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Summary .  n-level tree t r ansduce r s  (n_>_0) c o m b i n e  the  features  of  n-level tree 
g r a m m a r s  and  of  t o p - d o w n  tree t r ansduce r s  in the  sense tha t  the de r iva t ions  
of  the tree g r a m m a r s  are  syn tax -d i r ec t ed  by inpu t  trees. F o r  runn ing  n, 
the sequence of  n-level tree t r ansduce r s  s tar ts  wi th  t o p - d o w n  tree t r ansduce r s  
(n = 0) and  m a c r o  tree t r ansduce r s  (n = 1). In  this  p a p e r  the class of  t r ee - to - t ree  
t r ans la t ions  c o m p u t e d  by n-level tree t r ansduce r s  is cha rac te r i zed  by  n- i tera t -  
ed p u s h d o w n  tree t ransducers .  Such a t r a n sduc e r  can  be cons ide red  as a 
regu la r  tree g r a m m a r  of  which  the de r iva t ions  are  syn tax -d i r ec t ed  by n- 
i t e ra ted  p u s h d o w n s  of  t rees;  an  n- i te ra ted  p u s h d o w n  of  trees is a p u s h d o w n  
of  p u s h d o w n s  o f , . .  of  p u s h d o w n s  (n t imes) of  trees. In  par t i cu la r ,  we invest i-  
gate  the to ta l  de te rmin is t ic  case, which  is re levant  for syn tax -d i r ec t ed  seman t -  
ics of  p r o g r a m m i n g  languages .  

1. Introduction 

In  this p a p e r  n-level tree transducers are  i n t r o d u c e d  as a na tu r a l  ex tens ion  of  
t o p - d o w n  tree t r ansducers  [ R o u ,  Tha ,  E n g l ]  ( n = 0 )  and  m a c r o  tree t r ansduce r s  
[Eng3,  C o u F r a ,  E n g V o g l ]  ( n =  1). The  unde r ly ing  idea  of  this  gene ra l i za t i on  
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is the same as in the extension of regular tree grammars [Bra, GeeSte] (n=0) 
and context-free tree grammars [EngSch, Fis] (n= 1) to n-level tree grammars 
[Dam]. Actually, an n-level tree transducer can be considered as an n-level 
tree grammar of which the derivations are syntax-directed. Since top-down tree 
transducers are equivalent to the generalized syntax-directed translation schemes 
of [AhoUlll,2] (cf. [MarVer, Vogl]) and macro tree transducers generalize 
top-down tree transducers in the sense that the handling of context is possible, 
the high-level tree transducers also provide a metalanguage for describing parts 
of the semantics of programming languages. Using them, even context informa- 
tion of functional type (such as environments) can be handled, whereas for 
macro tree transducers the context information has to be of some basic type. 
The reader is refered to [Eng4] for a detailed discussion of tree transducers 
as formal models of metalanguages for syntax-directed semantics. 

From the program schematic point of view an n-level tree transducer can 
be considered as a system of reeursive function procedures that compute trans- 
formations on trees. Each function procedure has one "syntactic" parameter 
and it delivers a result of functional type up to level n (i.e., a basic element 
or a function of functions of ... of functions on basic elements). The name 
"syntactic" parameter originates from the use of (high-level) tree transducers 
as a metalanguage for describing syntax-directed semantics; its value is a (pointer 
to a) subtree of the input tree of the transducer. As an example, such a function 
procedure A may be of type T~--*((Tn--* Ta)x (Tn x Ta~Tn)~(Ta~Td)), where T~ 
and Tn denote the sets of trees representing the basic values of syntactic objects 
and of semantic objects, respectively. Since the result of A is of level 2 (it is 
a function of functions), A may be part of an n-level tree transducer for any 
n >2. By designating a main function procedure of type Tx~ Tn (delivering a 
result of level 0), an n-level tree transducer computes a translation of trees. 
Thus, the initial value of the syntactic parameter of the main function procedure 
is the input tree of the transducer. Because of their relevance to syntax-directed 
semantics, our main interest is in the total deterministic n-level tree transducer, 
which computes a total function T ~  Tn. However, we also study the nondeter- 
ministic case, because it is easier to treat; then a relation in Tz x Tn is computed. 
For the interested reader, an example of a (total deterministic) two-level tree 
transducer, relevant to the denotational semantics of programming languages, 
is presented at the end of the introduction. 

The main result of this paper is the equivalence of the high-level tree trans- 
ducers and the iterated pushdown tree transducers, in the sense that they compute 
the same class of translations. Such iterated pushdown tree transducers can 
be considered as systems of recursive function procedures that have one parame- 
ter consisting of a pushdown-like datastructure, and that deliver a result of 
basic type (level 0). More precisely, the parameter ranges over pushdowns of 
pushdowns of . . .  of pushdowns of (pointers to) the input tree of the transducer, 
and, hence, it is also called a syntactic parameter. Using this characterization 
result we also show that high-level tree transducers can compute the composition 
of any number of translations defined by attribute grammars [Knu]. (We note 
that it is shown in [CouFra] that macro tree transducers can simulate attribute 
grammars, viewed as tree transducers [EngFil, ChiMar, CouFra].) 
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Since in [EngVog3] the macro tree transducers are characterized by push- 
down tree transducers (in which the syntactic parameter ranges over pushdowns 
of pointers to the input tree), the present paper should be considered as a 
direct continuation of the work in [EngVog3]. Our main result is inspired by 
the characterization of n-level tree grammars by n-iterated pushdown tree 
automata [DamGue2], and of n-level string grammars by n-iterated pushdown 
automata [DamGoe] (and we also give alternative proofs of these results). We 
use the same methods and tools as in [EngVog3], but many ideas and concepts 
in this paper are based on those in [Dam, DamGoe, Gue, DamGuel,  
DamGue2]. 

For the description of both high-level tree transducers and iterated pushdown 
tree transducers, we use the unifying concept of "grammar with storage", intro- 
duced in ['Eng5, EngVog3]. A storage consists of configurations, predicates that 
test the configurations, and instructions that transform configurations. Roughly 
speaking, the type of grammar used determines the type of the results of the 
function procedures, whereas the type of storage used determines the type of 
their syntactic parameter. In this formalism of grammars with storage, n-level 
tree transducers are n-level tree grammars with a storage of type "tree", denoted 
by TR, and the n-iterated pushdown tree transducers are 0-level (or: regular) 
tree grammars with a storage of type "n-iterated pushdown of trees", denoted 
by P"(TR) (where P is an operator on storage types called the pushdown opera- 
tor). The configurations of TR are trees; for every such configuration, the label 
of the root can be tested and a direct subtree can be selected. The configurations 
of P~(TR) are pushdowns of pushdowns of. . .  of pushdowns (n times) of (pointers 
to) trees, cf. [Gre, Mas, Eng6, DamGoe, EngVog3]. 

The main advantage of formulating both high-level tree transducers and 
iterated pushdown tree transducers in the framework of grammars with storage, 
is the fact that we can prove our characterization result inductively (rather than 
having to provide an immediate construction). To show this we sketch the main 
lines of the proof. In the first step, every n-level tree transducer (which is an 
n-level tree grammar with storage of type TR) is transformed into an equivalent 
0-level tree grammar with a storage of type "n-level applicative term of trees", 
denoted by n-AT(TR). Since n-AT(TR) exactly reflects the rewriting mechanism 
inherent in n-level tree grammars, this first step is intuitively straightforward 
(cf. [DamGuel, 2]). For the second, major step we use the concept of simulation 
of storage types [Eng6, EngVog3] and the so-called "Justification Theorem" 
(cf. Theorem 4.18 of [EngVog3]). This theorem says that, whenever two storage 
types S~ and $2 are equivalent (for short: S~=-$2) in the sense that S~ can 
simulate $2 and vice versa, then the class of translations computed by grammars 
with storage of type S~ is equal to the class of translations computed by gram- 
mars (of the same type) with storage of type $2. Thus, to prove the characteriza- 
tion it would suffice to show that n-AT(TR) and P~(TR) are equivalent storage 
types. However, for technical reasons, we need a variation Pbex of P, where 
bex stands for "bounded excursion", and we show that n-AT(S)=P~,ex(S) for 
an arbitrary storage of type S. This equivalence is proved inductively: for every 
storage of type S, (n+ 1)-AT(S)=-Pb,x(n-AT(S)). The latter equivalence may be 
seen as the kernel of our proof: one functional level is replaced by one level 
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of pushdowns. Finally, we show that the 0-level tree grammars with storage 
of type P~ex(TR) compute the same class of translations as 0-level tree grammars 
with storage of type P*(TR). 

This paper is organized in 8 sections of which the second contains preliminar- 
ies. In Sects. 3.1 and 3.2 the two concepts of "grammar with storage" and "stor- 
age type simulation" are recalled from [EngVog3], and in Sect. 3.3 the notion 
of coding is introduced as a special case of storage type simulation. In Sect. 3.4 
the pushdown operators P and Pbex are defined, and it is shown that Pbe~ preserves 
the equivalence of storage types. The main devices of this paper are formalized 
in Sect. 4 (for arbitrary storage of type S): n-level S transducers and n-iterated 
pushdown S transducers. In Sect. 5 we demonstrate that the rewriting mechanism 
of n-level S transducers can be completely captured by the storage of type 
"n-level applicative term of S", i.e., n-AT(S), and in Sect. 6 the equivalence of 
n-AT(S) and P~,~(S) is shown. Section 7 contains the main result of the paper: 
the equivalence of n-level tree transducers and n-iterated pushdown tree trans- 
ducers. Finally, in Sect. 8 some consequences of the results proved in this paper 
are pointed out, e.g., the characterization of n-level tree transducers by the n-fold 
composition of macro tree transducers, and hence by the composition of attri- 
bute grammars. 

Conceptually, the paper may be divided into three parts. The first part 
(Sect. 3) concerns concepts of general automata theory. The reader who is already 
familiar with these concepts, can skip this part on first reading. The second 
part (Sect. 4-Sect. 6) contains the definitions of high-level S transducers and 
of iterated (bounded excursion) pushdown S transducers, respectively, and the 
proof of their equivalence. The third part (Sect. 7) is dedicated to the special 
case of high-level tree transducers: it contains the proof of their equivalence 
with iterated pushdown tree transducers. 

An extended abstract of this paper can be found in [EngVog4]. Some of 
the proofs are presented in more detail in Part 4 of EVog3]. 

Example. In this example we informally discuss a 2-level tree transducer M 
that performs type checking for programs of a small block-structured language, 
called CHECK. For a CHECK program, M checks whether the types in assign- 
ment statements are correct. It is well known that type checking cannot be 
captured in the derivations of context-free grammars; in the literature, usually 
attribute grammars are used to perform this analysis, cf., e.g., IWat]. 

Of course, since tree transducers are schematic devices, which transform 
trees into trees, we can at most expect that, for the abstract syntax tree of 
a CHECK-program P, M generates a tree tp such that the interpretation of 
te in an appropriate semantic domain yields the answer of checking P. However, 
to exclude the trivial solution, in which the whole checking is shifted into the 
semantic domain, we try to work as much as possible on the syntactic level. 

The syntax of CHECK is given by the context-free grammar GCHECK, which 
is specified by the following productions. 

r~: P~program D; S end 
r2: D~var l:T 
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r3: D ~ D ; v a r  I : T  
r4: S - - } I = I  

rs: S--*beginD; S end 
r6: S---}S;S 
r 7 : I--}a 
r8: I--*b 
r 9: T ~ i n t  
rio: T~bool 

where P, D, S, I, and T are nonterminals, and the other symbols are terminal. 
An example program P of CHECK is the following. 

program var b: bool; var a: int; 
begin var b: int; b:=a end; 
b..=a end 

Let T~ denote the set of abstract syntax trees of CHECK-programs. The abstract 
syntax tree t of P is shown in Fig. I. 

The first assignment b = a  of P, which occurs in an inner block, is correct, 
whereas the second statement gives a type conflict. Now we present the 2-level 
tree transducer M that performs type checking of CHECK-programs. M is 
described in the terminology of program schemes as a system of recursive func- 
tion procedures over the following three semantic domains: T Y P E =  {int, bool, 
undef}, BOOL = {true, false}, and IDENT = {a, b}. 

Function procedures of M: 

Check-prog: 
Envir: 
Inenv: 

Check: 
Id: 

Ty: 

Tx~BOOL 
T~--*((IDENT~TYPE)~(IDENT ~TYPE)) 
~--,(IDENT--,TYPE) 
Tz~((IDENT--,TYPE)~BOOL) 
Tz~IDENT 
Tz--,TYPE 

P--program O~ S end 

J 
O~O~ var I:T 

/ \ \  
D--vat I : T l~a T~int 

/ \ 
l--b T-- bool 

S--S;S 

/ 
s - ~ g ~  D~ S ~_dd 
/ \ 

D--var I:T S- - l := l  

/ \  / \  
I ~ b  T ~ i n t  I ~ b  I - - a  

Fig. L Abstract syntax tree t of a CHECK-program P 

S - - I : = I  

/ 
I ~ b  

\ 
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For example, the function procedure Check has a syntactic parameter of type 
"abstract syntax tree" and delivers a result of functional level 2 and of type 
( I D E N T ~ T Y P E ) ~ B O O L ;  a value of this result computes a boolean for each 
"environment", which is a function giving types to identifiers. Check-prog is 
the main function procedure of this system. In the definition of a function proce- 
dure, basic function symbols (of A) may be involved that are interpreted as 
operations over the semantic domains. We use the following basic function 
symbols: equal, and, cond, int, bool, undef, a, and b of which the interpretation 
should be obvious (e.g., cond is interpreted as function of type BOOL x TYPE 
• T Y P E ~ T Y P E  and cond(b, q, tz)=if b then tt else t2). We note that the con- 

stants int, bool, and undef denote themselves. 

Definition of function procedures: 
We use the formal (semantic) parameters Ym and YEN of type IDENT and 
I D E N T ~ T Y P E ,  respectively. 

Check-prog [program D; S end] = Check IS] (Envir [D] (Inenv [D])), 
Envir [var I: 7"] YEN YID = 

cond (equal (Id [11, Ym), Ty [ TJ, YEN (Y~D)), 
Envir [D; vat I: T] YEN YtD = 

cond (equal (Id [I], YlD), Ty [ 7"], Envir [D] YEN YID), 
Inenv [var I: T-J YID = undef, 
Inenv [D; var I: T] Ylo = undef, 
Check l i t  :=121 Y~N = equal (yen (Id lit]), yEN(Id [I2])), 
Check [begin D; S end] YeN = Check IS] (Envir [D] YEN), 
Check [$1 ; $2] YEN = and (Check IS 1] YEN, Check [$2] YEN), 
Id [a] = a, and Id [b] = b, 
Ty lint] = int, and Ty [bool] = bool. 

Note that, in the usual way, the expression Envir[...]yENyiD denotes 
Envir(...)(yEN)(ylo) (and similarly for Check[. . .]  YEN). It should be clear that 
these function definitions are close to the usual denotational semantics notation. 
In Sect. 4 part of this example is given in our notation of tree transducers. 

Finally, we show parts of the computation that our system M performs 
on the abstract syntax tree t of P. We use the following abbreviations: t = rt (decl ~, 
r 6 (stat 1, stat2)), decll = ra (rz (r8, rt 0),/'7, r9), stat t = r5 (decl2, stat3), decl2 = r2 (rs,  r9), 
star 2 = r4(ra, rT), and stat3--stat2. 

First we type check the second statement stat2 of P (using the abbreviations 
eo and et for Inenv[declt] and for Envir[decl~] Co, respectively): 

Check [stat2] (Envir [decll] eo) 
= equal (ca (b), el (a)) 
= equal (cond (equal (a, b), int, cond (equal(b, b), bool, unde0), 

cond (equal (a, a), int, cond (equal(b, a), bool, undef))). 

Interpreting this tree yields false, which indicates the type conflict in stat2. 
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and 

equal equal 

cond cond cond cond 

/ \ \  / \ \  / / \  / \ \  
equal int concl equal int cond equal int cond equal int cond 
I \ I\ / \ \  / \ \  ,, o ,  / \ \  : / \ \  

equal int cond equal int cond equal bool undef equal bool undef 
, ,  \ \  / \ \  , ,  ,, 

equal bool undef equal booI undef 
/ \  / \  

b b b a 

Fig. 2. Output tree t e computed by checking P 

In a similar way the first statement statt of P is checked: 

Check [stat 1] e ~ = equal (cond (equal (b, b), int, 
cond (equal(a, b), int, cond(equal(b, b), bool, under))), 
cond(equal(b, a), int, cond(equal(a, a), int, 
cond(equal(b, a), bool, undef)))), and this tree is interpreted by true. 

Thus Check-prog[t] = Check[rr(stat~, stat2)] e~-- and (Check[stat~] e~, 
Check[stat2] e~)=te where the tree tp is shown in Fig. 2. This means that M 
transforms t into te. Clearly, tp is interpreted by false, and hence the 2-level 
tree transducer M detects a type conflict. [] 

2. Preliminaries 

For most unexplained notions we refer the reader to [EngVog3]. That paper 
will from now on be cited as [EV]. However, for the convenience of the reader, 
we recall in Sect. 2.1 some of the most frequently used notions from [EV]. 
In Sect. 2.2 the concepts of derived types [Mai] and of applicative terms are 
defined formally. 

2.1 Basic Notations 

The set {0, 1, 2 . . . .  } of non-negative integers is denoted by nat. For every k>0,  
[k] is the set {1, ..., k} ~_nat. The empty string is denoted by 2. 

Let R, Rx, and R2 be three relations. The inverse, the domain, and the 
range of R are denoted by R-1, dam(R), and range (R), respectively. The compo- 
sition of R1 and R2, denoted by RIoR2, is the set {(x, y)l(x, z)~R1 and (z, y)~Rz 
for some z}, and the n-fold composition of R is denoted by R". The transitive 
closure and the reflexive, transitive closure Of R, are denoted by R § and R*, 
respectively. The notations are extended in an obvious way to classes of relations. 

Very often, the concept of substitution of objects into strings or trees is 
used. Let v be a string (or tree), let U and U' be arbitrary sets, and let 0 
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o b 

Fig. 3. Picture of the trees (a) tt =tr(tr(=(), b), a) and (b) t2 = tr(tr(ct0, fl0), =()) 

be a mapping from U to the power set of U'. Then v[u*--O(u); ueU]  denotes 
the set of strings (or trees) obtained from v by replacing every occurrence of 
u in v by an element of O(u), where different occurrences may be replaced by 
different elements of O(u). Almost in every situation, O(u) is a singleton, which 
is specified by its element. 

A ranked set is a pair (A, rank),  where d is a (possibly infinite) set of symbols 
and rank: A ~ nat is a mapping. If A is finite, it is called a ranked alphabet. 
If rank is understood from the context, then (A, rank)  is also denoted by A. 
For  every n>0 ,  the set of symbols of A with rank n is denoted by A,. For  
a ranked set (A, rank)  and a (usual) set A, the set of trees over A indexed 
by A, denoted by T,~(A), is tlae smallest set T which satisfies the following two 
properties. (i) A_~T. (ii) If trod with rank(tr)=k, and tl . . . . .  tk~T, then 
tr(tx . . . .  , tk)ET. The set of trees over A, denoted by Ta, is Tn(~). Figure 3 shows 
how we draw (indexed) trees in examples. Let A be a ranked alphabet containing 
the symbols tr, ct, and fl of rank 2, 0, and 0, respectively; let A = {a, b}. Figure 
3a is a picture of the indexed tree tt  =tr(tr(~(), b), a) in Td(A), and Fig. 3b shows 
the tree t2 =a(tr(~(), fl()), ~()) in T,~. 

The yield of a tree t in Tn, denoted by yield (t), is the concatenation of 
its leaves from the left to the right. Formally, (i) for tr~,d0, yield (a ( ) )=a  and 
(ii) for tr~ Ak with k > 1 and tl . . . . .  tk ~ T~, yield (tr(q . . . .  , tk))= yield (t t)... yield (t~), 
where, for strings w 1 . . . .  , wk, their concatenation is denoted by wt ...Wk. The 
mapping yield is extended to relations R c A x Ta, where A is an arbitrary set, 
by defining yield (R)= {(s, w)l(s, t )~R and yield (t)=w}. This notation can be 
extended to classes of relations in an obvious way. Throughout this paper 12 
denotes a countably infinite ranked set such that for every n > 0, 12, is infinite. 

We assume the reader to be familiar with regular grammars and context-free 
grammars, regular tree grammars, and context-free tree grammars (for formal 
definitions see [HopUll],  [GecSte], and [EngSch], respectively). For  context-free 
tree grammars we briefly recall the basic notions. A context-free tree grammar 
G is a tuple (N, A, Ain, R), where N and A are (disjoint) ranked alphabets of 
nonterminals and terminals, respectively, Ain,  T N is the initial term, and R is 
a finite set of rules of the form A(Yl . . . .  , yk)~  ~, where k>O, AeNk,  ~TN~a(Yk), 
and Yk = {Yx . . . . .  Yk}. Note that we allow G to have an initial term rather than 
only an initial nonterminal. However, this does not increase the generating 
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power of context-free tree grammars. The set of sentential forms of G, denoted 
by SF(G), is the set TNv,t. The (01-) derivation relation of G, denoted by ==(G)~, 
is a binary relation on SF(G) defined as follows. For ~t, ~2eSF(G), r 
iff there is a rule A(y~, ..., y k ) ~  in R for some k>O, AeNk, and (eTN~,n(Yk), 
there is a ~eTN~,n({z}) in which z occurs exactly once and z does not occur 
in a subtree of the form B((1,...,(~) of ~ (with BEN,), and there are 
~'1 . . . . .  r such that ~l=~[z,,--A(~'~, . . . ,~ ) ]  and ~ 2 = r 1 6 2  
ie[k]]].  The language generated by G, denoted by L(G), is the set 
{teT, tlAi,==(G)=~*t}. A regular tree grammar is a context-free tree grammar 
such that every nonterminal has rank 0. 

The classes of regular (or right-linear) grammars, context-free grammars, 
regular tree grammars, and context-free tree grammars are denoted by REG, 
CF, RT, and CFT, respectively. In general, for X~{REG, CF, RT, CFT}, we 
use the same notations for specifying X-grammars as for a context-free tree 
grammar, i.e., an X-grammar is specified by a tuple (N, A, A~,, R), where N 
and A are disjoint alphabets of nonterminals and terminals, respectively, A~, 
is the initial term, and R is a finite set of rules. Note that, depending on X, 
the sets N and A may or may not be ranked alphabets. For X~{REG, CF, 
RT}, as usual, the initial term is a single nonterminal. The set of sentential 
forms, the derivation relation, and the generated language of G are denoted 
by SF(G), ==(G)=~, and L(G), respectively. The class of languages, which is gener- 
ated by X-grammars, is also denoted by X. We also consider X-grammars 
with infinite sets of nonterminals and rules. The notions of sentential form, 
derivation relation, and generated language are defined in exactly the same 
way as for ordinary, finite X-grammars. 

Every regular tree language over a ranked alphabet A can be accepted by 
a total deterministic bottom-up tree automaton A=(P, A, 6, F), where P is a set 
of states, F__ P is the set of final states, and 6 is a family {6,1aeA } of mappings 
such that, for every ~ e Ak with k__> 0, 6,: pk ._. p. The function 6: T n ~ P is defined 
in the usual way recursively on the structure of the tree in Ta, and L(A) 
= {re Talr(t)~F}. From the accepting point of view, regular tree languages are 
also called recognizable tree languages and the corresponding class RT of tree 
languages is also denoted by RECOG. 

2.2 Applicative Terms 

Here we formally define the concepts of derived types and applicative terms. 
Most of the definitions are taken over from [Dam]. 

Let Q be a set of types. Then, a string w~Q* of length k is viewed as a 
mapping w: Ik] ~ Q .  Thus, w(i) is the i-th letter ofw. A Q-set is a pair (V, type), 
where V is a set and type: V ~ Q  is a mapping. For every qeQ, V ~ 
={yeVItype(y)=q}. For every weQ* of length k, we define V w 
={(Yl . . . .  ,?k)lyieV w") for every leek]}, and thus V~={()}. For two Q-sets 
(V1, typel)  and (V2, type2), we write VI~_V2 iff V ~  V~ for every qeQ; and 
if V 1 and V2 are disjoint, then V1 u 1:2 denotes the Q-set (V1 u V 2, type), where 
for every y~ Vi with ie{1, 2}, type (?) = typei(y). 
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If there is no confusion the Q-set (V, type) will also be denoted by V and 
the mapping "type" will be understood. The fact that an element y~V has 
type q, i.e., type (y)= q, is abbreviated by y: q. 

For a set V of symbols and an arbitrary set 4, V ( ~ )  denotes the set 
{y(q~)ly~ V, ~b~q~}. If (V, type) is a Q-set, then ( V ( ~ ) ,  type') is also a Q-set, 
where for every y(dp)eV(qr~), type'(y(~b))=type(7). The mapping type' is also 
denoted by type. The same formalism is used, if V is a ranked set instead of 
a Q-set. 

The concept of derived types allows to denote the type of functions and 
also of high level functionals. For every set Q of types, we define the set 
D(Q)=Q*x Q. Then the set of derived types over Q, denoted by D*(Q), is the 
set U{O"(Q)ln>O}, where D~ and for every n>O, D"+t(Q)=D(D"(Q)). 
D§ denotes the set U {D"(Q)ln> 1}. 

The level of a derived type TeD"(Q) with n~0,  denoted by level(T), is n. 
For any D*(Q)-set (V, type), the level of y~V, denoted by level(y), is 
level (type (7)). For n > 0, the set {y ~ V [level(y) = n} is denoted by V ="; similarly 
we use the denotation V -~". 

We note that every derived type T~D"(Q) with n > 0  can be uniquely written 
as r=(~n . . . .  (a2, (al, q))...) with ~i~(D i- I(Q)). for every 1 <i<n and q~Q. 

Applicative terms are of central importance in this paper. They represent 
the symbolic application of objects of derived types to arguments of appropriate 
type. Let V be a D*(Q)-set. The D*(Q)-set of applicative terms over V, denoted 
by AT(V), is the smallest D*(Q)-set AT which satisfies (i) and (ii). 

(i) V_AT.  
(ii) Let ~D"(Q)* of length k with n, k>0.  For every j~[k], let ~f iAT ~~ 

Let v~D"(Q) and let ~0~AT (~'v). Then ~o(~t . . . .  , ~)~AT' .  
It is easy to see from (i) and (ii) that every applicative term ~ A T ( V )  has 

a unique decomposition ~=Y~,. . .~l with y~V, r>=0, and each ~'~ is a tuple of 
applicative terms. The element y is called the top of ~ and is denoted by top(l). 
If ~ A T ( V )  v for some v~D"(Q), then 7~V ~ for some T=(ar . . . .  (al, v)...) with 
ai~D,+,-l(Q).,  and for every it[r], ~'~AT(V) "*. 

From now on let Q = {q}. We illustrate the notions concerning applicative 
terms by an example. 

Example. Let 7: ((q, q)(2, q), (qq, q)), a: ((q, q), (2, q)), v: (2, (q, q)), 6: (q, q), ~: (2, q), 
and r :  q be elements of a D*(Q)-set V. Clearly, 7, a, and v have level 2, 6 and 

have level 1, and fl has level 0. By part (i) of the definition of applicative 
terms, 6~AT(V) ~q'*~. Since fleAT(V) *, it follows from part (ii) that fi(fl)~AT(V) ~. 
In the same way it can be checked that ~=y(6, a(6))(a(), vO(fl))~AT(V) ~, where 
0 is the empty list of parameters. The unique decomposition of ~ is Y~'2~ 
where (2=(6,  0-(6)) and ~'~ =(a(), v0(fl)); thus top(~)=y. []  

We consider every D(Q)-set (V, type) as a ranked set (V, rank): for 7~V, 
if type (y)= (qk, q) with k_>_ 0, then rank (y)= k. Hence, for a D (Q)-set V and a 
Q-set W, AT(Vw W) ~ is the set of trees over V indexed by W, i.e., AT(Vw W) * 
= Tv(W). In particular AT(V)~= Tv. Actually, this connection between applica- 
tive terms and trees can be generalized in a very natural way. Let n >0  and 
let V be a D*(Q)-set. Then every applicative term over V of level n can be 
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represented as an indexed tree: the labels of its nodes are applicative terms 
over V each of level n +  1, and it is indexed with symbols of V each of level 
n. This point of view is formalized as follows. 

Definition. Let n > 0  and let V be a D*(Q)-set. The ranked set associated with 
(V, n) is (AT(V) ="+l, rank)  and, if ~eAT(V) ="+1 with ~: (~, v) and the length 
of cc is k > 0, then rank (~) = k. [] 

Lemma. Let n>O and let V be a D*(Q)-set. Then AT(V)="=Tv,(V="), where 
~ =  AT(V)=,+ 1, the ranked set associated with (V, n). 

Proof Follows immediately from the definition of applicative terms. [] 

The indexed tree, which corresponds to an applicative term ~ in the sense 
of the previous lemma, is called the tree-form of ~ (cf. [DamGue2]). As an 
example, we describe the tree-form of the applicative term 

=y(6, o-(~))(~(), v()(fl)) of level 0, of the previous example. The tree-form of 
consists of a root of rank 2 labelled by ~1 =7(6, a(6)), and two direct subtrees. 

The left subtree only consists of a leaf labelled by ~2 = ~, and the right subtree 
consists of a root labelled by ~ 3 = v 0  and a leaf labelled by fJ (note that fl 
is an element of the " index" set V=~ The tree-form of ~ is shown in Fig. 4a. 

Of course, also the applicative terms ~x, ~2, and ~3 (of level 1) have a tree- 
form. Hence, ~ can be drawn as an indexed tree of indexed trees over V (cf. 
Fig. 4b; the number of circles surrounding an applicative term indicates its 
level!). In all subsequent examples we draw applicative terms in this " i terated" 
tree-form, i.e., also sub-applicative terms are drawn in tree-form. We note that, 
if V only contains symbols of level n, then the tree-form of an applicative term 
over V of level 0 is a tree of trees o f . . .  of trees (n times) of symbols of V. 

3. Grammars with Storage, Simulation of Storage Types, 
and Pushdown Operators 

This section recalls from [EVJ the two main tools which we use to prove the 
characterization of n-level tree transducers: grammars with storage (Sect. 3.1) 
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and storage type simulation (Sect. 3.2). We refer the reader for a broad discussion 
of these concepts to Sect. 3 and Sect. 4 of [EV]. In Sect. 3.3, we introduce 
the concept of coding of storage types as a special case of simulation. Finally, 
in Sect. 3.4, we recall from [EV] the definition of the pushdown operator, define 
a modification of it (called "bounded excursion"), and prove that this modified 
operator preserves the equivalence of storage types. 

3.1 Grammars with Storage 

The idea of the concept "grammars with storage" goes back to a suggestion 
of l-Sco] in which he advocates the strict separation of the concepts of program 
and storage type. In Scott's sense a program is a flowchart which can test 
and transform the configurations of a storage by means of predicates and instruc- 
tions, respectively. In [Eng5] this concept is generalized by allowing context-free 
grammars as program, and in [EngVog2, EV] macro grammars and context-free 
tree grammars serve this purpose. There the concept of"grammars with storage" 
is heavily exploited in order to achieve a pushdown tree transducer characteriza- 
tion for the macro tree transducer. 

3.1. Definition. A storage type S is a tuple (C, P, F, m, I, E), where C is a non- 
empty set of (S-)configurations, P and F are sets of (S-)predicate- and (S-)instruc- 
tion symbols, respectively, m interprets every peP as a mapping m(p): C--* {true, 
false} and every f s F  as a partial function re(f): C--*C. Finally, I is a set of 
input elements and E is a set of encodings, where every encoding is a partial 
function e: I ~  C. [] 

In the rest of this paper S denotes the storage type (C, P, F, m, I, E) /f 
not specified otherwise. In the usual way m is extended to the set BE(P) of 
boolean expressions over P, where true and false are the boolean constants. 
We use "predicate" and "instruction" as shorthands for "predicate symbol" 
and "instruction symbol", respectively, and we say that S contains an identity 
if there is an instruction f e F  such that re(f) is the identity on C. 

The tree storage type is of particular importance in this paper. It has trees 
as configurations and captures in its predicates and instructions the possibility 
of testing the label of the root of a tree and of selecting a direct subtree of 
a tree. Note that f2 is the infinite ranked set mentioned in Sect. 2.1. 

3.2. Definition. The tree storage type TR is the sforage type (C, P, F, m, I, 
E), where C=T~, P={root=tr l t rE~},  F={seli l i>l},  and for every t 
=6(tl . . . . .  tk) in C with 6E(2 of rank k > 0  and tl, ..., tk~Ta, m(root=a)( t)= 
(6=tr), m(seli)(t)=t i if i<k, and undefined otherwise, I=C,  and E =  {ele is the 
identity on T~ for some finite subset 27 of f2}. [] 

A grammar with storage computes a translation from the set of input ele- 
ments of the storage type to the set of terminal trees or strings of the grammar. 
Hence, we call such a device an X(S)-transducer, where X is the class of gram- 
mars used and S is the storage type. In the rest of this section, the modifier 
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X ranges over {REG, CF, RT, CFT}. However, after having recalled in Sect. 4 
the definition of n-level tree grammars, we use Definitions 3.3-3.5 also for X = n- 
T, where n-T denotes the class of n-level tree grammars. 

3.3. Definition. An X(S)-transducer M is a tuple (N, e, A, A~,, R), where 

- N, A, and Ain are alphabets of nonterminals, terminals, and the initial term, 
respectively, as defined for X-grammars 

- e~E is the encoding of M 
- R is a finite set of rules; each rule is of the form O-o if b then (, where 

O ~  is a rule of a usual X-grammar, b~BE(P), and ( can be obtained 
from r by replacing every occurrence of a nonterminal B by B ( f )  for some 
f~F, i.e., ~ [ 'B*- -B(F) ;B~N] .  

An X(S)-transducer is deterministic if for every c~C and every two different 
rules O ~ i f  bt then (1 and O---,if b2 then (2, m(bt)(c)=false or m(b2)(c) 
= false. 12] 

If r: O ---, ifb then ~ is a rule of an X(S)-transducer M and A is the nonterminal 
in O, then r is an (A, b)-rule of M, b is the test of r, and ~ is the right-hand 
side term of r. If b = true, then we abbreviate r by O ~ (. The construct O ~ if 
b then (~ else (2 abbreviates the two rules O ~ i f  b then ~1 and O - - * i f  not  

b then (2- 
The translation computed by an X(S)-transducer is defined via the notion 

of associated grammar. 

3.4. Definition. Let M = ( N ,  e, A, Ai,, R) be an X(S)-transducer. The X-grammar 
G(M)=(N', A, A, R') associated with M is defined by N'=N(C) ,  A is any 
element of N, and R' is obtained as follows. 

If O--*if b then ~ is in R, then for every c~C such that m(b)(c)=true and 
such that every instruction occurring in ~ is defined on e, the rule O ( c ) ~  (' 
is in R', where O(c)=O[A*--A(c) ;  A~N] and ~'=([B(f)*--B(m(f)(c));  
BeN, f~F]. [] 

Note that an associated grammar may have infinitely many nonterminals 
and infinitely many rules. Recall from Sect. 2.1 that, for an X-grammar G, 
SF(G) denotes the set of sentential forms of G. 

3.5. Definition. Let M = ( N ,  e, A, A~,, R) be an X(S)-transducer and let G(M) 
= (N', A, A, R') be the associated X-grammar. 

(i) The set of sentential forms of M, denoted by SF(M), is the set SF(G(M)). 
(ii) The derivation relation of M,==(M)=>c_SF(M)x SF(M), is defined by 

==( M )=~ = ==( G ( M) )=, . 
(iii) The translation computed by M, denoted by z(M), is the set {(u, v)lueI, 

v ~ ,  and Ai,(e(u))==(M)~*v} where �9 is, depending on X, the set of strings 
or trees over A, and for every c~ C, Ai. ( c ) =  Ai, [A ~ A (c ) ;  A ~ N]. 

(iv) M is total, i fdom(z(M))=dom(e).  [] 

Two X(S)-transducers are called equivalent if they compute the same transla- 
tion. The class of translations computed by (total deterministic) X(S)-transducers 
is denoted by X(S) (D,X(S)). If the involved transducers have only one nonter- 
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minal, then the class of computed translations is indexed by "one", e.g., DtX,,  e (S) 
denotes the class of translations computed by total deterministic X(S)-transduc- 
ers that have one nonterminal. 

By considering the trivial storage type So, which has only one configuration, 
no predicates, and the identity as instruction, an X(So)-transducer can be 
regarded again as a generating device, and in fact as an X-grammar. 

3.6. Definition. The trivial storage type So is the tuple ({c}, ~,  {id}, m, {c}, 
{m(id)}), where m(id)(c)=c. [] 

3.7. Lemma. For Xe{REG, CF, RT, CFT}, range (X(So))=X. 

Proof. Lemma 3.9 of [EV]. [] 

3.2 Simulation of Storage Types 

The second main tool for proving the desired characterization of n-level tree 
transducers is the simulation of storage types, which is formalized as a relation 
< .  We recall the formal definition of S-flowcharts (for predicates and instruc- 
tions) and of < from I-EV]. 

3.8. Definition. Sid denotes the storage type (C, P, F u {id}, m', I, E), where 
idCPwF,  m' restricted to P u F  is equal to m, and m'(id) is the identity on 
C. [] 

3.9. Definition. An S-flowchart is a deterministic REG(SJ-transducer such that 
all its rules have the form A--* if b then B(~b), where A and B are nonterminals, 
b~BE(P), and q~eFu{id}. [] 

Sometimes it is convenient to apply two instructions ~bl and q~2 in one 
rule. Hence, we allow a rule of the form A-* if b then B(~bt; q52) , which denotes 
the rules A-*i f  b then [B; ~bz](~b~) and [B; q~2]-*B(~b2), with a new nonter- 
minal I-B; ~b2]. 

Since the encoding and the terminal alphabet of an S-flowchart co are not 
relevant for our purposes, we denote the corresponding components in co by 
- .  The class of S-flowcharts is denoted by FC (S). We need two different varia- 
tions of S-flowcharts: one for the simulation of predicates and another for the 
simulation of instructions. To describe the flowcharts for instructions we define 
the notion of a path containing an instruction. 

3.10. Definition. Let c o = ( N , - , - , A i n  , R)eFC(S) and let n > l .  If, for every 
ie[n], A i _ 1 ~ i f  b~ then A~(~b~) is in R, then ~r=(Ao, b~,A~,~l . . . . .  b,, 
Ai, c~i . . . . .  bn, A~, dpn) is a path of co from A o to A,. rr contains an instruction 
if there is an ie[n] such that dpieF. [] 

The set of paths of co from A to B is denoted by PATH(CO, A, B), where 
A, BeN.  

3.11. Definition. Let co = (N, - ,  --, Ai., R) be an S-flowchart. 

(i) co is an S-flowchart for predicates if {true, false} _~ N and the left-hand 
side of every rule is different from true and false. 
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(ii) co is an S-flowchart for instructions if s top~N, the left-hand side of every 
rule is different from stop, and every path in PATH(to, Ai,, stop) contains an 
instruction. []  

The classes of S-flowcharts for predicates and for instructions are denoted 
by P-FC(S) and F-FC(S), respectively. 

3.12. Definition. Let to~P-FC(S)u  F-FC(S) with initial nonterminal Ai.. 

(i) to induces an operation on C, denoted by oper (to), which is the relation 
{(ct, c2)~C x ClAin(cl)=(to)=~ * x @2) with x~D} where D =  {true, false} if 
to~P-FC(S), and O = {stop} otherwise. 

(ii) If toeP-FC(S), then the predicate induced by to, denoted by pred(to), 
is the relation {(cl, x)~Cx {true, false}lAi~(ct)==(to)=>*x(c2) for some 
c2eC}. [] 

Note that oper(to) and pred(to) are partial functions. Now we recall the 
definition of the simulation relation from [EV]. It is based on the direct simula- 
tion relation (Definition 4.6 of lEVI). If not specified otherwise, then, for i~ { 1, 2}, 
Si is the storage type (C~, Pi, F/, mi, It, E3. 

3.13. Definition. Let S~ and $2 be two storage types. 
St is directly simulated by $2, for short St<dS2, if ltc_I2 and there is a 

partial function h: C2 ~ C1 called the representation function such that 

1. for every ex~Ex there is an e2~E2 such that 
1.1.1. dom(el)=dom(e2)  
1.1.2. e2(I2)~_dom(h) 
1.2. for every u~dom(e2), h(e2(u))=et(u), 

2. for every P~P1 there is an toeP-FC(S2) such that 
2.1.1. for every c2edom(h): oper(to)(c2) is defined 
2.1.2. oper (to) (dora (h)) _ dora (h) 
2.2. for every c2~dom(h): h(oper(to)(c2))=h(c2) and 

pred (to)(c2) = m 1 (P)(h (c2)), 
3. for every f~F  t there is an ~ F - F C ( S 2 )  such that 

3.1.1. for every c2 ~dom(h): m 1 (f)(h(c2)) is defined iffoper(to)(c2) is defined 
3.1.2. oper (to) (dora (h)) _ dora (h) 
3.2. for every c2sdom(h) such that mt(f)(h(c2)) is defined, 

h(oper(to)(c2))=ml (f)(h(c2)). [] 

If h(c2)=ct for ct~Ct and c2~C2, then we say that "ct  is represented by 
c2"  or "c2 represents c 1 ", and if an encoding e 1 of E 1 and an encoding e 2 
of E2 satisfy requirement 1 of the previous definition, then we say that "e~ 
is simulated by e2". Similar shorthands are used in the case that requiremen~t 
2 and 3 hold. 

Note  that even for a flowchart co for predicates we have defined an operation 
oper(to), because sometimes the representing configurations have to be trans- 
formed before a simulating test can be applied. However, in many simulation 
proofs of this paper, the flowchart to, which simulates a predicate p, contains 
only one rule of the form Air ~ if b then true ( id )  else false ( id) ,  where b is 
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a boolean expression. Then we only construct this b and say that "p is simulated 
by b". 

Very often it is essential that the simulated storage type uses only a finite 
number of predicates and instructions, and one encoding. This property is cap- 
tured in the notion of finite restriction. 

3.14. Definition. A finite restriction of S is a storage type U = (C, Py, Ff, m f, 
I, {e}), where P~ and F: are finite subsets of P and F, respectively, m: is m 
restricted to PIw F:, and eeE. [] 

3.15. Definition. (i) S1 is simulated by $2, denoted by S~ <$2,  if for every finite 
restriction U of S t, U < d $2. 

(ii) If SI<S2 and $2<=$1, then $1 and $2 are equivalent, denoted by 
S 1 ~ S  2 . [ ]  

The relation < is reflexive (Theorem 4.10 of [EV]) and transitive (Theorem 
4.20 of I-EV-J). Hence -- is an equivalence relation on the class of storage types. 

The following theorem formalizes the intuitively clear consequence of a par- 
ticular storage type simulation for the classes of transducers, which work on 
these storage types. 

3.16. Theorem. "Justification Theorem" (Theorem 4.18 of [-EV]): For X ~ { REG, 
CF, RT}, if $1 <-$2, then X(St)c_X(S2) and DtX(SI)~DtX(S2). [] 

3.3 Coding of Storage Types 

The coding of storage types is a special case of simulation in the sense that 
the form of the flowcharts for the simulation of predicates and instructions 
is very restricted. Actually, the control of these flowcharts is superfluous, because 
they only specify one boolean expression and one instruction, respectively. 

3.17. Definition. S l is directly coded by $2', denoted by St ~_~dcS2, if S l _-<aS2 
and 
- -  in requirement 2 of Definition 3.13, the flowchart co contains only one rule, 

of the form A i n - - ~  i f  b then true (id} else false ( id)  for some b~ BE(P2), and 
- -  in requirement 3 of Definition 3.13, the flowchart 09 contains only one rule, 

of the form Ai, ~ stop (g)  for some g~F2. []  

If we prove St<=dcS 2 for two storage types, then we will only specify the 
boolean expression b and the instruction g, which determine the flowcharts 
for the simulation of a predicate p and an instruction f, respectively. In this 
situation we say that "p is coded by b" and " f  is coded by g". 

Coding of storage types is obtained from direct coding in the same way 
as simulation is obtained from direct simulation. 

3.18. Definition. (i) St is coded by $2, denoted by St ~_~cS2, if for every finite 
restriction U of St, U<dcS2. 

(ii) If St <r and $2<~S t, then St and $2 are coding equivalent, denoted 
by St=r []  
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Obviously, <c is reflexive. Since boolean expressions are closed under the 
construction of boolean expressions, i.e., BE(BE(P))=BE(P), it is also easy to 
see that < c is transitive. 

The coding relation is stronger than the simulation relation in the sense 
that if S~<~$2, then S~<$2. The fact that, in the coding of storage types, 
a predicate and an instruction are coded by one boolean expression and by 
one instruction, respectively, has the consequence that in the justification theo- 
rem the property of a transducer having only one nonterminal is preserved. 

3.19. Theorem. I f  S1~__r then RTone(St)~RTone(S2) and OtRTone(Sl) ~ - 
Ot RTo,e(S2). 

Proof The construction is straightforward. In an RT(S1)-transducer with one 
nonterminal every predicate and instruction of S~ has to be replaced by the 
corresponding S2-predicate and S2-instruction, respectively, provided by the cod- 
ingS1__<cS2. [] 

3.4 Pushdown Operators on Storage Types 

Now we recall from [EV] the formal definition of the concept of the pushdown 
operator on storage types [Gre, Eng5, Eng6, EV]. Given a storage type S, 
the "pushdown of S"  is again a storage type of which the configurations are 
pushdowns of a special form: every square contains besides a usual pushdown 
symbol also a configuration of S. We also recall from lEVI the definition of 
a variation of P, viz. the bounded excursion pushdown operator Pb~," We prove 
that Pbe~ is monotonic with respect to the simulation relation (cf. Lemma 3.23), 
and hence, Pbex preserves the equivalence of storage types. This property is 
needed (in Sect. 6) in the inductive proof of the equivalence of the storage types 
"n-level applicative term of S" and "n-iterated bounded excursion pushdown 
of S" (cf. the discussion in the Introduction). 

3.20. Definition. Let S be the storage type (C, P, F, m, I, E). The pushdown 
of S, denoted by P(S), is the storage type (C', P', F', m', I', E'), where 
C'=(FxC)  § and F is a fixed infinite set of pushdown symbols (intuitively, 
the top of the pushdown is at the left), 

P' = {top = 717 ~ F} w {test (P) IP ~ P}, 
F '=  {push (7,f)lveF,f~F} w {pop} 

w {stay (~,,f) ly~F,f~F} w {stay ( )lr u {id}, 

for every c '=O,  e)fl with fieF, c~C, and [3eC'w {2} 
m'(top = y)(c') =true iff fi=y 
ra' (test (p)) (c') = m (p) (c) 
m'(push(7,f))(c')=(7, c0(6, c)fl, if re(f) is defined on c and cl =m(f)(c), 

and undefined otherwise 
m' (pop) (c') = fl if fl ~: 2 and undefined otherwise 
m'(stay(y,f))(c') ---(7, Cl)fl if re(f) is defined on c and ct =m(f)(c), 

and undefined otherwise 
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m'(stay(7))(c') = (r, c)fl 
m'(id)(d) =(3, c)f, 
I' = I, and 
E'= {).ueI.(~,o, e(u))l~,o eF, eeE}. [ ]  

The mapping test: P---, {test (p) [P~P} is uniquely extended to BE(P) such 
that it is a boolean homomorphism. 

Naturally, the pushdown operator can be iterated: P~ and for every 
n ~ O, P" +1(S)= P(Pn(S)). We denote P(So) by P. For  more remarks, in particular 
for a broad discussion of the storage type s P(TR)  and p2(TR), we refer the 
reader to [EV]. Here we only mention that the operator P is monotonic with 
respect to the simulation relation < (cf. Theorem 4.22 of [EV]), i.e., for two 
storage types S 1 and S 2, if $1 _-< $2, then P(S1) <- P(S2) .  

As mentioned in the introduction, we have to use a modification of the 
pushdown operator in order to give an inductive proof  of the main characteriza- 
tion result. The appropriate modification is the operator Pb,x on storage types, 
where "bex"  stands for bounded excursion: for every s torage type  of the form 
Pb,x(S) with an arbitrary S, the number of excursions that can be initiated from 
each square of a configuration of Pb~(S) has to be bounded. This property 
of bounded excursion was introduced by van Leeuwen [vLe] in order to show 
that his preset pushdown automata,  when restricted to be bounded excursion, 
accept all EOL languages. We recall the formal definition of Pbex from Sect. 
5.2 of [EV]. 

3.21. Definition. The bounded-excursion pushdown of S, denoted by Pbex(S), is 
the storage type (C', P', F', m', I', E') where 

C'=(F x C x nat x nat) +, 
P'={top=~lr~r} u {test(p) lp~e},  
F'= {push(r,f)lrer, f eF} w {pop} 

u {stay(~)l~,eF} w {stay}, 

and for every c'=(6, c, i, k)fl with 6~F, c~C, i, k>O, and 3 ~ C ' w  {2}, 

m'(top = y)(c') =(3 =~), 
m'(test(p))(c') = m(p)(c), 
m'(push(y,f))(c')=(~, m(f)(c), O, k)(6, c, i+ 1, k)fl if re(f) is defined 

on c and if i + 1 < k, and undefined otherwise, 
m' (pop) (c') = fl, if fl ~= 2, and undefined otherwise, 
m'(stay(y))(c') =(y, c, i+  1, k)fl, if i +  1 =<k, and undefined otherwise, 
m' (stay)(c') = (3, c, i + 1, k)fl, if i + 1 __< k, and undefined otherwise, 
I' = I ,  
E ' =  {; turI ' (7o,  e(u), O, mx)lTo~F, e~E, mx>=O}. [] 

We call the third component  and the fourth component  of every pushdown 
square s the excursion counter and the excursion bound of s, respectively. An 
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excursion which only consists of a stay or a stay(y) instruction, is called a 
trivial excursion. Note that the excursion bound is not changed by the applica- 
tion of instructions. Hence, for an X(Pbr M, the excursion bound 
for every pushdown square, which will occur during a computation, is fixed 
by the encoding of M. 

Intuitively, it is clear that Pbo~(S) is a weaker storage type than P(S) in 
the sense that Pb~(S) is simulated by P(S). The idea of the simulation is that 
for every square s of a Pb,~(S)-configuration, the value of the excursion counter 
of s is stored in the pushdown symbol of s and updated appropriately. We 
leave the formal construction to the reader. 

3.22. Lemma. Pbex(S)<P(S). 

In the rest of this section we prove the monotonicity of the operator Pbex 
with respect to the simulation relation, i.e., for two storage types $1 and $2, 
if $1 < Sz, then Pbex(Sl)__< Pb,~(S2)- 

Although the operators P and Pbcx seem to be closely related, the proof 
of the monotonicity of Pb~ is much more involved than the proof of the same 
property of P (cf. Theorem 4.22 of [EV]). The essential problem arises in the 
simulation of the predicate symbols. To make this difficulty clear, we first provide 
some notations. Let U' be a finite restriction of Pbcx(S~). Clearly, U' induces 
a finite restriction U on S~, and since $1_-<$2, U is directly simulated by $2. 
Assume that h is the involved representation function. In particular, U' contains 
only a finite number of predicates test (Pl) . . . . .  test(p,), where p~ . . . . .  p, are the 
predicates of U. Then, for every such predicate p j, there is an S2-flowchart 
~(pj) which simulates pj. 

In the proof of the monotonicity of P, every predicate test (pj) is simulated 
by a P(S2)-flowchart, which is obtained from the S2-flowchart co(pi) by replacing 
every S2-instruction f by stay (y,f) with an appropriate y. A similar straightfor- 
ward technique cannot be used here, because instructions that are performed 
on one particular square increment its excursion counter, and hence, in general, 
the counter cannot be bounded during the execution of w(pj). A solution for 
this problem is to replace every S2-instruction f of ~o(p~) by p u s h ( # , f )  with 
a dummy symbol ~ ,  and to pop the sequence of squares with =~ from the 
pushdown, as soon as the execution of this modification co (p j)' of co (p~) is finished, 
i.e., a truth value is computed. Clearly, the excursion counter of every "dummy 
square" is bounded by 1. However, after the execution of the Pb~x(S2)-flowchart 
co(pj)', also the excursion counter of the topmost pushdown square was incre- 
mented (by the first push instruction). Now assume that another predicate of 
the form test (p) has to be simulated starting with the result of the previous 
simulation. Then, after simulation, the excursion counter of the topmost square 
was again incremented. Since Pb,x(S2) must be able to simulate an arbitrary 
number of successive predicates, again the excursion counter cannot be bounded. 
Roughly speaking, we solve this problem by executing for every pushdown 
square the flowcharts W(pl)', .... ~o(pr)' only once and by storing the results 
into the corresponding pushdown symbol. This causes only a finite number 
of additional excursions, proportional to r. Then, a predicate is simulated just 
by looking at the information stored in the pushdown symbol. 
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Fig. 5. Simulation of push (7,f) by a Pb==(Sg-flowchart; (1) execution of co(f)', (2./9 execution of 
co(pj)' forje[r];  ~t =(pred(a~(Pl)) (c2.2), true . . . . .  true) and ~= (pred(~o(pl)) (c2.2) . . . . .  pred(~o(p,)) (c2.2)) 

We want to make this more precise. Let c't, 1 be a configuration of U' and 
let (6, cl. t, v, rex) be an arbitrary pushdown square of c't. t (5: pushdown symbol, 
c l . t :  Sl-configuration, v: excursion counter, mx: excursion bound). Let c2. t 
be a representation of c~.t, i.e., h(c2,:)=c~.~.  Then, in every representation 
c' of ' we add the sequence ~ of truth values to 6, where 2 , 1  C I ,  I ,  

=(pred(og(pl))(cz. 0, .. . ,  pred(co(p,))(c2.0). Note  that, since pj is simulated by 
og(pj), it follows from requirement 2.2 of Definition 3.13 that pred(og(pj))(c2, x) 
=m(pj)(ca, t), where m is the meaning function of U. 

But how are the sequences ~ installed in the pushdown squares ? Immediately 
after the application of a push instruction the sequence of truth values is comput-  
ed, that corresponds to the S2-configuration of the new topmost  square. So, 
let us have a closer look at the simulation of a push instruction. For  this purpose 
we let c't, ~ =(5, c~, ~, v, rnx)~ and assume that the application of the instruction 
push(T,f) to c'l,x yields the configuration C'I,2=(T, Cl,2,0, mx)(5, CI,I, 
v+ 1, rex)ft. Since U < d S 2 ,  there is an S2-flowchart o~(f) which simulates f. The 
simulation of push(%f)  is divided into two steps (cf. Fig. 5). First, the new 
S2-configuration c2,2, which represents c t,2, is computed via a modification 
o~(f)' of o~(f). In w(f)' every S2-instruction g is replaced by push ( # ,  g). Thus 
a whole sequence of pushdown squares of the form ( # ,  c, 1, rex') is produced, 
where the value of the excursion counter of the topmost  one is 0, until finally 
c2,2=oper(09(f))(c2,  t) is computed (rnx' is the new excurs ion bound, whose 
value is discussed in a few seconds). Let us denote the topmost  square of the 
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produced Pbox(S2)-configuration by s. (Note that it follows immediately from 
this way of calculating o~(f) that the instruction pop of U' can be simulated 
by a sequence of pops until a symbol is found, which is not equal to 41: .) 

In the second step of the simulation of push(v,f), the truth values 
pred(og(pl))(c2.2) . . . . .  pred(o~(p,))(c2.2) have to be computed and added to the 
pushdown symbol V in square s. For  this purpose, the flowcharts o9(pl)', .... og(p,)' 
are executed one after the other, where og(pj)' is obtained from (o(pj) as explained 
above for o~(f). First, co(p1)' is started. If, for some j~[r], the execution of 
09 (p j)' is finished and a nonterminal B e {true, false} is reached, then the informa- 
tion B is reported down to s by popping the #-rubbish and by entering B 
into thej- th component of the sequence of truth values, which is being prepared 
in the square s. Note that the computation of the truth values adds 2r more 
excursions starting from s (a push and a stay for each pj). Actually, the new 
excursion bound rex' is mx+ 2 r + 1, where the addition of 1 has only a technical 
reason. In this way the symbol of every pushdown square (except in the rubbish 
part) contains the appropriate sequence of truth values. 

However, this does not hold "in the beginning": if c~ is a representation 
of a result of the encoding of U', then we cannot assume that the truth values 
of the ~o(pi)'s are already present. But, of course, we must be able to simulate 
predicates like test(p~) on ch. How do we solve this problem? We split the 
simulation of test(pj) into two cases. If the sequence ~ of truth values is already 
present in c~, then test (p~) is simulated just by looking at the j-th component 
of ~. If it is not yet there, then test(p j) is computed in the same way as it 
is computed when a new square is created by a push instruction (see above). 
Hence, the value of the excursion counter of the bottom square must also be 
allowed to exceed mx by 2 r +  1. But this possibility of making 2r extra excursions 
from the bottom square can be misused: the simulation of an instruction ~b 
of U' may be defined on ch (in which ~r is not yet computed), although ~b is 
not defined on the Pbex(S~)-configuration, which is represented by c~; e.g., if 
mx=O, then U' should not apply any push, stay(v), or stay to any result of 
the encoding of U'. In order to avoid this misuse, we also have to split the 
simulation of the instructions push(v,f), stay(y), and stay into two cases (similar 
to the two cases of the simulation of test (Pi))- This has the effect that the 2 r +  ! 
extra excursions are always consumed before the "real"  simulation starts. 

3.23. Lemma. For i~{i, 2}, let Si=(C~, ~,  F~, mi, Ii, Ei) be two storage types. 
I f  $1 <$2, then Pbex(S1)< Pbe~(S2). 

Proof. Assume that $1 < $2. Let U' be a finite restriction of Pbex(Sl) with encoding 
e't=2u~Ii.(Vo, el(u),O, mx) for some encoding e ~ E l  and some mx>O. Let 
{Px . . . .  , Pr} and Ff={V~, ..., V~} with r, x > l  be the finite sets of predicates of 
S~ and of pushdown symbols, respectively, occurring in U' (note that an element 
pj of the first set occurs in U' in the form test(pj)). U' induces a finite restriction 
U on $1, and since SI<S2, U<nS2. Let h: C2~C~ be the involved repre- 
sentation function and let m~ be the meaning function of U. We show that 
U' ~aPbex(S2). 

Define the set TEST of all sequences ~ of truth values with length r, 
i.e., T E S T =  {true, false}'. We can assume without loss of generality that 
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F: x TEST G E We abbreviate the boolean expression t o p = ?  1 o r . . .o r  top=2:~ 
by "initial". 

Let mx'=mx+(2r+ 1). Then define the representation function h': C~--+ C'1, 
where C~ is the set of configurations of Pbex(Si), as follows. 

dom(h') = {(~o, c, O, mx')lcedom(h)} 
w {s,+ ~ ,a.s,...~al s~ ln > O, 

for every ie[n+ 1], si=([Ti, ~i], c~, vi, mx') 
with ?ieF:, ~ieTEST, ciedom(h), 
and for every j e  [r], ml (pj)(h(c3)= (~,)j where (~r3j is the 
j-th component of ~r, 
and 2 r +  l<vi<mx' ,  

and for every ie[n], fl ie({#} x C2 x {1} x {mx'})*}. 
Let c'=S,+xfl, s, . . . f llStedom(h') be as above. Then h'(c')=s',+lS',...S'l, 

where for every i e [ n + l ] ,  s'i=(~i,h(ci),vi-(2r+l),mx). Finally, for c' 
=(?o, c, O, mx')edom(h'), h'(c')=(?o, h(c), O, mx). 

We show that h' satisfies the requirements 1-3 of Definition 3.13. Before 
doing so, we introduce the Pbcx(S2)-flowchart CSEQ which computes the 
sequence of truth values of Pt , -- . ,  P, as described in the discussion preceding 
this lemma. CSEQ can be viewed as a kind of macro, which will be later embed- 
ded into other flowcharts. 

For  every je  I'r], let the S2-flowchart co(p j), which simulates p j, be determined 
by (Nj, - ,  - ,  A~., Rj). Then CSEQ=(/V, - ,  - ,  q~,/~), where 

.N= {q~lje[r]} u{[B, j ,  i]l B e U  {N~lje[r]},je[r ], and ie{0, 1}} 
u {[B,j]IBe U {Njlje[r]} a n d j e [ r ] }  
t.: {end} 

and/~  is determined by (i)-(iii). 
(i) "simulating co (p j)": For every j e r r ]  

- -  if At. ~ i f  b then B ( g )  in R j, then q j--+ if test (b) then ~ is in /~, where 
= [_B,j, 1] ( p u s h ( # ,  g)> if g # i d ,  and [B,j, 0] (id> otherwise. 
The third component  in [B, j, i] indicates whether an excursion is made 
during the simulation of co (p j) or not. 

- if A-+ i f  b then B ( g )  in Rj, then for every ie{0, 1} 
FA, j , / ]  ~ if test (b) then ~ is in/~, 
where ~ = IB, j, 1] (push (4~, g)) if g 4: id, and rB, j, i] ( id )  otherwise. 
(ii) "reporting truth values downwards":  For  every jeer] and Be{true, 

false}, 

[B, j, 1]--* if t o p =  4t= then [B,j, 1] ( p o p )  else [B,j] ( i d )  and 
[B,j, 0] --, [B,j]  ( s tay)  are in/~. 

(iii) "entry of truth values": For  every Be {true, false}, j with 1 < j  < r, T e F I ,  
and geTEST,  

[B, 1] --* if top=T then q2 (stay([~, ~t~])), 
where ~t 1 = (B, true . . . . .  t rue)eTEST, 

[B, j]  --* i f  top = [% ~I] then qj+ 1 (stay([~, g(] *- B)])), and 
[B, r] --* i f  top = [% ~r] then end (stay(I-V, g(r ~ B)])) 
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are in /~, where ~(j ~ B) is obtained from ~ by replacing the j-th component  
by B./7(r ~ B) is obtained similarly. 

This completes the definition of  CSEQ. It is an easy observation that the 
result of the application of CSEQ to a configuration (~, c2.1, v, mx')~ of Pbe~(S2) 
with c2.1~dom(h ) is ([~, ~I], c2.1, v+2r ,  mx')fl, where for every component  /7i 
of/7,/7 i = pred(co(pj))(c2.1) = ml (pj)(h(c2.1)). By using this flowchart we now prove 
that h' satisfies the requirements 1-3. 

Requirement I. The encoding e'2=2u~I2.(~o, e2(u), 0, rex') of Pbc~(S2), where e t 
is simulated by e2, satisfies the requirements. 

Requirement 2. Every predicate ~b of U' is simulated by a Pbex(S2)-flowchart 
for predicates, which is determined by its set R of rules. 

~b=(top=y):  A in~ i f  initial then q l ( i d )  else l o o k ( i d )  is in R, / ~ R ,  end 
--+look(stay) is in R, and look--+if b then t rue ( id )  else fa lse( id)  is in 
R, where the test b is the disjunction of all predicates top = [~:,/7] for/TeTEST. 

q~=test(pi): Ai.--+if initial then ql ( id )  else l o o k ( i d )  is in R, /~_R,  and the 
rules end ~ look ( s tay)  and look ~ if b then true ( i d )  else false ( id )  are in 
R, where b is the disjunction of all the predicates t op=[y ,  g] with y~F: 
and/TeTEST such that the j-th component of/7 is "true". 

Requirement 3. Every instruction ~b of U' is simulated by a Pbc~(S2)-flowchart 
for instructions, which is determined by its set R of rules. 

~b = push(~,f):  Let co(f ) = ( N : , - , - - ,  Ain, R:) be the S2-flowchart which simu- 
lates f. We assume that CSEQ,~w=(Nn~ . . . .  ql.no*, /~**w) is a copy of 
CSEQ such that/V~,~, and/V are disjoint; end,~,, is the copy of the nontermin- 
al "end"  of CSEQ. Intuitively, CSEQ and CSEQ** w are used for the compu- 
tation of the truth values for the topmost  square before (if necessary) and 
after the application of q~, respectively. 

- A in - -+  if initial then q l ( i d )  else sim ( id )  is in R,/~ _~ R, and end ~ sim ( s t ay)  
is in R. 

- I fA--+ifb  then B ( g )  in co(f), 
Case 1. if g ~ id, and 
Case i. 1. if B # stop, then 

~ ~ i f  test (b) then B ( p u s h ( # ,  g)) is in R, 
where ~ = sim if A = Ain, and ~v = A otherwise. 

Case 1.2. if B = stop, then 
--+ if test (b) t h e n  qt.~w(push(y,  g); s tay) 

is in R with ~ as in Case 1.1. 
Case 2. if g = id, and 
Case 2.1. if B~estop, then 

~ if test (b) then B ( i d )  is in R and ~ as in Case 1.1. 
Case 2.2; if B= stop, then 

A--+ if test (b) then q~ . . . .  (stay(y)) is in R. 
(Note that co(f) cannot only contain the rule Ai,--+ if b then stop ( id) .  This 
is forbidden by definition of flowcharts for instructions.) 
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-- /~cw ~ R 
-- end~,w ~ stop ( id )  is in R. 

~b = pop: Ai~ ~ A (pop)  and 
A ~ if t o p =  4~ then A (pop)  else s top( id )  are in R. 

~b=stay(7): Ai~--*if initial then q l ( i d )  else s im( id )  is in R, /~___R, and, for 
every 6~F  s and ~reTEST, the rules end --. s im(s tay)  and sim ~ if top = [6, ~] 
then stop(stay([v, ~r])) are in R. 

q~ = stay: Ai, ~ if initial then q l ( id )  else sim ( id )  is in R , / ~ _  R, and the rules 
end ~ sim (s tay)  and sim ~ stop (s tay)  are in R. 

Actually, Case 2.2 in q~=push(~,,f) causes the presence of the 1 in 
mx'= mx+ (2 r + 1). In order to avoid the misuse of this extra excursion on those 
pushdowns, for which the test "initial" is true, the value of the excursion counter 
is incremented by 1 before the real simulation of an instruction or predicate 
~b is started (beginning with the nonterminal sim). This incrementation takes 
place in the "bridge rules" end ~ sim (s tay)  and end ~ look (s tay) ,  respective- 
ly. [] 

4. High Level S Transducers and Iterated Pushdown S Transducers 

In this section the two main devices of the paper are defined: for every n > 0  
and every storage type S, we define the n-level S transducer and the n-iterated 
pushdown S transducer. For  S = TR, the n-level tree transducer and the n-iterat- 
ed pushdown tree transducer, respectively, are obtained. An n-level S transducer 
is an X(S)-transducer where X is the class of n-level tree grammars. These 
tree grammars were introduced in [Dam] to model ALGOL68-1ike programs 
with finite mode. We recall the definition of this grammar class and give three 
examples of high level S transducers to illustrate this concept. An n-iterated 
pushdown S transducer is an X(Pn(S))-transducer where X is the class of 0-level 
(i.e., regular) tree grammars and Pn(S) is the n-iterated pushdown of S (cf. Defini- 
tion 3.20). 

We slightly modify the definition of n-level tree grammars given in [Dam] 
by allowing an initial applicative term rather than only an initial nonterminal. 
By the usual technique of adding an extra rule with the initial term as right-hand 
side, it can be shown that the definitions are equivalent. 

For  terminology concerning types and applicative terms see Sect. 2.2. Recall 
that, for convenience, there is only one basic type, i.e., Q = {q}. 

To manage the substitution involved in high level tree grammars, we define 
a set of parameters Y in such a way that for every derived type in D* (Q) there 
are infinitely many parameters of this type. Then we can use such a formal 
parameter, say of type z, to represent and substitute applicative terms of type z. 

4.1. Definition. (i) The D*(Q)-set of parameters, denoted by Y, is the tuple 
(Y, type),  where Y={yi,~li>l and T~D*(Q)} and type: Y-*D*(Q) is defined 
by type (Yi. ~)= z. 

(ii) For  n > 0  and ~,eD~(Q) * of length k>0 ,  the list of parameters 
(Y1,~1~, ..., Yk.~tk)) is denoted by y~. 
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(iii) For  n >0, cteD"(Q)* of length k, and applicative terms (~, ..., (k 
of type ~(1) . . . . .  ~(k), respectively, [y,  *--((1 . . . . .  (k)] abbreviates 
[Yl.,<~) +-- (1 . . . . .  Yk. ,tk) *-- (k], to be used in substitutions. [] 

Now we are ready to define the n-level tree grammars. 

4.2. Definition. Let n>0 .  An n-level tree grammar G is a tuple (N, A, Ai,, R), 
where 
- N is a finite D* (Q)-set of nonterminals such that for every A e N, level (A)< n 
- A is a finite D (Q)-set (i.e., ranked alphabet) of terminals (with N r~ A = 0), 
- AI~AT(N)  q is called the initial term, and 
- R is a finite set of rules, each of the form 

(*) Ay,m...y,2y~l--+(, 

where A~N" with ~=(~m, ...(cc2, (cd, q))...), m>0 ,  and ( e A T ( N u A  w Y)q. 
Since Y,,,... Y,2 Y, z follows uniquely from type(A), we can abbreviate 
Ay,m... Y~2 Y,~ by A ̂ . Note that A ̂  and ( are of level 0. IS] 

The class of n-level tree grammars is denoted by n-T. 
Next we define the derivation relation ==(G)=~ of an n-level tree grammar 

G for the outside-in (OI) mode (this was shown to be sufficient in Corollary 
6.6 of [Dam];  see also I-DamGuel]). ==(G)=~. is a binary relation on the set 
SF(G) of sentential forms of G, which is the set of applicative terms of type 
q built up out of nonterminals and terminals. A derivation step ~==(G)=~r 
according to a rule A ̂  -+ ( consists of two phases. First, an outermost occurrence 
of A in ~1 is replaced by ~, where outermost means: not occurring in a parameter 
position of another nonterminal. Second, the actual parameters are substituted 
for the parameters occurring in (. 

4.3. Definition. Let G = (N, A, A~,, R) be an n-level tree grammar with n > 0. 
(i) The set of sentential forms of G, denoted by SF(G), is the set AT(N w A)L 

(ii) The (0I-) derivation relation of G, denoted by ==(G)=-, is a binary relation 
on SF(G) and is defined as follows. 

For ~i, ~2~SF(G), ~I==(G)=~2 iff 
there is a rule A ^ ~ (  in R, and A~N" with 

z=(am, ...(ct2, (al, q))...)~Dm(Q) for some m>0 ,  
there is a r ~ AT (N w A w {y 1. q})q, where y 1. q occurs exactly 

once in if, but not in a sub(-applicative)-term ~/of 
with top (r/)~N, and 

for every i~[m], there is a ~[~AT(NuA) ~i, 
such that ~1 = ~ [_vl,q ~ A ~, ... ~ ~'1] 

and ~2 = ~ ~Yl, q ~" ~ ~Yo~i ~'- ~ti'~ i E [m]]] .  

(iii) The language generated by G, denoted by L(G), is the set 
{t~T, jlAin==(G)=~*t}. [] 

Note that Ta =AT(A) q. The class of tree languages generated by n-level tree 
grammars is also denoted by n-T. Obviously, 0-T and 1-T are the classes of 
regular tree languages and context-free tree languages, respectively. 
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4.4. Proposition. RT=O-Tand C F T =  1-T. 

We now define the n-level S transducer as an X(S)-transducer with X = n - T  
(cf. Definition 3.3). 

4.5. Definition. For n__>0, an n-level S transducer is an n-T(S)-transducer. [] 

We write "n-level tree transducer" rather than "n-level TR transducer". We 
could also have called them n-level top-down tree transducers, in the sense 
that every X(TR)-transducer works on its input-tree in a top-down fashion, 
by definition of the storage type TR. 

Since every context-free tree grammar can be viewed as l-level tree grammar 
and vice versa, it is immediately clear that, for every storage type S, CFT(S)= 1- 
T(S). Note that, in our definition, a context-free tree grammar can start from 
an initial tree consisting of nonterminals. 

4.6. Fact. CFT(S)= 1-T(S) and RT(S)=O-T(S). Totality, determinism, and the 
number of nonterminals are preserved. 

Hence, in particular, 0-T(TR) and 1-T(TR) coincide with the class 
of tree translations induced by top-down tree transducers [Tha, Rou, Engl] 
(Corollary 3.20 of lEVI) and by (OI-) macro tree transducers IEng3, CouFra, 
EngVogl] (Theorem 3.19 of [EV]), respectively. 

By consider the trivial storage type, n-T(So)-transducers turn back into gener- 
ating devices. 

4.7. Lemma. range (n-T(So)) = n-T. 

The following three examples illustrate the concept of X(S)-transducer in 
the situation that X is the class of 2-level tree grammars. In particular, in the 
third example, par t of the CHECK-example (cf. Introduction) is formulated 
in the notational framework of high level tree transducers. 

4.8. Example. (i) The storage type count-down is the tuple (nat, {null}, {dec}, 
m, nat, {2n~nat-n}) and for every n>0,  m(null)(n)=true iff n=0,  and 
m (dec)'(n) = n -  1 if n > 1. 

Define the (nondeterministic) 2-level count-down transducer M 
= (N, e, A, Ain, R) as follows. 

N =  {ain , A, B, +} with Zin: q, A: ((q, q), (q, q)), B: (q, q),+ : ((q, q)(q, q), (q, q)), 
e = 2n~nat- n, 

A ={a,  6, $, a, b} with a: (qa, q), 6: (q2, q), and $, a, b: (2, q), 

and R contains the following rules. 

Ai. -o A (dec)  (B (dec)) (a 0), 

and the same rule for b instead of a, 

A(yl,~.q))(yl.q)--+if not null then 
A (dec)  ( + (dec)  (B (dec),  Yl, Cq, q)))(6 (a O, Y a, a)), 
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and the same rule for b instead of a, 

A(yl .(q.q))(y,.~) ~ if null then c5 ($(), YI.~. o(Yl,q)), 
+(Yl,~q,q), Y2,(q, qI)(Yl,q) "~ a(Yl,<q.,)(yl.q), $0, Yz.(q.~(YLq)), and 
B(YLq)-* YLq. 

Let us now look at a computation of M which starts with A~, (3) .  We abbreviate 
the tree 6(b(), cS(b(), a0)) by t. The derivation relation ==(M):*- is abbreviated 
by =~. 

Ai. (3)=~.A (2)(B(2))(a()) 
=~-A (1>(+ (I>(B(I>, B(2>))(b(b(), a())) 
=.'-A(0)(+ (0)(B(0>, +(I>(B(1) ,  B(2))))(t) 
=~($(),  + (0)(B(0) ,  + (I>(B <1>, B (2)))(t)) 
~6($() ,  a(B(O)(t), $(), +(I>(B(1) ,  B(2))(t))) 
=.2 ~($0, a(t, $(), a(B<l>(t), $(), B(2)(t)))) 
=*'6($0, a(t, $0, a(t, $0, B(2)(t)))) 
=~($(),  a(t, $0, a(t, $0, t))). 

It can be proved by induction that yield (r(M))= {(n, v)ln>= 1 and v=($w)" with 
w~{a,b}"}. 

(ii) Define the deterministic 2-level tree transducer M=(N, e, A, Ain, R) as 
follows (cf. Lemma 7.1 of [Dam]). 
N ={Ain, A} with Ai.: q and A: ((q, q), (q, q)), e is the identity on T~ where 
Z=  {a, ~} and a e ~ l ,  ~SZo, and 
A = { f ,  a} with f :  (q, q) and a: (2, q). 

Since we believe that the reader is now familiar with the use and the interpre- 
tation of subscripts of parameters, we abbreviate Yl.q and Yl,(,.q~ by y and 
z, respectively. Then R contains the following rules. 

Ain --' if root = a then A (sel 1) (A (sell > (f)) (a ()), 
Ain ~ if root = ~ then f ( f  (a())), 

A (z)(y) --, if  root = a then A (sel 1) (A (se l l )  (z)) (y), 
A (z)(y) --* if root = ~ then z(z(y)). 

If we interpret monadic trees as strings, then it can be proved by induction 
that T (M) = {(o" c~, fm a)[ n > 0 and rn = 22"}. M is total, because dora (z (M)) = Tz 
=dom(e)  (cf. Definition 3.5(iv)). Since, for every macro tree transducer (i.e., 
1-T(TR) transducer), the height of an output tree is exponentially bounded 
in the height of the corresponding input tree (Theorem 3.24 of [EngVogl]) ,  
z(M) is an example of a translation, which cannot be induced by macro tree 
transducers, i.e., 

z(M)~2-T(TR) but z(M)r 1-T(TR). 

(iii) At the end of the introduction, we have shown a system of recursive 
function procedures that was used to perform the type checking in a small 
block-structured programming language called CHECK.  Here, we repeat two 
equations of this system in the notational framework of high-level tree transduc- 
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ers. According to our typing conventions, the type of the result of Check is 
changed into (IDENT --* TYPE) -o (2 ~ BOOL). The considered equations are 
the following: 

Envir ED; var I: T] YEN Y~D = cond (equal (Id [I], Y~D), Ty E T], 
Envir [D] YEN YxD), and 

Check Ebegin O; S end] YEN = Check E S] (Envir I-D] YEN)" 

They turn into the following rules of a 2-level tree transducer: 

Envir (YEr~)(y~D) --* if root = r 3 then cond(equal(Id (sel2) , YlD), Ty (sel3), 
Envir (sel l )  (YEN) (YID)), and 

Check(yEN)0 ~ if root = r5 then Check (sel2)(Envir (self)(YEN))0, 

respectively. [] 

After having introduced high-level S transducers, we now define iterated 
pushdown S transducers in the terminology of grammars with storage. 

4.9. Definition. For every n > 0, an n-iterated pushdown S transducer is a 0-level 
P"(S) transducer. []  

An n-iterated pushdown TR transducer is called an n-iterated pushdown 
tree transducer. For the sake of convenience, 0-level P~,e~(S) transducers are also 
called n-iterated pushdown S transducers. However, if the difference between 
the unbounded and the bounded variation becomes important, then the precise 
denotation will be used. 

Now we can formalize the main aim of the present paper, which is the 
characterization of n-level tree transducers by means of n-iterated pushdown 
tree transducers: for every n>0,  

n-T(TR)=O-T(P~,,x(TR)) (Theorem 7.1) and 
D, n-T(TR)=D t n-T(P"(TR)) (Theorem 7.12). 

For n=  1, i.e., for macro tree transducers, both characterizations are already 
proved in [EV]. 

4.10. Theorem. 1-T(TR)=0-T(Pbex(TR)) and D, 1-T(TR)= D, 0-T(P(TR)). 

Proof. In Theorem 8.3 and Theorem 8.2 of FEV] it is proved that CFT(TR) 
= RT (Pbex (TR)) and Dt CFT(TR)= D, RT(P (TR)), respectively. Then, the present 
theorem follows from Fact 4.6 of this paper. []  

5. Substitution of Applicative Terms 

In Theorem 1 of [DamGuel]  the equivalence of n-level tree grammars (called 
level-n grammars there) and level-n stack automata is proved. A level-n stack 
automaton M, introduced in [DamGuel] ,  works on an input tree like a finite 
top-down tree automaton [Rou, Tha, Engl]. However, every state which occurs 
in a computation of M has an auxiliary storage, of which the configurations 
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are applicative terms. The kernel of the transitions of M is the substitution 
of applicative terms of different types at different levels. Since the control of 
M can be viewed as a regular tree grammar, one might say that the main 
feature of n-level tree grammars is the substitution of applicative terms. In this 
section we support this claim by verifying it for n-level S transducers (recall 
that range (n-T(So))= n-T, Lemma 4.7). For this purpose, the storage of level-n 
stack automata is generalized to a storage type operator, called "n-level applica- 
tive term of S" (for short: n-AT(S)). Then the above mentioned claim is formally 
expressed in the equation n-T(S)=O-(n-AT(S)) (cf. Theorem 5.13), which says 
that the substitution power inherent in n-level S transducers is entirely captured 
by the storage type n-AT(S). For  S=So this is the result of [DamGue l ] ;  
n-AT(S0) was formalized as a storage type in [DamGue2],  called n-TREEPD. 
We note that the level-n stack transducer of [DamGue l ]  differs from our n-level 
tree transducer: the second is an n-T(TR)-transducer (equivalent, as will be 
shown, to the 0-T(n-AT(TR))-transducer), and the first is equivalent to the 0- 
T(TR x n-AT(S0))-transducer, where • is the obvious product operation on 
storage types (see [DamGue2],  where arbitrary 0-T(TR • S)-transducers are 
studied). 

As a reservoir of symbols of derived types, we fix for the rest of this paper 
the D*(Q)-set (2 ,  typez) such that, for every ~tD*(Q), type~ l(z) is an infinite 
set. See Definition 4.1 for terminology on parameters. 

5.1. Definition. Let n > 1. The n-level applicative term of S, denoted by n-AT(S), 
is the storage type (C', P', F', m', I', E'), where 

C' = AT(~-~" (C))  q and ~,=<"= {TtS[ level(7)< n}, 
P ' =  {top = T [ ~ t ~  -<"} w {test (p)lptP}, 
F ' =  {push (01 (tAT(.V, =<" ( F )  u Y)q}, 

and for c'=6(c)r162 such that types(f)=(~k,...(~l,q)...), and 
~itAT(-W=<"(C))~ for every it[k], 

m' (top = 7)(c') = true iff 6 = 7, 
m' (test (p))(c') = m (p)(c), 

for ~ = ( [Y,i +-- ~i; i t  [k]] [ f ~  m(f)(c);ft F], 

m'(push(0)(c') = ~, if ~ tC ' ,  and undefined otherwise, 

I' = I, and 
E'= {2utl.t? (e(u))lntAT(~<=") q and erE} 

with r/(e(u)) = r/[~ *-- y (e(u)) ; 7 ~=<"]. [] 

The storage type n-AT(So) is denoted by n-AT. Note that the application 
of an instruction of the form push(() to 6(c)~k...~l is closely related to the 
application of the rule r: 6" ~ ~ of an n-level tree grammar, where the symbols 
of ~ are viewed as nonterminals (cf. Definition 4.3): the second phase of the 
derivation step via r, which is the substitution of applicative terms, is captured 
by the application of push (0- 
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b 

Fig. 6. One-to-one correspondence between sentential forms of (a) a terminal restricted n-level S 
transducer and (b) a 0-level n-AT(S) transducer with the only nonterminal .. The S-configurations 
are dropped for convenience 

Now we formalize and prove the relationship between n-level S transducers 
and 0-level n-AT(S) transducers. However, before discussing the general case, 
we study a particular case, in which the relationship between the transducer 
classes is quite apparent: every sentential form of a transducer of one class 
can be viewed as a sentential form of a transducer of the other class and vice 
versa. The two involved transducer types are the following: "terminal restricted" 
n-level S transducers and 0-level n-AT(S) transducers with only one nonterminal. 
An n-level S transducer is terminal restricted, if in the right-hand side of every 
rule no terminal symbol occurs in the argument positions of a nonterminal 
or a parameter. In the rest of this section, for every k>O, Xk={X~, ...,Xk} 
is the Q-set of auxiliary substitution variables. 

5.2. Definition. Let n > 1 and let M = (N, e, A, Ain, R) be an n-level S transducer. 
M is terminal restricted if for every rule in R, the right-hand side is of the 
form t[Xi+--(i; i t [k ] ] ,  where t e A T ( A u X k )  q, k>O, and for every i t[k],  
( i ~ A T ( N < F > u Y ) L  [] 

It is an easy observation that every derivable sentential form ~ of a terminal 
restricted n-level S transducer has the form t[xi',--~i; i t [k ] ] ,  where t is an 
applicative term over terminals and the substitution variables xl,  . . . ,  xk, and 
~1 . . . . .  ~k are applicative terms over N<C>, where N is the set of nonterminals 
of the transducer. Now the one-to-one correspondence between the sentential 
forms of the involved transducers becomes obvious (cf. Fig. 6; the nonterminals 
have the types A: ((q, q)(2, q), (qq, q)), B: ((q, q), (2, q)), D: (2, (q, q)), H: (2, q), and 
J :  q; the ranks of the terminals are obvious). Roughly speaking, the applicative 
terms ~1 . . . . .  ~k of ~ are viewed as configurations of n-AT(S) and vice versa. 
Hence, the nonterminals of the terminal restricted n-level S transducer corre- 
spond to the ~-symbols of the 0-level n-AT(S) transducer. More precisely, 

= t I-xi ~ ~;  i t  I-k]] is a derivable sentential form of a terminal restricted n-level 
S transducer iff ~' = t [x~ ,-- �9 <~>; i t  [-k]] is a derivable sentential form of a 0-level 
n-AT(S) transducer with the only nonterminal , .  
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In the next definition the relation between two particular transducers (one 
of each of the discussed classes) is formalized in such a way that the described 
one-to-one correspondence holds. Then, the equivalence of such transducers 
is an immediate consequence (cf. Lemma 5.4). 

5.3. Definition. Let n > l .  Let Ma=(NI ,  el, A, A~n, R t )  be a terminal restricted 
n-level S transducer and let M2 = ({*}, e2, A, *, R2) be a 0-level n-AT(S) transduc- 
er with one nonterminal * (of type q). 

M 1 and M2 are related if 
- e2=2ue l .A~ .<e l (u ) )  
- -  R 2 --  {* ~ if top = A and test (b) then t [xi ~ * (push (~i)>; ie I-k]] [A" ~ if b 

then t[xi',--~i; ie [k] ]  is in R1 for some t e A T ( A w X k )  ~ and 
~ , e A T ( N , ( F > u  Y)q}. [] 

5.4. Lemma. Let MI and M2 be defined as in Definition 5.3. I f  M1 and M2 
are related, then z(Mt) = z (M2) .  

Now the general case is treated. First, we show that the terminal restriction 
of n-level S transducers does not decrease their transformational power (cf. Lem- 
ma 7.12 of [Dam]). In case S has an identity id, the proof is easy: just replace, 
in the right-hand side of a rule, each terminal 6 by 8( id) ,  where S" is a new 
nonterminal, and add the obvious rule for ~. Unfortunately, this does not work 
in general, because it is not clear which instruction to use in place of id. This 
forces us to work out a more complicated construction. To explain our construc- 
tion, let M be an arbitrary n-level S transducer. For  every nonterminal of M 
of level greater than 1, we prolongate the list of parameters of level 1 by the 
number of terminal symbols of M. The terminal symbols are kept (in the form 
of new nonterminals) in the extra parameter positions. Then, the non-desired 
terminals, which occur in the argument position of nonterminals and parameters 
in the right-hand side of a rule of M, are represented by the appropriate new 
parameters. To apply this trick also to a nonterminal A: z of level 0 or of 
level I, we first replace A everywhere by the applicative term A'()() and A'(), 
respectively, where A': (2, (2, ~)) and A': (2, z), respectively (note that the applica- 
tive terms have again type ~). Clearly, for this purpose we have to assume 
that n >__ 2. But note that the characterization of l-level tree transducers by 0-level 
(1-iterated) pushdown tree transducers is already given in Theorem 4.10. Hence, 
to obtain our main result also for n =  1, there is no need to prove I-T(S)=O-T(I- 
AT(S)). However, 1-T(S)=O-T(1-AT(S))  will be proved explicitly in Sect. 6 (cf. 
Corollary 6.6). 

5.5. Lemma. Let n > 2. For every n-level S transducer there is an equivalent termi- 
nal restricted n-level S transducer. Determinism and totality are preserved. 

Proof. Let Mt  =(NI, e, A, Ai,.1, RI) be an n-level S transducer. We use ()" with 
r > 0 ,  to abbreviate a sequence 0 0 - - - 0  of r empty lists. First, we construct 
an n-level S transducer M'~=(N;, e, A, A'i . . ,  R'~), in which every nonterminal 
has at least level 2. 

- IV; = ( N t - N ~ l ) w { A ' l A e N ~  1 } is the D*(Q)-set such that, if A: �9 with 
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l eve l (3)= i< l ,  then A' is of level 2 with type (2,3) if i=1  and (2,(2, 3)) if 
i = 0  (note that there are 2 - i  2's) 

- -  A[., t =Ain, 1 [A ~ A'()r(A); A eN~ 1] where r(A)= 2-level(A) 
- -  if A ^ --,if b then ~ is in Rx, then O ^ --,if b t h e n  ~[A(f)*--A'(f)()rta); 

A~N~t, fsF] is in R'I, where 6)=A' if AeN~ 1, and O = A  otherwise, and 
r(A) as above. 
It is obvious that z(M1)=z(M'~) and that determinism and totality are pre- 

served. Thus, we may now assume that every nonterminal of M t has at least 
level 2. Next we construct the terminal restricted n-level S transducer M z 
=(N2, e, A, A i n ,  2 , R2) , equivalent to M1. Let A ={31 . . . .  , J,} for some r >  1, and 
for every i~[r], 6i: 3(0. 

We define inductively the mapping $: D*(Q)~ D*(Q) that inserts uniformly 
at subtypes of level 1 the sequence z(1), . . . ,  z(r). 

(i) For  every z=(~, v)tDP(Q) with p > 2  and a=~(1). . .~(k)  for some k > 0 ,  
$(z) =($(a(1)). . .  ~k(a(k)), ~b (v)). 

(ii) For  every 3 =(a, v)tDP(Q) with p = 2 ,  $(z)=(~(1)...  3(r)cq v). 
(iii) For  every 3=(~, v)tDP(Q) with p <  1, $(z)=3. 

Now we define/72, Ai., 2, and R2. 

-- N2={YITtNI wA} is the D*(Q)-set such that, if ~tN1, then 
type (7-) = ~k (type (~)); if 7 t d with ? = 6 i for some i t  [r], then type (~ = z (/). 

-- Ai., 2 = r 1) where r  AT(N 0 ~ AT(N2) is the mapping defined as follows. 
For  ~tAT(NI)  with the decomposition A~m ... r 
if there is an i~[m] such that (i is a sequence of applicative terms of level 
1 with (i = (~i, 1 . . . .  , ~, k) for some k > 0, 

then r (0--.4q~((,,)... ~((,+ 1) e~(~-- 1)-.-qS((l), 
where ~=  (~-1 . . . .  ,3-~, r t) . . . . .  r 

otherwise r where q~ is the extension of r to sequences 
over AT(N0 defined componentwise. Note that, if there is an it[m] with the 
mentioned property, then i t  {1, 2}. 

- The set of rules R2 is determined by (i) and (ii). 

(i) For  every 6 tA  with 6: (qk,.q) for some k > 0 ,  5 ̂  ~ 3 ( y l . q  . . . .  ,Yk,~) is in 
R 2 �9 

(ii) If A ^ --*if b then ( is in R1 and (=t[xi*--(i; i~[k]],  where k>0 ,  
t t A T ( A  u Xk) q, and for every i t  [k], (ieAT(N1 ( F )  u A u Y)q with 
top ((i) e N i ( F )  w Y, then .4 ̂  ~ i f  b then ~' is in R2, where ~' = t [x i *- r i t  [k]]. 
The mapping r AT(N1 ( F )  w A w Y) ~ AT(N2 ( F )  w I0 is defined as follows. 

For  ( t A T ( N I  (F)wA w Y) with the decomposition ~('=---~'1, if there is an 
it[m] such that ~" is a sequence of applicative terms of level 1 and ('t 
= ((~. 1 . . . .  , (i. k) for some k > 0, 

then ~b'(r 0~ ' (~,) . . .  ~ '(~+ 1) r 
where ~-----(Y1,,~1) . . . .  , Y,.,lo, r 1) . . . . .  r 
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otherwise ~b'(()=0q~'(~',,)... ~'(~'0, where q~' is the extension of ~b' to sequences 
over AT(Na ( F ) w  A u Y) and the value of 0 depends on y: if y = A  ( f ) ,  then 
0 = A ( f ) ;  if y=5~, then 0=y~,,(o; if 7=y j . ,  with z~D(Q), then 0=y~+,. , ;  other- 
wise 0 = y. 

This completes the construction of Ms.  F rom the definition of N 2 and R2 
it follows immediately that M 2 is terminal restricted. Moreover, determinism 
is preserved. It is straightforward to prove that  z (M0=z(M2) .  Since M~ and 
M2 share the encoding e, this implies that totality is preserved. []  

The subsequent example illustrates that  the idea behind the construction 
of the previous lemma is really simple, but perhaps buried a bit under  the 
technicalities. 

5.6. Example. Let M =(N,  e, A, A~,, R) be the 2-level count-down transducer of 
Example 4.80). We apply the construction of Lemma 5.5 to M and obtain 
the following terminal restricted 2-level count-down transducer M2 
=(Nz, e, A, Zin,  2 , R2). 

N2 = { A~., A, B, +, 5, ~, $, 5, b-}, 

where Ai.: (at . . . .  (2, q)), 
A: (at~,m(q, q), (q, q)), 
/3: (at . . . .  (q, q)), 

: (at~m(q, q)(q, q), (q, q)), 
5: (qqq, q), 
S': (q q, q), 
$:(2, q), 
5: (2, q), and 
b-: (~, q), 

where ~tr q)(qq, q)(2, q)(2, q)(2, q). 

A~.,: = ~ . ( 5 ,  ~, $, a, b-)(). 

The rules of R 2 a r e  determined by (i) and (ii). 

(i) 5 ^ ~(r(yl ,q,  Y2,~, Y3,q), 
3-" --' ~(Yuq, Y2,q), 
~ "  --, $(), 

5" ~ a0,  and 
b-" o b ( ) .  

(ii) We use some abbreviations: Yt for "Yl.tqq~,q), Y2,(qq, q), Ya,(a,~), Y4,t~.q), 
Ys.t~.q)", and y,,  Y6, Ys, Y,, Y~ for "Yl.tqqq.~)", "Y2.(qq, q)", "Y3,tZ, q)", "Y4.(J..q)", 
"Ys.tz.q~", respectively. Then the following rules are also in R~. 

.~i, (y,)()~ .4 (dec)(y , , /3  (dec )  (y,))(y~ ()), 
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and the same rule with Yb instead of yo, 

A(yt.L, Y6, (q. ,1)) (Yl.,_q) ~ if  not null then 
A (dec )  (Yt, + ( d e c >  (Yt, B ( d e c )  (Yt), Y6, (,I,,~)))(Y#(Ya(), Yl.q)), 

and the same rule with Yb instead of y.,  

-4(Yt, Y6, tq. 4)) (Y 1, ~) "* if null then c5 ($ (), Y6. t~, q)(Y t, q)), 
+(Yt, Y6,~q,~), YT.t,~.q))(Yl.~)'+tr(Y6.tq.q)(Yl.,~), $0,  YT,tq,~)(YI,~)), and 
B(Y,)(Yl,q) ~ Yl,q. 

This completes the construction of M 2. We leave it to the reader to check 
how, e.g., the computat ion of M2 which corresponds to the one shown in Exam- 
ple 4.8 (i) would look like. [ ]  

Since every n-level S transducer can be transformed into a terminal restricted 
transducer, we can now construct the related 0-level n--AT(S) transducer (just 
by following the requirements of Definition 5.3) which is equivalent to the origi- 
nal transducer (by Lemma 5.4). The formal construction and the proof  are left 
to the reader. 

5.7. Lemma. For every n > 2, n-T(S) ~_ O-T(n-AT (S)) and Dt n-T(S) ~_ 
Dt O-T(n-AT(S)). [] 

No w we turn to the converse direction, namely the simulation of O-T(n- 
AT(S))-transducers by n-level S transducers. Starting from a 0-level n-AT(S) 
transducer M, we want to construct a terminal restricted n-level S transducer 
M'  such that M' and M are related. But for this purpose, M may only have 
one nonterminal. Hence, we first code the nonterminals of M into the storage 
type n-AT(S). In order to show that this is possible, we introduce an operator  
on storage types which adds finite information to the storage type configurations. 
By showing that n-AT(S) is closed under this operator, we have proved that 
the nonterminals of M can be coded into n-AT(S), because they form finite 
information. 

5.8. Definition. S with finite information, for short Sfi., is the storage type (C', 
P', F', m', I, E'), where C'= C x J and J is an arbitrary, but  fixed infinite set, 
P '=Pu{ in fo=j l j~J} ,  t '={ ( f ,  info:=j)lf~F and j~J}, and for every 
c'=(c, k)~C' and peP, m'(p)(c')=m(p)(c), m'(info=j)(c')=(k=j), 
m' (( f  info,=j)) (c') = (m (f)(c), j) if m (f)  is defined on c, and undefined otherwise; 
finally, E'={2u~I.(e(u),j)le~E and j~J} .  [ ]  

Although the set J in the previous definition is infinite, it is justified to 
talk about  finite information: every X (Sti.)-transducer can only use finitely many 
elements of J. 

Before proving that n-AT(S) is closed under the operator fin, we convince 
the reader that, for a 0-level S transducer with an arbitrary storage type S, 
there is an equivalent 0-level Sfi. transducer with only one nonterminal. 

5.9. Lemma. O-T(S) ~_ O-To. e(Snn) and Dt O-T(S) ~_ D, O-Ton e (S~i,). 
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Proof Let M = ( N ,  e, A, A~,, R) be a 0-level S transducer. Note that AineN. 
We construct the equivalent 0-level Sfi. transducer M'=({ .} ,  e', A, *, R') by 
defining e'=2uel-(e(u), Ai,) (note that we can assume that N~_J), and if A--* 
if b then ( is in R with (=t[x~*--A~(fi>; i e [k ] ]  for some t e A T ( A u X k )  ~, 
A~ . . . .  , AkeN, and f~, . . . , fkeF, then �9  in fo=A and b then ~' is in R', where 
( ' =  t [x~ ~ * ((f~, info :=A~)>; ie [k]]. 

Obviously, M' and M are equivalent and if M is total deterministic, then 
M' is total deterministic. []  

The proof of n-AT(S)ri,<cn-AT(S) involves a "Rounds- l ike"  construction 
(Theorem 7 of [Rou])  similar to the one for high-level grammars on p. 175 
of [Dam] (cf. also Lemma 5.4 of  [EV] and Construction 1 of [DamGuel] ) .  
Actually, we believe that the next lemma really captures the essence of Rounds'  
construction in terms of storage types. Every finite restriction U of n-AT(S)ri, 
induces a finite subset .Is of J. A current piece of finite information j is coded 
into a configuration ( = y ( c )  ~k... ~1 of n-AT(S) by addingj  to y and by prepar- 
ing for every sub-applicative term of ( as many copies as there are elements 
in J:. Then a sub-applicative term ~ with finite information j is coded by the 
correct copy of ~, namely the one with j associated to the top symbol of ~. 

5.10. Lemma. For every n >_ 1, n-AT (S)fin _-< c n-AT (S). 

Proof Let U be a finite restriction of n-AT(S)ri, and let J:= {Jr . . . . .  j,} be the 
finite subset of J induced by U. Let e1 =2uel.(e(u), j l )  be the encoding of U 
where e is an encoding of n-AT(S). 

We define the mapping copy: D*(Q)~D*(Q) as follows. For 
z=(am, ...(ctl, q)...)eD*(Q) of level m>O, copy(z)=(copy [ctm], ... 
(copy[a l ] ,  q)...) of level m, where for every ~=a(1)...~(k)eOi(Q) with i, k>O, 
co py I-a] = copy (~ ( l))r.., co py (~ (k))'. 

Let ~ :  be the finite set of symbols of S 5, involved in U. Define the D* (Q)-set 
(~' ,  type'> with ~ ' = { [ 7 , J ] l T e ~ :  andjeJ:}  and for every [7 , j ]eS ' ,  type'([y,j]) 
=copy(typ%(7)) (recall that typez is associated to .Z). We can assume that ~' 
is a subset o f -  =~". 

Define the mapping g: AT(~-<-"<C>)x J/~AT(~.<="<C)) inductively on the 
structure of the applicative terms. For ~eAT(~-<"<C>) with the decomposition 

<c> 

g(~, j) = [y, j]  <c) ~'s .-- ~"1, where for every ~'= (~, . . . . .  ck), 

( '=(g(~l , J t )  . . . .  , g(~l,J,), ..., g(~k,J,) . . . .  , g(~k,J,))" 

Note  that g is injective. Hence, we can define the representation function 
h: AT(~<-"<C>)~AT(~<-"(C>)• to be the inverse of g in the usual way: 
dom(h) = range(g) and if ~ e dom (h), then h (0  = g-1 (~). We prove that h satisfies 
the requirements 1-3 of Definition 3.17. 

Requirement I. The encoding e2=2ueI.g(e(u),jl)  of n-AT(S) satisfies the re- 
quirements. 
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Fig. 7. Coding of finite information in 2-AT(So) 

Requirement 2. Every predicate ~b of U is coded by a boolean expression b(ck). 
q~ = (info =j):  b (q~) is the disjunction of all predicates top = [7, j ]  where 7 e 3, z. 
~b = (top = 7): b(~b) is the disjunction of all predicates top = IV, J] where J~Jz" 
~b = test (/9): b (tk) = test (p). 

Requirement 3. Every instruction ~b =(push (0,J) of U is coded by an instruction 
f(~b). For  the construction of f(~b), we define a mapping g': AT(~--<"(F)w Y) 
x J: ~ AT(E --<" ( F ) w  Y) in a similar way as g is defined. 

If (~AT(~-<" (F )  w Y) with the decomposition ~ , . . .  ~'t and 

if r =7  ( f ) ,  then g'((, j) = [?,J] ( f )  ~ . . .  ('~, and 
if ~b =y,.+, then g'((, j) "-~" Yp, copy (r)~s "'" ('l, 

where p=(i--  i) r+j  and for every ~'=((1, -.., (k), 

7' =(g'(~l ,Jl) ,  ..-, g'((l,J,), --., g'((k,J,) . . . .  , g'((k,J,)). 

Then f (qS)= push (g'((, j)). []  

To support the readers understanding we code finite information into the 
storage type 2-AT(So) following the constructions of the previous lemma. 

5.11. Example. Consider a finite restriction U of 2-AT(So)fi. and let E r  
be the set of symbols involved in U. Let J:= {jl,j2}- Hence, r=2 .  

Consider the U-configuration c1=(r with the applicative term r  
=71(72, 73)(7,0. For  convenience we have dropped the configuration c of So. 
The types of the symbols are determined as follows. 

r t : ((q, q)(q, q), (q, q)), 
72, 7a: (q, q), and 

Y4: q. 
We apply the instruction ~b=(push (0,Jl) with (=?a(YLtq.q)(74)) to c 1 and show 
how this application is coded by 2-AT(So). The corresponding commutative 
diagram is presented in Fig. 7. 
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The result of the application of ~b to cl is the 2-AT(So)f~,-configuration 
c'1=(r with ~'~=)'3(Y2()'4)). Before we apply g to c~, we compute, as an 
example, the type of [Ya,Jl] in detail. 

t y pe ( [)' 1, J t ]) = co py (type- ()' 1)) 
= copy(((q, q)(q, q), (q, q))) 
= (copy [(q, q)(q, q)], (copy [q], q)) 
=(copy((q, q))2 copy((q, q))2, (qq, q)), 
=((copy [q], q)2(copy [q], q)2, (qq, q)) 
=((qq, q)2(qq, q)2, (qq, q))=((qq, q)4, (qq, q)). 

Hence, for every j~  {Jl, J2}, 

[) ' , , j]:  ((qq, q)4, (qq, q)), 

[)'2,J], [Y3,J]: (qq, q), and 

[)'4,J] : q- 

The result of the application of g to ct is the 2-AT(S0)-configuration 

c2 = [71,J2]([72,Jt], [72,J2], [)'3,Jr], [73,J2])(tl, t2) 

where t i= [y4,j;] for i~{1, 2}. 
The instruction ~b is coded by f(~b)= push (g' ((, J 1))= push ((') with 

('=[)'3,jl](yl,(qq.q)(tl, t2), y2,(qq, o(tt,  t2) ) and ti as above. 
Applying f(~b) to c 2 yields the 2-AT(So)-configuration 

c'2 = [73,jt]([Y2,j ,](t , ,  t2), [72,J2](t,, t2))- 

In fact, g(c'O=c'2. [] 

5.12. Lemma. For every n > 1, O-T(n-AT(S)) ~ n-T(S) and 
D, 0- T(n-AT (S)) ___ D, n- T(S). 

Proof. By Lemma 5.9, for every 0-level n-AT(S) transducer, there is an equivalent 
0-level n-AT(S)nn transducer with only one nonterminal. Since n-AT(S)ri, can 
be coded by n-AT(S) (Lemma 5.10), this means, together with Theorem 3.19 
(and Fact 4.6), that there is an equivalent 0-level n-AT(S) transducer with one 
nonterminal. Note that Theorem 3.19 can be applied only if the involved storage 
types are in the coding relation. 

Now let M=({.} ,  e, A, *, R) be a 0-level n-AT(S) transducer with e=Au~I .  
q <g(u)) for some r/~AT(~----") and some encoding g of S. By an easy transforma- 
tion (cf., e.g., Lemma 3.30 of [EV] for a similar transformation of X(P(S))- 
transducers), we can achieve that the tests of rules of M have the form top = 7 
and test (b) where b is a boolean expression over P. 

Next we construct the terminal restricted n-level S transducer M' 
=(N,  e', A, Ai,, R') which is related to M as follows: N={7~E<"I) '  occurs in 
M} where the types are preserved (note that N' is finite), e '=g ,  Ain=rl, and 
if , ~ i f  top=),  and b then ( is in R with ~= t [x i~* (push ( (~ )> ;  i t [ k ] ]  for 
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some teAT(A k..)Xk) q, k~_~0, and (1 . . . . .  (k6AT(S=<"(F) u Y)~, then y" - , i f b  then 
(' is in R', where ( '=t[xi~-(i;  i t [k]] .  

It is an easy observation that M and M' are related. Hence, by Lemma 
5.4, M and M' are equivalent. If M is total deterministic, then M' is total deter- 
ministic. [] 

Now, for every n_>_2, we have obtained the characterization of n-level S 
transducers by means of 0-level n-AT(S) transducers and thereby verified the 
claim that the substitution power inherent in the control of n-level S transducers 
is captured by the storage type n-AT(S). The corresponding characterization 
for n = 1 is shown in Corollary 6.6. 

5.13. Theorem. For every n>=2, n-T(S)=O-T(n-AT(S)) and Dtn-T(S ) 
=DtO-T(n-AT(S)). 

Proof Lemma 5.7 and Lemma 5.12. []  

6. Applicative Terms and Iterated Pushdowns 

In Sect. 5 the rewriting mechanism of n-level S transducers was captured by 
the storage type n-AT(S), and thereby the characterization of n-T(S) by O-T(n- 
AT(S)) (cf. Theorem 5.13) was obtained. Here we show the equivalence of the 
storage types n-level applicative term of S (n-AT(S)) and n-iterated bounded 
excursion pushdown of S (P~c~(S)). Then it follows from the Justification Theorem 
3.16 that O-T(n-AT(S))-transducers and O-T(P~,o~(S))-transducers are equivalent. 
Hence, in total, the equivalence of n-level S transducers and n-iterated pushdown 
S transducers is induced: n-T(S) = O-T(Pf, ex (S)) (cf. Theorem 6.15). 

The equivalence of n-AT(S) and Pf, ex(S) is proved via an intermediate storage 
type. Informally, n-AT(S) can be viewed as the n-fold application of the storage 
type operator "tree-pushdown" (TP); formally, we show that, for every n> 1, 
n-AT(S)-TP"(S) (cf. Corollary 6.12). The essential idea behind this equivalence 
is the (iterated) tree-form of applicative terms (cf. Sect. 2.2). Since TP and Pbo~ 
are equivalent storage type operators, i.e., for every storage type S, TP(S) = Pbc~(S) 
(Theorem 5.13 of [EV]), the equivalence of TP"(S) and P~,~(S) (cf. Corollary 
6.14) then follows from the monotonicity of Pb~ and TP (Lemma 3.23). 

The concept of tree-pushdown was introduced in [Gue] and formalized as 
a storage type in [DamGue2]. Before we explain how the equivalence of n-AT(S) 
and TP"(S) is obtained, we recall the formal definition of the tree-pushdown 
of S from [EV]. A special set of substitution variables Z =  {zl, zz, z3 . . . .  } is 
used. For every k>O, Zk={Zl, ..., Zk}. Recall from Sect. 2.1 that ~2 is an infinite 
ranked set. 

6.1. Definition. Let S=(C, P, F, m, I, E) be a storage type. The tree-pushdown 
of S, denoted by TP(S), is the storage type (C', P', F', m', 1', E'), where 

- C ' =  T~<c> 
- P ' =  {call=J[ref2} u {test(p)[psP} 
- F ' =  {expand(0[(e Ta<F>(Z)} 
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- for every c '=a(c ) (q ,  ..., tk)eC, 
m'(call = 6)(c') = true iff 6 = a, 
m' (test (p)) (c') = m (p) (c), 
for c" = ~ [zl ~- ti; i~ [k]] I f  ~- m ( f ) (c ) ; f~  V], 
m'(expand (~))(c') = c" if c" E C', and undefined otherwise 

- I ' = I  

- E'={2u~l .~(e(u)) la~Tn,  e~E} with a(e(u) )=a[y~7(e(u) ) ;  ~ 2 ] .  [] 

Note that, by convention, if yeQ is of rank k, then for every f ~ F  and 
every c~C, ~ ( f )  and ~ ( c )  are also of rank k. We abbreviate TP(So) by TP. 
In the usual way we define TP ~ (S)= S and for every n > 0, TP"+ I (S)= TP(TP" (S)). 

6.2. Lemma. TP is monotonic with respect to the simulation relation, i.e., for 
two storage types $1 and S2, if $1 <=$2, then TP(S0<TP(S2) .  

Proof This follows immediately from TP(S) = Pb~x(S), where S is an arbitrary 
storage type S (Theorem 5.13 of [EV]) and from the monotonicity of Pb~x (Lemma 
3.23). []  

The equivalence of n-level applicative term of S and n-iterated tree-pushdown 
of S (i.e., TP"(S)) is proved by using an inductive statement in which, informally 
speaking, one level of n-AT(S) is replaced by one application of the operator 
TP. Formally, for every n >  1, (n + 1)-AT(S)-TP(n-AT(S)).  By considering only 
the involved sets of configurations, this statement says that applicative terms 
over Z =<"+ ~ ( C )  of type q can be represented by trees over ~(AT(~=<"(C))q) ,  
and vice versa. The first direction of representation is closely related to the 
concept of tree-form of applicative terms over a D* (Q)-set V (cf. Sect. 2.2). How- 
ever, the tree-form of an applicative term in AT( =-<"+ t - -  (C) )  q is a tree indexed 
by elements of ~=<"+l (C)q (recall that AT(~=<"+ t (C ) )  ~= T~v(~<"+ t ( C )  q) with 
the ranked set 7~=AT(,~ <"+t (C))=~). Hence, in order to take advantage of 
the tree-form concept in the present situation, we first have to show that symbols 
of level 0 (i.e., symbols of ~=<"+1 (C)q) are not essential in (n+ 1)-AT(S). More- 
over, the tree-form of an applicative term is a tree over AT(~  <"+ ~ ( C ) )  = ~ rather 
than a configuration of TP(n-AT(S)), i.e., a tree over (2(AT(~=<"(C))q). The 
necessary type decrementation and the addition of a " dummy"  tree-pushdown 
symbol of appropriate rank to every "label" in A T ( ~ < " ( C ) )  q is taken care 
of in the proof  of (n + 1)-AT(S)< TP(n-AT(S)) (of. Lemma 6.7). In the following 
definition and lemma the first problem is handled. 

6.3. Definition. Let n >  i. The n-level applicative term of S without constants, 
denoted by n-AT+(S), is the storage type defined exactly as n-AT(S) except 
that --=<" is replaced by ~=~'"-- {?eSl  1 =<level(~,)_< n}._ []  

6.4. Lemma. For every n> 1, n-AT(S)=~n-AT + (S). 

Proof Obviously it suffices to prove that n-AT(S)<r Every symbol 
of a finite restriction U of n-AT(S), which is of level 0, is represented by 

the applicative term ~'0, where 7': (2, q). Then the encoding of U and every 
predicate and instruction of U is coded by itself modulo the replacement of 
~,: q by ~'(). We leave the formal proof to the reader. [ ]  
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Note that the technique of lifting the level of an object of a derived type 
is applied in Lemma 5.5 to nonterminals. 

Since the inductive statement does not cover the proof of n-AT(S)=TP"(S) 
for n-- 1, we prove this case separately. 

6.5. Lemma. 1-AT(S) = cTP(S). 

Proof. Since 1-AT(S)-c 1-AT+ (S), it suffices to show that 1-AT+ (S)-cTP(S). 
These two storage types are the same, apart from small differences in terminolo- 
gy. Note that their sets of configurations AT(S 1" l(C))q and Ta<c> are equal. 
Clearly, t op=  7 and push (0 correspond to call =7 and expand (0 (where y,.~ 
corresponds to zi), respectively. []  

As a corollary to the previous lemma we can now fill a small gap of Sect. 5: 
the equivalence of l-level S transducers and 0-level 1-AT(S) transducers. 

6.6. Corollary. 1-T(S) = 0-T(1-AT(S)) and Dt 1-T(S) = Dt0-T(1-AT(S)). 

Proof. In Theorem 5.5 of [EV] it is proved that CFT(S)= RT(TP(S)). Hence, 
by Lemma 6.5 and the Justification Theorem, CFT(S)= RT(1-AT(S)). Then the 
statement of this corollary follows from Fact 4.6. Since all the mentioned results 
preserve totality and determinism, also the second equation follows. []  

Now let us turn to the simulation of (n+I)-AT(S) by TP(n-AT(S)), 
which forms the first part of the inductive statement. Since (n+I) -AT(S)=,  
(n+ 1)-AT+(S), let us consider a configuration ~ of (n+I)-AT+(S). Note that 
~ A T ( 3  l'n+ l(C))a and ~l.n+ t (C  ) does not contain symbols of level 0. Hence, 
the tree-form of ~ is a (non-indexed) tree over AT(Z1'~+i(C)) =~, cf. Sect. 2.2. 
Then, the representation rep(~) of ~ is defined inductively on the structure of 
the tree-form of ~. If ~o(tl . . . . .  tk) is the tree-form of ~ for some 
Go ~ AT (~ 1. ~ + i (C))  = 1 and k __> 0, then rep (~) = *k (~'o) (rep (t l) . . . . .  rep (tk)), where 
*k is a fixed (dummy) symbol in ~ of rank k. The applicative term ~'o over 
Z=<~(C) of type q is obtained from 4o by replacing every symbol y ~ l . ~ + ~  
by the symbol ~Z-<n and the type of f is computed from the type of 7 by 
an appropriate type decrementation. Thereby, ~'o becomes an applicative term 
of level 0 and hence an n-AT(S)-configuration. Since rep is injective, the represen- 
tation function h of the simulation can be defined as the inverse of rep. 

It is easy to see that the predicates top = y and test (p) of n-AT(S) are simulated 
by test(top = ~) and by test(test(p)), respectively. Since the substitution of applica- 
tive terms for parameters of level 0 is simulated by the substitution of tree- 
pushdowns for variables in Z, it is also intuitively clear, that an instruction 
of (n + 1)-AT(S) can be simulated by a TP(n-AT(S))-instruction. For an example 
of the representation consider Fig. 8 (the types of the involved symbols are 
defined in Example 6.8; cl and c2 are configurations of the storage type S). 

This discussion suggests that (n+I)-AT(S) can even be coded by TP(n- 
AT (S)). But, if we compare the encodings of both storage types, then we recognize 
that this is not true. Let 2u~I.~(e(u))  be an encoding of TP(n-AT(S)), where 
~ Ta and e is an encoding of n-AT(S). Hence, for u~I, to every node of 
the same applicative term e(u) is associated. But obviously, the encodings of 
(n+ 1)-AT(S) do not have a similar property. Hence we have to use a small 
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Fig. & a applicative term in AT(-~t'2 (C))  q, b tree over Q(AT(N t' ~(C)) ~) 

trick to obtain, for an encoding e 1 =2uel.rl(e(u)) of (n+ 1)-AT(S), an appro- 
priate encoding of TP(n-AT(S)). Assume that, e.g., r ep( r / )=*2(4 t}( .o (~2) ( ) ,  
*0 (43)())  for some 6~EAT(S -<" (C})  q. Then we combine the different applicative 
terms 4~ into one term ~k=$(41, 42, 43), where $: (qqq, q) is a new symbol in 
S ~", and the encoding e~ of TP (n-AT (S)) is the function 2 u e I-sel t (~k')(sel2 (~k'), 
sel 3 (t.k'}) with ~k'= ~k (e(u)) and selL, sel2, and sel 3 are new symbols of  f2 indicat- 
ing which subterm of t is the correct one (where selt has rank 2, and sel 2, 
sel 3 have rank0). If an (n+l)-AT(S)-instruction ~b is simulated on e2(u) 
for some u, then first, the subtree 41 is selected by the instruction 
expand( ,2(push(yl .q))(z t ,  z2) ) and second, ~b is simulated in the usual way. 
The need for this simulation in two steps destroys the possibility of coding 
(n+I)-AT(S)  by TP(n-AT(S)). In Example 6.8 the constructions of the next 
lemma are illustrated. 

6.7. Lemma. For every n> 1, (n+ 1)-AT(S)<TP(n-AT(S)). 

Proof. By Lemma 6.4 and the transitivity of -<d (Lemma 4.19 of [EV]) it suffices 
to prove that, for every finite restriction U of (n+  I)-AT+ (S), U <,~TP(n-AT(S)). 
Let ~z_cE L"+I be the finite set of symbols used in U. Furthermore, let el 
=2u~I.rl(e(u)) be the encoding of U with r/~AT(..~i)q and e~E. Define the 
mapping dec: D+(Q)~D*(Q), which decrements the level of a type, as follows. 
For every k>___0, dec((q k, q))=q, and for every (c(, v)~D+(Q) with (z~D + (Q)k for 
some k > 0 ,  dec((cz, v))=(dec(~(1)).., dec(~(k)), dec(v)). 

By means of this type decrementation we define the finite D* (Q)-set (~ ,  type),  
where ~ = {~1 ?~EI} and type (7")=dec(type-(7)). (Note that, since every symbol 
? in ~ r  has at least level 1, dec is defined on typez(y).) W.l.o.g. we can assume 
that ~_cE ---<~. The isomorphism ~: EI---}~ is extended to the isomorphism ~ 
AT(EI) =~ ~AT(.~)  q in the obvious way. The extension to the isomorphism 
AT(E I (C) )=  1 __} AT(~  (C}) q is also denoted by ~ 
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For  the definition of the representation function, we construct the set of 
subterms of r/ of level 1, i.e., the set of labels of the tree-form of 11. Formally, 
define the mapping set: AT(-=:)q~PS, where PS is the powerset of AT(~) q, 
as follows. Let r  ~ and ~=~o(~t  . . . . .  ~k) for some ~o~AT(~:)* with 
v=(q k, q) and k>0 ,  and ~1 . . . .  , ~keAT(S:)q; then set (4) 
={(o}~3set(~1)u. . .uset(~k) .  Let set(t/)={4 t . . . . .  4r} for some r > l .  The 
number r determines the type of the additional symbol $~S --<" at which we 
want to hang the 4i's: 

$: (qr, q). 

Define the ranked set Z =  {sely~[r]}  with se l f iZ  k if r/i: (qk, q). We can assume 
that ~_~ ~2. 

The function g : I ~ A T ( F . ~ " ( C ) )  q is defined by g(u)=~(e(u) )  with 

=$(4 ,  . . . . .  4,)- 
Now we define the representation function 

h: Tr~<~,> ~ AT(~ ---"+ ~(C)) q with ~=AT(~-<~(C) )  q 

and prove that h satisfies the requirements of Definition 3.13. 

dom (h)= T,(T,,) with r = {*k (~) [k  > 0 and ~ e A T ( E / ( C ) )  of type (qk, q)} 

where .k~f2 of rank k, not in ~7, and ~ ' =  27(range (g)). 
Let t~dom(h). 

(i) If  t = * k ( ~ ) ( t t ,  . . . ,  t~) with k>0 ,  ~ A T ( E : ( C ) )  of type (qk, q), and 
t 1 . . . . .  tk~dom(h), then h(t)= ~(h(tl) . . . . .  h(tk)). 

(ii) If t=sel i (g(u))( t  1 . . . .  , tk), k>O, u~dom(g), and tt . . . . .  tk~dom(h), then 
h (t) = (r/i) (e (u)) (h (t l) . . . . .  h (tk)), where (r/i) (e (u)) i s  obtained from r/i in the same 
way as 17 (e(u)) is obtained from r/. 

Requirement I. Before we define an encoding e 2 which simulates et, we define 
a partial function tree: AT(~ : )*~  T o which provides the "init ial" tree-push- 
down (corresponding to r/). Let ~ A T ( ~ r  *. Then, as usual, r  r 
for some k > 0  and some G0, i t  . . . .  , r If ~o=4i  for some j~[r], then tree(i) 
-- seli(tree(~ 0 . . . .  , tree(~,)). 

Now it is an easy observation that the encoding e2 = 2u~l.(tree(r/))(g(u)) 
satisfies the requirement 1 of Definition 3A3. 

Requirement 2. Every predicate q9 of U is simulated by a TP(n-AT(S))-flowchart 
co for predicates. 

qS=(top=y):  For  every se l f iZ with r/i: (qi, q) for some k>0 ,  
Zin  ~ if call = seli then A (expand(.k (push(y h ~)) (zt, . . . ,  Zk)))  

Ai~ ~ if b ~ e n  A ( id) ,  and 
A ~ if test(top = ~ then true ( id )  else false ( id )  

are rules of t~, where b is the conjunction of all boolean expressions of the 
form not(call =seli), where selfiZ. 

~b = test (p): ~b is simulated by the boolean expression test (test (p)). 



High Level Tree Transducers 173 

Requirement 3. Every instruction push (() is simulated by a TP(n-AT(S))-flow- 
chart co for instructions. For every se l f iS  with r/j: (qk, q) for some k>__0, 

Ain ~ if call = selj then Ain (expand (*k (push (y j, q)) (zt . . . .  , Zk))) and 

Ain ~ if b then stop <expand(~,b (0)) 

are rules of 09, where b is defined as in requirement 2. The mapping 
r  where F' denotes the set of instructions of 
n-AT(S), is defined inductively as follows. 

(i) For yl,qeY, q~(yi.q)=zi. 
(ii) For ~=~o(~1 . . . .  , ~k)~AT(Y,I(F> u Y)~, 

~ (if) = *k (push (~'o)> (~b (~1) . . . . .  ~b(~k)) with 

Here we only provide a proof of requirement 3.2 and that only for trees 
in T,___ dom(h) (see above). Actually, the correctness of this case follows immedi- 
ately from the next statement (*) for which we assume that 3.3.1 and 3.1.2 
are true. The meaning functions of (n+ 1)-AT(S), TP(n-AT(S)), n-AT(S), and 
S are denoted by ml, m 2, m', and m, respectively. The sets of instructions of 
the latter two storage types are denoted by F' and by F, respectively. 

For every ~ A T ( ~ I ( F  > u Y)q and every c'~ T, ,  
(.) if m l(push(~))(h(c'))  is defined, then 

h (m2 (expand (~b (~)))(c') = m t (push (~))(h (c')). 

The proof is by induction on the structure of ~. Let c'= *i (~'> (tt . . . .  , tk)~ T| 

If ~ r  Y, then there are two cases. 

Case I. ~ 3 ~  (F>:  Actually, this case cannot occur, because ~: q and every sym- 
bol o f . ~ s ( F  > has at least level 11 

Case 2. ~ = Yi. q: h (m 2 (expand (~b (Yi. q))) (c')) = h (ti) 
= m t (push (y~, q))(* (h (t t) . . . .  , h (tt))) = m t (push (Yi, q))(h (c')). 

Now let ~=~o(~t . . . .  , (~) with p > 0  and assume that the statement holds 
for ~t . . . . .  (a- Let ~=y<c>~v . . . ~ t  with /~>0, ?: (a#, ...(czl,(q~, q))...), and 
~i~AT(Ef(C>) ~i. Hence, h(c')= ~(h(tl) . . . . .  h(tk)) =~ <c> ~ . . .  ~ (h(tt) . . . .  , h(tk)). 
For every ~ ~ D* (Q)~ with s > 0, we denote (dec (cz (I)) . . . . .  dec (~ (s))) by dec (a). 

h (m2 (expand (~b (0)) (c')) 
= h(m2(expand(%(push(~'o))(~b((~) . . . .  , q~((a))))(*~ <(>(tt . . . .  , t~))) 
= h(% (push (~'o)) (~b (~,) . . . . .  ~b ((a)) [ ]  ,), 

where [ ] t = [zi *- tl; i~ [k]] [push (~k) ,-- m' (push (~b)) (~'); push (t~) ~ F']  
= h(*p (m'(push (r (q9 (~l) [ ]  ~ . . . . .  ~b(~) l i t ) )  
='h(% (~'o []2> (~b(~,) [ ] ,  . . . . .  r [],)), 

where []2 = [Ya,~,0 ~- ~ ;  ir [#]] [ f ~  m ( f ) ( c ) ; f ~ F ]  
= ~o [ ] 3 (h (m 2 (expand (~b (~ l))) (c')), ..., h (m 2 (expand (~b (~)))(c'))), 

where [ ] 3 = [Y~i ~- ~i; i~ Lu]] I f  ~ m (f)(c); f ~  iv] 
= ~o []3 (mi (push (r t))(h (c')), ..., mi (push (~a))(h (c'))) 

(by induction hypothesis) 
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Fig. 9. Simulation of 2--AT(So) by TP(1 --AT(So)) 

=Co []3(C, [], ,---,  L [],), 
where []4 = [Y~i ~ ~i; ie [p]]  [.yj. q ~- h(ti);je [k]] [ f ~ -  m(f)(c); feF]  

= Co (C ~, ---,  C~) [ 3 ,  
=ml(pUsh(())(h(c')). [ ]  

6.8. Example. We illustrate the simulation of 2-AT(So) by TP(1-AT(So)). Let 
~: ((q, q)(2, q), (q, q)), a: ((q, q), (2, q)), 6: (q, q), and a: (2, q) be symbols of •1.2. 
The corresponding elements of ~ are ~: (qq, q), ~: (q, q), "~: q, and ~: q. Let U 
be a finite restriction of 2-AT + (So) with encoding el = 2 u e I. r/(e (u)). Since et (u) 
has a fixed value, viz. ~/(c) where c is the configuration of So, we denote et (u) 
by cl. Assume that r/=~(6, a)(a(), a(6)0). Then set(r/)={fh,7/2,f/3} with 01 
=y(3,  ~), 02=~,  and f/3=6(~). Hence, r = 3  and $: (q3, q). Since for every ueI, 
e(u)=c, g(u)=$(~(c)($(c), ~(c)), ~(c), O(c)(~;(c))). Before determining the 
encoding e2 by which el is simulated, we compute tree(r/): tree(r/)=Sell(sel2(), 
sel30 ). Hence, e2 = 2 u e I - s e l t  (g(u))(sel2 (g(u))(),  sel 3 (g(u))()). Since g(u) has 
a fixed value, we can denote e2(u) by c2. It is easy to see that h(c2)=ct. 

N o w  we apply the instruction push(() with (=6(id)(yL(q.q)(Y2,q)) to c1. 
The result is the applicative term c'1=6(c)(6(c)(a(c)(6(c))())). ( is trans- 
formed by  ~b into "1 (push(~( id ) ) ) (* l  (push(yLq))(z2)). Let 09 be the flowchart 
that simulates push(0,  and let c~ = oper (r (c2). Then, c~ 
= *t ( ~ ( c ) ) ( ' 1  ( $ ( c ) )  (sel3 (g(u))0))- It is easy to check that h(e~) = c'1. Figure 9 
shows the corresponding commutative diagram. [ ]  

The following lemma proves the other direction of our inductive statement, 
viz. TP(n-AT(S))<=(n+ 1)-AT(S). Now we can even show that TP(n-AT(S)) is 
coded by the (n + 1)-level applicative term of S. 
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The first idea one has in mind, is to apply the construction of the previous 
lemma (without the problem with the encoding), but in the other direction. 
Additionally, the label of every node of a TP(n-AT(S))-configuration has to 
be incorporated into the associated n-level applicative term ~. However, this 
construction does not work as we want to point out at the following incomplete 
example. For i~{0, 1}, let -ieI2~. Let cS~Z -<" of type (q, q), let ~AT(~----" (C))  q, 
and let t be a tree over O ( A T ( ~ " ( C ) ) ~ ) .  Hence, c l = - l ( 3 ( c ) ( ~ ) ) ( t )  is a 
possible configuration of TP(n-AT(S)). The application of the instruction ~b 
=expand(-1(push(yl ,~))( -o(push(yl ,q))( ) ) )  to cl yields the configuration 
c ~ = - t ( r 1 6 2  Roughly speaking, ~b copies ~ such that each copy is 
associated to symbols of different rank, i.e., to symbols - ~ and - o  of rank 1 
and of rank 0, respectively. Using the straightforward construction, c'~ is repre- 
sented by c~ = ~ (~'o), where ~'~ is the applicative term of type (q~, q) " representing" 
- i ( ~ ) .  Note that ~'o and ~1 have different types. Since ~ occurs only once 
in the representation of ct, it is now easy to see that there is no instruction 
~b' of (n+ I)-AT(S) which simulates ~b, i.e., which provides two copies of r with 
different types. 

To overcome this problem we use a "Rounds-like" construction. For every 
sub-term ~' of an applicative term ~, which is associated to a tree-pushdown 
symbol in a configuration of TP(n-AT(S)), as many copies are prepared as there 
are tree-pushdown symbols. Then, according to the rank of that tree-pushdown 
symbol, to which ~' is associated after the application of an instruction, the 
copy with the correct type can be chosen. An example which illustrates the 
formal construction, can be found after the next lemma. 

6.9. Lemma. For every n > 1, TP(n-AT(S)) <=,(n + I)-AT(S). 

Proof. Let U be a finite restriction of TP(n-AT(S)) with encoding e 1. Let O: 
={Tt . . . . .  )'r} and E :={6 t  . . . . .  6~} be the finite subsets of symbols of f2 and 
~ " ,  respectively, which occur in U. We have to show that U<d~(n+ 1)-AT(S), 
i.e., there is a representation function h: AT(Z --<"+l<C>)q~ Tv, with 

= t2 (AT(E ~" (C))  q) for which the requirements 1-3 of Definition 3.17 hold. 
We define the mapping inc(y): D*(Q)~D+(Q), for every ),~12:, as follows. 

If z=(atm, ...(ctl, q)...)~O*(Q) for some m>0, then inc(y)(~)=(inc[~m], ... 
(inc[~l], (qJ, q))...) with j=rank(y),  and for every ~=~(1)...~(k)~Di(Q) * 
and k>0,  incl-~] abbreviates the sequence inc(yt)(~(1))...inc(yr)(~(1))... 
inc (y 1)(~ (k)) ... inc (y,) (~ (k)) (note that, if k = 0, then inc [~] = 2). 

We use this incrementation of the level of types to introduce a finite D* (Q)-set, 
namely (~ , type)  with ~={.I-~,,~5]l~ef2 : ,  6 ~ : }  and type([y,~])=inc(?) 
(typez(~5)). We can assume that ~_~-< '+  1. 

We define for every y~f2: the mapping ~ on AT(Z:(C)) ,  which copies every 
sub(-applicative-)term r times. For every zeD*(Q), the one-to-one mapping 
~7: AT(~:  (C))~ ~ AT(E -<~+ ~ (C))" with v = inc(y)(z) is defined inductively as fol- 
lows. If ~ A T ( E : ( C > )  ~ has the decomposition t S ( c ) ~ . . . ~ ,  then y(~) 
= [ ~ , ~ ] ( c ) ( ~ . . . ( ~  and for every i ~ ] ,  ~'~ abbreviates the sequence 
(y~ (~(1)) . . . . .  ~(~(1)) . . . . .  ~t (~(k~)), ..., y~(~(k~))), where k~ is the length of ~ and 
~(j) is the j-th component of ~. 

We use the mappings y to define the one-to-one mapping g: 
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Tv,, ~ A T ( ~  ~-n + t <C>)q with ~ '  = f2: <AT(S/<C>)q> inductively. For  y e O:of rank  
k > 0 ,  ~eAT(S.r  <C>) q and tl . . . . .  tk~ Tw,, g(y <~>(tl . . . .  , tk))=f~(~)(g(tO, ..., g(tk)). 

Finally, we define the representation function h: AT(S---"+ 1<C>) q --+ T~, with 
~g = f2 <AT(-  ~--<n <C>)~> to be the inverse ofg. We show that h satisfies the require- 
ments of Definition 3.17. 

Requirement I. Let e, =2ueI.~<e(u)> for some eeE. It is an easy observation 
that e2=2ueI.g(~<e(u)>) is an encoding of (n+ 1)-AT(S) and that it satisfies 
the requirements. 

Requirement 2. The predicates ca l l=y  and test (top=tS) of U are coded by the 
boolean expressions top=[y ,  61] or . . .o r  t op= [y ,  6~] and top=[yx ,  6] o r . . .o r  
top = [y,, 6], respectively, and the predicate test(test(p)) of U is coded by test(p). 

Requirement 3. Let expand(0 be an instruction of U where (~T| with 
= {y (push(~b))lyef2:,  ~b~AT(ff : (F)  w Y)q} and rank(y (push(~b)))= rank(v). 
Define the one-to-one mapping g': T, (Z) --* AT (~ --<"+1 ( F ) w  Y)~ (similar to g) 
for y of rank k>0 ,  by g'(y(push(q~))(t~, ...,tk))=~'(~b)(g'(tl) . . . .  ,g'(tk)) and 
g'(zj)=yj.~, and for every yi~f2.r, the one-to-one mapping ~): A T ( S : ( F ) u  Y)' 
~ A T ( -  ~ " + 1  ( F ) u  Y)~ with v=inc(yj)(~) is defined inductively (similar to 7j) 

by ~j(6 ( f )  [u'-" ~t)= [YS, c5] ( f )  ~'#_ .. ~t, and Y~)(Y,,k (,'." ~t)=Yo.p ~r#... ~'1 where 
o - = ( i - - 1 ) . r + j  and p=inc(ys)(x); ~ is obtained from ~ in the same way as 
is obtained from ~. Then push(g'(0) codes expand (~). 

Here we provide a formal proof of Requirement 3.2 under the assumption 
that 3.1.1 and 3.1.2 hold. Let mr, m2, m', and m denote the meaning functions 
of TP(n-AT(S)), of (n+'I)-AT(S), of n-AT(S), and of S, respectively. The sets 
of instructions of the latter two storage types are denoted by F' and by F, 
respectively. Before starting the main proof of 3.2, we formalize the intuitively 
clear fact that, for every y~f2:, y and ~' correspond to each other. 

(*) For  every <b~AT(~, f (F)~  Y), c~C, 
(c~p . . . .  (~1, q)...)~D*(Q) with p>=0, r . . . . .  ~u~AT(E : (C) )  
with ~:  ai for every l e V I ,  and D~f2:, 
Y)(q~) [Yi.r ~ ~"; i t  [p]] [c]f  = yi(q5 [.y,, ~ ~,; i t  Lu]] [c]y), 
where [c]z abbreviates [ f ~  m(f)(c); f ~F]. 

The formal proof (by induction on the structure of q~) is left to the reader. 
Requirement  3.2 follows immediately from the next statement. 

(**) For  every ~ T , ( Z )  and t~T~,,, 
m2 (push (g' (~))) (g (t)) = g (m ~ (expand (~)) (t)). 

We prove this statement by induction on the structure of ~. Let t 
= y ( r  ..., t~), k>O, ~=a(c )  r and or: (~# . . . .  (~1, q)...). 

( = z~: m2 (push (g' (0)) (g (t)) 
= m 2 (push(y~. ~))(y(~)(g(t~) . . . .  , g (tk))) 
=g(t~) 
= g (m~ (expand (z~))(t)). 

= c~ (push(~b))(~ . . . . .  ~,) with v > 0 and assume that (**) holds for ~ . . . .  , ~,. 
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First wecompute  g(t). 

g(t)=g(y<r . . . .  , tk)) 
=~(~)(g(tl), . . . ,  g(tk)) 
= [7, tr] <C> ~ . . .  ~1 (g(t~) . . . . .  g(tk)) 

with [y, a] : (inc [ct/0 . . . .  (inc [~ 11, (qk, q))...). 
Then m 2 (push (g' (~)))(g (t)) 
= m2 (push (~"(q~) (g' ((t) . . . . .  g'(~v))))(g(t)) 
= ~"(~b)(g'(~l) . . . .  , g'(~v)) I l l  [c]y, 

where []1 = [Yi,r ~- ~i; i~ I/t]] [y~, ~ *- g(ti); i~ [k]] 
and [ c ] i  = I f , - -  m (f)(c); f ~  F] 

= (3' (#,) [ ] ~) (g' ( ( , )  [ ] ,  [c] ~, . . . ,  g' (~v) [ 1, [c] ~), 
where [ ] 2 = [Yi'.~ t-q ~ #i; i ~ [u]]  [c]~. 
(this equality holds, because ~"(tk) contains no Yi.q) 

= $'(q6 [y~i.-- ~i; ie [#]]  [c]y)(m2(push(g'(~l)))(g(t)) . . . . .  mz(push(g'(~,)))(g(t))) 
(this equation holds by (.)) 

= ~(m' (pus h (q6)) (4)) (g (m t (expand (#t)) (t)), ..., g (ml (expand ((,)) (t))) 
(by induction hypothesis) 

= ~'(m'(push (~b))(r [13) . . . . .  g((~ []3)), 
where [ ] 3 = [zj ~- ti; j ~ [k]] [push (~k) , -  m' (push (~b)) (~); push (~k) ~ F'] 

= g(t5 <m'(push (q5))(~)> ((! []3 . . . .  , (~ []3)) 
=g(mt (expand(())(t)). []  

6.10. Example. Here we illustrate the coding of TP(2-AT(So)) by 3-AT(So). Let 
~1: ((q, q)(q, q), (q, q)), t52, c53: (q, q), and 64: q be elements of ~ f  and let Of 
= {72, 70} where 72 has rank 2, and  Yo has rank 0. Consider the configuration 
c1=y2<tl>(7o<t2>(), 7o<t3>()) of TP(2-AT(So)) with tl=6t(62,63)(c54) and 
t2--t3=c54. For  the sake of convenience we have left out the configuration 
c of S 0. An an exercise we compute  type ([72, c~1])=inc(72) (type,(f1)) in detail: 

inc(y2)(((q , q)(q, q), (q, q))) =(inc[(q, q)(q, q)], (inc [q], (qq, q))) 
= (inc2 inco inc2 inco, (inc(y2)(q) inc(yo)(q), (qq, q))) 

with inc~ = inc(y~)((q, q)) for i~ {0, 2} 
=(~2 "Co 32 Zo, ((qq, q)(2, q), (qq, q))) 

with z~=((qq, q)(2, q), (q~, q)) for i~{0, 2}. 

For  the computat ion of g(ct) we also precompute,  for i~{0, 2}, inc(yi)((q, q)) 
=(inc[q] ,  (qi, q))=((qq, q)()., q), (qi, q)) and inc(y~)(q)=(q/, q). 

Hence, for ie{0, 2}, [7i, ~2], [71, ~3]: ((qq, q)(2, q), (q~, q)) and [yi, c~4]: (q~, q). 
Then g(c~) = ~2(t ~)(g(),o <t2> ()), 

g(Yo<ta>()))=[72, c~](t2.2, to.2, t2.3, to, a)(t2.4, to,4) (to.#(), to.4()) with ti.~ 
=[y, ,  c5~] for ie{0, 2} andj~{2,  3, 4}. 

Now we apply the instruction q5 =expand(y2<q~>(yo<q~>() , zz) to c~, where 
q~ = push (Yz. t~, ~)(YL ~))- (The identity of So is dropped.) This yields the configura- 
tion c'~ =72 <c53(6~)>(y0<c53(c5~)>(), Yo<CS#>()) �9 The instruction ~ is coded by ~' 
= push (Y3., (Y x. t~, ~), Y2. ta. ~)) (Y4. ~. (Y L t~. ~), Y2, ta. ~) (), Y2. ~)) with z = inc (72) ((q, q)) 
=((qq, q)(2, q), (2, q)) and z' =inc(70)((q, q))=((qq, q)(2, q), (2, q)). If we apply q~' 
to g(c0, then we obtain the configuration c'2=t'2(t'o, [y0, c54]()), where for 
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c1: 

C2: 

,, 

c~- 

l g 

c~,: 

Fig. 10. Coding of TP(2-AT(So)) by 3-AT(So) 

i~{0, 2}, t'i= [~'i, t53]([~2, ~,](), [~'0, fi4]())- It is easy to compute that g(c't)=c'2. 
In Fig. 10 the corresponding commutative diagram is shown. [] 

The previous two lemmata prove the inductive statement. 

6.11. Lemma. For every n >= 1, (n + 1)-AT(S)= TP(n-AT(S)). 
From this statement the equivalence of n-level applicative terms of S and 

n-iterated tree-pushdown of S follows immediately. 

6.12. Corollary. For every n>= 1, n-AT(S)- TP"(S). 
Proof. The proof is by induction on n. For n = 1, the equivalence follows from 
Lemma 6.5. Assume that n-AT(S)-TP"(S) holds. By monotonicity of TP 
(Lemma 6.2) it follows that TP(n-AT(S))-Tpn+I(S). Since (n+I ) -AT(S) -  
TP(n-AT(S)) (Lemma 6.11), it follows that (n+ 1)-AT(S)-TP"+I(S). [] 

As a consequence of this storage type equivalence and the Justification Theo- 
rem, we obtain the characterization of n-T(S) in terms of O-T(n-AT(S))-transduc- 
ers. 

6.13. Theorem. For every n>_ 1, n-T(S)=O-T(TP"(S)) and Dtn-T(S)= 
D,O-T(TPn(S)). 

Proof. By Theorem 5.13 and Corollary 6.6, for every n > I, n-T(S)= O-T(n-AT(S)). 
By Corollary 6.12 and Theorem 3.16, for every n > l ,  n-T(S)=O-T(TP"(S)) is 
proved. Since total determinism is preserved in the mentioned theorems, also 
the second equation is obtained. [] 
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In Theorem 5.13 of I-EV] the equivalence of TP(S) and Pbe~(S) for arbitrary 
S is proved. From this equivalence and the monotonicity of Pbex (Lemma 3.23), 
the equivalence of n-iterated tree-pushdown of S and n-iterated bounded excur- 
sion pushdown of S easily follows. The second statement of the next corollary 
follows similarly from the monotonicity of P (Theorem 4.22 of I-EV]). 

6.14. Corollary. For every n_>_ 1, TPn(S)-- P~ex(S). I f  S contains an identity, then 
TP n (S) = W (S). 

Finally, we obtain our main general characterization result: the equivalence 
of n-level S transducers and n-iterated pushdown S transducers. 

6.15. Theorem. For every n>=l, n-T(S)=O-T(P~,~(S)) and D,n-T(S)= 
DtO-T(P~,~(S)). I f  S contains an identity, then "bex" can be dropped. 

Proof. Follows immediately from Theorem 6.13, Corollary 6.14, and Theorem 
3.16. [] 

Note that So has an identity. Thus, for S=So, we reobtain the result of 
IDamGue2] that n-T=O-T(W), formulated in a different way (cf. the introduc- 
tion). For the monadic case, we also reobtain the characterization of n-level 
string grammars by 1-way pn automata [DamGoe]. This is explained further 
in Sect. 8. 

The present section is closed with an easy consequence of the previous theo- 
rem: the Justification Theorem for n-level S transducers. 

6.16. Theorem. Let Sl and $2 be storage types. For every n>O, if S 1 <$2, then 
n-T(SI) ~- n-T(S2) and D t n-T(SO c_ D t n-T(S2). 

Proof. Assume that St =<$2. Then, by monotonicity of Pb~x (Lemma 3.23), for 
every n>_0, P~,r is proved by induction on n. By Theorem 3.16, 
O-T(P~**(St)) ~_O-T(P~e,(S2)) follows, and n-T(Sl)c_ n-T(S2) is proved by Theorem 
6.15. Since the mentioned theorems preserve determinism and totality, the second 
statement of the present theorem is obtained. [] 

7. Characterization of High Level Tree Transducers 

After having developed in the previous two sections the characterization of 
n-T(S) by O-T(P~,ex(S)) for arbitrary storage S, we can now state the main result 
of this paper concerning the nondeterministic case: the characterization of n-level 
tree transducers by means of n-iterated pushdown tree transducers. 

7.1. Theorem. For every n > 1, n-T(TR) = 0-T(P~ex(TR)). 

Proof. Immediately from Theorem 6.15. [] 

Since we are mostly interested in the total deterministic case, we spend in 
the rest of this section some more effort at obtaining a "cleaner" characterization 
of D, n-T(TR) in the sense that the restriction on the iterated pushdown (namely 
to be bounded excursion) can be dropped (cf. Theorem 7.12). Note that this 
does not follow from Theorem 6.15, because TR does not have an identity. 

The proof of this characterization involves a number of results of I-EV-J, 
but also some new ones. In the following we derive (by way of discussion) 
the proof-tree of Theorem 7.12 in a "top-down" manner. This motivates the 
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new results and thus helps the reader to understand the subsequent formal 
"bot tom-up" treatment, in which the new results are proved and combined 
with the needed results of [EV]. In particular, this procedure illucidates the 
reason why we have to study the restriction of P(S) to be bounded excursion 
in order to get rid of it. 

For the proof of Theorem 7.12, we show the equality of Dt 0-T(Pcex(TR)) 
and DtO-T(P"(TR)) (cf. Lemma 7.11; for n=  1, cf. Lemma 5.15 of lEVI). To 
obtain this equality, we first characterize D, 0-T(Pcex(TR)) by the n-fold composi- 
tion of the total deterministic macro tree transducer (cf. Lemma 7.10), i.e., by 
Drl-T(TR)", and then use the fact that the latter class coincides with 
Dr 0-T(P"(TR)), which is proved in Theorem 8.12 of I-EV]. 

The characterization of D, 0-T(P~,x(TR)) by Dr 1-T(TR)" follows by straight- 
forward induction from the statement: if S is closed under look-ahead, then 
D,O-T(Pbr (cf. Lemma 7.9; see also Corollary 8.11 
of [EV]), and from the fact that, for n > 1, P~,x(TR) is closed under look-ahead 
(cf. Lemma 7.8). Since Lemma 7.9 is immediate from results of [EV], the only 
thing we have to prove is Lemma 7.8. 

The concept of look-ahead for storage types is introduced in [Eng5] and 
is formalized as an operator on storage types, i.e., if S is a storage type, then 
"S with look-ahead" is one too. This enriched storage type contains predicates, 
so called look-ahead tests, by which properties of "successors" 
m(f,)(...m(f2)(m(fO(c))... ) (for some instructions ft ,  f2 . . . .  , f ,  of S) of an S- 
configuration c can be tested without changing c. We recall the formal definition; 
cf. also Definition 6.5 of [EV]. 

7.2. Definition. Let S = (C, P, F, m, I, E) be a storage type. S with look-ahead, 
denoted by SLA, is the storage type (C, P', F, m', I, E), where m' restricted 
to P w F  is equal to m, P ' = P w { ( A , H ) I H  is a CF(S)-transducer and A is 
a nonterminal of H} and for every c~ C, m'((A, H))(c)= true iff there is a wsZ* 
such that A (c)==(H)=~* w, where Z is the terminal alphabet of H. []  

A predicate like (A, H )  of SLA is called a look-ahead test and H is called 
a look-ahead transducer. 

The notion "S is closed under look-ahead" means that S can handle its 
look-ahead tests, or precisely, that SLA is equivalent to S, i.e., SLA--S (note 
that S < SLA is trivial). Hence, continuing to enlarge the proof-tree of Theorem 
7.12, we have to show that for every n>=l, P~,~(TR)LA--P~,~(TR) (cf. Lemma 
7.8). For P rather than Pb~, the corresponding result has been shown in [EV] 
and actually, the proof of Lemma 7.8 follows the same lines. It consists of 
two parts. First, we prove that Pbr < Pb,x(SLA) (cf. Lemma 7.6) and second, 
that Pb,x(TRL,0 is equivalent to Pbex(TR) (cf. Lemma 7.7). Then the "crucial 
direction " of Lemma 7.8 is proved by induction on n by using these two 
lemmata and the monotonicity of Pb,~ (cf. Lemma 3.23). 

Now we have reached the leaves of the proof-tree of Theorem 7.12 (viz. 
Lemma 7.6, Lemma 7.7, and Lemma 7.9) and we can move back to its root, 
by first proving its leaves. We start with Lemma 7.6. 

In the proof of Pb,~(S)LA<Pb,x(SLA) a comparison of dom(CF(Pb,~(S)) ) and 
dom(CF(S)) is involved, because a look-ahead test (A, H),  where H is a 
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CF(Pb,x(S))-transducer, should be simulated by a Pb,x(SLA)-flowchart in which 
look-ahead tests of the form (B, H ' )  are allowed, where H' is a CF(S)-transducer. 
For our purpose it suffices to show that dom(CF(Pbc~(S)))~_dom(CF(S)), 
although we could even prove equality. 

7.3. Lemma. dom(CF(Pbcx(S)))__c_ dom(CF(S)). 

Proof Since Pbc~(S)<=P(S) (Lemma 3.22), we obtain from the Justification Theo- 
rem 3.16, dora (CF (Pb~ (S))) _ dora (CF (P (S))). Then the statement of this lemma 
follows from Lemma 6.11 of lEVI, which shows: dom(CF(P(S))) 
= dom(CF(S)). [] 

Rather than using the previous lemma immediately in the proof of Pb,x(S)LA 
<Pb,x(SLA), we simplify this proof by allowing the look-ahead transducers of 
the simulating storage type to be CF(Pb~ (S))-transducers (instead of only CF (S)- 
transducers). This gives rise to a modification of the look-ahead on storage 
types (cf. also Definition 6.12 of lEVI, in which the indexed look-ahead of 
S is defined). 

7.4. Definition. Let SLA=(C, P, F, m, I, E). The bounded indexed look-ahead 
of S, denoted by Sbi-LA is the storage type (C, P', F, m', I, E), where m' restricted 
to P u F  is equal to m, P ' = P u { ( A ,  y, v, mx, H)[H is a CF(Pb~(S))-trans- 
ducer, A is a nonterminal of H, y~F, rex>O, and O<v<mx}, and for 
every c~C, m((A,v,v,  mx, H))(c)=true iff there is a ws2~* such that 
A ((~, c, v, mx))==(H)=~* w, where 2; is the terminal alphabet of H. [] 

Allowing bounded indexed look-ahead tests instead of usual look-ahead 
tests does not increase the power of the storage type. In the proof of this fact, 
Lemma 7.3 plays the essential role. We note that the proof is a modification 
of the proof of Lemma 6.13 of lEVI. 

7.5. Lemma. Sbi_ LA ~ c SLA" 

Proof Since Sbi-L~ is defined as an "enrichment" of SEA , we only have to prove 
Sbi_LA=~cSLA. Let U be a finite restriction of Sbi-LA and let m I and m 2 be the 
meaning functions of Sbi_LA and of SEA , respectively. We show that U~deSLA 
with the identity on C' = ( F  x C x nat x nat) + as representation function h. Clear- 
ly, we only have to code a bounded indexed look-ahead test (A1, ~, v, mx, 
H I )  of U by a boolean expression b over predicates of SLA. In the sequel 
we construct one look-ahead test of SLA which already serves this purpose. 

Let H1=(N, e 1, Z 1, --, RI) and let Cl={c~Clml ( (A  1, y, v, mx, H1))(c) 
=true}. We transform C1 into the domain of a CF(Pbe,(S'))-transducer H'~ by 
defining S'=(C, P, F, m, C, {idc}) and H'I=(N[, e'l, T,1, "1, R'I), where idc 
is the identity on C, N~=N1u{*ili~[v]} and the *i are new nontermi- 
nals, e'l = 2u~C.(7, idc(u), 0, rex), and R' 1 = R  1 w {*i ~ *i+ 1 (s tay)  l ie[v-l]} u {, ,  
-*A 1 (stay)}. Since (by definition) H'~ starts with the excursion counter equal 
to 0, the extra rules .~-~ ,~+l (s tay)  are used to increase this counter upto 
v, before the derivation of H1 is started. Now it is easy to see that C1 
= dom(~(H't)). 

Hence, by Lemma 7.3, there is a CF(S')-transducer H~ such that 
dom(z(H'l))=dom(T(H'~)). Let H~=(N2, idc, N2, A2, Rz). But obviously, 
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dom(z(H'2))={ceClthere is a wsZ* such that Az(c)==(H2)=~*w} where H2 
is the CF(S)-transducer (N2, - ,  Z2, --, R2). Since {c~Clthere is a w~S,~ such 
that A2(c)==(n2)=~,*w}={csC[m2((A2, n2))(c)=true}, it is clear that 
(A 2, H2) is the desired boolean expression b, or in other words, that the look- 
ahead test <A 2, H2) codes the bounded indexed look-ahead test (A t, ~, v, 
mx, Hi). [] 

The proof of ebex(S)LA~_~ebex(SLA) is very similar to the proof of P(S)L A 
< P(SLA) (Theorem 6.14 of [EV]). We briefly recall the idea of the construction. 
Actually, since SLA = Sbi-LA and since Pbe~ is monotonic, we only have to show 
how Pbe~(S)LA is simulated by Pbc~(Sbi-LA)- This amounts to simulate a look-ahead 
test ( A , H )  on Pbe~(S), where H is a CF(Pbe~(S))-transducer, by a 
Pbc~(Sbi_LA)-flowchart CO for predicates. For this purpose a computation of H, 
which starts from A (c ')  for some Pb~(S)-configuration c'=(~,, c, v, mx)fl, is split 
into two parts. In the first part, only those steps of the computation are consid- 
ered, which do not test the rest-pushdown ft. Roughly speaking, this part is 
simulated by the bounded indexed look-ahead test (A, ~, v, rex, H') on S, where 
H' is just a small modification of H. In the second part, the computations 
on the rest-pushdown 8 are collected; they start from Ai (8)  for some nontermin- 
al A~ of H. The flowchart o9 has to check now, whether Ai(8)  can derive a 
terminal word. This information is captured in the so-called termination behav- 
iour of 8, which is written in the topmost pushdown square of the representation 
of c'. The termination behaviour of a pushdown 8 is a sequence of bits which 
tells for every nonterminal Ai of H whether ( A ,  H)  is true on fl or not. Clearly, 
the termination behaviour of a pushdown 8 can be computed simultaneously 
with the growth of 8 in an inductive way. 

7.6. Lemma. Pbex(S)LA ~ Pbex(SLA). 

Proof. By Lemma 7.5 and monotonicity of Phi, (Lemma 3.23), it suffices to 
prove that Pbe~(S)L^~Pbe~(Sbi_LA). Let U be a finite restriction of Pb~(S)LA with 
encoding el =2u~l.(~, e(u), O, mx) for some ~ F ,  encoding e of S, and mx>O. 

Since, by Definition 7.2, the excursion bound of a CF(Pb~(S))-transducer 
H is irrelevant for the result of a look-ahead test (A, H),  where A is a nontermin- 
al of H, we can assume that e~ is the encoding of every look-ahead transducer 
occurring in the look-ahead tests of U. Since U contains only finitely many 
look-ahead tests, we can take the disjoint union of the involved look-ahead 
transducers in the usual way, and thus we can assume that all the look-ahead 
tests of U share the same look-ahead transducer H. 

In order to replace a Iook-ahead test (A, H)  of U by the correct bounded 
indexed look-ahead test (cf. the discussion before this lemma), the value of the 
excursion counter of the topmost pushdown square of the currrent 
Pbe~(S)-configuration has to be known. We store this information, for every 
pushdown square, in the corresponding pushdown symbol. Whenever the "real" 
excursion counter is incremented, also its "copy" is updated. 

Now the constructions of the representation function and of the simulating 
flowcharts proceed in the same way as in Theorem 6.14 of I-EV]. Since, roughly 
speaking, every instruction is simulated by an instruction of the same type, 
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the property of U of being "bounded excursion" is preserved by this construc- 
tion. The formal definitions of the representation function and of the simulating 
flowcharts is left as an exercise to the reader. [] 

The second leaf of the above mentioned proof-tree of Theorem 7.12 is the 
equivalence of Pbe~(TRLA) and Pbe~(TR). Of course, it suffices to show that 
Pbex(TRLA) can be simulated by Pb~x(TR). Hence, every predicate test((A, H)), 
where H is a CF(TR)-transducer, must be simulated by a Pbe,(TR)-flowchart 
co for predicates. What does this intuitively mean? In the particular case that 
S=TR,  the definition of SLA (Definition 7.2) is equivalent to the definition of 
regular look-ahead I-Eng2] (cf. remark after Definition 6.5 of I-EV]). Hence, 
a look-ahead test of TRLA checks, whether a tree is in a regular tree language 
or not. Now recall from Definition 3.9 that co is a deterministic 
REG(Pb~x(TR)id)-transducer. Since REG(P(TR))-transducers are very close to 
the checking-tree pushdown transducers of [EngRozSlu] (cf. the discussion of 
P(TR) in Sect. 3.3 of lEVI), we could call co a "checking-tree bounded excursion 
pushdown transducer". Then Pb,,(TRLA)< Pb~x(TR) can be reformulated as fol- 
lows: deterministic checking-tree bounded excursion pushdown transducers 
are closed under regular look-ahead. Actually, for the unbounded version of 
these transducers, this closure property has been shown in Theorem 4.7 of 
[EngRozSlu], and in fact, as a first approximation, we can take over the proof. 
However, the bound on the number of excursions in the pushdown requires 
a special treatment. In the sequel we explain our construction informally. 

For every predicate test((A, H)) (with look-ahead test (A, H)) of a finite 
restriction U of Pb~(TRLA), the set R of trees on which (A, H) is true is a 
regular tree language. Thus, we can associate with every look-ahead test (A, H) 
a total deterministic bottom-up finite tree automaton B=(Q, S, 6, F) such that 
L(B)=R.  Then the predicate test((A,H)) can be simulated by the 
Pb~(TR)-flowchart cot~st, where cotest imitates the automaton B on a (sub)tree 
by a depth-first tree-walk on t: first cotest marks the topmost pushdown square 
s and runs down into the tree. Then it simulates B in a bottom-up fashion 
until the state q=6(t) is computed. If q~F, then teR, i.e., (A, H)  is true on 
t. Up to now, this is a repetition of the construction used in [EngRozSlu]. 
But now we have to deal with the problem that the excursion counter of the 
pushdown square s is increased by co,~t, whereas the application of test((A, H)) 
does not increase the excursion counter. We solve this problem as follows (cf. 
the proof of the monotonicity of Pbe, in Lemma 3.23): whenever a new square 
s with some (sub)tree t is pushed, the result of every look-ahead test on t is 
computed and put into square s. (Note that, since we consider a finite restriction 
U of Pbex(TRLA), there are only finitely many predicates of the form test ((A, H)).) 
Then the simulation of test((A, H)) becomes even simpler: the result of this 
predicate can be tested from the pushdown symbol of s. 

7.7. Lemma. Pb,~(TRLA ) = Pbe~(TR). 

Proof. It suffices to prove Pb~(TRLA)<Pbe~(TR). Let U be a finite restriction 
of Pbex(TRLA) with encoding e 1 = 2 t ~ T a. (~, e (t), O, rex) and e: To ~ T~ is the iden- 
tity on 2~ for some ranked alphabet 2~. Let Ff be the finite set of pushdown 
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symbols occurring in U. Let (A1, Ht},  .. . ,  (A,,  H , )  be the look-ahead tests 
involved in predicates of U with r > 0 .  If r = 0 ,  then the simulation is trivial. 
Assume that r > l .  For every iE[r], the set R~={teT~lm((A~,H~})(t)=true} 
equals dom (~(H~)), where m is the meaning function of TRLA and the CF(TR)- 
transducer H~ is the same as H~, except that A~ is the initial nonterminal. Since 
the domain of a CF(TR)-transducer, which is the domain of a top-down tree 
transducer (cf. Fact 4.6 and Corollary 3.20 of IEV]), is a regular tree language 
[-Rou, Tha, Engl] ,  there is a total deterministic bottom-up tree automaton B~ 
= (Qi, ~, tS~, F~) such that L(B~)= R~. 

Now it is easy to construct a P(TR)-flowchart (/)test ( fo r  instructions) such 
that for every ~,~F and t~T~, oper (ogtest)(0,, t))=([~, ~r], t) where ~r~{0, 1}" and 
for every iel-r]: ~(0=1 iff t~Ri; a~test computes for every subtree t' of t the 
state sequence (ql . . . .  , q,) in which for every i~[r], q~=~Si(t' ). We leave the formal 
construction to the reader. 

It is obvious that ogt,st can also be considered as a Pbcx(TR)-flowchart, because 
the number of excursions taken from every pushdown square is bounded by 
mxtest=2-max27+l,  where max27 is the maximal rank of a symbol occurring 
in 2~: computing the state sequence (q~ . . . . .  qr) of a direct subtree t" of any 
subtree t' of t and putting it into the square at the root of t' takes one excursion 
each (the latter one is a trivial stay (tS) excursion). Since there are at most max S 
(direct) subtrees of t', this motivates the term 2.maxZ. This bound holds for 
every square except the one which is associated with the root of t. For entering 
the sequence of look-ahead test results ~ into this square another (trivial) excur- 
sion has to be made. Hence, oper (O)test)((y , t, 0, mxt~t)) =([y, ~], t, v', mxtcst), where 
v ' = 2 - r a n k ( a ) +  1 and a is the root of t. 

This discussion induces that we have to take mx '=mx+mx ,~ ,  as bound 
for the simulating storage type Pb~(TR). But now it is possible that the extra 
excursions mXtest--V' are misused in the following sense: the simulation of, e.g., 
a push instruction is possible, whereas the application of the push instruction 
itself to the represented configuration is undefined, because the excursion counter 
has reached already mx. In order to avoid this misuse, we make n = r e x ' - v '  
dummy excursions via a sequence of stay instructions. This is formalized in 
the Pbe~(TR)-flowchart co+ which tests the rank of the root of the tree, that  
is contained in the topmost pushdown square, and then applies the appropriate 
number of stay instructions. 

For  the definition of the representation function h: C' ~ C' with C' = (F x C 
x nat x nat) + we define the set F =  {[7, ~r] [7~FI and ~r~ {0, 1}r}. We can assume 

w.l.o.g, that /~ ~ E Then h is defined as follows. 

(i) For  every yeF,,j, te  Tz,~ C'=(y, t, O, mx ' )edom (h) and h(c')=(y, t, O, mx) 
(ii) For  every [y, ~]~F, t ~ T  x such that, for every iE[r], ~(i)=1 iff tERi; 

for every v with 0 < v < mx, and fie dom (h), c' = ([~, ~r], t, v + m xt~t, mx') fl ~ dom (h) 
and h (c') = (~, t, v, mx) h (fl). 

Actually, the situation expressed in case (i) occurs only, because the result 
of the encoding e 2, which simulates e~, does not contain the appropriate look- 
ahead sequence, but it has to be an element of the domain of h (cf. Requirement 
1.1.2 of Definition 3.13). This means that, whenever a predicate or an instruction 
~b is simulated on the result of the encoding e2, then first, the sequence of 



High Level Tree Transducers 185 

look-ahead tests is computed and second, ~b is simulated. In order to recognize 
this situation we abbreviate the boolean expression top=y~ or . . .o r  top=yk ,  
where Fy = {?~ . . . . .  Yk}, by "initial". 

In the following we prove Requirements 1-3. We describe the desired flow- 
charts as PASCAL-like programs rather than defining them formally. Also, 
we consider (/)test and co+ as blocks of statements rather than as rules of a 
R E G  (Pbex (TR))-transducer. 

Requirement I. The encoding e2=2t~Ta.(~, e(t), 0, rex') satisfies the require- 
ments. 

Requirement 2. Every predicate ~b of U is simulated by the following 
Pb~(TR)-flowchart for predicates. 

begin 
if initial then begin (./9test; co+ end; 
if b~ then t rue( id )  else fa lse( id)  

end 

where the boolean expression b~ depends on qS. 

~b=(top=6):  b~ is the disjunction of all predicates t o p =  [6, 0] for ~7~ {0, 1}'. 
~b = test (root = a): b~ = test ( roo t=  tr). 
~b=test((A~, H~)): b~ is the disjunction of all predicates t o p = l y ,  i~] such that 

the i-th component of ~I is 1. 

Requirement 3. Every instruction ~b of U is simulated by the following 
Pb~ (TR)-flowchart. 

begin if initial then begin (/)test; 03+ end; 
co,~ 

end 

where the block co, of statements depends on ~b. 

~b = push (6, seli): begin push (6, sel/); co,~s,; co + end. 
~b = pop: begin pop end 
cb = stay(~5): begin for every [2,, ~]~/~: 

if t o p =  [y, i7] then stay([6, ff]) 
end 

q~ = stay: begin stay end []  

Now we can show the closure of P~ex(TR) under look-ahead. 

7.8. Lemma. For every n > 1, P~ex(TR)LA = P~cx(TR). 

Proof Since P~e,(TR)<P~c~(TR)L A is trivial, it suffices to prove P~e~(TR)LA 
< P ~ ( T R ) .  The proof is by induction on n. For n = l ,  the statement follows 
immediately from Lemma 7.6, Lemma 7.7, and the transitivity of < (Theorem 
4.20 of [EV]). Assume that the statement holds for n, i.e., (*) P~e~(TR)LA 
< Pb"ex (TR). Then pr 1 (TR)LA = Pbex (P~ex (TR))LA (by definition) 
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~Pbex(P~ex(TR)LA) (by Lemma 7.6)<Pbe~(P~,,(TR)) (by (.) and monotonicity of 
Pbex, cf. Lemma 3.23). [] 

The last leaf of the proof-tree of Theorem 7.12 is a slight modification of 
Corollary 8.11 of [EV]. 

7.9. Lemma. I f  SLA ~- S, then Dt O-T(Pb~ (S)) = D, 0-T(S) o D, 1-T(TR). 

Proof. Assume that SLA=S. Then by Corollary 8.11 of IEV]: D, RT(P(S)) 
=Dr RT(S)oD, CFT(TR). Since D, RT(P(S))=D, RT(Pbcx(S)) (Lemma 5.15 of 
lEVI) and since, for every storage type S', D, RT(S') and D, CFT(S') are 
D,O-T(S') and Dtl-T(S'), respectively (Fact 4.6), the statement of the lemma 
follows immediately. [] 

After having proved the lemmas at the leaves, we now can move up in 
the proof-tree following the discussion at the beginning of this chapter in the 
opposite direction. From the previous lemma and the fact that P~(TR)  is closed 
under look-ahead, it follows that D, 0 -  T(P~(TR)) is characterized by the n-fold 
composition of total deterministic macro tree transducers. 

7.10. Lemma. For every n >= 1, D, 0-T(P~e~(TR))= Dt I-T(TR) ". 

Proof. The case n = l  is proved in Theorem 6.15 (for S=TR).  Assume that 
the statement holds for n. Then D,O-T(P~+X(TR))=D,O-T(Pbe~(P~e~(TR))) (by 
definition)=DtO-T(P~,e~(TR))oDtl-T(TR) (by Lemma 7.8 and Lemma 7.9) 
=Dr 1-T(TR)%D,1-T(TR) (by induction hypothesis)=D,1-T(TR) ~+ 1. [] 

Since also the class D, RT(P~(TR)) is characterized by the n-fold composition 
of macro tree transducers (Theorem 8.12 of IEV]), we now know that the bound 
on the number of excursions in D, 0-T(P~e~(TR))-transducers can be dropped. 

7.11. Lemma. For every n> 1, D, O-T(P~,e~(TR))=D, 0-T(Pn(TR)). 

Proof. By Theorem 8.12 of [EV], DtRT(P"(TR))=D, CFT(TR) n. By Fact 4.6 
and Lemma 7.10 we obtain the desired result. [] 

Finally we have reached the root of the proof-tree. Since we are mainly 
interested in the characterization of total deterministic n-T(TR)-transducers, the 
next theorem presents the main result of this paper. 

7.12. Theorem. For every n > 1, Dt n-T(TR)= D, 0-T(Pn(TR)). 

Proof. Theorem 6.15 and Lemma 7.11. []  

8. Some Consequences 

Here we want to point out some more properties of n-level tree transducers, 
derivable from results of this paper. 

A rather surprising consequence is the fact that, in the total deterministic 
case, n-level tree transducers are equivalent to the n-fold composition of macro 
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tree transducers, i.e., of 1-1evel tree transducers. In the nondeterministic case 
we only obtain inclusion. Recall that for a class K of relations, K" denotes 
{R~ oR 2 . . . . .  R,,IRi~K for all it[n]}. 

8.1. Theorem. For every n > 1, 

(a) Dt n-T(TR)= D, 1-T(TR) n. 
(b) n-T(TR) ___ 1-T(TR) ~. 

Proof. By Theorem 7.12, Dtn-T(TR)=DtO-T(P"(TR)). Then (a) follows from 
Theorem 8.12 of lEVI, which says that Dt RT(P'(TR))=Dt CFT(TR) n, and Fact 
4.6. To prove (b) we first have to know that RT(P~c,(TR))_qCFT(TR) n. This 
can be proved inductively using Theorem 5.14 of lEVI and Corollary 3.27 
of lEVI. Then (b) follows from Theorem 7.1 and Fact 4.6. [] 

As an immediate consequence of 8.1(a) and the fact that total deterministic 
macro tree transducers capture the translational power of attribute grammars 
AG (viewed as tree transducers, I-EngFiI, ChiMar, CouFra]), which was shown 
in I'Eng4], we obtain the equivalence of the concepts of high level tree transduc- 
ers and the composition closure of attribute grammars, i.e., U{D,n'T(TR)I 
n_-__0} = u {AGnl n__>_ 1}. 

The characterization of n-level tree transducers by n-iterated pushdown tree 
transducers (Theorem 7.1 and Theorem 7.12) is an OI-like result in the sense 
that the involved derivation relation is defined in the outside-in mode. In the 
total deterministic case, there is also an IO-like decomposition result for n-level 
tree transducers. This, on first sight, surprising statement is based on the fact 
that for total deterministic macro tree transducers there is no difference between 
the classes of translations induced by the three derivation modes outside-in, 
inside-out, and unrestricted (Theorem 4.1 of [EngVogI]). Then the IO-like 
decomposition result for D,n-T(TR) follows from Theorem 8.1(a) and the 
decomposition of total deterministic macro tree transducers (D, CFT(TR) 
=Dt RT(TR)oYIELD, e.g., Theorem 4.8 of [EngVogl]; cf. also [Eng4, 
CouFra]), which is an IO-like result. Note that YIELD is a class of substitution 
functions, which is defined in [Mai, EngSch, Dam] in an algebraical way and 
in [Eng3] in a more syntactical way. Recall that for two classes of relations 
KI and K2, K 1 oK 2 denotes {RloR2[RI~KI and R2~K2}.  

8.2. Theorem. For every n >= O, Dt n- T(TR) = Dt 0- T(TR) o YIELD n. 

Proof. Immediate from Theorem 8.1(a), and Corollary 4.13 of [EngVogl]. [] 

Thus, as the culmination of the work in [EngVogl], [EV], and this paper, 
we have obtained the equivalence of the following five concepts (all total deter- 
ministic): 

(i) high-level tree transducers 
(2) iterated pushdown tree transducers 
(3) compositions of macro tree transducers 
(4) top-down tree transducers composed with YIELDs 
(5) compositions of attribute grammars. 
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The combination of OI- and IO-like properties of D, n-T(S), for arbitrary 
S, is expressed in the following result which shows the connection between 
the pushdown operator and YIELD. 

8.3. Theorem. For every n>O, if SLA=S, then Dt(n+I)-T(S)=Dtn-T(P(S)) 
= Dt n-T(S) o YIELD. 

Proof Let SLA=--S. First, it can be proved by induction that Pf, ex(S) is closed 
under look-ahead, i.e., that Pf, ex(S)LA--P~,e~(S) by using the assumption SLA--S, 
Lemma 7.6, and the monotonicity of Pbe~ (Lemma 3.23). In a similar way the 
closure of P"(S) under look-ahead can be proved by using the assumption, 
Theorem 6.14 of [EV] and the monotonicity of P (Theorem 4.22 of [EV]). 
Second, it can be proved again by induction that D,O-T(Pf,~(S))= 
D, O-T(P"(S)) by using the two related decompositions of Lemma 7.9 and Corol- 
lary 8.11 of [EV]. Together with Theorem 6.15 we obtain (.) D,n-T(S)= 
D, O-T(P"(S)). Then 
D, (n + 1)- T(S) = Dt n- T(P (S)) = D, O- T(P" + t (S)) (by (*)) 

=D, O-T(P"(S))oD, I-T(TR) (by Corollary 8.11 of lEVI and Fact 4.6) 
= D, O-T(P"(S))oD, 0-T(TR)oYIELD (by Theorem 4.8 of [EngVogl]) 
=DtO-T(P"(S))oYIELD (because, for every S', D,O-T(S') is closed under 

right composition with Dt 0-T(TR); this fact has literally the same proof 
as Lemma 8.9 of [EV]) 

=Dtn-T(S)oYIELD (by (*)). [] 

There are two ways of defining n-level string languages: either by monadic 
n-level tree grammars or by the yield of (n-1)-level tree grammars. The fact 
that these two concepts are equivalent, with one level difference, was shown 
in Theorem 7.17 of [Dam]. Similarly, we can consider two ways of defining 
n-level S-to-string transductions, i.e., classes of relations in C x 27* for some 
alphabet 27. We compare n-level S transducers, which have a "monadic" terminal 
alphabet, with the "yield" of (n-l)-level S transducers. In order to make this 
precise, we need some terminology. 

8.4. Definition. 

(i) A monadic D(Q)-set A is a D(Q)-set such that there is a designated 
symbol # in A of type (2, q) and every other symbol in A has type (q, q). 

(ii) Let 27 be an alphabet. The monadic D (Q)-set associated with 27, denoted 
by m(27), is defined by m(S) tq'q)= 27. 

(iii) For an alphabet 27, define the bijection fiat: Tm{xj~Z* by fiat(# ( ) )=2 
and for every o-~Z and t~Tm{z), flat(a(t))=a.flat(t). For L~_T,,~x), fiat(L) 
={flat(t)lt~L}. [] 

The mapping fiat turns monadic trees in a horizontal direction by transform- 
ing them into strings. As we did for yield (in Sect. 2.1), we extend fiat to relations 
R ~_ A x T,,{z3 (and classes of relations), where A is an arbitrary set, by defining 
flat (R)= {(a, fiat (t))[(a, t)~R}. 

8.5. Definition. Let n>0. An n-level S transducer M =(N, e, A, Ain, R) is monadic 
if A is a monadic D(Q)-set. [] 
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The class of translations induced by monadic n-level S transducers is denoted 
by n-Tmon(S). Now we can formalize the comparison between the two possible 
methods of defining n-level S-to-string transductions and show that they are 
equivalent. At the same time we provide a sequential machine characterization 
for these transductions, 

8.6. Theorem. For every n > O, 

(a) fiat ((n + 1)-Tmon(S))= yield (n-Z(S)) 
(b) fiat (n-Tmn,(S))= REG (P~cx (S)); 

if S contains an identity, then "bex" can be dropped. 

Proof. Restricting Theorem 6.15 to a monadic terminal alphabet, we obtain 
n-Tmo~(S)=O-Tmo~(P~,c,(S)). In general, for every storage type S', 
flat(O-Tmo,(S'))=REG(S'). In fact, the fight-hand sides of corresponding rules 
of a monadic 0-level S' transducer M and a regular S' transducer M' are related 
via the bijection ~: T,, t~)(N(F))-- .Z*wZ*N(F),  where re(E) and Z are the 
terminal alphabets of M and M', respectively, and N is the set of nonterminals 
of M and M'. V is defined by v ( A ( f ) ) = A ( f ) ,  2,(~())=2, and for treZ and 
t e T,,(_~), y (a(t)) = a- ~ (t). This shows that fiat (n- Tmo~ (S)) = REG ( P ~  (S)), which 
proves (b). By Theorem 6.3 of [EV-I, REG(P(,~I(S))=CF(P~(S)), and clearly, 
CF(P~(S)) = yield (RT(P~(S))) (where we assume that there is a specific terminal 
symbol of rank 0 that is viewed as the empty string when the yield is taken). 
Then, by Fact 4.6 and Theorem 6.15, R E G ( P ~  t (S))=yield(n-T(S)). From this 
and statement (b) of this theorem, (a) follows. [] 

Note that, by taking the trivial storage type and ranges of transductions, 
Theorem 8.6(a) reproves Theorem 7.17 of [Dam]. 

In [DamGoe] the class of n-level string languages is defined as 
range (flat(n-Tmon(So))) and it is shown there that this class is characterized by 
n-iterated pushdown automata. Clearly, this is a special case of Theorem 8.6(b). 

Of course, Theorem 8.6 holds in particular for n-level tree-to-string transduc- 
ers (S=TR). In the next theorem we state the corresponding result for total 
deterministic n-level tree-to-string transducers. 

8.7. Theorem. For every n > O, 

(a) flat (Dr (n + 1)- T~o n (TR)) = yield (D, n- T(TR)) 
(b) flat (Dr n-Tmo, (TR)) = Dt REG (P~ (TR)). 

Proof. Taking the monadic case of Theorem 7.12, (b) follows as in the proof 
of the previous theorem. By Theorem 8.12 of I-EV] (and Fact 4.6) 
O~ REG (P*+ 1 (TR))= yield (O~ 1-T(TR)~), and (a) now follows from (b) and Theo- 
rem 8.1 (a). []  

In the next theorem we show that high level tree transducers form a strict 
hierarchy. 

8.8. Theorem. The families of translation classes {n-T(TR)In>O} and 
{Dtn-T(TR)In>O } are strict hierarchies. There is even a translation in 
Dt(n + 1)-T(TR) which is not in n-T(TR). 
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Proof. The theorem follows from Lemma 4.15 of [EngVogl], which says that 
there is a translation in DzCFT(TR) n+l, which is not in CFT(TR) n, and from 
Theorem 8.1. []  

Another consequence of Theorem 8.1 is the closure of the class of regular 
tree languages under the inverse of high level tree transductions. 

8.9. Corollary. For every n>O, RT is closed under n-T(TR) -I.  The domain of  
every n-level tree transducer is a regular tree language. 

Proof. By Theorem 8.1(b), and by Theorem 7.4 of [EngVogl]. [] 

In [Eng2] the concept of top-down tree transducer with regular look-ahead 
is introduced to overcome the inability of these transducers to inspect subtrees 
before deleting them. It is shown in [EngVogl] that macro tree transducers 
have this ability, i.e., they are closed under regular look-ahead (cf. Theorem 
6.15 of [EngVogl]). Here we show that, for every n>  1, n-level tree transducers 
are closed under regular look-ahead. Recall from the discussion after Definition 
7.2 that TRLA formalizes the concept of regular look-ahead in terms of storage 
types. 

8.10. Theorem. Let n>=l. Then n -T (TRLA)=n-T(TR  ) and D,n-T(TRL^)  
= D, n- T(TR). 

Proof. The equalities follow immediately from Theorem 6.15, Lemma 7.7, the 
monotonicity of Pbex (Lemma 3.23), and the Justification Theorem (Theorem 
3.16). [] 

As a consequence of the closure under look-ahead, it was shown in [Eng- 
Vogl] that the class of ranges of total deterministic macro tree transducers 
coincides with D, CFT(TR) applied to RT, i .e . ,  with the class 
U{z(L)lzeD, CFT(TR) and LeRT} (Theorem 7.1 of [EngVogl]). Now we can 
show the corresponding result for total deterministic n-level tree transducers. 

8.11. Corollary. For every n > O, range (Dr n- T(TR)) = (Dr n- T(TR)) (RT). 

Proof. The direction range (D,n-T(TR))~_(D,n-T(RT))(RT) is obvious. To prove 
the other direction, one only has to observe that a total deterministic n-level 
tree transducer can check by look-ahead whether the input tree is in the specified 
regular tree language or not. Then the statement of this corollary follows from 
the closure of D,n-T(TR)  under regular look-ahead (Theorem 8.10), cf. the proof 
of Theorem 7.1 of [EngVogl]. [] 

We note that in Theorem 7.10 of [Dam] it was proved that 
(D t n-T(TR))(RT) is an infinite hierarchy. 

Finally, we want to consider the class U~I-T(TR)" of compositions of 
macro tree transducers, and in particular the corresponding class 
U~ yield (range (1- T(TR)")) of" tree transformation languages". This class deserves 
further investigation: it is a large class, containing many well-known hierarchies 
of classes of languages. In fact, by Theorem 8.1, it contains the high-level tree 
transformation languages, i.e., U, yield(range(n-T(TR))). It contains the OI-hier- 
archy languages, i.e., U~yield(range(n-T(So))), because range(n-T(So))c_ 
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range (n-T(TR)) as can be easily shown (see Corollary 3.12 of [EngVogl] for 
n=l) .  It also contains the IO-hierarchy languages U, yield(YIELD"(RT)) 
[EngSch, Dam]: by Theorem 8.2 YIELD"(RT)~ (D,n-T(TR))(RT), and by Cor- 
ollary 8.11 the latter class equals range (Dr n-T(TR)). Since every top-down tree 
transducer is a macro tree transducer, it also contains the languages 
U, yield(range(0-T(TR)")) of the top-down tree transducer hierarchy [Eng7]. 
And finally, it contains the ETOL-control hierarchy languages [Eng71, because, 
as shown in [Vog2], this hierarchy is inside the OI-hierarchy. On the other 
hand, the class U, yield(range(l-T(TR)')) is a proper subclass of the class of 
recursive languages. Recursiveness follows from Corollary 8.9 (cf. Theorem 7.5 
of [EngVogl]), and the fact that, for every ranked alphabet Z, there is a macro 
tree transducer M such that, for every teTr, fiat (z(M)(t))=yield (t), cf. Sect. C 
of [Eng4]. Proper inclusion follows from the obvious fact that this class is 
closed under arbitrary homomorphisms. 
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