For the definition of the representation function h: C' ~ C' with C' = (F x C
x nat x nat) + we define the set F = {[7, ~r] [7~FI and ~r~ {0, 1}r}. We can assume

w.l.o.g, that /~ ~ E Then h is defined as follows.

(i) For every yeF,,j, te Tz,~ C'=(y, t, O, mx ')edom (h) and h(c')=(y, t, O, mx)
(ii) For every [y, ~]~F, t ~ T x such that, for every iE[r], ~(i)=1 iff tERi;

for every v with 0 < v < mx, and fie dom (h), c' = ([~, ~r], t, v + m xt~t, mx') fl ~ dom (h)
and h (c') = (~, t, v, mx) h (fl).

Actually, the situation expressed in case (i) occurs only, because the result
of the encoding e 2, which simulates e~, does not contain the appropriate look-
ahead sequence, but it has to be an element of the domain of h (cf. Requirement
1.1.2 of Definition 3.13). This means that, whenever a predicate or an instruction
~b is simulated on the result of the encoding e2, then first, the sequence of

High Level Tree Transducers 185

look-ahead tests is computed and second, ~b is simulated. In order to recognize
this situation we abbreviate the boolean expression top=y~ or . . .o r top=yk ,
where Fy = {?~ Yk}, by "initial".

In the following we prove Requirements 1-3. We describe the desired flow-
charts as PASCAL-like programs rather than defining them formally. Also,
we consider (/)test and co+ as blocks of statements rather than as rules of a
R E G (Pbex (TR))-transducer.

Requirement I. The encoding e2=2t~Ta.(~, e(t), 0, rex') satisfies the require-
ments.

Requirement 2. Every predicate ~b of U is simulated by the following
Pb~(TR)-flowchart for predicates.

begin
if initial then begin (./9test; co+ end;
if b~ then t rue(id) else fa lse(id)

end

where the boolean expression b~ depends on qS.

~b=(top=6): b~ is the disjunction of all predicates t o p = [6, 0] for ~7~ {0, 1}'.
~b = test (root = a): b~ = test (roo t= tr).
~b=test((A~, H~)): b~ is the disjunction of all predicates t o p = l y , i~] such that

the i-th component of ~I is 1.

Requirement 3. Every instruction ~b of U is simulated by the following
Pb~ (TR)-flowchart.

begin if initial then begin (/)test; 03+ end;
co,~

end

where the block co, of statements depends on ~b.

~b = push (6, seli): begin push (6, sel/); co,~s,; co + end.
~b = pop: begin pop end
cb = stay(~5): begin for every [2,, ~]~/~:

if t o p = [y, i7] then stay([6, ff])
end

q~ = stay: begin stay end []

Now we can show the closure of P~ex(TR) under look-ahead.

7.8. Lemma. For every n > 1, P~ex(TR)LA = P~cx(TR).

Proof Since P~e,(TR)<P~c~(TR)L A is trivial, it suffices to prove P~e~(TR)LA
< P ~ (T R) . The proof is by induction on n. For n = l , the statement follows
immediately from Lemma 7.6, Lemma 7.7, and the transitivity of < (Theorem
4.20 of [EV]). Assume that the statement holds for n, i.e., (*) P~e~(TR)LA
< Pb"ex (TR). Then pr 1 (TR)LA = Pbex (P~ex (TR))LA (by definition)

186 J. Engelfriet and H. Vogler

~Pbex(P~ex(TR)LA) (by Lemma 7.6)<Pbe~(P~,,(TR)) (by (.) and monotonicity of
Pbex, cf. Lemma 3.23). []

The last leaf of the proof-tree of Theorem 7.12 is a slight modification of
Corollary 8.11 of [EV].

7.9. Lemma. I f SLA ~- S, then Dt O-T(Pb~ (S)) = D, 0-T(S) o D, 1-T(TR).

Proof. Assume that SLA=S. Then by Corollary 8.11 of IEV]: D, RT(P(S))
=Dr RT(S)oD, CFT(TR). Since D, RT(P(S))=D, RT(Pbcx(S)) (Lemma 5.15 of
lEVI) and since, for every storage type S', D, RT(S') and D, CFT(S') are
D,O-T(S') and Dtl-T(S'), respectively (Fact 4.6), the statement of the lemma
follows immediately. []

After having proved the lemmas at the leaves, we now can move up in
the proof-tree following the discussion at the beginning of this chapter in the
opposite direction. From the previous lemma and the fact that P~(TR) is closed
under look-ahead, it follows that D, 0 - T(P~(TR)) is characterized by the n-fold
composition of total deterministic macro tree transducers.

7.10. Lemma. For every n >= 1, D, 0-T(P~e~(TR))= Dt I-T(TR) ".

Proof. The case n = l is proved in Theorem 6.15 (for S=TR). Assume that
the statement holds for n. Then D,O-T(P~+X(TR))=D,O-T(Pbe~(P~e~(TR))) (by
definition)=DtO-T(P~,e~(TR))oDtl-T(TR) (by Lemma 7.8 and Lemma 7.9)
=Dr 1-T(TR)%D,1-T(TR) (by induction hypothesis)=D,1-T(TR) ~+ 1. []

Since also the class D, RT(P~(TR)) is characterized by the n-fold composition
of macro tree transducers (Theorem 8.12 of IEV]), we now know that the bound
on the number of excursions in D, 0-T(P~e~(TR))-transducers can be dropped.

7.11. Lemma. For every n> 1, D, O-T(P~,e~(TR))=D, 0-T(Pn(TR)).

Proof. By Theorem 8.12 of [EV], DtRT(P"(TR))=D, CFT(TR) n. By Fact 4.6
and Lemma 7.10 we obtain the desired result. []

Finally we have reached the root of the proof-tree. Since we are mainly
interested in the characterization of total deterministic n-T(TR)-transducers, the
next theorem presents the main result of this paper.

7.12. Theorem. For every n > 1, Dt n-T(TR)= D, 0-T(Pn(TR)).

Proof. Theorem 6.15 and Lemma 7.11. []

8. Some Consequences

Here we want to point out some more properties of n-level tree transducers,
derivable from results of this paper.

A rather surprising consequence is the fact that, in the total deterministic
case, n-level tree transducers are equivalent to the n-fold composition of macro

High Level Tree Transducers 187

tree transducers, i.e., of 1-1evel tree transducers. In the nondeterministic case
we only obtain inclusion. Recall that for a class K of relations, K" denotes
{R~ oR 2 R,,IRi~K for all it[n]}.

8.1. Theorem. For every n > 1,

(a) Dt n-T(TR)= D, 1-T(TR) n.
(b) n-T(TR) ___ 1-T(TR) ~.

Proof. By Theorem 7.12, Dtn-T(TR)=DtO-T(P"(TR)). Then (a) follows from
Theorem 8.12 of lEVI, which says that Dt RT(P'(TR))=Dt CFT(TR) n, and Fact
4.6. To prove (b) we first have to know that RT(P~c,(TR))_qCFT(TR) n. This
can be proved inductively using Theorem 5.14 of lEVI and Corollary 3.27
of lEVI. Then (b) follows from Theorem 7.1 and Fact 4.6. []

As an immediate consequence of 8.1(a) and the fact that total deterministic
macro tree transducers capture the translational power of attribute grammars
AG (viewed as tree transducers, I-EngFiI, ChiMar, CouFra]), which was shown
in I'Eng4], we obtain the equivalence of the concepts of high level tree transduc-
ers and the composition closure of attribute grammars, i.e., U{D,n'T(TR)I
n_-__0} = u {AGnl n__>_ 1}.

The characterization of n-level tree transducers by n-iterated pushdown tree
transducers (Theorem 7.1 and Theorem 7.12) is an OI-like result in the sense
that the involved derivation relation is defined in the outside-in mode. In the
total deterministic case, there is also an IO-like decomposition result for n-level
tree transducers. This, on first sight, surprising statement is based on the fact
that for total deterministic macro tree transducers there is no difference between
the classes of translations induced by the three derivation modes outside-in,
inside-out, and unrestricted (Theorem 4.1 of [EngVogI]). Then the IO-like
decomposition result for D,n-T(TR) follows from Theorem 8.1(a) and the
decomposition of total deterministic macro tree transducers (D, CFT(TR)
=Dt RT(TR)oYIELD, e.g., Theorem 4.8 of [EngVogl]; cf. also [Eng4,
CouFra]), which is an IO-like result. Note that YIELD is a class of substitution
functions, which is defined in [Mai, EngSch, Dam] in an algebraical way and
in [Eng3] in a more syntactical way. Recall that for two classes of relations
KI and K2, K 1 oK 2 denotes {RloR2[RI~KI and R2~K2}.

8.2. Theorem. For every n >= O, Dt n- T(TR) = Dt 0- T(TR) o YIELD n.

Proof. Immediate from Theorem 8.1(a), and Corollary 4.13 of [EngVogl]. []

Thus, as the culmination of the work in [EngVogl], [EV], and this paper,
we have obtained the equivalence of the following five concepts (all total deter-
ministic):

(i) high-level tree transducers
(2) iterated pushdown tree transducers
(3) compositions of macro tree transducers
(4) top-down tree transducers composed with YIELDs
(5) compositions of attribute grammars.

188 J. Engelfriet and H. Vogler

The combination of OI- and IO-like properties of D, n-T(S), for arbitrary
S, is expressed in the following result which shows the connection between
the pushdown operator and YIELD.

8.3. Theorem. For every n>O, if SLA=S, then Dt(n+I)-T(S)=Dtn-T(P(S))
= Dt n-T(S) o YIELD.

Proof Let SLA=--S. First, it can be proved by induction that Pf, ex(S) is closed
under look-ahead, i.e., that Pf, ex(S)LA--P~,e~(S) by using the assumption SLA--S,
Lemma 7.6, and the monotonicity of Pbe~ (Lemma 3.23). In a similar way the
closure of P"(S) under look-ahead can be proved by using the assumption,
Theorem 6.14 of [EV] and the monotonicity of P (Theorem 4.22 of [EV]).
Second, it can be proved again by induction that D,O-T(Pf,~(S))=
D, O-T(P"(S)) by using the two related decompositions of Lemma 7.9 and Corol-
lary 8.11 of [EV]. Together with Theorem 6.15 we obtain (.) D,n-T(S)=
D, O-T(P"(S)). Then
D, (n + 1)- T(S) = Dt n- T(P (S)) = D, O- T(P" + t (S)) (by (*))

=D, O-T(P"(S))oD, I-T(TR) (by Corollary 8.11 of lEVI and Fact 4.6)
= D, O-T(P"(S))oD, 0-T(TR)oYIELD (by Theorem 4.8 of [EngVogl])
=DtO-T(P"(S))oYIELD (because, for every S', D,O-T(S') is closed under

right composition with Dt 0-T(TR); this fact has literally the same proof
as Lemma 8.9 of [EV])

=Dtn-T(S)oYIELD (by (*)). []

There are two ways of defining n-level string languages: either by monadic
n-level tree grammars or by the yield of (n-1)-level tree grammars. The fact
that these two concepts are equivalent, with one level difference, was shown
in Theorem 7.17 of [Dam]. Similarly, we can consider two ways of defining
n-level S-to-string transductions, i.e., classes of relations in C x 27* for some
alphabet 27. We compare n-level S transducers, which have a "monadic" terminal
alphabet, with the "yield" of (n-l)-level S transducers. In order to make this
precise, we need some terminology.

8.4. Definition.

(i) A monadic D(Q)-set A is a D(Q)-set such that there is a designated
symbol # in A of type (2, q) and every other symbol in A has type (q, q).

(ii) Let 27 be an alphabet. The monadic D (Q)-set associated with 27, denoted
by m(27), is defined by m(S) tq'q)= 27.

(iii) For an alphabet 27, define the bijection fiat: Tm{xj~Z* by fiat(# ())=2
and for every o-~Z and t~Tm{z), flat(a(t))=a.flat(t). For L~_T,,~x), fiat(L)
={flat(t)lt~L}. []

The mapping fiat turns monadic trees in a horizontal direction by transform-
ing them into strings. As we did for yield (in Sect. 2.1), we extend fiat to relations
R ~_ A x T,,{z3 (and classes of relations), where A is an arbitrary set, by defining
flat (R)= {(a, fiat (t))[(a, t)~R}.

8.5. Definition. Let n>0. An n-level S transducer M =(N, e, A, Ain, R) is monadic
if A is a monadic D(Q)-set. []

High Level Tree Transducers 189

The class of translations induced by monadic n-level S transducers is denoted
by n-Tmon(S). Now we can formalize the comparison between the two possible
methods of defining n-level S-to-string transductions and show that they are
equivalent. At the same time we provide a sequential machine characterization
for these transductions,

8.6. Theorem. For every n > O,

(a) fiat ((n + 1)-Tmon(S))= yield (n-Z(S))
(b) fiat (n-Tmn,(S))= REG (P~cx (S));

if S contains an identity, then "bex" can be dropped.

Proof. Restricting Theorem 6.15 to a monadic terminal alphabet, we obtain
n-Tmo~(S)=O-Tmo~(P~,c,(S)). In general, for every storage type S',
flat(O-Tmo,(S'))=REG(S'). In fact, the fight-hand sides of corresponding rules
of a monadic 0-level S' transducer M and a regular S' transducer M' are related
via the bijection ~: T,, t~)(N(F))-- .Z*wZ*N(F), where re(E) and Z are the
terminal alphabets of M and M', respectively, and N is the set of nonterminals
of M and M'. V is defined by v (A (f)) = A (f) , 2,(~())=2, and for treZ and
t e T,,(_~), y (a(t)) = a- ~ (t). This shows that fiat (n- Tmo~ (S)) = REG (P ~ (S)), which
proves (b). By Theorem 6.3 of [EV-I, REG(P(,~I(S))=CF(P~(S)), and clearly,
CF(P~(S)) = yield (RT(P~(S))) (where we assume that there is a specific terminal
symbol of rank 0 that is viewed as the empty string when the yield is taken).
Then, by Fact 4.6 and Theorem 6.15, R E G (P ~ t (S))=yield(n-T(S)). From this
and statement (b) of this theorem, (a) follows. []

Note that, by taking the trivial storage type and ranges of transductions,
Theorem 8.6(a) reproves Theorem 7.17 of [Dam].

In [DamGoe] the class of n-level string languages is defined as
range (flat(n-Tmon(So))) and it is shown there that this class is characterized by
n-iterated pushdown automata. Clearly, this is a special case of Theorem 8.6(b).

Of course, Theorem 8.6 holds in particular for n-level tree-to-string transduc-
ers (S=TR). In the next theorem we state the corresponding result for total
deterministic n-level tree-to-string transducers.

8.7. Theorem. For every n > O,

(a) flat (Dr (n + 1)- T~o n (TR)) = yield (D, n- T(TR))
(b) flat (Dr n-Tmo, (TR)) = Dt REG (P~ (TR)).

Proof. Taking the monadic case of Theorem 7.12, (b) follows as in the proof
of the previous theorem. By Theorem 8.12 of I-EV] (and Fact 4.6)
O~ REG (P*+ 1 (TR))= yield (O~ 1-T(TR)~), and (a) now follows from (b) and Theo-
rem 8.1 (a). []

In the next theorem we show that high level tree transducers form a strict
hierarchy.

8.8. Theorem. The families of translation classes {n-T(TR)In>O} and
{Dtn-T(TR)In>O } are strict hierarchies. There is even a translation in
Dt(n + 1)-T(TR) which is not in n-T(TR).

190 J, Engelfriet and H. Vogler

Proof. The theorem follows from Lemma 4.15 of [EngVogl], which says that
there is a translation in DzCFT(TR) n+l, which is not in CFT(TR) n, and from
Theorem 8.1. []

Another consequence of Theorem 8.1 is the closure of the class of regular
tree languages under the inverse of high level tree transductions.

8.9. Corollary. For every n>O, RT is closed under n-T(TR) -I. The domain of
every n-level tree transducer is a regular tree language.

Proof. By Theorem 8.1(b), and by Theorem 7.4 of [EngVogl]. []

In [Eng2] the concept of top-down tree transducer with regular look-ahead
is introduced to overcome the inability of these transducers to inspect subtrees
before deleting them. It is shown in [EngVogl] that macro tree transducers
have this ability, i.e., they are closed under regular look-ahead (cf. Theorem
6.15 of [EngVogl]). Here we show that, for every n> 1, n-level tree transducers
are closed under regular look-ahead. Recall from the discussion after Definition
7.2 that TRLA formalizes the concept of regular look-ahead in terms of storage
types.

8.10. Theorem. Let n>=l. Then n -T (TRLA)=n-T(TR) and D,n-T(TRL^)
= D, n- T(TR).

Proof. The equalities follow immediately from Theorem 6.15, Lemma 7.7, the
monotonicity of Pbex (Lemma 3.23), and the Justification Theorem (Theorem
3.16). []

As a consequence of the closure under look-ahead, it was shown in [Eng-
Vogl] that the class of ranges of total deterministic macro tree transducers
coincides with D, CFT(TR) applied to RT, i .e . , with the class
U{z(L)lzeD, CFT(TR) and LeRT} (Theorem 7.1 of [EngVogl]). Now we can
show the corresponding result for total deterministic n-level tree transducers.

8.11. Corollary. For every n > O, range (Dr n- T(TR)) = (Dr n- T(TR)) (RT).

Proof. The direction range (D,n-T(TR))~_(D,n-T(RT))(RT) is obvious. To prove
the other direction, one only has to observe that a total deterministic n-level
tree transducer can check by look-ahead whether the input tree is in the specified
regular tree language or not. Then the statement of this corollary follows from
the closure of D,n-T(TR) under regular look-ahead (Theorem 8.10), cf. the proof
of Theorem 7.1 of [EngVogl]. []

We note that in Theorem 7.10 of [Dam] it was proved that
(D t n-T(TR))(RT) is an infinite hierarchy.

Finally, we want to consider the class U~I-T(TR)" of compositions of
macro tree transducers, and in particular the corresponding class
U~ yield (range (1- T(TR)")) of" tree transformation languages". This class deserves
further investigation: it is a large class, containing many well-known hierarchies
of classes of languages. In fact, by Theorem 8.1, it contains the high-level tree
transformation languages, i.e., U, yield(range(n-T(TR))). It contains the OI-hier-
archy languages, i.e., U~yield(range(n-T(So))), because range(n-T(So))c_

High Level Tree Transducers 191

range (n-T(TR)) as can be easily shown (see Corollary 3.12 of [EngVogl] for
n=l) . It also contains the IO-hierarchy languages U, yield(YIELD"(RT))
[EngSch, Dam]: by Theorem 8.2 YIELD"(RT)~ (D,n-T(TR))(RT), and by Cor-
ollary 8.11 the latter class equals range (Dr n-T(TR)). Since every top-down tree
transducer is a macro tree transducer, it also contains the languages
U, yield(range(0-T(TR)")) of the top-down tree transducer hierarchy [Eng7].
And finally, it contains the ETOL-control hierarchy languages [Eng71, because,
as shown in [Vog2], this hierarchy is inside the OI-hierarchy. On the other
hand, the class U, yield(range(l-T(TR)')) is a proper subclass of the class of
recursive languages. Recursiveness follows from Corollary 8.9 (cf. Theorem 7.5
of [EngVogl]), and the fact that, for every ranked alphabet Z, there is a macro
tree transducer M such that, for every teTr, fiat (z(M)(t))=yield (t), cf. Sect. C
of [Eng4]. Proper inclusion follows from the obvious fact that this class is
closed under arbitrary homomorphisms.

Acknowledgments. We wish to point out that our study of high-level tree transducers would hardly
have been possible without the many discussions we had with Werner Damm. He influenced our
understanding of the subject in a substantial way. Moreover, we thank one of the referees for many
detailed comments and suggestions to the first version of this paper.

References

rAhoUll 1]

[AhoUll2]

[Bra]
l-ChiMar]

[CouFra]

[Dam]
I-DamGoe]

[DamGuel]

I-DamGue2]

[Engl]

[Eng2]

[Eng3]

[Eng4]

[Eng5]

Aho, A.V., Ullman, J.D.: Translations on a context-free grammar. Inf. Control 19,
439-475 (1971)
Aho, A.V., UIIman, J.D.: The theory of parsing, translation, and compiling. Vol.
1, 2. Englewood Cliffs, N.J.: Prentice Hall 1973
Brainerd, W.S.: Tree generating regular systems. Inform. Control 14, 217-231 (1969)
Chirica, L.M., Martin, D.E.: An order algebraic definition of Knuthian semantics.
Math. Syst. Theory 13, 1-27 (1979)
Courcelle, B., Franchi-Zannettacci, P.: Attribute grammars and recursive program
schemes I, II. Theor. Comput. Sci. 17, 163--191 (1982); Theor. Comput. Sci. 17, 235-257
(1982)
Damm, W.: The IO- and Ol-hierarchies. Theor. Comput. Sci. 20, 95-206 (1982)
Damm, W., Goerdt, A.: An automata-theoretical characterization of the Ol-hierarchy.
Inf. Control 71, 1-32 (1986)
Datum, W., Guessarian, I.: Combining T and Level n. In: Proceedings of the 9th
Mathematical Foundations of Computer Sciences 1981. (Lect. Notes Comput. Sci.,
Vol. 118, p. 262-270). Berlin Heidelberg New York: Springer 1981
Damm, W., Guessarian, I.: Implementation techniques for recursive tree transducers
on higher-order data types. Report 83-16, Laboratoire Informatique Theorique et
Programmation, Universit~ Paris 7 (1983)
Engelfriet, J.: Bottom-up and top-down tree transformations - a comparison. Math.
Syst. Theory 9, 198-231 (1975)
Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Syst. Theory
10, 289-303 (1977)
Engelfriet, J.: Some open questions and recent results on tree transducers and tree
languages. In: Book, R.V. (ed.) Formal language theory; perspectives and open prob-
lems. New York: Academic Press 1980
Engelfriet, J.: Tree transducers and syntax-directed semantics. TW-Memorandum
Nr. 363 (1981), Twente University of Technology; also: Proceedings of the 7th CAAP,
march 1982, Lille, pp. 82-107
Engelfriet, J.: Recursive automata. (1982, unpublished notes)

192 J. Engelfriet and H. Vogler

[Eng6] Engelfriet, J.: Iterated pushdown automata and complexity classes. Proceedings of
the 15th STOC, april 1983, Boston, pp. 365-373. New York: ACM 1983

I'Eng7] Engelfriet, J.: Three hierarchies of transducers. Math. Syst. Theory 15, 95-125 (1982)
[EngFil] Engelfriet, J., File G.: The formal power of one-visit attribute grammars. Acta lnforma-

tiea 16, 275-302 (1981)
rEngRozSch] Engelfriet, J., Rozenberg, G., Slutzki, G.: Tree transducers, L-systems, and two-way

machines. J. Comput. Syst. Sci. 20, 150--202 (1980)
EEngSch] Engelfriet, J., Schmidt, E.M.: IO and OI. J. Comput. Syst. Sci. 15, 328-353 (1977);

J. Comput. Sci. 16, 67-99 (1978)
[EngVogl] Engelfriet, J., Vogler, H.: Macro tree transducers. J. Comput. Syst. Sci. 31, 71-146

(1985)
[EngVog2] Engelfriet, J., Vogler, H.: Regular characterizations of macro tree transducers. In:

Courcelle B. (ed.) 9th Colloquium on Trees in Algebra and Programming, march
1984, Bordeaux, France. Cambridge University Press, pp. 103-117

[EngVog3]=[EV] Engelfriet, J., Vogler, H.: Pushdown machines for the macro tree transducer.
Theor. Comput. Sci. 42, 251-369 (1986)

[EngVog4] Engelfriet, J., Vogler, H.: Characterization of high level tree transducers. In: Brauer,
W. (ed.) Proceedings of 12th International Colloquium on Automata, Languages,
and Programming 1985, Nafplion, Greece. (Lect. Notes Comput. Sci., Vol. 199,
pp. 171-178) Berlin Heidelberg New York: Springer 1985
Fischer, M.J., Grammars with macro-like productions; Ph.D. Thesis, Harvard Univer-
sity, USA, 1968
Geeseg, F., Steinby, M.: Tree automata. Budapest: Akademiai Kiado 1984
Greibach, S.A.: Full AFLs and nested iterated substitution. Inf. Control 16, 7-35
(1970)
Guessarian, I.: Pushdown tree automata. Math. Syst. Theory 16, 237-263 (1983)
Hopcroft, J.E., Ullman, J.D.: Formal languages and their relation to automata. Add-
ison-Wesley Publ. Comp. 1969
Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theory 2, 127-145
(1968); Correction: Math. Syst. Theory 5, 95-96 (1971)
Maibaum, T.S.E.: A generalized approach to formal languages. J. Comput. Syst. Sci.
8, 409-439 (1974)
Maslov, A.N.: Multi-level stack automata. Probl. Inf. Transm. 12, 38-43 (I976)
Martin, D.F., Vere, S.A.: On syntax-directed transductions and tree transducers. 2nd
Annual ACM Symposium on Theory of Computation, May 1970
Rounds, W.C.: Mappings and grammars on trees. Math. Syst. Theory 4, 257-287
(1970)
Scott, D.: Some definitional suggestions for automata theory. J. Comput. Syst. Sci.
1, 187-212 (1967)
Thatcher, J.W.:: Generalized 2 sequential machine maps. J. Comput. Syst. Sci. 4, 339-
367 (1970)
Vogler, H.: Berechnungsmodelle syntaxgesteuerter Obersetzungen. Diplomarbeit,
RWTH Aachen, April 1981
Vogler, H.: The OI-hierarchy is closed under control. Inf. Computat. 1988 (to appear)
Vogler, H.: Tree transducers and pushdown machines. Ph.D. thesis, Twente University
of Technology, The Netherlands, March 1986
Leeuwen, J. van: Notes on preset pushdown automata. In: Rozenberg, G., Satomaa,
A. (eds.) L Systems. (Lect. Notes Comput. Sci., Vol. 15, pp. 177-188) Berlin Heidelberg
New York: Springer 1974
Watt, D.A.: Contextual constraints. In: Lorho, B. (ed.) Methods and tools for compiler
construction, an advanced course, pp. 45-80. Cambridge: Cambridge University Press
1984

I-Fis]

[GecSte]
I'Gre]

EGue]
I-HopUll]

rKnu]

I-Mai]

[Mas]
[MarVer]

[Rou]

[Sco]

[Thai

[Vogl]

[Vog2]
[Vog3]

[vLe]

[Wat]

Received August 15, 1985 / May 10, 1988

