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This article reviews the basic techniques 
employed in fatigue life prediction. The stress- 
life, local-strain, and fracture-mechanics 
methods as applied to life prediction under 
constant amplitude loading and variable 
amplitude loading are discussed. Life predic- 
tion methodology under variable amplitude 
loading is also discussed, with particular 
emphasis on the linear-damage accumula- 
tion approach, or Miner's rule. Finally, a 
discussion of various cycle-counting tech- 
niques for variable amplitude loading is given. 

I N T R O D U C T I O N  

The problem of fatigue is one of the 
most important considerations in de- 
sign. Among the factors that can affect 
the fatigue life of a component are mean 
stresses, geometry/size effects and sur- 
face conditions, residual stresses, load 
interaction effects (sequence effects), 
environments, and others. 

The vast majority of fatigue data avail- 
able is for constant amplitude (CA) load- 
ing. While this type of loading is not 
generally representative of real-world 
conditions, the relative ease of testing 
and analysis is attractive. The stress-life 
method was developed first and is by far 
the easiest to apply. However, its limita- 
tions make it less widely applicable than 
the other methods. The local-strain tech- 
nique is slightly more complex, but it is 
applicable to a much wider range of 
conditions and can account for several 
of the factors that stress-life cannot. The 
fracture-mechanics approach is rela- 
tively new compared to the others, but 
its application has become widespread. 
While the stress-life and local-strain ap- 
proaches determine the total life (includ- 
ing both crack initiation and crack propa- 
gation), fracture mechanics gives esti- 
mates of crack propagation life, making 
it a damage-tolerant method (i.e., a 
cracked member's remaining life can be 
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Figure 1. A stress-life curve illustrating the 
determination of relevant constants, 

evaluated). 
Fatigue life analyses for variable am- 

plitude (VA) loading estimate the life 
under conditions more closely approxi- 
mating those experienced by a compo- 
nent under actual service conditions. A 
number of factors affect the life under 
VA loading which are not accounted for 
in CA-based analyses. 

C O N S T A N T  A M P L I T U D E  
L O A D I N G  

St ress-L i fe  A p p r o a c h  

Introduced by A. W6hler in 1860, life 
estimates implementing the stress-life 
method include both the cycles to crack 
initiation and the cycles to propagate the 
crack to component failureJ Stress life is 
a simple technique wherein data from 
CA (generally fully reversed) stress-con- 
trolled tests are plotted as the nominal 
stress amplitude o a (S) versus the num- 
ber of cycles to cause failure Nf at that 
stress level. The method assumes the 
resulting S-N curve, when plotted on a 
log-log scale, will result in a straight line 
that can be represented by >~ 

A~ . b 
er = -~- = O,(2N,) (1) 

where ~'e is the fatigue-strength coeffi- 
cient (which is generally approximately 
equal to the true fracture strength for 
metals), and b is the fatigue-strength 
exponent. Values of these constants can 
be found for many materials in the lit- 
erature or can be determined from a plot 
of experimental S-N data (Figure 1). This 
curve should intercept the y-axis at the 
ultimate tensile strength of the material. 

The idea of an endurance limit came 
from plots of stress amplitude versus 
fatigue cycle life. Some materials (e.g., 
many steels) demonstrate a cycle behav- 
ior wherein, below a certain stress am- 
plitude, failure will not occur for any 
number of cycles, giving infinite life. 
This results in a plateau in the stress-life 
curve, and this limiting stress amplitude 
is known as the endurance limit. Many 
materials, however, exhibit no such limit 
(e.g., aluminum alloys). In these cases, 
the endurance limit is generally defined 
as the stress amplitude to cause failure at 
10 7 cycles. 

A number of factors can affect the S-N 
curve, and ideally it would be desirable 
to have data generated under conditions 
approximating those of the actual con> 

ponent in question. Among these factors 
are the material and its processing, mean 
stress, residual stress, loading frequency, 
geometry, surface finish, temperature, 
and environment5 ,3 In the presence of a 
mean stress (Gm), an approximation can 
be made by converting the stress ampli- 
tude to an equivalent completely re- 
versed stress amplitude that would re- 
sult in the same cycles to failure. Three 
commonly used relations for making this 
conversion in stress-life calculations are 
(Figure 2): 5 
the Goodman relation 

O" = O ' I 1 -  ( O" )l  (2) 
a ~L \ GuTs )J 

the Gerber relation 

c; a = G e 1 - (3) 

and the Soderberg relation 

C; = ~ [ 1 - - ( O m / 1  (4) 
k \ (~ YS ]d 

where c is the endurance limit of the 
material, OUT s is the ultimate tensile 
strength of the material, and Oys is the 
yield strength of the material. The 
Soderberg line is generally quite conser- 
vative. The Goodman line is fairly accu- 
rate for brittle materials and conserva- 
tive for ductile materials; and the Gerber 
parabola generally describes the behav- 
ior of ductile materials well. 1 

The effect of notches or stress raisers 
can also be included in an approximate 
matter. A theoretical elastic stress con- 
centration factor (K t) a t  the notch can be 
determined for the sample geometry and 
loading condition, but the so-determined 
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Figure 2. A constant life diagram, s 
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Figure 3. Typical strain-life curves and the 
relevant constants for steel. 

stress usually leads to over ly  conserva-  
tive life estimates; the actual stress con- 
centration effect is somewhat  less than 
the theoretical value. Instead, the effect 
of a notch in stress-life calculations is 
generally approximated by an experi- 
mentally determined correction known 
as the fatigue notch factor K s g iven by ~,4 

Kf = 

unnotched bar endurance  l imi t  
(5) 

notched bar endurance  l imi t  
This is sometimes related to the theoreti- 
cal stress concentration factor by the 
notch sensitivity index, ql,4 

K s - 1  
q - (6) 

K, - 1  
A q of zero means the notch has no effect, 
while a q of one results from K s = K t. The 
correction factor K s is general ly appl ied ~ 
by either adjusting the entire curve (all 
AO) by K, (possibly over ly  conservative) 
or adjusting the endurance  limit by Kf. 
The fatigue-notch factor is necessary 
because of the presence of plasticity at 
the notch tip. However ,  because the 
stress-life analysis is based on an elastic 
state of stress, the occurrence of exten- 
sive plastic deformation ahead of the 
notch may preclude the use of the stress- 
life method. This also implies that in 
low-cycle situations (where the plastic 
strain is dominant),  the stress-life ap- 
proach may not be advisable. 

Local-Strain Approach 

The local-strain approach, while some- 
what  more complex than the stress-life 
approach, is much more versatile and 
can often give a more accurate life pre- 
diction in all but the most s imple loading 
conditions. Like the stress-life method,  
the local-strain method gives a predic- 
tion of the total life (i.e., the life for crack 
initiation and propagat ion together). To 
apply the local-strain method,  one must  
know the cyclic stress-strain relation- 
ship [s = f(c0], the strain-life (e-N) curve, 
and (as the name implies) the local state 
of strain and stress at a notch or stress 
raiser. Because the life prediction is based 
on these local values, life is de te rmined  
where failure would  be expected to oc- 
cur (i.e., at a notch/s tress  raiser). The 
(local) strain-life curve is described by 3,4 

s =~- (2N~)  b +s i (2N,)  ~ (7) 

where s,~ is the total strain ampli tude 
(s h, + ~ ~:, ) E is the elastic modulus  p , ~ l c  e , s t t c  ' / 

sf is the fatigue-ductility coefficient, and 
c is the fatigue-ductility exponent.  These 
values are tabulated for a number  of 
materials in the literature; they can also 
be determined experimentally from a 
stress-life plot or elastic strain-life plot, 
and a plastic strain-life plot, as shown in 
Figures 1 and 3. 4 

Equation 7 contains a term for the 
plastic strain contribution, s} (2N)% and 
the elastic contribution, 

Note that the elastic port ion 

s = ~-C(2N,) b 

is equivalent  to the stress-life equation 
c;a = (~I(2N~)b (since G = GE). For short 
fatigue life, the plastic term is dominant,  
while at a tong fatigue life, the elastic 
portion is the dominant  term (Figure 3). 
The result is that the local-strain method 
is useful for both low-cycle and high- 
cycle fatigue problemsJ  .3 The boundary 
between these two regions is the inter- 
section of the plastic and elastic curves, 
known as the transition fatigue life, and 
is given by Equation 8. 3 

1 

N, 2~slE) (8) 

As stated, the local stress-strain state 
at the notch / stress raiser must  be known. 
These values can be approximated fairly 
easily through the use of Neuber ' s  rule 
and the cyclic stress-strain curve. When 
a notched member  is loaded such that 
the resulting strains are elastic, the local 
stress and strain are each raised by the 
same ratio (i.e., Kt, the stress concentra- 
tion factor, or Ks). However ,  once plastic 
strain begins, the local strain rises above 
that given by K v and the local stress fails 
below it (Figure 4). Thus, there is a local 
stress concentration factor K < K, and a 
local strain concentration factor K > K. 
According to Neuber ' s  rule, the geomet- 
ric mean of these two values remains 
constant at Kt~ 

where 

K, = ~ / ~  (9) 

G A G  
K, - - -  - - -  (10) 

s AS 

K - - - - -  (11) 
e &e 

Since K s is less than K v substi tuting Ke 
into Equation 9 will  result in less conser- 
vative values for local stress and strain. 
Making this substitution, as well  as sub- 
stituting Equations 10 and 11 into Equa- 
tion 6, yields ~.7 

. fAo  As (12) 
K~ = - ~  ke  

Assuming fully plastic yie lding does not 
occur, Ae may be replaced with  its elastic 
value AS/E,  which after some manipu-  
lation gives 1,3.4 

(KfAS) 2 
Aok~ - (13) 

E 

In this equation, Kf and E are constants 
for a given material  and geometry,  kS is 
known for the loading conditions, so 
that the right side of Equat ion 13 is a 
constant A~k,8 = C. This is the equation of 
a hyperbola; to obtain its solution, it may 
be plotted on the cyclic stress-strain 
curve. The intersection of the curve with 
the hysteresis loop of the load cycle gives 
the local values of stress and strain in the 
notch. Life can then be determined from 
the strain-life relations. 

The local-strain approach should also 
account for the effects of a non-zero mean 
stress. Commonly ,  an equivalent  com- 
pletely reversed stress ampl i tude  % that 
wou ld  give the same number  of cycles to 
failure as the mean stress loading is esti- 
mated. Two popular  methods  of calcu- 
lating this equivalent  stress ampli tude 
are the Morrow parameter and the Smith- 
Watson-Topper  parameter.  

The Morrow parameter  for an equiva- 
lent completely reversed stress ampli- 
tude is given by 2.3,8 

% - ' ( 1 4 )  
1 O'm 

From the analysis given in Reference 3, 
this yields the fol lowing modif ied strain- 
life curve 

S a ---- -- f 4- 

S, 1-CY~ / (2N,)* / (15) 
~,J d 

Thus, with a given mean  stress and load 
cycle, life can be est imated either nu- 
merical ly or graphically. The equivalent  
fully reversed stress ampli tude,  as ex- 
pressed by the Smith-Watson-Topper 
parameter,  is given by a,3 

k~ 

Onset of Yielding 

~n 

Figure 4. A plot of stress concentration factor 
versus notch strain demonstrating Neuber's 
ru le .  3 
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1 

~ = [((~max)gag] -g (16) 

Again, from an analysis given in Refer- 
ences 3 and 9 

- (c~i)2 2 ~.b 
6mo~E~-- E ( N , )  + 

%G(2N~) TM (17) 

A plot of (~max~a versus 2Nf can then be 
used to estimate life; for a given loading 
condition (i.e., Ore' r~, and G), the fatigue 
life can be read directly from the plot. 

.It is apparent that the local-strain 
method can be applied over a greater 
range of conditions than the stress-life 
approach. In particular, if considerable 
plastic strains occur (e.g., low-cycle fa- 
tigue) or if structural constraints are 
present (e.g., a stress concentration), the 
strain-based method is preferable. ~ The 
local-strain approach also has advan- 
tages when considering VA loading. 

Fracture-Mechanics Method 

Stress-life and local-strain approaches 
measure the total life (initiation plus 
propagation life). The application of frac- 
ture mechanics to life prediction is solely 
a crack-propagation life method. Life 
calculations are carried out from a spe- 
cific initial crack size (which may be a 
preexisting crack, a flaw, an intrinsic 
defect characteristic of the material, etc.) 4 
to a final crack size at failure, deter- 
mined from the material 's inherent  
toughness; this idea of toughness, or 
resistance to crack growth, is one of the 
basic concepts of fracture mechanics. 

Life predictions using fracture me- 
chanics are built from two main rela- 
tions. The first describes the stress field 
around the advancing crack tip, and the 
second characterizes the steady-state 
growth rate of the advancing crack. The 
stress field around the crack tip is given 
by the stress intensity factor, K. It is 
important to note that this factor de- 
scribes the elastic stress field around the 
crack tip; if considerable yielding oc- 
curs, another expression for the stress 
field, J, should be used. m The basic rela- 
tion for the stress intensity factor is 
given by 

K = F S , I ~  (18) 

where F is a factor related to the geom- 
etry of the crack and component, and S is 
the engineering stress. Equation 18 may 
also be written as 

K = F S ~  (19) 

where Q is a crack-shape factor. 
Thus, K is only a function of load and 

geometry. Its limiting value K (i.e., the 
value that will cause catastrophic failure 
of the component) is referred to as the 

fracture toughness of the material. Inter- 
estingly, this value is a material prop- 
erty, independent of loading condition. 
The crack length at failure (when the 
right side of Equation 18 equals K) can 
thus be determined from Equation 18 
and used for the final crack length in a 
life-prediction analysis. 

l ( K ~ c  ] 
a = 7 ~ )  (20) 

K,c refers to mode one (tensile) failure. 
The form of Equation 18 useful in fa- 
tigue-life calculations is 

aK = F a S ~  (21) 

where AK is the stress-intensity-factor 
range produced by cycling over the stress 
range d~S. 

The steady-state growth rate of the 
advancing crack is characterized by the 
empirical equation proposed by Paris" 

da = C ( a K ) m  (22) 
dN 

where da /dN is the crack growth rate, 
and C and m are constants. 

A logarithmic plot of da / dN  vs. zXK 
(Figure 5) produces a straight line with a 
slope m and intercept C.12,~3 As seen from 
the plot, at low growth rates/stress-in- 
tensity-factor range, the linear relation- 
ship breaks down, and the crack-growth 
rate goes to zero at a threshold value 
s below which crack growth does not 
occur (for large cracks only; this does not 
hold for very small cracks, as described 
in Reference 14). The location of this 
threshold value varies with R-ratio, the 
ratio of the minimum stress in the cycle 
to the maximum stress) Also, at very 
high stress-intensity-factor ranges, the 
curve deviates upward as unsteady crack 
growth occurs. 

Equation 22 is the most basic form of 
the growth-rate equation. A number of 
modifications are often made to account 
for various factors that may affect the 
growth-rate behavior. Chief among these 
modifications are those made to account 
for the effects of R-ratio. Increasing the 
R-ratio has the effect of increasing the 
crack growth rate, particularly at low 
growth rates (hence, the effect on 
aK,h).'s-~ 

As mentioned, R-ratio is the ratio of 
the minimum stress (or stress intensity) 
to the maximum stress (or stress inten- 
sity) 

R = S mi~ - K min (23) 
S K o~ 

Two popular methods of estimating the 
effect of R-ratio on growth rates are the 
Forman equation and Walker equation. 
The Forman equation is 15,24 

da C,a~K ~ 
(24) 

aN (1-R)K~-AK 

where C 2 and n are constants. From aK = 
Km,~ - Kmi n and Kmi n ~- RKo x 

AK = Km~x(1 - R) (25) 

Substituting Equation 25 into Equation 
24 gives z5 

da C2zXK" 

aN (1- R)(Kc - Kin,• 
(26) 

It is apparent from Equation 26 that at 
h i g h  Kma • (approaching Kc), the growth 
rate increases rapidly toward infinity; 
this is in agreement with the behavior 
observed by experiment (Figure 5). This 
makes it applicable to both intermedi- 
ate- and high-growth rates)To evaluate 
the constants C 2 and n, 

da (1_ R)(Kc _ Kmo• 
dN 

is plotted versus d~K on a log-log scale; 
the slope of the resulting line is n, and 
the intercept is C v 

The Walker equation attempts to ac- 
count for R-ratio effects through the use 
of a modified &K in Equation 22. 25 

A---K - AK (27) 
(I_R) '-Y 

where AK is an equivalent stress-inten- 
sity-factor range at R = 0, and 7 is a 
material constant. 

Together, Equations 22 and 27 yield ~3 

da _ C~ &K m (28) 
aN (I_R) ml'-Y) 

where C~ is a Walker equation constant. 
The exponent, m, is thus independent of 
R-ratio according to this equation. 

A log-log plot of Equation 28 gives a 
straight line with intercept C dependent 
on R-ratio 3 
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Figure 5. A crack growth rate curve da,/dN 
versus AK with constants. 
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Due to the difficulty in defining cycles in complex 
variable load histories, methods of cycle counting are 
necessary. A number of these techniques are described 
here, with information available in the ASTM standard 
on cycle counting, E 1049. ~ While rainflow counting 
may be slightly more complex than simple peak or level- 
crossing methods, the more realistic load history ob- 
tained is generally worth the effort. Not only can such 
factors as mean stress and sequence effects be in- 
cluded, but the cycles produced are related to the actual 
stress-strain response of the component. 

Level-Crossing Counting 

A count is recorded whenever an increasing (posi- 
tively sloped) portion of the load history crosses a 
certain level above a reference level. Likewise, a count 
is recorded whenever a decreasing (negatively sloped) 
portion of the load history crosses a certain level below 
the reference level (Figure A). Crossings of the refer- 
ence level itself are counted only on increasing portions 
of the curve. Once all counts and their load levels have 
been recorded, the most damaging cycles are con- 
structed from the available counts. First, the largest 
cycle (with all the necessary level crossings) is con- 
structed. From the remaining counts, the second largest 
cycle is constructed. This is continued until all counts 
have been used. ~ 

Peak Counting 

Peak counting records relative maxima and minima 
in the load history and their load levels. Generally, only 
maxima (peaks) above a reference level are counted, 
and only minima (valleys) below the reference level are 
counted (Figure B and Table 1). Alternatively, all peaks 
and valleys may be counted. To reduce the number of 
counts to a more manageable level, small amplitude 

4 

2 
1 

o ~ m 

Figure A. A plot i l lustrating level-crossing 
counting. 

Table 1. Peak Counts from Figure B and 
Corresponding Constructed Ranges 

Load Peaks Counts 
3.8 1 
3.7 1 
2.5 1 
2.3 1 
1.5 1 
0.5 1 

-1.2 1 
-1.5 1 
-2.5 1 
-2.6 1 
-3.5 1 
-3.9 1 

Load Range 

7.7 1 
7.2 1 
5.1 1 
4.8 1 
3.0 1 
1.7 1 

C Y C L E  C O U N T I N G  M E T H O D S  

Ioadings may be neglected by implementing mean- 
crossing peak counting, wherein only the largest peak 
or valley occurring between successive crossings of the 
mean level is counted. Similar to level-crossing count* 
ing, the most damaging cycle count is made from the 
largest peak and valley, then the second largest, etc., 
until all of the peaks and valleys have been used 
(Table 1).~ 

In both level crossing and peak counting, the order in 
which the resulting cycles are applied could affect the 
life. Thus, alternate methods of constructing the cycles 
might be preferred? 4 

Simple-Range Counting 

In simple-range counting, range refers to the differ- 
ence between the load levels of successive reversals 
(points where the slope of the curve changes sign, or 
peaks and valleys). Positive ranges occur when a peak 
follows a valley, and negative ranges occur when a 
valley fol!ows a peak. To reduce the number of counts, 
ranges below a certain level are often neglected. Either 
positive or negative ranges may be counted, in which 
case each range is counted as one full cycle. On the 
other hand, both positive and negative ranges may be 
counted together, in which case each is only counted as 
a half-cycle. ~ 

Range-Pair Counting 

In range-pair counting, two subsequent ranges (of 
opposite sign) are considered together. If the second 
range is greater than or equal to the first range in size, 
the first range is counted, and the peak and valley are 
removed from consideration. If the second range is 
smaller than the first, then the next range in the load 

4 

3. 
2 

;2o 
~ 
-2 
-3 
-4 

Figure B. A plot demonstrat ing those peaks 
that should be counted in peak-cycle count- 
ing. 

Load (units) 

! I 21 3) 4 I 

~ 3  
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Time 

Figure C. An exampl  e of rainflow count ing for 
cycle counting. 

history is examined (and becomes the new second 
range), This is continued until the end of the load history 
is reached, at which point counting proceeds back- 
wards from the end to include the remaining points. An 
advantage of range-pair counting is that the mean 
stress can be included as a second parameter in the 
matrix of cycles and ranges. TM 

Rainflow Counting 

Rainflow counting is generally considered the best 
procedure currently available for counting cycles?.' In 
rainflow counting, two consecutive ranges are consid- 
ered together. 

The name stems from the manner in which the cycle 
counting may be visualized: the load history is turned 
90 ~ counterclockwise so that the vertical axis is time, 
increasing downward (Figure C). Now imagine the 
peaks and valleys as a series of rooftops. The path rain 
would follow coming down the rooftops defines the 
cycles and half-cycles of the load history, but the rain 
must flow subject to several conditions. For example, 
rain flow begins at the inside of the peaks or valleys. 
Flow beginning at a peak/valley must stop when it 
comes opposite a peak/valley of equal or greater size, 
respectively (i.e., more positive than the starting peak or 
more negative than the starting valley), giving a half- 
cycle. Flow also stops when it meets the flow from a 
higher roof, again giving a half cycle. The cycle counting 
is analogous to the actual cyclic stress-strain response 
of the material, such that a range counted as a full cycle 
will form a complete stress-strain hysteresis loop, 
whereas a half-cycle will not. 2.4 

The algorithm for rainflow counting can be described 
as follows. The important terms are the previous (firs[ 
range, current (second) range, and the starting point of 
the history. If the second range is smaller than the first 
the first range is momentarily skipped, the second range 
becomes the first, and the next peak or valley in the 
history is read to form the new second range (this is 
continued until a pair is found where the second range 
is larger than the first.) 

If the second range is larger than the first; there are 
two possibilities. If the first range does not include the 
starting point, it is counted as a full cycle and the 
relevant values are recorded, and the peak and value 
are discarded from the history. If the first range does 
contain the starting point, it is counted as a half cycle 
and the relevant values are recorded; the first point of 
the range is removed, and the second point becomes 
the new starting point of the load history. In either case, 
after counting the cycle/half-cycle, the next ranges are 
formed from the three most recent peaks and valleys 
that were not removed, and the process is repeated. 
When no more ranges can be counted, those remaining 
are each counted as half cycles (this is done in Table 2 
for the load history of Figure C). The cycles and their 
ranges (as well as the mean stress values) thus col- 
lected can be stored in matrix form and subsequently 
used for fatigue-life predictions. ~4 

Table 2. Counted Ranges and the Resulting 
Number of Cycles from Figure C 

Ranges Considered (in order) Cycles 
1-2 1 
0-3 0.5 
4-5 1 
7-8 1 
9-10 1 
12-13 1 
11-14 1 
3-6 0.5 
6-15 0.5 
15-16 0.5 
16-17 0.5 
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C C1 (29) 
(l_R)m,-,, 

The slope, m, is equivalent to the value 
for an R-ratio of zero. 

A life prediction analysis is made by 
simply integrating 

da - -  [using whatever form of 
dN 

da 
- - =  f(aK, R) chosen] 
dN 

between the initial and final crack sizes. 
Again, the initial crack size may be a 
preexisting crack in a structure (where 
the remaining useful life is to be esti- 
mated) or may be assigned based on 
defects inherent in the material or struc- 
ture under consideration? This initial 
crack size, %, is often determined by 
nondestructive evaluation (NDE) tech- 
niques. 26 Thus, the number of cycles to 
failure is given by 

N~ = ~a~ dN = ~ da (30) 
~" ' f(AK,R) 

In the simplest cases, a closed form 
may exist for the integration. However, 
a number of factors can greatly increase 
the complexity of the integration, such 
as modifications for R-rafio, making it 
difficult or impossible to obtain a closed- 
form solution. Similarly, the geometry 
factor F (as well as Q) generally changes 
with the advance of the crack? 5 Thus, 
numerical-integration techniques are 
often necessary. Possibly the simplest 
method is to perform the iteration in a 
number of small steps, assuming a small 
crack increment and calculating F, AK, 
and da /dN from this. Then, assuming 
for small steps that 

da Aa 
dN AN 

a d~N can be calculated for each incre- 
ment. When the critical crack size is 
reached, the zXNs are summed for the 
life. ~5 Similarly, the procedure can be 
carried out using a suitable integration 
rule (e.g., Simpson's rule)? The integra- 
tion can also be carried out graphically. 
Inverting the crack-growth-rate equa- 
tion yields 

dN 1 (31) 
da f(aK, R) 

Combining with Equation 30 results in 

= I~ ' (dNlda  
N, .~,,k d a )  (32) 

Thus, the area under a plot of d N / d a  
versus a gives the number of cycles to 
failure. 3 To produce the plot, a series of 
crack increments are again chosen and 
used to determine F and &K and, thus, 
da/dN,  which is then inverted and plot- 

ted versus the crack length. 
As mentioned, the stress intensity fac- 

tor, K, is based on an assumption of 
linear elastic fracture mechanics (LEFM). 
In high-ductility materials and where 
the plastically strained zone ahead of the 
crack tip is large, predictions based on 
zXK can result in considerable error. In 
such cases, elastic-plastic fracture me- 
chanics may be more effective, ~,1~ 
wherein the parameter J (or the cyclic J- 
integral) is used to describe the state of 
stress/strain at the crack tip. For a dis- 
cussion of the J-integral as it relates to 
fatigue crack growth, refer to Reference 
27. 

The use of fracture mechanics in fa- 
tigue life prediction has become wide- 
spread. A standard test method exists 
for determining fatigue-crack-growth 
rate (ASTM E647), 2s and the fact that a 
given zXK (for a given material, stress- 
ratio, and environment) produces the 
same growth rate for any combination of 
stress/crack length makes a single set of 
material data widely applicable for any 
type of loading and geometryJ 4 A major 
advantage of fracture mechanics is that 
it is a damage-tolerant method; the dis- 
covery of a crack does not necessarily 
mean that the component's useful life is 
exhausted. The crack growth can be 
monitored, and estimates of remaining 
life can be made based on the crack 
length and Kc? Of course, this may ne- 
cessitate a periodic inspection of cracks 
in critical applications using NDE meth- 
ods. 26 This may not be trivial and is often 
quite costly. But in applications where 
replacement entails great expense, the 
cost of periodic inspection may be worth- 
while. 

V A R I A B L E  A M P L I T U D E  
L O A D I N G  

The life prediction procedures dis- 
cussed so far were based on CA loading. 
This type of fatigue data is by far the 
easiest to produce. As such, the vast 
majority of available fatigue data were 
generated in CA tests, and many of the 
relationships used in fatigue were origi- 
nally developed based on the data from 
this type of loading. Unfortunately, in 
real-world applications, CA loading is 
seldom the case (and is actually the ex- 
ception). Most fatigue design problems 
will involve VA loading, which may be 
random, block-shaped (blocks of CA 
loading at different ampli tudes/mean 
stresses), etc. Making a VA life-predic- 
tion analysis based on an unmodified 
CA model will often result in consider- 
able error. Thus, a number of methods of 
life prediction under VA loading have 
been advanced. Ideally, a VA technique 
should account for a number of factors 
that affect life, including sequence ef- 
fects and overloads, prestrain effects, 
and mean stress. 

It is well established that the order in 

which the various load levels are ap- 
plied in VA loading can have a signifi- 
cant effect on the life of the component 
leading to sequence effects. In general, a 
high-tensile cycle (overload) followed 
by lower stress cycles can have the ben- 
eficial effect of temporarily retarding 
crack growth, and, thus, increasing life. 
This may not seem logical, but the effect 
is due to the combined (conflicting) in- 
fluences of a beneficial residual com- 
pressive mean stress produced at the 
crack tip and increased strain damage 
introduced during the high-stress cycles 
(with the residual stress effect being 
dominant) .7 

Compressive overloads have the op- 
posite effect (reducing life), but to a much 
lesser degree. This leads to the interest- 
ing effect that if a high-amplitude re- 
versed load sequence is stopped after a 
tensile peak and then cycled at a lower 
stress level, a longer life may be pro- 
duced than if the same high amplitude 
load had been stopped after a compres- 
sive valley. 7 The magnitude of the effect 
increases with the ratio of the maximum 
stress at the high-stress level to the maxi- 
mum stress at the low-stress level? Also, 
the effect is the largest when the over- 
loads act mainly in the same direction 
(i.e., either all tensile or all compres- 
sive) .29 Highly irregular loads, however, 
decrease the effect of overloads. Because 
the effect is mainly to retard crack growth, 
neglecting sequence effects will often 
lead to conservative life predictions un- 
less large compressive overloads are 
experienced? On the other hand, in 
unnotched and crack-free specimens, a 
small number of high overstresses com- 
bined with cycling at low stress will 
actually have the opposite effect, in that 
the high stresses may initiate cracks early 
in the life that would have taken much 
longer to form at the lower stress level. 
The cracks can, however, then propa- 
gate at the lower stress level, leading to 
a reduction in life. 2 Thus, caution must 
be exercised if sequence effects can be 
expected. 

The application of a small number of 
plastic prestrain cycles can affect the 
fatigue life of the component (usually 
reducing it). In real-world applications, 
a certain amount of prestrain is common 
and, hence, can affect the service life. 
This effect is generally attributed to crack 
initiation caused by the prestrainingd- 
Prestraining samples prior to testing can 
help account for this effect. 

Mean-stress effects are as important 
under VA loading as they are under CA 
loading. However, the mean stress will 
vary from cycle to cycle under VA. Con- 
sequently, a mean stress may be deter- 
mined for each cycle or average values 
may be used. 

The most common technique for esti- 
mating a VA fatigue life is through the 
use of the linear cumulative damage con- 
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cept, or Miner's rule. While  the method  
has its shortcomings, a t tempts  to modify  
it to increase accuracy have  often met 
with only limited success and at the cost 
of a considerable increase in complex-  
ity, as well as often requir ing  experi- 
mental values that are se ldom readily 
available. 

Miner's Rule of Linear Damage 
Accumulation 

Miner 's  rule, or the Pa lmgren-Miner  
rule, is a fatigue-life-prediction method-  
ology based on an assumpt ion  of linear 
accumulation of damage  in specimens 
subjected to VA loading. Miner ' s  rule 
was advanced by Miner  3~ in an a t tempt  
to apply the CA fatigue data available at 
the time to more complex VA loading 
schedules, as might  be experienced in 
actual service, u3 According to Miner ' s  
rule, at a given stress level, the ratio of 
the number  of loading cycles to the 
number  of cycles at failure corresponds 
to the fraction of the total life that is 
exhausted? 

Miner based his method  on the as- 
sumption that the amount  of damage  
accumulated is directly related to the 
work absorbed by the specimen,  and 
that failure corresponds to a particular 
amount  of work. 3~ Let w v w 2, . . . w 
represent the work absorbed at each of n 
loading levels, and let W represent  the 
total work required to bring about  fail- 
ure. Then, at failure 

w ~ + w  2 + . . . + w  = W  (33) 

Now,  the fraction of the total work  ab- 
sorbed at a particular loading level is 
equal to the fraction of total life ex- 
hausted, such that 

W 1 - -  n I . W 2 _ n 2 . W n _ n (34) 
W N 1 W N 2 W N 

where  n~, n , , . . ,  n n are the number  of 
cycles at stress level s v s 2, . . .  s n, respec- 
tively, and N~, N 2 . . . .  N ,  are the number  
of cycles required to bring about  failure 
at s v s 2 . . . .  G, respectively, as g iven by 
the S-N curve. 

Now,  from Equation 33, 

w 1 w 2 + + . . . + w  =1 (35) 
W W W 

Substituting Equation 34 into Equation 
35, 

o r ,  

n 1 n, n n 
~ + ... + - -  = 1 (36) 

N~ N 2 N 

n 1 ~ , j ~  =1 (37) 

Thus, when the sum in Equations 36 and 
37 (i.e., the sum of the fractions of the 
total life exhausted at each stress level) 
equals one, failure is predicted. 

Besides the assumption that failure 

will occur after a certain amount  of work 
has been absorbed by the sample, Miner 
also made several other assumptionsP 0 
sinusoidat loading, no work hardening, 
that failure occurs when a crack is vis- 
ible, and that stresses below that required 
to cause failure at 107 cycles are neglected. 
To account for R-ratio effects, S-N curves 
are needed for each R-ratio encountered 
by the part. Alternatively, a modified 
Goodman diagram can be used to relate 
stresses at several R-ratios, but at the 
expense of accuracy. 3,4,3~ 

Miner 's  rule has many advantages,  
namely its simplicity and ease of appli- 
cations. Unfortunately,  it suffers from a 
number  of drawbacks that make it often 
inaccurate. First, work since Miner has 
shown the accumulat ion of fatigue dam- 
age to be a nonlinear p r o c e s s .  4,3l Also, the 
method fails to account for such factors 
as load sequence effects (for stress-life 
based evaluation, as Miner used), mean 
stress effects, notch effects (e.g., the ef- 
fect of a single tensile or compressive 
overload on a no tched/c racked  speci- 
men), and the effects of prior static load- 
ing. 1,4,32 

Miner 's  experimental  results support  
his hypothesis; in 22 Alclad 24S-T alumi- 
num alloy specimens, the average 

was 1.015, with a max imum of 1.45 and 
a min imum of 0.61 30 However ,  Miner 's  
results were based on very simple block- 
loading schedules, with only two or three 
stress levels. While Miner claimed the 
method to be conservative, subsequent 
experiments have not always borne this 
out in cases of more complex loading 
programs or random loading, where re- 
sults have been shown to be noncon- 
servative by an order  of magni tude  or 
more. 4 On the other hand, under  special 
test ing condi t ions,  Miner ' s  rule has 
been shown to be overly conservative, 
giving 

ZN n 

values as high as 300. 4 
Despite its shortcomings, Miner 's  rule 

can provide a simple technique for ob- 
taining an approximat ion of life under  
conditions of VA loading. When used 
wi th  an a p p r o p r i a t e  cyc le -coun t ing  
scheme (e.g., ra inf low counting),  the 
method can be used to produce life esti- 
mates very quickly for extremely com- 
plex random ioadings, which can be a 
considerable task when using other tech- 
niques. 

Stress-Life and Local-Strain 
Approaches 

The stress-life approach does not ac- 
count for sequence effects. 3 Thus, if se- 

quence  effects can be neglected,  the 
stress-life approach can be used in con- 
junction with Miner 's  rule (and if neces- 
sary, an appropr i a t e  cycle count ing  
scheme) to make fatigue-life estimates 
underVAload ing?  However ,  if sequence 
effects are expected to be a factor, the use 
of the stress-life method  is general ly in- 
advisable. 

The local-strain method  is more flex- 
ible than the stress-life technique. It can 
account for both sequence effects and 
prestrain because of its basis on local- 
strain conditions and the cyclic stress- 
strain behavior.  3,4 Using a cycle-count- 
ing technique (e.g., rainflow counting), 
the individual  cycles are determined 
from the load history, and strain range 
and mean stress are de termined  for each 
cycle. The analysis used for CA loading 
is then used on individual  cycles (or 
blocks of cycles with an equivalent  strain 
ampli tude)  taking the individual  values 
of stress and strain from the hysteresis 
loop for the cycle [given by s = f(Ga)] and 
the strain-life relationships to find the 
value of Nf for the cycle.3 This Nf can then 
be used with Miner 's  rule, and a life 
prediction can be made. 

Fracture Mechanics 

If sequence effects can be neglected, a 
s imple cycle-by-cycle sum of crack in- 
crements can be determined.  For the 
conditions of the zXK and R-ratio of the 
cycle in question, the change in crack 
length can be read from a plot of 

da 
- -  vs. zXK 
d N  

(AN = 1, so da = z~a). 1,3 Again, rainflow 
counting can be used to separate the 
cycles wi th  their  ranges  and means  
stresses. When the sum of crack incre- 
ments equals or exceeds the critical crack 
length ac, the cycles are totaled for the 
fatigue life. 

A very simple method  for applying 
CA data to a VA load sequence is to 
assume that zXK in the growth rate equa- 
tion can be replaced by the root-mean- 
square value of,~K for the load history, 
A K R M s  33 

I 

This makes for a very simple life calcula- 
tion, but  unfortunately,  this method also 
neglects sequence effects, and in some 
cases, the life estimates resulting are fairly 
inaccurateJ,3, 33 

A number  of methods  that include 
sequence effects in fracture-mechanics- 
based life predictions have been con- 
ceived. These often involve either crack 
closure or residual-stress effects. Su- 
resh covers a number  of these in Refer- 
ence 1. 
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C O N C L U S I O N S  

Although  many  p red ic t ion  ap- 
proaches Iack the simplicity necessary 
for widespread application, or require 
data that are unavailable and difficult to 
create, a number are promising. For ex- 
ample, statistical methods for modeling 
crack growth are now being imple- 
mentedY ,26 Also, finite-element model- 
ing of processes such as damage accu- 
mulation or crack growth (often based 
on one of the methods described here) is 
now being used to estimate life. Simi- 
larly, topics such as multiaxial fatigue, 
thermal fatigue, and crack closure have 
been omitted here. 

The issue of fatigue-crack initiation is 
currently an important research area in 
light of the newly developed advanced 
nondestructive evaluation technolo- 
gies.2~ ,37,38 Minute cracks on the order of 
100 A could be detected using atomic 
force microscopy or scanning tunneling 
microscopy. It is expected that research 
advances will be made in detecting and 
modeling minute cracks, which govern 
the initial fatigue life. 
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