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1. Summary

In this paper, we consider the distribution of the maximum latent
root of a certain positive definite symmetric random matrix. For this
purpose, we give a useful transformation of a symmetric matrix and
calculate its Jacobian. We also give some useful expansion formulas for
zonal polynomials (A. T. James [3]).

Recently Sugiyama [7] and Sugiyama and Hukutomi [8] gave the
density functions of maximum latent roots of a central Wishart matrix
when the covariance matrix 2=1I, and of a multivariate Beta matrix
and a multivariate F-matrix in the central case.

Here we derive the density functions of maximum latent roots of
a multivariate non-central Beta matrix, a non-central Wishart matrix and
a multivariate central quadratic form with the covariance matrix X, and
we also derive the density function of maximum canonical correlation
coefficient. The notations in this paper are due to A. T. James [4] and
A. G. Constantine [1].

2. Some useful transformation

In this section, we treat some transformation which is useful in
the sequel.

Let S be a positive definite symmetric random matrix. As is well
known, S can be decomposed into the product of an orthogonal matrix
H and a symmetric matrix 4, @V such that

A 0
(1) S=H[ }H’,
0V

where 2, is the maximum latent root of S and V is a positive definite
symmetric random matrix which ranges 4,7, ;> V >0. The first column
h, of H is the corresponding characteristic vector of 1. It should be
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noted that the independent variable of H is only h, and the remaining
part Hy(pxp—1) is only a function of Ak, such that

R f12(k1) T flp(h1) -
(2) Hy=f(h)=
_ fpz(hl) vt 'fpp(hx) _

LEMMA 1. Let S be a pXp positive definite symmetric random
matrixz. Then the Jacobian of the transformation (1) s given by

(3) JS—2, b, V)= 1L, — V.

Y. Tumura [5] considered a Jacobian of (1) in terms of the rotation
angles of the orthogonal matrix. His lemma 2.1.2., however, is not con-
venient for treating directly the distribution problem of maximum
latent root of a certain positive definite symmetric random matrix. The
proof of the lemma depends on the Hsu’s method introduced by W. L.

Deemer and I. Olkin [9].
ProOOF. Let us differentiate both sides of (1):
4 0 di, 0 A 0
(4) dS=dH H+H H+H dH'.
0 dV 0 Vv
Multiply H’ from the left and H from the right to obtain
4 0 dy 0 A 0
(5) H'ISH=H'dH + + (H'dHY .
0V 0 dV 0 Vv

Let dT=H'dSH and dP=H'dH. Then

i 0 d, 0 4 0
(6) dT=dP + — dP,
0V 0 dV 0O vV
since dP'=—dP by its antisymmetry. Here we must note that in dP
=(dP,, dP,)==(H'dh,, H'dH,), dP; can be represented by dP,. In fact
" dfi(h) -+ dfu(h)
dH,=df(h)=

Cdfh)- - df () |

and
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df”(hl): af“ dkli‘f" afij dk21+ tre +———af'] dhm

ohy ohsy oh
(B, Bor . BN,
ohy ohy Py
(i:]-izy"‘yp; j=2y 3y"'7p)'
a if a i a ij 3 .
Let F”=<8;;i , 3;;1 R 8£p1 ) Then, by setting F'=(F},;), we have

dH,=df (h)=F&dh,

where FRXdh, is a direct product of ¥ and dh,. Thus, from dh,=HdIP,
and dP,=H'dH,, we have

(7) dPZZH’F®.HdP1,

which establishes the assertion.
From the above consideration, we need only dP,, dV, di, to calcu-
late the Jacobian. Now,
(8) J(S—2y, by, V)=J(dS—>da, dh;, dV)
=J(dS—dT)JdT—da, dh, dV)
=J(dS—>dT)J(dT—di, AP, dV)J(dP,—dh,).

It is easily checked that

and dpy;, the first component of dP,, is 0, because dp,=h/dh;=0. Thus
the transformation (6) is written as
dty=22dpy+di—A4dp,=di
( 9) dTm:RldPn— VdPn:(llI -1 V)dP21
dT22=dV+dP22V— Vszg,

where dPy is the submatrix of dP,=(dP;, dP}) and dP,=(0, dP}). From
the above relations, we can construct the configuration,
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ar dpy.  dpu dp, dvy, dvy - - ¢ dvy,

dt, 1 0 0 0 0 0 0
dity 0 A—Vy —Vy —Vsp 0 0 0
dt31 O - ’U32 21 - '2)33 * - v3p 0 O

(10) . . . . . .
dtpl 0 —VUpe —Vp3 = * * 21 —Vpp 0 0O --- 0
Aty 0 * * . e * 1 0 --- 0
dty; | 0 * ¥ oL % 0 1 --- 0
dt,, | O * * ... % 0o 0 ... 1

Hence the Jacobian is
JAT—dx, dP, dV)=|21,,— V],
which completes the proof of the lemma.

From lemma 1, we can give the main principle of deriving the
density function of the maximum latent root of a certain symmetric
random matrix.

Let S be a positive definite symmetric random matriz with density
Sunction f(S). Then the density function of the mazximum latent root
of S is given by

A I-VI|f(,V, h)4V,

3y >V >0

an S dh,

Rk =1
where 2, V and h, are the same as those in lemma 1.

The following definite integrals are useful for our arguments.

LEMMA 2.
12) |Vie=r-v AL~ V|C(V)V
3Ip_1>V>0
—1 2 -1
_na("F) (25 (5.

Arrre-vea (LY,
r (mtp+l ntptl
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(13) S i]jzzgn—z’—w T (h—2,)C(4)d

1=i<jsp
32> >0

-1 -1 2 —
_F’“(pz > F“"l<n-2 )Fl‘”(p; ) <n21>:
7@=12 r <n+p+1> <n+p+1>
P 2 2 .

L ApE-DEC (LY,
where Ad,=diag{2,---, 2,} s a diagonal matric with latent roots of V.

PROOF. (12) is a Beta integral which is given by A. G. Constantine
[1]. (138) is obtained from (12) by transforming V=H,4,H} where H,

is a p—1xp—1 orthogonal matrix, and by integrating over 0(p—1), i.e.,

2
n-(P—‘l) /2

dH§‘=———————1——— .
o(p—1) I"p_1< p;— >

(13) is the same result as given by T. Sugiyama [7].

3. Some expansions of zonal polynomial
(14) C(A®B)=% S arC(A)C(B)

where A and B are symmetric matrices of any order, respectively, and
A@B stands for the direct sum of A and B. The summation is over
all partitions = of %, and v of k, such that k,+k,=k and £ is a partition
of k.

(15) CAA)C(A) =33 BL.Co(A)
where A is a symmetric matrix, C,(4) and C,(4) are zonal polynomials

which correspond to a partition v of ¢ and ¢ of m, respectively, and the
summation is over all partitions ¢ of s satisfying

(16) t+m=s.

We do not know the explicit formulas of af, and b),, but we give the
tables of a,, and &, in lower orders at the end of this paper. We must
note there

_ )
ClA) =gy Z4A),

where c¢(x) is the degree of the representation [2¢] of the symmetric
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group of 2k symbols. We read tables (I) and (II) as follows:
Z(2>(A@ B)=Z(2>(A)+Z(2>(B)+2Z(1)(A)Z<1>(B) ’

Zo(A) Zo(A) =%ch>(A>+ i;‘-zal,(A) .

These tables are calculated from the ones due to A. T. James [4].

4. The density function of the maximum latent root of a quadratic
form Z=XAX’

Let the pX N (p<N) matrix variate X be a sample matrix from a
p-variate normal population with mean 0 and covariance matrix %, and
A be a positive definite symmetric matrix. T. Hayakawa [6] obtained
the density function of Z=XAX' and of latent roots of Z as

C‘<——;—2’—1Z>C‘(A“)

1 L 0
(1 PRI ,
Fp(ﬂ)lg}]lzv/zlA[p/z k=0 « k' C(Iy)
2
and
71-172/2 o (N—p-1)/2
(18) () -

F<£_>[’<_£V_>22N/2Ap/z
(2) 1, (X )j2zion 4l

. C[—g3)camom
AT R

b

respectively, where A=diag{4,,---, 4,} is a diagonal matrix with latent
roots. Using an expansion formula (14), we can decompose C,(4) into
the form

CAD) =2 asC.RC4),
where A,=diag{4,---, 4,}. Thus (18) is rewritten as

: . Cf—3x)oa

=’ A¥-r-02 ST
I §) 155 Jlesreiar s MOL)IC)

(19)

>(-V—p—1)/2

»
- Sax (1T 4

,T[ (4= 2,)C( L) .
1€i<isp
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Hence, the integration of (18) with respect to 2,,---,2, by the use of
(13) gives the density function of 2, as

T S )

Np/2-1
1

(20)

. C‘<__;_2—1> C.(A™) < N;l

gy Sa —
im0 EIC(L)C(LY) = ( N+p+1 >
2 ¥

C:(xl)cy(/lllp—l) .

THEOREM 1. Let Z=XAX' be distributed with density function (17).
Then the density function of the maximum latent root of Z 1is given
by (20).

COROLLARY 1. Let Z=XAX' be distributed with density function
(17). Then the density function of the maximum latent root of a deter-
minantal equation |Z—212|=0 1is given by setting 3=1I, in (20).

COROLLARY 2. Let Z be a Wishart matrixz on N degrees of freedom
with covariance matriz 2. Then the density function of the maximum
latent root of Z is given by setting A=Iy in (20).

COROLLARY 3. Let Z be a Wishart matrixz on N degrees of freedom
with covariance matric £. Then the density function of the maximum
latent root of XZXV* is given by setting A=I, and ¥=I, in (20).

Corollary 3 is easily obtained in another way. In fact, let Z be a
Wishart matrix on N degrees of freedom. Then by the use of trans-
formation (1) the joint density function of 4, V and H is

(21) —____]'__.ZV— exp (__%__ 21 >ZEN—-p«1)/2
=)

etr <——%—V>| Y- - V.

Then the integration (21) over H gives

(22) 77.'27/2 N exp <__§1>21(‘V—p—1)/2
ZEap
2/ 7\2
< 1 L\E i vmptye
SIS =g VIR VICY).
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Hence, using (12) we obtain the density function of 4, as

e wiaww

e L e

(23)

1 >N/2—1
XP| —— A, JA7P
p< 5 1A

<N—1>

w1 2 /e 1

Sel 2ol L),

X% <N+p+1 g
2 /e

This is the same result as given by T. Sugiyama [7].

Note. If we compare the terms of the kth degrees in (23) and in
corollary 3, then we have a linear relation

( N—-1 )
e exp(—5 4 —m%_ﬁf—c;<zl )
(),
(F-1)
=5 az,Tﬂ%ﬂlya(ma(u ).
2 v

5. The density function of the maximum latent root of a non-central
Wishart matrix with covariance matrix =/,

Let S be a non-central Wishart matrix on n degrees of freedom and
with covariance matrix =1, Then we may start from the form of
the density function of S

(25) etr <_l 2 ) ml S [w=p1r2 gty <_%s)
2
i c.(+e)cs)
&5 <%> lf!C,(Ip) ’

since the maximum root is invariant under any orthogonal transforma-
tion (cf. A. T. James [3]). Let us decompose S as (1), i.e.,
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A4 0
S=H H'
(I
and expand C. (3, PV) as
CaPV)=2asC.(2)C(V),

by (14). Then (25) is rewritten as

(26) etr <_..]_'_ 0 > ___1___2§n—p—1)/2 exp < _é_ 2 >

cetr <-——;—V> |V @52 4T — V| CAV),

since the Jacobian is |4 f,.,— V.

The main problem is to integrate out V from (26). Unfortunately
the results obtained so far are not available to do so directly and hence
we need to reformulate (26) so that the known formulas can be applied.
The part of reformulation is

@7 etr < —-;-V> |V =22 4 T— V| CAV).

First, by the expansion

1o\ = 1f 1Y
(28) etr<—-2—V>- g;ﬂ_—z_) cAV),
(27) can be rewritten as
I 1 1 i
(29) Vet AT — V| 55 1~ L] CVIC).

Second, by using (12), (29) is expressed in the form

(n—p-1)/2 2 5 1 1 L 7
(30) [V [ 2T — V| 3 5 - ——) S BLCV).
i Al 2 7

=0 o

Hence the integration with respect to V over 31>V >0 gives
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() )

r,. 1< n—l—p-l—l >
)
1 2

éz%(“ﬂl?bﬂm‘f)—
2 e

H

(31) 25n+1)(p—1)/2

CAAd, ).

Thus the joint density of 2, and H is as follows:

-1 2
Lol ) Pl 25

o ) e L)

(32) etr<—%[2>

) o c;(iﬂ
.A?P/Z—lexp<*%ll>z§§ (ﬁ) < 21> k!C%(IpR

(n—l)
geo Zr (-39 oy
2 &

Col(4,-1).

To obtain the density function of 2, we only integrate (32) with respect
to H by using the spherical integral, that is,

TL'p/ 2

Thus the density function of ; is

() e 282)

1 2 2
(33) etr( —54 ) - F( % ) pp<%> rp_l<_7£%0£>
w ofto
.lvlw/ﬂ—lexp<—-—;—21>}§$ <;£_> <—_;_> _k!—é(I—;)ﬁ
2/ <£i>
SecwIe (1) s TF?&Y e
2 2
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THEOREM 2. Let S be a non-central Wishart matriz on n degrees
of freedom with covariance matriex 2=1I, and the non-central parameters
L. Then the density function of maximum latent root 1, is given by (33).

6. The density function of the maximum latent root of a non-
central Beta-matrix

Let S, be a non-central Wishart matrix on n, degrees of freedom
and S; be a central Wishart matrix on n, degrees of freedom with the
covariance matrix 2, respectively. Let S, and S, be independent. A
non-central Beta-matrix R is defined as

(34) R=(S,+5)7S,(S,+8)™",

and Wilks’ statistics of likelihood ratio criterion for testing equality of
the mean vectors is, then,

[ I—R|=|S{S,+Sy)™"].
A. G. Constantine [1], [2] considered the distribution of
i) latent roots 4, >--->2, of R
and

i) trSSri=3_%

i=1 1 —Zi

Here we consider the density function of 2, the maximum latent
root of R in the non-central case. We note that the distribution of
roots of R is invariant under the simultaneous transformation such that

Sl——>—é—~_1/2slf—l/2, Sz _)%2—1/2‘3122—1/2'

We may, therefore, assume that the joint density function of S, and
S; is

(35) etr (—2) L |, [ |, e
r <ﬂ> r <ﬂz_>
N2/ 2

etr (—(SHS)F (1.2, 5,

where 2 is a symmetric matrix of non-centrality parameters. By the
transformation of S; and S; such that
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G=S8,+8S;, R:G—1/2S1G—1/2 ,
the density function of R and G is
1

aone

(25 2, GR )| R [ R[>

(36) etr (—2) etr (—G)|G[rra-r-r2

To turn out G from (36), we use the formula

(37) S etr (—G)| G [rwtmap-br C‘(RG)dG=Fp<—731;—nl; x>CE(R) ,

G>0

and thus the density function of R is

nlg)

e

.lm<m;ﬂ; 2, R> )
2 2

(38) etr (—9) | R [(u-2-0r2| [ R|(ap-1)2

Now, we decompose R into 4,, H and V as lemma 1,
A 0
R=H H'.
oV

Since the Jacobian is |4 J— V|, we can rewrite (38) in terms of A, V
and H as

rinm)

S iey

AV (DR L= V|| = V[

(39) etr (—2) AP (L 2 )rame 0

. F<_____._n1+n2 s M 002 V> .
141 2 2 1@

Now, we reformulate the part including V, that is,
(40) |V =02 ATV || [ = V|22 C (4, DV).

By using (14), (40) can be written as
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(41) |V [ L= V|| I= V7 2 @ CLR)CAY)
and then by the expansion of generalized binomial series, that is,
(42) | [—V [/ 2 Z< —M+p+1 > C.V)

[y 2 T

(41) can be rewritten as

4 (ny—p—-1)/2 g —n2+p_+___1 l
-gammmmwm.

Then if we use (15), we have

(44) |V 7222 4=V E atCo4)

& —n+p+1) 1 )
Sx(mnrt) Logo,

Hence, the integration of (44) with respect to V over 17>V >0 gives,
by the use of (12),

e M
-1 p-1
(45) 2§n1+1)(1’—1)/2 2 2

StasCA2
r <n1+p+1 ) 2 65C{a)
p—1
<n1—1
.MT‘ -—-’I’Lz+p+1>l§‘bo 2 C.2
§“< 2 al!T""<'n1+ +1> L)
2 o

Hence, the joint density function of 2, and H is

e e M

1
nlpnly)

( N+ 1, >

n,2/2—-1 No—=p—1)/2 had 2 - Cx(‘Q)

_21117/ 1—12 (ng—p—1)/ 2

= () HCA)
2 &

(46) etr(—90)

-Za L) 3 S

=0 ¢

n—1
(;&ﬂ&L%lgw_ijiiLa@rm

2 neT" <n,+p+1>
2 )
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To obtain the density function of 1,, we only integrate (46) with re-
spect to H by using the spherical integral. Thus

Bp—l < nl—l ’ “‘—p+"‘—2 >
2 2 T

@7 etr(—9Q) L e (1 )

2
. <’i’b1+n2> )
papy < _ni ) E k?c(%)r) f,?a:,c,(xl)lg;);(:ﬁ%i)" Tlv
2 /.
n—1
DI < 2 > ! Ca) .

¢ <n1+p—|—1 >
2 [

THEOREM 3. Let R be a non-central Beta-matrixz defined by (34).
Then the -density function of the maximum latent root of R 1is given
by (47).

Note. The density function of 2, in the central case can be easily
obtained from (3), (12) and (38). It is

-1 2 ’ 2_‘

g B3

-2F1< m—1 —mtp+l. n+p+1 ;Mp_1> ’
2 2 2

n.p/ 2

(48) AP = 2 )21

which is the result given by T. Sugiyama and K. Hukutomi [8].

7. The density function of the maximum canonical correlation co-
efficient in the non-null case

Suppose the variates -+, T, Y- ", Y. (P<q) are normally dis-
tributed with zero means and covariance matrix £. If p,,---, p, are the
canonical correlation coefficients between (zy,---, z,) and (¥,--+, ¥, and
A, -, 2, are the maximum likelihood estimates from a sample of size n,
n=p+q, then the density function of A,---,4, is given by A. G.
Constantine [1] as
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(49) " /;F_< 2 > | [— PJ/2| Af(a=p=002| [ f|(v=a=p=12
n{g) st rlg)
ry
‘ 1si]<—l;§p (%= ]j)rci;}) ; < 2<>_‘g_<>2 >‘ Cli'fgffi)/l) ’

where P=diag(py,--, p,) and A=diag(i,---, 2,). Using (14) and (15),
we can rewrite (49) as

(50) a Fp<§> | I-— P[r/23a=p=1/2(1 — 3, J(n=a-P=1/2
rl )25 (%)
R . (5.3,

SaC) 55 (LR S sb o,

where 4;=diag (&, --, 4,). Thus, using (18) we get the density function
of 2, as

" < > P 1< > p< )
2 2 2 9 -
[l._.PI"/~l;II’/2 1
q n—q
2

£)

i
-{1— l)(n—q p— 1)/221_('); <2<>-:L<>2> kYCC’(fl?p) T‘o, LC(2)
2/«

= —n+q+p+l ) 1 s 2 C(2
22( 2 vl! 7 ve <q+ +1> «9(111—1)
2 F]

THEOREM 4. Let (xy,-++, %o, Y1," ", Yo)y D=q, be distributed with
p+q variate normal distribution with mean 0 and covariance matrix
Y. Then the density function of the mazimum canonical correlation co-
efficient 2, of mazimum likelihood estimate from a sample of size n,

n=p+q, is given by (51).
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Appendix

(I) The table of Z(A@B)=5 a:,Z(A)Z(B)

Zo)(A) | Za(B)
Z(l) 1 l

ZaA) | ZaAB) | Zo(A) | ZrAB) | Zak A)Za(B)
Ziy 1 1 2

Zey 1 1 2

ZolA) | Zo(B) | ZaAA) | Zan(B) | Zus(A) | Zst(B) | ZerA)Zu(B) | ZoX AV Ze BY | Zutl A)Z (B | Zeal A) Zet( B)

Zy, 1 1 3 3
Zaws 1 1 43 443 5/3 5/3
Zo, 1 1 3 3

ZulA) | ZokB) | ZaikA) | ZakB) | Zat(A) | ZAB) | Za(A) | Zati(B) | ZatAA) | Zu(B) | Zal AV ZeoA B) | Zal A)Zexk B)
Zy | 1 1 | 4 4
Zo 1 1 8/5 6/5
Zo, 1 1
Zoars 1 1
Zar v | 1

Za{ A)ZsAB) | Zask AY 2k BY | Zl A) Za B) | Za AY 2o BY |2 AY Zak BY | Zt A Ay ZiABY | ZoifAYZuA BY | ZlA) 2 B)

Zu 6

Zews 43 14/5 14/5 73 73

Zo 8/3 4 4 10/3

Zenty 5/2 5/2 5/3 5/3 8/3 3/2 3/2
Za, 6 4 4

(IT) The table of Z(A)Z (A)=SblZ(A)

| Zy, | Za Zy | Zew | Zoy | Zi, | Zaw | Zoy | Zan | Zub
Zo, | 13 | 23 | Zo | 15 | 4B | 2o | ut | o1
Zy | Za 12 12 | Zu 2/9 2/9 5/9
| Ze 35 | 25
| Ze 3/35 | 8721 | 815
Ze | za 13 2/3
7. [ | Ze 113 2/3
] | Za Y6 | 815 | 3710

Entries not shown in the table mean zero for table (I) and table (IT), respectively.
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