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1. Introduction and summary

In many fields of empirical sciences, skew distributions are so often
found that they seemed to be the dominant forms in those fields [13].
The methods based on concentration curves which are regarded as princi-
pal tools for the analysis of skew distributions are not yet researched
enough as compared with the methods based on the distribution func-
tions.

In part I we try to examine the properties of concentration curves.
The definitions are fundamentally based on my recent paper [16], but
some notions and descriptive measures are newly induced from the con-
siderations for the effects of inner and outer forces working to the path
(concentration curve). In fact, it can be seen that the notions due to
curvatures of the path, their variation with respect to the length of
the path and so forth are useful to characterize and to decide a certain
kind of distributions and their parameters, together with the notions of
symmetries and truncations of concentration curves. Namely,

(i) Variations of curvatures of the path are useful to characterize
skew distributions, instead of %{%D, as is seen in Part II.

(ii) The angle of the tangent to the X-axis at the point (grade) having
the saturation value (At this point, the curvature is maximized.) gives
a measure of skewness of concentration curve, especially for Paretoan
type curve (2), as is seen in Part iI.

(iii) Similarly, the maximum curvature itself gives a measure of kurtosis
of concentration curve, and this measure can be normalized by dividing
with the curvature of circular arc (having generally the next form:
(X—&) 4+ (Y —-1+4&P=8+(1—8)?, if both curves have the same area.

(iv) We can suggest the relative Gini coefficient (say R.G.) in comparison

1 See [3] and {12].
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with the Gini coefficient of the above circular are, if both paths have
the same length. In this case, obviously 0<R.G.Z1.

Other notions: symmetries and truncations also will show that the
Paretoan type (2) is one of the most representative families in concen-
tration curves. Furthermore, they can give us the decomposition of Gini
coefficients or mean differences.

Pareto distribution (log-exponential distribution)

(1) P(Xg@:l—(i)"; 0<0<z, a>0
X

is already known as the most typical skew distribution [13], {14]. Par-
ticularly, this distribution has remarkable features at the following points:
(i) The mean value g does not exist for a<1. The variance ¢* does
not exist for a<2. Generally the nth moment does not exist for a=n.
But the mean deviation 6 and the mean difference 4 exist for a>1.

(i1) The central limit theorem sometimes does not hold for the sum of
independent random variables, all having the same distribution function
(1). Namely the distribution (1) belongs to the domain of attraction of
a stable law with the characteristic exponent « in the case of 0<a<2,
because its verification is given by the theorem ([7], p. 175) as follows:

F(—-x) _ — 00
1) 1__@)—_. as x s
_ <0>u
2) 1-F@)+F(—x) _ \2/ _ ;. as x—>oo,

1—F (kx)+F(—kx) < % )
Y

for every constant k>0.
(ili) As is well known, the geometric mean of this distribution is equal
to fe* [12].

Now, the results in Part I show that the family of the Paretoan
type distributions:

(2) fk, a, b)=£,c; 0<a=zsb<oo, —0<k<oo, A>0,
x

gives the most representative concentration curves.

This distribution® expresses directly the double or single upper trun-
cation of the Pareto distribution (1) in the case of k>1. And a limiting
distribution of this gives us sometimes the Pareto distribution itself and

D The frequency function (2) is even more actual than (1), because each member of the
population concerned is restricted very often within finite limits by the condition of ex-
istence and activity, and because (1) has nothing of g, ¢, 4 and § especially for 0=a=1.
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sometimes the single upper truncation of the Pareto distribution. This
definition is convenient to us for the argument with regard to the con-
centration curves of the distribution (1), since the distribution (1) has
not often the concentration curve [16].

The main results of Part Il can be enumerated as follows:
(i) The Pareto or Paretoan type distribution can be distinguished into
seven types according to

k<0, k=0, 0<k<1, k=1, 1<k<2, k=2 and k>2,

by its concentration curve [13].

(ii) The measure of skewness of concentration curve can be given by
cos 26, as is seen in Part I, using the angle 8 of the tangent to the X-
axis at the grade X, of the saturation value x, (maximizing the curva-

2\ 3/2
ture p=1/p f(oc)(l-{—%) of the concentration curve of the distribution
©

(2)). This is determined by only the Pareto coefficient « in (1) or % in

2
(2) as 1———§—lc. And cos 26:‘“—2——962‘— exists for 0<k<38 and varies in

¢+
[0,1]. On the other hand, the Pearson’s skewness Sp-—:—[go—di_:ﬁ;—
g
(:4/“_—2> exists only for «>2 and also the skewness S—-E—(g%—zﬁ
g

2(a+1) \/ exists only for a>2 in (1).

(111) The Paretoan type distribution, existing in the interval [a, b] and
having £k=1.5 is self-symmetric and two Paretoan type distributions (2),
existing in the same interval [a, b] and having respectively k=1.54p and
k=1.5—p for any real number p, are mutually symmetric, regarding to
the diagonal line X+ Y=1 of the concentration curve. The measure in
(ii) is based on these results.

In Part III we applied the results in Parts I and II to some eco-
nomical data with regard to the national wealth in Japan, which were
reported by the Economic Planning Agency in the Government in Japan.
(The author ever joined in this survey as a member of sampling de-
signers [11].) At the same time, we suggested the notion limit con-
centration coefficient. The interpretations and structural model-buildings
are as yet tentative and abstract ones. But Pareto coefficients calculated
from the data will point out some of the most usual types in practice
within concentration curves of the Paretoan type (2).

Now, if we always ought to say the conclusion in a word, we are
obliged to confess that skew distributions and concentration curves seemed
to be typically represented by the Paretoan distribution (2), as if the
Gaussian distribution was the most representative one in distribution func-
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tions and that the concentration curve method is suitable to explain
the collective phenomena due to the interactions between groups, classes
and individuals.

PART I. THEORETICAL APPROACHES TO
CONCENTRATION CURVES

1. General notions and definitions [16]

[I] Concentration curve
DEFINITION 1. The concentration curve A(X) is a certain kind of
path ordered and normalized. Let

(3) Lyy Loy * 00y Ty
be a sequence of positive real numbers and

(4) Ly Lays ** 05 Loy

be its ordered one. Furthermore, denoting
n
Sem>= 2 Zea»
i=1

we can formulate the empirical concentration curve 4,(X) of (3) in [0, 1]
as follows:

1
0 for 02 X<—,
© N

(5) Y:AN(X)Z Sy £ i<X n+1 =1.2. ..., N—1
8<N) Or N:-: < N ? n b ? b

1 for X=1.

And also in such cases that the sequence (3) contains k¥ (<N) different
numbers «f, -- -, #{ and each ] has the frequency v; and that (3) can be
extended to a sequence containing infinite numbers, concentration curves
A(X) and A(X)=lim 4y(X) can be defined as well as (5) [16].

In this paper, these concentration curves of the given sequence of
positive real numbers are usually treated in the form of concentration
polygon or their limit function [16]. Furthermore, the concentration
curves of continuous frequency function of positive variate x can be
obviously expressed by the formulae:



SKEW POPULATIONS 111

X= S f(z) da

(6) ]
Y:A(X):lg 2f(@) dz .
‘L[ 0

In this paper we treat only the frequency functions of positive variate
¢ as far as we do not note. And in this case, we easily obtain

1
pf@)

Conversely, if two frequency functions: fi(x) and fi(x) give the same
concentration curve, then fi(x) is equal to cfi(ex), because we have

D=2 and pfie)=mfile) from (7).

(7) A/(X):% and A'(X)=

H M
i e
[II] Location ' of w
DEFINITION 2. A location parameter S
of concentration curve is given by the AN
. Y
grade (or fraction) of mean scale X, Xy
which can be defined as X satisfying
(8) A(X)=1, if A(X) exists.
)
(See Fig. 1.) 7
. . i ; X
[111} Dispersion 0,0 9, %/t X, X, 1o
DEFINITION 3. A diSpeISiO.n p?'ra‘ Fig. 1. Illustration of notions with
meter of concentration curve is given respect to concentration curve
by the Gini coefficient (concentration coef- (Lorenz diagram)

ficient) which can be defined by

4
9 G=-2_,
(9) o
as the relative mean difference, where
(10) A:W(Tl_-i)— ZEE*JEN |, — 25 for the sequence (1)
and
an 1=\" 1" e—yr@r@ sy

for continuous frequency functions.

1 N-1

It was well known that > G is equal to the area A surrounded
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by the concentration polygon and the egaritarian line: Y=X for (3);

and, %G is equal to the area A surrouned by the concentration curve

(6) and the egaritarian line for continuous frequency functions, namely

(12) G-_—1—25:A(X) ix (see Fig. 1).
Hence,

O§G£—]—V—1— for (1)
(13)
0=G£1 for continuous frequency functions.

Therefore, if we define the improved mean difference 4’ as follows:
1oy 4=1 25 gz
N 5=, N v 7

then we have always

13y 0=G=1.

By the way, for mean deviation §, we have i=2( Y,—X,) (see Part I,

?
[III]). Especially, let s be the length of the path (concentration curve).
Then

(14) G§2732__1 ,  where sz—jzgjx/pz-%xzf(@') dw ,

considering the circular arc: (X —¢&P+(Y—1+&)=4+1-¢) 0=X<1.
Using the above A, G and s, it can be said that the concentration
curve is the path maximizing A under the given sequence or frequency

function.
Now, let & be the angle of tangent of the concentration curve to
the X axis and let p be the radius of curvature at X. Then we can add

some definitions:

[IV] Skewness
DEFINITION 4. The measure of skewness S of concentration curve

2 a2
can be defined by S=cos 26,= '“2_1_90; , if 8, is the angle of tangent at
¢+

the grade X, of xz, (saturation value), giving the maximum curvature

1 of concentration curve. (See Fig.1 and Definition 5). Obviously we

0s
can see —1<S<1.
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[V] Sharpness
DEFINITION §. The measure of kurtosis of concentration curve can
be defined by p, itself and normalized as the form 1—-?%8 where R ex-

presses the radius of circular arc having the same concentration coef-

ficient with the given concentration curve. Then, we have 0 1—--}%3§1.

2. On symmetries of concentration curves

[I] Self-symmetrical concentration curves

DEFINITION 6. If the given concen- v
tration eurve is symmetrical with respect (0.1 34D
to the diagonal, drawn at the right angles Ny
to the diagonal of equal distribution, this )
concentration curve can be defined as
self-symmetrical (see Fig. 2).

The above mentioned implies the ()
same meaning as that the ordinary con-
centration curve, cumulated from the (1)
lowest grade, and the extraordinary con-
centration curve, cumulated from the
highest grade, are symmetrical with re-
spect to the egaritarian diagonal. Now,
we can express the self-symmetrical concentration curve 4(X) as follows:
If Y=A(X), the relation

(15) 1-X=41-7)
holds as well. Furthermore, if 4(X) is differentiable,

’ k¢
(0,0) (1,0)

Fig. 2. Symmetrical concentration
curves

(16) A(1—HXNA(X)=1

and

1n — A" = A XN AYX) +A"(X) A (1— A(X))=0 .
Last of all

(18) X)) _yx .

A'A—-AX))

Considering the fundamental relation (7) with respect to concentration
curves having continuous” frequency function, (18) can be transformed

D If f(x) is continuous, A(X) has also the second derivative (see [8] and [17]).
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into the following :
7(%)
x
f(=)

. ey X . _x . oxx
Because, if we put -A'(X)=-—= and A(1—-A(X))=-=-, we obtain —-=1
Iz I Iz

=<£>3 for every fixed value z .

7

(19)

from (16). Accordingly, we have

THEOREM 1. (See Champernowne [6]°.) If A(X) is the concentration
curve of the given continuous frequency function f(x), the necessary and
sufficient condition under which A(X) s self-symmetrical is that f(x)
satisfies the relation (19).

Indeed, for example, the log-normal distribution [1] satisfies (19) and
the Paretoan type distribution (2) having k=1.5 satisfies it, too.

[II7 Mutual symmetrical concentration curves

DEFINITION 7. When the given two concentration curves 4(X) and
A(X) are mutual symmetrical with respect to the diagonal X+ Y=1, we
call the relation between them to be mutual symmetrical (see Fig. 2).

This relation can be expressed as follows:

(20) If Y=4(X), then 1-X=4(1-Y).

And (18) can also be replaced as

(21) #mflx) _ <_w_>3 , X’ = py gy for every fixed « .
wmfi(w) H

Thus we have

THEOREM 2. If A(X) and 4y(X) are the concentration curves of the
given continuous frequency functions fi(x) and fi(x), each having non-zero
mean p, or p,, the necessary and suﬁcz'ent condition under which they
are mutually symmetrical is that fi(x) and fi(z) satisfy (21).

The Paretoan type distributions, having respectively k=1.5—p and
k=1.5+p and having the same interval, satisfy this condition.

[I] If the point (X,, Y,) corresponding to the mean value g is on that
diagonal line,

(22) X, +A4X)=1.
On the other hand

1 M. G. Kendall afforded the allied formula in [6].
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A(Xg:lg” of (@) de
‘u —o0
=L\ @-wr@de+| r@deo
s -

| la—plf @) da
= it +X
2y

Therefore, using the mean deviation 4,
0
2F (p)——=1,
(1) 2
or
(23) Fl)=14+29_ where Flo)=f(2).
2 4p

THEOREM 3. On the concentration curve of the givem continuous

Jrequency function, the point (X,, Y,) corresponding to the mean value

i 18 on the diagonal line: X+ Y =1 if and only if f(x) satisfies the for-
mula (23).

Naturally, Gibrat distribution and the Paretoan type distribution
having k=1.5 satisfy this condition.

3. Truncations of concentration curve

[I] Single truncated concentration curves

DEFINITION 8. We can define the o 9
single truncated concentration curve as ‘ //
the concentration curve of the single s
truncated distribution function of the / Vo
given frequency function (see Fig. 3). , / A:(&)

Let A(X) be the concentration curve oy
of a continuous frequency funection. ’p
Moreover, let A4,(X; &) and 4,(X; &) be % )
respectively the upper and lower trun- f
cated concentration curve, where &= j 5 HJO)Y

F(z,), —oo<a,<oo (hence 0<&<1) and
F'(z)=f(x). By Definition 8, A(X; &) and Fig. 3. Illustratio? of single trun-
A(X; &) are respectively the coneentration cated concentration curves

curves of P(X<901X<x)——f%(% and P(X>x[X>x)—i ;’gz)



116 TOKIO TAGUCHI

Considering the properties of the arc OP, the cord OP and the area
A,(&) surrounded with them in Fig. 8, the following relations hold between
A(X) and A,(X;€&). Namely

(24) A& A(X; &)=4X) for 0<X<1,
(25) 28 MO _ pex,)
2 £
and
S:A(X) ix
(26) G(&)=1-2 7

where p(8), X,, and G,(¢§) express respectively the mean, the grade of
mean scale and the concentration ratio of 4,(X; £). Because, /(X)) (0£X
<¢&) is in accordance with the curve of A,(X; &), shortened respectively
with proportions & and 4(£) in the direction of X and Y. From (24) we
can easily get the following:

THEOREM 4. The concentration curve A(X) of any continuous fre-
quency function is expressible as

(1—G)exp (—252@_4'1—2;@3)

or any X, 0<X<L1,
XA=GX)] for any

@n  AX)=

where G expresses the concentration coefficient of A(X).
Proor. Differentiating (26) with respect to £, we obtain
24) =4O {1-G(§) -G} +EL(ENL1-GiH)}
accordingly

2(8) _ 1+G(O)+EGIE)
Ao HI-Gi9)

Integrating with respect to & from X to 1, we have (27).

COROLLARY 1. A continuous frequency function f(x) is given by the
form :
=0 for k<0

A
28 == k<1, =
(28) @) x* b erwze >0  for 0<k<1,

if and only if the concentration coefficient or concentration curve of its
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arbitrary upper truncated distribution remains the same.
Proor. If we put
G(X)=G, 0=G<1
for arbitrary X (0<X<1) in (27), we have
A(X)=Xa+600-6>

Hence, we can get easily (28) from this and (7). In this case, consider-
ing the formula (24), we have

COROLLARY 2. If and only if the given frequency function satisfies
(28), 4t holds that

(29) AXYHY)=AMXY)
for arbitrary X, Y, where 0<X, Y<1.

Similarly, considering the lower truncated concentration curve 4y(X; &),
we obtain the following formulae :

(30)  {1—-4E4(X; H+ A =4{0-)X+&E}  for 02X,

31 w8 _1=40) _ prera-—ox.},
u 1—¢ )

and
{AX) - 4@} dX

32 Gy(&)=1-2 S ,
(52) © Q=9 i—4@]

where 1(8), X,, and Gy(§) express respectively the mean, the grade of
mean scale and the concentration coefficient of A4,(X; &). From these re-
lations we have

THEOREM b. The concentration curve A(X) of any continuous fre-
quency function is expressible as

x dé
1 —2
(1+G)exp ( SO 1—-8){1+G4(8)} > Jfor 0X<1.

(33) 1-A(X)= (1=X){1+G(X)}

CorROLLARY 3. (See N. Bhattacharya [2].) “ Suppose we have an in-
come distribution over the range x, to oo (2,>0) and suppose we consider
truncated forms of this distribution over (x;, o) where x,=x,. It is
proved that the concentration curve (and the concentration coefficient) for
this truncated distribution will be independent of xz, ©f and only if the
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income distribution has the Pareto form,” so far as a>1 in (1) (and if
a<l, naturally p and A(X) do not exist).

Proor. If we put Gy(X)=G (0L£G<1) in (30), we can get easily
(34) l_A(X):(l__X)(I—G)/(1+G)
This belongs to (1) (so far as a=1) from (7).

COROLLARY 4. If and only if the given concentration curve belongs
to Pareto form (1) with a>1, it holds that

(35) {1-AYNAUX)+ MY )=A{1-Y)X+ 7T}
Jor arbitrary X and Y, where 0<X, Y<1.

[II] The relationships between single truncated curves

From (25) and (31), it can be easily seen that
(36) EL(EX,)+A-5) L{6+1-5X,}=1.

On the other hand, considering again the area of Fig. 8 and know-
ing that the area of the triangular OPQ is equal to §—4(§), we obtain

(37 G=84(8)G(&)+(L—E{1—-A(E)}Go8) +E—A() -
These formulae give relationships between single truncated curves.

[III] Doubly truncated concentration curves and relationships between
them

DEFINITION 9. For an interval I=
[a,b], (0<a<b<l), we can define the (), (1)
doubly truncated concentration curve
MX; I) of the concentration curve A(X)
of the given frequency function f(x) as |
the concentration curve of the doubly / ‘
truncated frequency function of f(x) (see (
Fig. 4). A

In this case, as well as in [I], we o
obtain the following relations :

1 ! { X
A{(b—a)X+a} —A(a) (0,0) o b b:(1,0)
A(b)— Aa) Fig. 4 A relationship of two doubly
truncated concentration curves
0=Xz1,

(38)  A(X;I)=
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(39) Ao=Ae) _ px, ;=20
b—a P
and
S” [A(X)—A@)}dX
(40) G(I)=1—2 s

(0—a){4(b)—A(a)}

(38), (39) and (40) are also respectively the generalizations of (24) and
(30); (25) and (31); (26) and (32).

Now, let a be a fixed value and let b be a variable & over (a,1].
Then we obtain the generalization of (33).

THEOREM 6. Any concentration curve A&) of the given continuous
Sfrequency function can be expressed by G(a, &) as follows:

x dé
C, 2
eXp( S {1-G{a, 5)}(5—a)> a<é<l
{1-G(a, X)}(X—a) -

(4l A X)=AHa)+

where C, 1is determined by the condition A(1)=1.

In the same way, if @ is a variable &€ and b is a constant a, then
we have

COROLLARY 5. The formula (41) holds too for 0=¢<a, if we decide
C. by A(0)=0 and we define G(a, b)=—G(b, a).

Now, let A(X; L) and A(X; L) be two doubly truncated concentration
curves, respectively defined over the intervals I,=[a, b;] and L=[a,, b,],
where LNL=2¢.

DEFINITION 10. The joint concentration curve A(X; I,+1L) of two
doubly truncated curves, each defined by definition 9, is the concentration
curve of the frequency function :

_ f= for a=x<f and a=z=p
g(x)={ bi—a+b—a,
0 otherwise,
where F(a)=a, and F(8)=b;; F(a)=a, and F(8)=by; F'(x)=f(») (see

Fig. 4).
From this definition and by the same reason for (24), (25), (26) and
S0 on, we get

a4 i(; Il> for 0=X=p

P

(42) AX; L+L)=
Q2/1<)—(; Iz>+Q1 for p,<X=1,

2
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where
. bl — @ _ 62 —a, .
ey e S e (srrp s
— A(bl) - A(az) d
DAl — M@} + (A —A@))
e A(b)— A(ay)
{AD)— Aa)} +{ Aby) — A(a,)} ’
(43) L+ L)y=pu(l)+ pz#(Iz) ,
and

(44 LA+ DG+ L)=pip(L)G(L)+ pip(B)G (L) + pupsl (L) — i 1)
or

AL+ L) =pid (1) +pid (L) + 2ppil p(L) — (L)}

where 4’ means the improved mean difference (see Part I).
Inversely, we have

DEFINITION 11. The subtracted con-
centration curve A(X; I,—1IL) of two dou-
bly truncated concentration curves, re-
spectively defined over the intervals
I=[a;, 6] and IL=[a,, b,], where a;<aq,
and b,=b,, is the concentration curve of
the frequency funection g(x):

LY
(0,1) (1,1)

L(xl— for a1§w§a2
glx)=1 G—®n L i L x
0 otherwise wo e S
Fig. 5. A relationship of two doubly
where F (a1)=a1 and F () =01, truncated concentration curves
(see Fig. b).

Therefore, we have also
(45) {May) — AMa)YAUX; L —L)=A(a,+(a,—a)X)—Hay) ,
(46) L —L)=pp(l)—pyAL;) ,
and

(47 wL—1)G(L—1I)=pip(1)G(L) — D3 LG (L) — Pipel p(1r) — (L)
or
(48) A (L—1)=pid (L) — pid (L) —2ppel p(1) — (L))

where
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plz.b.l:gl. and pZ:M R

Qy— 0y Oy — s

If a,==a, and b,>b,, the above results hold for plz%—f% and p,=
17 V2
b2—a2
bi—b,
The formulae (42)~(44) can be extended to the case of n doubly
truncated curves, respectively defined over the intervals I, L, ---, I,

where I,NI,=¢ for h+k and 2,k=1,2,--.,n. Namely,

ql/l(g; L> for 0<X<p,

1

qu<}—(;Iz>+q1 for p<X<p+p,

2

..........

Qn/l<";£; In> +qit+ -+ Qs

n

for pi+D+ - F P <XZL,

where
==Y e q=AOIZAE) ey g,
g (bi—as) E {4(b)—A(an)}
(50) #( §:3{ I) =§1 pu(L)
and
51) #(BL)=2rsD+ ST poded)—pD

hok=1,2,0,70

Therefore, we have

LEMMA 1. A’(é L) 18 decomposable into the within mean difference
=1

A%, and between mean difference 4f,, :

(52) (3 L) =L+ B
where
A\:ith. '_—ig p%AI(Ii)

and
4, = 5_;*;3 pnpk[‘Lt(Ih)—/,l(Ik)[ .

h,k=1,2,vve,



122 TOKIO TAGUCHI

The above mentioned holds for not differentiable or discrete (at the
countable points) concentration curves. We can apply the above results,
for example, to the concentration curves of a finite sequence of positive

real numbers :

(53) Ty cc s a5 Fas v s Ty 5 Ly 0ty Xewy v Lats 0 Tawy
where

L = X5 for 2<j5 and k=1,---,n
and

Ly E X for k<h and h,k=1,---,m,
where ¢=1,.--,N,, 5=1,---,N,.

Denoting
Np,
X..
- n . Nh _ 1 . zgl hi
N——hlen , ph—T\f , #_—ﬁhil,-;g Lhi s = N y
IR,
1 N,
(54) 4= N Hgl ;Nh. lxhi_'xhj[ ’ Ah'—'Nh_h b
1 N
Y=g Rz Pl and  d=prod,
i=1,0, N
J=1,004, Ny,
we can easily get
(55) p=3] Dapin
h=1
and
(56) =3B+ 23 pupilen—
=t h,kif{c..,n
or
(87) N—1 4= ps N.—1 4+ S el — el -
N h=1 Nn hek

Now, for any continuous curve, we have

DEFINITION 12. We can define the concentration curve of any sub-
set S of I=[0, 1] as the join of intervals I;, j=1, ---, m, where U I,=8
J=1

and ,NL=¢ for j,k=1,.--,m, j*k. Similarly the join and meet of
any n subsets S;, =1, ---,n of I are definable as the join of intervals
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L., y’=1,---,m', where U I = US, or ns., I NI.=¢ for j/,k'=
Jr=1 i=1 =1
1, -, m', §7+#FK.
Let L(S) be the length of S. Then, especially we have

THEOREM 7. If S;NS;=¢ (i#j4, 1, j=1, -, n) for n subsets S, of I,

69  (DLSNe 0S)= 2 LSS,
and

CONME O PACHI PGV

n

=S LEPLE)+ T LSHLEAS) —(S)) -

i=

-

Rok=1,0,m

Proor. The above formulae result directly from suitable bracketing
in (51).

COROLLARY 6. Amny tvmproved mean difference 4' of the sequence (3)
of finite observations or continuous frequency function having mnon-zero
mean 1s decomposable into the within mean difference 4., and the be-

tween mean difference 4l :

(60) A,:Av{rim. +Ab,ef,.

where
Lo =2 BCFL(C)

o= 52 PCIHCHHC) —4(C)

Ry k=1, 00,7
and

p(C)=L(C)[ 2 L(Cy) ,

each C, means a class in the given sequence of observations or a subset
of the sample space of the given continuous frequency function (p#0),

satisfying LnJ C.=I (total) and C;NC;=¢ for i,j=1,---,m, i#J5; and
i=1

L(C,) means the number N, of observations in C, for the sequence of
observations and otherwise means the probability of C, for the frequency
function, as if any variance is decomposable in the same way.

ProoOF. The above is deduced from the fact that any sequence of
observations or continuous frequency functions having non-zero mean
have continuous concentration curves, for example, as concentration
polygons of sequences.
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PART II. CONCRETE APPROACHES TO TYPICAL
CONCENTRATION CURVES [15]

1. Concentration curves of various frequency functions

From Part I we can suppose that skew-type distributions, putting
the Paretoan distribution (1) at the head, have typical concentration
curves. Now, we can really induce various kinds of coneentration curve
through the transformation (7) from frequency functions. Tables 1 and
2 show some results of the above.

Generally speaking, we can enumerate Pareto, Zipf and Yule, ete.?
as skew-type frequency functions (see Table 1) and on the other hand
the Pearson system distribution and so on give us the opposed forms as
in Table 2. We can concretely see that only the former satisfies

(61) yy'=ky® ?®

or allied equation if we put y=4'(X). In fact, skew distributions have
such definition that they coincide with (1) for sufficiently large z [13].
But we understand its meaning as below.

Let s and p be respectively the length and the radius of curvature
of the concentration curve and let ¢ be the angle of the tangent of the
path defined in the section 1 of Part I. Considering

_ds aX
= =gec ==
dé do
and
y=A(X)=tan 4 for ogagg ,
we have
dg _ 1
=sectf——=-sec’d
v iX p
and
y":i2 sec'ftand — sec4 9= do .
o ds

Therefore, we obtain

D For example, c.f. M. G. Kendall [10] and H. A. Simon {13].

yy” _  Ef(x)  dlog f(x)
v ¥yt Ex  dlogz (3D




SKEW POPULATIONS 125

(62) ﬂ{;—’:33in‘°’t9—cosﬁsin(9_@ﬂ ,
Y ds
namely
d yyll dp
63 _‘_ﬂl Y _ 3 !__.
(63) 75| < /7 <8+ |2

Consequently, from the formula (61) we can define skew distributions as
the following : the path A(X) of the continuous frequency function hav-

ing non-zero mean are skew if and only if %p—%pl (constant) as X —1.
s

And furthermore, if p is everywhere finite, the given continuous frequency
function is skew.

2. A classification of the concentration curve of Paretoan type
distribution (2)

Considering the formulae (7) and the condition A(0)=0 and A(1)=1,
we can obtain the solutions of the differential equation (61), which have
different seven types, as is shown in Table 3 and Figs. 6~18, according
to the value of k. Comparing the solutions with the formulae (24) and
(30) in Part I and using the range » (=b—a) of (2), we can interpret
the roles of parameters 8 and y, as is shown in Table 4. Especially, on
the Pareto distribution (1) (the limit curve of the type (G) in Table 3),
we can see that the mean value is one of the most important parameter
in its concentration curve, in contrast with the geometrical mean in its
frequency function [12] and that the parameter B is concerned with
only k.

0.1 0.1

K=—2 K=0.25
N

K=0.75
K=0.5

0.0 0.5 1.0 0.0 0.5 1.0

Fig. 6. k<0 Fig. 7. 0<k<1
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0.1
A=1
f=2
B=3
0.0 0.15 1.0
Fig. 8. k=1

Fig. 10. k=15

0.1

L
0.0 0.5 1.0

Fig. 12. k>2

0.1 -
R=1.75_ K=1.25
~N
“K=1.5
0.0 .
0.5 1.0
Fig. 9. 1<k<2, 1=0.5
0.1
=—0.75
7=20.50
7=—0.30
0.0 0.3 1.0
Fig. 11. k=2

Fig. 13. —oo<k<+o
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3. Some analysis of the concentration curve of the Paretoan type
distribution (2)

In this section we shall analyze the concentration curves of (2) from
the following points of view.

[I] Location

The grade X, of mean value, defined in the section 1 of Part I,
satisfles 4'(X,)=1 for continuous frequency function. Therefore, we
obtain easily the results in Table 5.

[1I7 Dispersions

The area A defined in the section 1 of Part I is equal to one-half
of the Gini coeflicient. The results calculated from (12) are represented
in Table 6 and Figs. 14 and 15. By the way, the mean deviation is
equal to 2u(Y,—X,) and can be easily calculated from the results of
Tables 8 and 5.

0.1 0.1
Y=—0.2y/
r=—0.5
r=—0.8
0.0 0.0 0.5 1.0
Fig. 14. k=1.25 Fig. 15. k=1.75

[1II] Skewness
If we put %fs’_zo in {62), we have directly

sinﬁz\/g_ k3.

Hence S=cos2=1— %k (obviously [—1<S<1]). Thus also the satu-

ration value xs in the preliminary is represented by

Cs=pys=—L . for 0<k<3.
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Table 7 expresses the above results.

[IV] Kurtosis
If k<0, A(X) belongs to the type (A) and

0s=0

and

(k—1)(k—2) B(B-1)

p increases when X increases and when k decreases. By the definition
in the section 1 of Part I, p,=0 gives a kurtosis. Butif k=3, 4(X)
belongs to type (G) and

(=1 + (k=271 _ (1+8)"
(5—1)"(k—2)’ BE-1)

o= LB+ =282 A+E" 0 )y

= {

and
=0 as b—>oo,
In this case, p decreases whenever X increases and p and k increase or

decrease together. Therefore, we have ps=0. These results can dis-
tinguish the types of (2) in their graphs.
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Table 3. Classification of the concentration curves of (2)

Types k Concentration curve Limit curve
8_ *
(A) k<O =(—H—:%ﬁ)"—11’ where 1<f8<2 and r>0 * Y=X% as a—0
(B) £=0 (i) Y=X? as Asl
n = as =
(ii) Y=X A=1
(1+rX)y'—1 * s *
(C) o<kl =-———7—, where 2<f<ow and >0 Y=X* as a—0
(1+7)P-1
8X 1 .
(D) | k=1 | Y= 80 (2ipf)
(+7X)P—1
Y=-+—"———, where —c0<5<0 and
E 1<k<L2 5 =
(E) < (+7)~1 —1<y<0 (Mandelbrot)
log (1+7X)
F k=2 Y=—"—-—""~, where —1<7<0
(F) log (1+7) 7
B_ *
© | Koz | Y=y where 0<A<tand 1-Y=(-X) as
r —1<r<0* b—co

* Generally 8 is equal to (8—2)/(k—1) in (A), (C), (E) and (G)

Table 4. Properties of parameters of the concentration curves in Table 3

Parameters
Types Limit curve
8 7
b *
(A) ﬁ>‘; g% B=— as a—0
(B) ﬂ:i for A1
_b a0 F(a) b .
(C) #F(a)>13># 1-F(a) ﬁ—‘ as a—0
7
D ==
(D) P
(E) ——F<B*
(F)
(G) 8< #F‘,‘(b) * —F(b) ﬁ:% as b—ooo

* Generally 8 is equal to (r+by)/gr in (A), (C), (E) and (G).
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Table 6. Variation of Gini coefficient with respect to %

Types i k G l Remarks Limit curve
it S GRS A G increases when k _B-1
(A) k<0 < 511 <— Py > increases G= A1 as a—0
. 1
(B) 0 (1) 5 for A=1
(i) 0 for A=1
g—1 * G increases when k _B-1
(C) [O0<k<1 < %) increases G—§+—l as a—0
2 2
_._[3—+eﬁ—1 G increases wh
(D) k=1 G i ase en j
2 2 increases
l-—<GL=1——
B8 7
log (1+r)~1
E 1<k<2 i) 1— 2—*——— , G increases when y
(E) () (I+r-1 decreases
for k=15%*
9 9 G increases when 7y
_ A decreases
(F) k=2 e * log (1+7) G=0 as y—0 and
G=1as r—>—1
g—1* G decreases when % _B—1
(G) k>2 < A1 increases —‘E:l-—l as b—oo
A+nfi—-1
1
* Generally G=1-2 (Tfi——;)ﬂ)—l for (A), (C) and (E), except £=1.5 and (G).

Table 7. Variation of the skeiwness with respect to &

Types k ] S ‘ Saturation value Remarks
12 |
(A) k<0 o rg=pf as a—0 E
(B) k=0 1 does not exist |
p ! S1<S<0 for 0<k<ls
_ 2 o = for self symmetrica
(C)~(F)| 0<k<2 1-gk* 3 case: k=1.5
k 0<S<1 for k>1.5
. 2 J i
iy k23 | £ b
(ii) Az 11 g Tg=pB as b—ooo |

* S expresses the inclination of the direction to the center of curvature from the path for
that direction at the mean point.

** The formula of S in (C)~(F) and (G)(i) can be extended to [—co, co].
this case, S=1—2%/3 is equal to 3/G at the limit concentration curve.

And in
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PART IlIl. PRACTICAL APPROACHES TO
CONCENTRATION CURVES

[I]1 Empirical findings

Table 8 is tabulated from the reports of the national wealth survey
in Japan (1955). We can easily see from the table that the type (G)
in Table 8 (and 2<k<3) is dominant form for the group of enterprises
in Japan.

If the Pareto distribution (1) holds in practice, we can get

%—<Xﬂ<1 , %<G<1 (see Table 8) and —1<S<—-:_1))—

from Tables 5, 6 and 7.

By the way, if S>0 in definition 4, the direction toward the center
of curvature at X from the point (Xs, Y5) on the path inclines to the
right-hand for that direction at X,.

[II] Some tentative interpretations of skew distributions and their con-
centration curves [3], [6] and [13]
It seems to me that the concentration curve method is especially
suitable for the analysis of system or organization. In this case we
propose the next notion.

DEFINITION 13. Let us put a=X and b=X+4X in (39) and (40).
Then, we have

(X, X+4X) _ 44X)
7 4X

and

o et g g e AO= AN
(X, X+4X)=1~ AXAA(X) ‘

We define the limit (or local) concentration coefficient g(X) by

lim G(X, X+4X) )
4X—0 4X
Then, obviously we have
143
(64) g(x) =L 4X)

6 A(X)
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from the above definition. And using the above notion, the relation (1)
can be expressed by

from the relation (61).

In such cases of economical phenomena as shown in Figs. 16, 17 and
18, expressing a constitution of national capital and, at the same time,
reflecting organizations and inner oppositions of capitals in a nation, it
seemed that distributions and concentration curves can not be explained
enough without the concepts of competition, organization, oligopoly,
monopoly, etec. “The birth-and-death rules”, “the law of proportionate

I

e
|
|

(%of total) (log scale)

cumulative corporations having more than z*yen

A1 1
. =—=4-—=1.06517
0.1 « ZG+ 2
‘ in Table 8.

0.01 ‘] L L«

5710 3050 100 1,000 5,000 10,000

value of assets {in milliors of ven){log-secale) .

Fig. 16. Asset size distribution of total industry
%
99. 99| %
99. 90+ 99. 90
2 99 1 - ok
2 st $ ¥
_2:)'3 gg; ;“",_g‘ 80
Sw 6oL Sw 6ok
i 4o PS5 40p
£ 200(0,5.3) g 20
;—E,S 10k~ =.8 10
< 3 5F =0 S5i-
)
& Ir <3 1
g2 0.10k 22 0.10-
0. 01 0.01F
1 103650106 1,000 15.500 1 10 100 1,000 10,000
) Iog_-scale . log-scale
(in millions of yen) {in millions of yen)
1. Total 3. Mining 5. Manufacturing

2. Fisheries 4. Construction 6. Finance and insurance
Fig. 17. Asset size distributions within some industrie
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%Y
100

90
80}
70

60
501~ 1. Construction

40- 2. Manufacturing

304
201+
10

empirical curve
—————— theoretical curve estimated by

1=¢ in Table 6 (G) (limit curve)

accumulative value of reproducible

tangible assets (% of total)

k e . I : X
0 10 20 30 40 50 60 70 80 90 ]90
accumulative number of corporations ?

(% of total)

Fig. 18. Empirical curves and theoretical curves

growth ”, ete. look like too superficial view of the matter nowadays.

For example, the relation (65) may be interpreted as follows:

__d_{_l__} 1 '

ix (5@ and 75 in (65) respectively concerned to the force
of organization or oligopolization of capital at the grade X—so to say,
“statistical gravity” working to X in the system (or field) (that is
concerned with sometimes markets, sometimes productions and so forth),
having the action of centralization; and the force of competitions or
struggles [5] between capitals (or enterprises) in the neighbourhood of
the grade X around share—so to say, “statistical restriction” against
the above gravity in the system concerned, where y is generally a vari-
able consisting of trend, periodicity and uncertainty component and X
gives the grade with respect to the trend of y, but at the present time
we suppose y to be constructed only by a trend satisfying (65).

In this point of view, the statistical differential equation (65) repre-
sents an equilibrium (no matter whether probabilistic laws hold or not),
as the result of the multiplication or the ecancelling of both previous
forces opposed to each other and in this case a nearly connected with
the skewness of concentration curve suggests a specific value of this
system. Furthermore, this equilibrium of the interaction generates the
same effect as the force—so to say “skew force”—working in the
vertical direction to the path A(X) at each point of its path with the
proportional size to its curvature (the value of y, giving its maximum,
gives a measure of kurtosis as shown in Part II, 3); A(X) itself gives
a certain kind of potentiality of the fraction X in this system.

The process of some break-down and its recuperation of this equili-
brium brings some variation on «; in fact, in empirical data « and p
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incicase almost year by year [5]°. Therefore it can be said that « ex-
presses even the step of development of capital accumulation.
Consequently, we understand that the relations (61) show a static

00
601
Corporation, A (Fabricated metal products)
sol
g
n
k1 40 -
2
2
£ 30}
z
Machinery
20+
10+
1 —1 1
0 100 200 300 400 500 600 1,000 3,000 5,000 7,000 9,000 20,000

2,000 4,000 6,000 8000 10,000

value of asset (in thousands of ven)

o/
100}~

Corporation B (Construction)

Machinery

number of assets (log-scale)

100 200 300 400 500 600 700 800 900 1,000
value of asset iin thousands of ven
Fig. 19. Asset distribution within some corporation*

* Source of data: the results of the pretest for the national wealth survey
in Japan 1955.

L cf. Saburo Shiomi, Japan's Finance and Taxalion 1740-1956, Columbia Univ. Press,
(1957), 156-157.
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dynamic balancing model under an ideal condition of this system and the
work of any other forces (political, economical, social, physical, ete.) will
add to this another terms or factors such as in Table 1.

In some other cases, for example, Figs. 19~21, expressing inner
constitutions of individual capital (or enterprise) and reflecting organi-
zation of production, concentration curves may be interpreted as a re-
sult of the interaction between the force of centralization of production
on one hand and the force of polarization of production on the other.

s %

= 99.99}

7 99.90}

@ 99L Building

= —
95 . aal

E 90+  Structure <

2 8ok 22" \lachinery

S 70+ Lo Machinery
30f

LY

— 20}

S 10f

0 5_

>

E .1_

< 0.10F

=

2 0.011

o

1 i 1
1 10 100 1,000

log-scale
(in millions of yen)

Fig. 20. Asset size distribution within corporation N

But the above model buildings are outlined on merely tentative as-
sumption and therefore, in future, should be more precisely decribed and
determined from the more essential principles and mechanisms.
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Fig. 21. Concentration curve of value to asset within some corporation
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Table 8. Asset share distributions and concentration ratios (Gini’s coefficient)
with in each industry

| .

* \Estimated xisg;r;dalisble g_‘;rtlfoer? " ! Pareto’s ¢

Industry COrpo- tangible assets| ; constants -

rations ** (in millions rGaggs o Fwkk 4

of yen) **

Total 357272 6153141 0.88469 | 1.06517 | 24.53954
Agriculture & Forestry 3523 4125 0.95898 | 1.02139 | 8.53403
Fisheries 1286 43656 0.81410 | 1.11418 | 10.78741
Mining 668 191581 0.93435 | 1.03513 | 4.98658
Coal 75 123705 0.69710 | 1.21726 | 1.90098
Other minings 593 67876 0.94300 | 1.03023 | 7.91028
Construction 16070 144384 0.85304 | 1.08614 | 23.19385
Manufacturing 109007 2601331 0.90767 | 1.05086 | 18.04110
Food & kindred products 22560 230301 0.81454 | 1.11384 | 11.08739
Textiles 17110 467934 0.89680 | 1.05754 | 15.28596
Wood & lumber 21079 144448 0.58626 | 1.35286 | 2.22943
Paper & allied products 5614 142972 0.96360 | 1.01889 | 12.69969
Chemical & allied products 8503 466723 0.92195 | 1.04233 | 10.41299
grlggf;cf:’am‘c stone & clay 4012 93720 | 0.88867 | 1.06264 | 14.45083
Metals 5306 454512 0.95622 | 1.02289 | 17.26955
Fabricated metal products 7585 43118 0.85806 | 1.08271 | 10.74839
Machinery, excl. electrical 12982 541073 0.94949 | 1.02660 | 14.38368
Other manufacturings 4256 16525 0.53224 | 1.43943 | 5.60697
Wholesale & Retail 180737 1400452 0.72550 | 1.18918 | 8.25166
Wholesale 83719 1077512 0.73984 | 1.17582 | 6.31216
Retail 97018 322940 0.55342 | 1.40348 | 13.16724
Department 161 51806 0.75974 | 1.15812 | 3.16998
Other retails 96857 271133 0.47058 | 1.56252 | 18.92804
Finance & Insurance 13544 170852 0.94813 | 1.02736 | 18.92804
Bank & trust 86 105917 0.69770 | 1.21664 | 2.07389
Insurance 3564 10354 0.98660 : 1.00679 | 16.79095
Cther finances & insurances 9894 54580 $.83233 § 1.10072 | 12.09409
Real estate 4693 43466 0.93016 | 1.03754 | 9.88277
Public utilities 5768 1388739 0.97516 | 1.01274 | 13.12603
Transport 5636 404523 0.93462 | 1.03497 | 8.71483
Local railway 107 138497 0.63586 | 1.28634 | 1.93758
Motor vehicle 2640 48904 0.78641 | 1.13580 | 3.01286
Water transport 799 174580 0.94608 | 1.02850 | 5.59630
Warehouses 1008 17265 0.68422 | 1.23076 | 5.65814
Other transports 1082 25275 0.90312 | 1.05363 | 13.94602
Communication 43 14358 0.75584 | 1.16151 | 2.57376
Power supplying 89 969857 0.85599 | 1.08412 | 2.44890
Electricity 17 905199 0.39853 | 1.75460 | 0.80532
Gas 72 64657 0.91266 | 1.04785 | 4.62680
Service 21976 164551 0.75077 | 1.16598 | 11.25720

* Foundation of classification: Statistical Standards Bureau Administrative Manage-
ment Agency: Standard industrial classification in Japan, 1954, 330-343.
**  Source of data: I. Nakayama (supervisor) [11].
*k (G is estimated by the formula: 2x area of concentration polygon.
k% o ig estimated by the formula: 1/2G+1/2.
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