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1. Introduction 

We assume throughout this paper that  the population under con- 
sideration has the distribution function F(x) and the density function 
f(x) with finite mean ~ and finite variance a 2. It should be noted that 
we assume nothing about the distribution except the above existence 
assumption, that  is, we shall consider a non-parametric problem. When 
we are concerned with estimation of the population mean: we often 
encounter the situations where the measurement of the quantity of each 
element drawn from the population is very laborious but  several elements 
can easily be arranged in the order of magnitude, for example, the case 
where the elements can be arranged without the measurement of each 
quantity. In practice the number of elements which are easily arranged 
will possibly be two or three, but  we shall consider the general case. 

The following three examples will give us a better  understanding of 
the situations : 

Example 1. Let us suppose that  the quantity under consideration 
is the length of a kind of bacterial cells and the length Of the cells in 
a microscopic field is measured by using a micrometer. While the oper- 
ation for the measurement will be laborious, the order of magnitude of 
two or three cells in the same microscopic field may be found by a glance 
in most cases. 

Example 2. Let us suppose that  the quantity under consideration 
is the height of trees. We can find by a glance the order of height of 
two or three trees standing nearly each other. 

Example 3. Let us suppose that  the quantity under consideration 
is the number of a kind of bacterial cells per unit volume. If there are 
several test tubes containing the cell suspension, we can rearrange these 
tubes in order of concentration by using an optical instrument without 
knowing the exact values. 
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In the  situation mentioned above, we can obtain an unbiased esti- 
mator  of the population mean based on the sample which is stratified 
by means of the order of magnitude as follows. 

Let  X~I, 2(12, "- ", XI~; X21, 2(22, . . . ,  X2n; . . . . .  ; Xnt, X~2, . . . ,  X, ,  be inde- 
pendent  random variables all having the  cdf F(x) and X~(~, Xic2), " ' ,  X~c,) 
be the order statistics of Xi~, X,2, . . . ,  X~ ( i=1 ,  2 , - . . ,  n). 

- ~ 
Let  us define XE~a by :~,~=ZX~c,)/n. We shall consider the statistic 

i = l  

Xc,~ as an est imator for t~. To obtain an observed value of the  X:,l, we 
need an observed value of (Xic~, X~c2 , ' " ,  X~c,~). To obtain an observed 
value X~c~), we need the ordering of the sample of (X~, X,~, . . . ,  Xi~). Thus 
we shall be able to expect tha t  the variance of the unbiased (see (3.3)) 

est imator  ~ of p will be considerably smaller than  tha t  of the usual 

es t imator  _~ ,  the  sample mean of a simple random sample of size u. 

The reason why  we compare the variance of Xc,~ not with X,~ but  with 

.~, is tha t  in our situation the cost of ordering need not be taken into 
account and we have only to take into account the cost of measurement .  

In general  the  above procedure will be repeated m times. Then, we 

have m observed values of ~ , ~ .  The total  number,  say N, of elements 
whose quantities are measured, is ran, while the total number  of elements 
which are d rawn from the population is ~nn ~, whe ther  they  are measured 
or not. The est imator of V is the  ar i thmet ic  mean of m observed values 

of .7~E~ ] . 
Let  us here in terpret  our procedures by an example in the case 

N---6 ; 

Simple random sampling procedure:  

Draw 6 elements from the population. 
Measure the  quant i ty  of each element. 
Make the  sample mean as an est imate of t2. 

Our procedure, n = 2  (thus ~n=3) :  

Draw 6 pairs of elements f rom the  population. 
Find the order of magnitude in each pair. 
Measure the quant i ty  of the  smaller element in the first, second and 
third  pair and tha t  of the larger  element in the fourth,  fifth and 
sixth pair. 
Make the  ari thmetic mean of these quantities. 

Our procedure, n = 3 (thus n, = 2) : 

Draw 6 triplets of elements from the  population. 
Find the order of magnitude in each triplet. 
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Measure the quant i ty  of the least element in the first and second 
tr iplet  and tha t  of the middle element in the third and four th  
tr iplet  and tha t  of the largest  element in the fifth and si~zth triplet. 
Make the arithmetic mean of these quantities. 

Let  us denote the variance of the k th least order statistic of a 
sample of size n from the population by  z~,~ ( k = l , 2 , - . . , n ) .  If  the 
variances a~,~ are known (or have been estimated), then we can apply 
the so-called Neyman allocation to our problem. For  simplicity we as- 
sume tha t  a~.~: ~,2 : "'" : a~,~=N~ : N~ : - . .  : N~, where  N ,  N2, -. -, N~ are 
positive integers.  Let  X~, X~2, . . . ,  Xzn; X~, X22, " " ,  X2~; . . . . .  ; X~ ,  XN2, 
�9 . . ,  X,w be a random sample of size n N  from the population, where 
N=NI+N2--P. . .+N~ and X~c,, X~c2, " - ' ,  X~c~) be the order statistics of 

X~, X~2, . . . ,  X~ ,  ( i - 1 ,  2, . - . ,  N) .  We now define -~c~>~ by  X<n>~= 

1 1 Z X~c~) - t - @  Z X~c2)+ "'" + Z X~c~) �9 This X<~>~ 
-~- ~=~ ~.Y~ ~,vz+z N~ ~=,v~+~+.--+~-z+z 
is an unbiased est imator of the population mean. 

In this paper we shall also consider this est imator,  bu t  our main 

purpose is to s tudy the properties of the est imator  ~ , ]  which seems 
more practical. 

2. Notation and preliminary 

Let  Xn,~ be the k th  least order statistic in a sample of size n drawn 
f rom a continuous population with the pdf f(x),  the cdf F(x), the mean 

and the variance a 2 (We shall use the abbreviations ' t h e  p d f '  and 
' t h e  c d f '  throughout  this paper for the probabili ty density function and 
the cumulat ive distribution function, respectively.).  The pdf, the cdf, 
the mean and the variance of the  distribution of Xn,~ will be denoted 
by  f . , j x ) ,  F~,Jx), /~,~ and a~,,, respectively. Let  us denote F(n+l) /  
(F(k) .F(n--k+l))  by a~,,. Let  us denote the expected value and the 
variance of a random variable X by  E(X)  and a~'(X), respectively. 

Some well-known results will be shown below for the la t ter  use. 
We have, in the first place, 

(2.1) f~,Jx)=an,,F~-l(x)(1-F(x))~-~f(x), k = l ,  2, . . . ,  n .  

Suppose in the next. place tha t  f (x)  satisfies the relation 

(2.2) f (x)  = E a~fi(x) , i=  1, 2, . . . ,  n ,  
i = l  

where  fi(x) is a pdf and a~ is a positive constant. Then ~, a~= l  must  
i = l  

be satisfied. Let  us denote the mean and the variance of fi(x) by /~ 
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and a~. I f  t1 is an unbiased es t imate  of [2i and tl, t 2 , . . - ,  $, are inde- 
pendent ,  then  

(2.8) ,=~,~it, 
i = 1  

is an unbiased es t imate  of g and has the  variance 

(2.4) a~'(t) = ~, q~z~(t~) . 
t = 1  

If  t1 is the  sample mean of a simple random sample of size N~ drawn 
f rom fi(x), t hen  

~ / N ,  (2 5) ' ( t ) - - ~  ' ' �9 G -- oQG~ . 
.= 

If 2qi=/V~ (the proportional allocation), then 

I f  NI=No~.~i ~jc~. (the Neyman  allocation), then  

(2.7) 

We also have 

~z 

i = 1  

(2.8) 
~z 

2 =1~ o~1<+ ~ o~,(~,-z) ~ 
~=i i=i 

and 

1 If  ~1=~2= . . . .  c ~ = - - ,  then  we have 
% 

(2.10) 

(2.11) 

and 
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(2.12) 

1 ~I, #i 
9"~ ~=i 

z2= (~:~ a~)/n + ~ (Z~-Z)z/n= (~ a~)/n + ~j (~-Z;)2/nz 
corresponding to (2.6), (2.7) and (2.8), respectively. 

3. The unbiased estimates of the population mean 

From (2.1) the following relation can be obtained easily, but it is 
fundamental to our discussion: 

(3.1) f ( x ) = l ~ A , ~ ( x ) .  
k = l  

Therefore, we can apply the results of section 2 to our following 
discussion. Let Y, be a random variable with the pdf f~,~(x), ( k = l ,  2, 
�9 . . ,  n) and YI, Y 2 , " ' ,  Y~ be independent. In order to obtain Y1, Y2, 
�9 . . ,  Y~ from a sample drawn from the population with the pdf f(x) we 
should take X,(,) as Y~, that is Yk=X~c~, ( k = l ,  2 , . . . ,  n), where the 
X~c~'s are the random variables explained in the introduction. 

Let us define :YE~ by 

(3.2) YE,]- 1 ~, y , ,  
T b  / c = 1  

that  is, XE. ] in the introduction. From (2.3) and (2.10) we have 

(3.3) E(:~E~) =/~ 

and 

(3.4) 

It is our purpose to compare a2(YE~]) with a~'(X,)= ~ that is, the 
n 

variance of the sample mean of the simple random sample of size n, 
because of the situation explained in the introduction. It  is, therefore, 
convenient to define a~,] by 

(3.5) 
~2, k=z  

__ 2 - -  2 

Then, while a2(X~) = a- ,  o2(Yc,]) = a~]. 
fb 

size (strictly speaking, the number 

Suppose that  the actual sample 

of observations whose values are 
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measured) is N. For the simplicity let N = m n .  In this case m inde- 

pendent  Yc.~,, :YE~, " " ,  :YE~, each with the same distribution as tha t  

of Yc~, are available. If  we define Yc~J~ by 

, 

m j=1 

then E(~<~)-~/I  and 

(3.7) o~(~- ) =  a~.j = a ~  
m n  N 

0 -2 

On the  other  hand, 0-2(XN)-N. Thus 0-[~ in such a sense corresponds 

to 0-2. Hence our problem will be the comparison between a 2 and 0-~. 
Now we define rc~ by 

0-2(Xn)__ __ ( 3 . 8 )  

The ~E~a will represent  in a sense the  efficiency of the stratification by 
means of ordering. I t  should be noted tha t  rc~l is invariant  under the 
linear t ransformat ion of the variables. Since the covariance of any two 
of order statistics in a given sample is positive [7], it is obvious tha t  
rc~ > 0. 

In order tha t  we may be justified in restr ict ing our consideration 

to the  est imator :YE~ in (3.2) as the unbiased est imator of the mean of 
any populations it will be necessary tha t  we state here the following 
theorem. 

THEOREM 1. A linear combination of Y~'s 

is an unbiased estimator of  population mean whatever the distribution 
1 

of the population is i f  and only i f  at =a~ . . . . .  ~ = - -  . 
n 

PROOF. The " i f  p a r t "  is established by (3.3). Next  suppose tha t  
Z a~Y~ is an unbiased est imator of all the population means. We have 

~-~ o~/2~, k = / z  . 
/ *=1  

From this and the " i f  p a r t "  we have 
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If  we can find n distributions each of which has .~,,A>~ as-z~,~ ( i=1 ,  
2, . . . ,  n) sat isfying 

det D~ r 0 ,  

where D~ is the matr ix having ~,o <o~ as (i, k)-element, then the proof of 
the "only if p a r t "  will be completed. 

In fact,  we can take the distributions with the density functions 

[ lxl/~-lexp(--xm), X > 0 ,  
s  (z=i, 2, . . . ,  n) 

0,  x_-_0 

as n distributions satisfying the above condition. 
We have 

~<t> _ n! k-~ (--I) J l! 

(n-k)! ~o i!(k-l-i)! (n-k+i+l) ~§ 

After  some calculations we obtain the relation 

D~=C 

n--1 ( n _ l ) - - i  . . .  2--1 1 - - i  

n--2 (n_l) - -2  . . .  2--z 1~-2 

n n- -1  - . .  2 1 

1 1 . - .  1 1 

=c]-[  ( i - j ) r  

where C is a non-zero constant. Thus our proof is completed. 
Now we have 

THEOREM 2. 

(3.9) 0.~> z[~+u , 

he~ge, 

rE~]<r~+l] , for all 

where 0 .~1=1~ 0. ~ and G2 ~ 0.~n] 
n ,  ~ T e n ]  ~ - -  

~b ~=i 0 .2 

PROOF. From (2.1) we have 

nil , 

n+l - - k  r + k r (3.10) A,~- ~-4~ J"+"~ ~4-Y J'~§247 

If  we denote x~f~,~(x) dx by ~,~,~, then from (3.10) we have 
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(3.11) n + l - k  k ~,,,+~,~ +---:--=,~,~§ . 

n-Jr-1 n - k  J. 

From this 

(3.12) 2 __ 2 
O'n,  k - -  ~ 2 ,  n ,  k - -  ~i, n,  k 

(n+i--k +k  

Then, from (3.12) it follows that 

(3.13) 2 2 O-[n] -- O-[n+ i] 

n 1 n+l I Z ~  Z ~ O-n, k O-n+ I, ~, 
n k=i n+l k=i 

1 ( n + l  n l 

= , . ~,2~n(n+l)  Z ff~+~,~-- kZ=~((n+l-k)ff~+~,~+kff~+~,~+~) 2 ) n(nd- I) ~ k=~ 

_ 1 k ( n + l - k ) ( t ~ + , , ~ + , - Z ~ + ,  ~)~ >0 
n ( n + l )  2 = , �9 

This completes the  proof of the  theorem. 

COROLLARY 1. Let N = a b = c d ,  where a, b, c, d are positive integers 
and N >  a > c > 1, then the following inequalities hold. 

(3.14) O-2(2N) > O-2(~[~) > O-~(:~[~]~) > a2(Y:..v~1). 

This corrollary can easily be obtained from (3.6), (3.7), (3.9). 

According to the result  of theorem 1 or corrollary 1, the  variance 

of the est imate Ycn]~ decreases as n increases under the condition N =  
ran. The large n, however,  will be impractical. In most practical cases 
n will be two or three. If  we can practically take both two and three 
as the value of n, in such a case we had be t te r  take n = 3  from the 
viewpoint  of the  variance of the est imate apar t  from the other  problem. 

4. The Neyman allocation 

Let  us suppose tha t  the variances O-~,~ are known (or have been 

estimated). Let  us denote O-,,~ O-,,,j by  r~,~. Let  N~=Nr~,~, ( k = l ,  2, 

�9 . . ,  n). Fu r the r  let us assume for the simplicity that  every  N~ is 
positive integer.  Let  YI~, Y~2, - " ,  Y~N1; Y21, Y22, " - ' ,  Y2~; " " ;  Y~, Yn2, 
�9 " ,  Yn~ be independent random variables and Ykj, ( ] = 1 ,  2, . . . ,  N~) be 
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drawn from the distribution with the pdf f.,k(x). 

Let us define Z~,~ by 

This ZN,. has been appeared in the introduction as X~.~. 
(2.7), we have 

E(Z.v,.) =/. (4.2) 

and 

(4.3) 

(4.4) 

and 

I' G'(G..)= o.,. 

Let  us define ~#.> and r<.> by 

2 1 n 2 

2 2 

a -- a<~> res~ec+;ve]...~ ~* .: (4.5) "q~>-- a ~ , 

The variance a~(Z,v,,,) can be wri t ten  in terms of G<.>' as 

(4.6) a2(Z,v.,) = a~> 
N 

From (2.3) and 

Therefore,  when we use Z~v,. as the unbiased est imate of/~, the efficiency 

of Z~v,. relative to X~ will be expressed by  r<.> independently of N. 

From (3.5) and (4.4) it follows tha t  

(4.7) a[~l-a<~>=-;~2 .I ~ t~,~--r ~-u . 

The last  inequality in (4.7) will be obvious since ~ <  corresponds to pro- 
portional allocation and z~> corresponds to Neyman allocation. 

5. Examples of vE,l and -t-<.> 

In this section the numerical values of c[~] and c<~> are shown for 
several distributions, especially for n = 2 and 3, and the moments of order 
statistics which are necessary for the calculation of ~E,] and ~<~> are 
shown. I t  should be noted again tha t  :E~l and :<,,> are invariant  under 
the linear transformation of the random variables. 
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and 

(5.2) 

5.1 

[R] 

(5.3) 

From this we have the simple form 
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I t  m a y  be useful to introduce another representat ion of the efficien- 
cies of est imators,  denoted by  eE~ and e<~>, which are defined by  

=a_L ec~ ] a~< x 100 

=~_L 
e<n> a{n> X 100 . 

The moments  of order statistics 

Rectangular  distribution ; 

_ 1 2 k ( n - - k §  a2 
a~,~ ( n + l ) 2 ( n +  2) , 

n - -1  
(5.4) R ~ =  n + l  

[E] Exponential  distribution ; 

(5.5) ~ _ 2 ~ 1 O'n,~ -- O" ~, 
:=~ ( n - - j + l )  2 ' 

Thus we have 

(5.6) R~]=I_I ~i. 
n k = l k  

[S] Symmetrical  distributions ; 

Let  us put  

(5.7) f(x)= [ ~lxI'-', 
t 0 ,  

where  p > 0 .  We have 

([11] p. 3ss). 

([11] p. 343).  

(5.8) 

--l<x<l, 

otherwise, 

E(XLO 
~-~ r ( j +  l+(~/p)) 

= 2-~F(n + 1) ( -- 1) ~ j_]L=_ ~ F ( j  -F 1)F(n + 1 -- k -- j ) F ( k  + 1 + j + (,/p)) 

+ ~ : ~ ] '  F ( j + l + ( , l p ) )  } .  
;=o/ ' ( j  + 1 ) r ( k -  j ) Y ( n  + 2 - k + j + (,/p)) 

Thus we have 
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(5.9) 

_ : _ (3pZ+2p+I)0"5 
0"2,1 - -  0"2, 2 

(2p+  I) ~ 

p(p§  
vE2~-- (2p+ 1) ~ ' 

_ ~ _ 3 ( 7 p S + 8 f f + 8 p + 4 )  0.,. 
G 3,1 - -  0.3, 3 

4(2p+1)2(ap+2) 

_ 3p 0.2 
0.3,  2 

(3p+2)  

3 p (p+2)  
7[3_] - -  

2 (2p+ 1) 2 

[ J ]  J-shaped distributions ; 

Let  us pu t  

(5.1o) 

where  p >  O. 

. . . . . .  r ( n  + 1 ) r ( k  + (v/p)) 
(5.11) ~ ( . ~ ; . k ) - F - - - ~ ( , / p ) +  l ) F ( k  ) , 

Thus we have 

{ p x  p-~ , O < x < l  , 
f ( x ) =  O, o the rwise ,  

We have 

([2] p. 305) 

(5.12) 

0.5_ P 
(p+ l )2 (p§  ' 

0.~.1-- p ( 5 p §  0.2, 
(2p+1)  2 

a~.:-- ( p + l ) ( p + 2 )  a2, 
(2p~-1) ~ 

p (p+2)  
~2~----- ( 2 p +  1)  2. ' 

5p2--} - 6p-~ 1 -- ~ /p (p+  1)(p+ 2)(5p + 1) 
r<2>= 2(2p+1)2 

0- 2 - -  
3,1 

2 
G 3 , 2 - -  

3p2(49p~+47p2-t- t lp-t-  1) o~, 
(3p+2) (2p+  1)2(3p+ 1) 5 

3p(p + 1)(p § 2)(13p2+ lOp+ 1) 0"5, 

2 
0"3, 3 - -  

(3p§  2)(2p§ 1)2(3p + 1) 5 

3(p+I)Z(P+ 2) a2 
(3p+2) (3p+  1)2 ' 
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and 

r~3] =--- 2p(p + 2)(7p 2 + 4p + 1) 
(2p+ 1)2(3p + 1) 2 

Put  p = l ,  then we have 

(5.13) 0.2_ 4 0.2 _ 3n + 5 
45 ' :~]- 1 5 ( n + l ) ( n + 2 )  ' 

_ _ ( n - 1 ) ( 4 n + 7 )  
'E~ 4 ( n + 2 ) ( n + l )  

[B] Compound exponential (Burr's) distributions; 

Let  us put  

(5.14) 

p 
f ( x ) =  ( l + x )  ~+p' x > O ,  

0 ,  otherwise, 

where p > 2 .  

(5.15) 
' r ( n - k + l )  j=o r(n+l-(j/p)) 

Thus we have 

(5.16) 

and 

0 .2  - -  

2 _ _  
0 . 2 ,  2 

T [ 2 ]  - -  

2-<2 > - -  

o 
0.~,1 - -  

2 
0"3, 2 - -  

P 0 .L-  P 
( p - 2 ) ( p - 1 )  2' 

p 2 ( 5 p - 1 )  

( p _  l)2(p_2)(2p_1)2 ' 

p(p--2) 
(2p_ 1)2 ' 

(P--1)(5p--1) ( 1 _  %/ 
2(2p-- 1) 3 

3(p-- 2)(p-- 1) ~ 0.2, 
(3p--2)(ap-- ly  

3p(13p ~ -  lOp + 1)(p-- 1)(p-- 2) 0.3, 
(3p--2) (3p-  1)~(2p-- 1) ~ 

s _ 3p~(49p ~ -  47p 2 + l l p - -  1) as 
3 ,3  (3p -- 2)(3p-- 1)2(2p-- 1) 2 

(2p_  1)2(p_ 1) ' 

p(p--2) ) 
(p--1)(5p--1) 

2p(p -- 2) (7p 2 -- 4p + 1) 
vE3]- (3p-- 1)2(2p-- 1) ~ 
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[T] Tr i angu la r  dis t r ibut ions ; 

L e t  the  pdf  be 

(5.1s) I 
2 x  , 0<_x_<l , 
P 

f ( x ) =  - - ~ ( p - - x )  
P(P-- , l <=x<=p , 

0 ,  otherwise,  

where  p > l .  Then we have  

(5.19) E ( X ~ ) = 2 a =  ~ Z ( - 1 )  j 
' ' d=o 3" (2k-4- 23"-?,)p ~+j 

+ 2 p ~ a ~  ~, Z ( - 1 )  ~+~ ~ k - 1  1 ~+J+~+'-~ 1 
" ~=o ~=o 1 j p 2 n + 2 j + l + 2 - - 2 k  

Therefore, 

(5.20) 

and  

[sP] 

a 2 _ 18 (p2--p+l)  , 

a~,l = 2~Sp~(6p4 -- 6p 3 + 15p 2 -- 3p-- 1) , 

a],~----- 2~Sp2(llp4--11p~ + 7p--1) , 

2(2p 2 -  p +  1) 2 
rE2~--25p~(p2_p+ l) , 

a s -- 1- (75p ~ -  75p 5 + 350p 4-140p 3 -  45p "~ + 40p-- 4) 3,1 
4900p 4 

1_ (146p r  146p ~ + 308p ~ -  19@ 2 + 48p-- 16) , 
4900p 4 

1 ,(20 lp 6 -  201p 5 + 95p "~ 16p -- 4) 
~uup- 

0-2 
3,2 

3,3 - -  

4 . (148p6.148p~+175p4-63p~+54p2--27p+9) 
rE~---- 1225 p4(p2_ p + 1) 

A special d is t r ibut ion [5]; 

The  means  and var iances of order  s tat is t ics  f rom the  dis t r ibut ion of 
the  r a ndom variable X defined by 

(5.21) X =  ( 1 -  U) -1/1~ U -In~ , 
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where  U has the uniform distr ibution on the  interval  [0, 1] were tabu- 
lated in [5]. F rom the table we can obtain the numerical  values of 2 O'n, k 

r~] and r<n> for n__<10. 

[EV] An ext reme-value  dis t r ibut ion;  

Liebelein [8] evaluated the  moments  of order statistics in sample 
f rom the ex t remal  value distr ibution with the  cdf 

(5.22) F(x) = exp ( -  exp ( -  x)) . 

By using the  results  we can obtain the numerical  values of r[2], r<2>, r[31 
and r<3>. 

Weibull distr ibutions ; 

Let  us denote the cdf of Weibull distr ibution by 

t l - e x p ( - x  b) , x > 0  , 
F(x)= O, x<O, 

Then we have 

~-~ /k 1 \ 

[w] 

(5.23) 

where  b>0 .  

(5.24) 

Thus  

(5.25) 

([9]). 

a~ 2=(2--2-~/b)F ' ( 1 + 2 / - -  (2--2-1/~)2/~(1+ 1 /  ' 0 /  ~ 0 /  
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and 

2 

X (3-2/b + 3. 2-2/b-- 3. 2-1/b3-1/b + 3-1/b-- 3. 2-1/b-t-1)l-~(l + b )  . 

[G] Gamma distribution ; 

We consider the Gamma distribution with the pdf 

i e-Z X p-1 X>0 
(5.26) f ( x ) =  r (p )  ' ' 

,~ 0 , x < 0  , 

where p = l ,  2, 3, 4, 5. The tables of ~,~ and z~,~ have been obtained by  
Gupta ([4], [11] p. 439) for n = l ,  2 , . . . ,  10. 

[DE] Double exponential distr ibution;  

Let  f (x)  be the pdf of the double exponential distr ibution:  

f ( x ) = l e  -1~' - c o < x < c o  (5.27) 

Then we have 

I (5.2s) \ / (k+t) 

~ - ~  (--I)' ,! 
+a~,, Z - -  

,=0 2~§ (n+l+l_k)o§ ' 

The numerical values of G~,2 ~ for n=2, 3, 4, 5 have been tabulated by 
Sarhan [i0]. 

[N] Normal distribution ; 

G2 In order to calculate rc~ l and r<~> we have used the table of ~,~ s 
represented in ([11] pp. 200-205). 

5.2 The table of ten ~, r<~>, ec~ and e<~> for n = 2 ,  3 

Since, in the most practical situations, n will be two or three, we 
shall now show as Table 1 the values of ten ~, r<~>, ec~ and e<~> of the 
distributions mentioned in 5.1 for n = 2 ,  3. I t  should be noted tha t  in 
symmetrical  distribution re21 and r<2> are identical because of (4.7). I t  
may  be worth-while to mention that  the efficiency rE~ ~ can be expressed 
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in terms of the mean difference z/~ ([6] p. 46) of the parent distribution 
as A~I4~ ~. 

T a b l e  1. E f f i c i e n c i e s  f o r  n=2,3 

D i s t r i b u t i o n  ~'[2] V[,~] Z'<2> ~'<3> e<2> e<3> 

[R] 
[N] 
[E] 
[DE] 
[EV] 
[SP] 

[ G ]  p=- 2 

3 

4 

5 

[w] b=1/2 
2 

3 

4 

5 

10 

[ T ]  p= 1 

2 

3 

4 

[ J ]  p=1/5 

1 / 2  

3 

4 

[ S ]  p=1/2 

3 

4 

[B] p =  3 

4 

5 

i0 

�9 333 

.318 

.250 

�9 

�9 

�9 286 

�9 281 

�9 

�9 299 

�9 303 

.113 

.314 

�9 322 

�9 322 

.319 

.310 

�9 320 

�9 327 

�9 325 

�9 323 

�9 

�9 

�9 306 

�9 296 

.313 

.306 

�9 296 

�9 120 

�9 1 6 3  

�9 185 

�9 222 

�9 500 

�9 

�9 389 

.422 

.442 

.429 

.430 

�9 445 

�9 453 

.458 

.191 

�9 473 

.484 

�9 483 

.479 

�9 467 

�9 483 

�9 490 

�9 

.487 

�9 

.475 

�9 465 

�9 452 

.469 

�9 

�9 444 

�9 195 

�9 262 

�9 295 

�9 348 

�9 333 

�9 

�9 345 

.281 

�9 323 

�9 286 

�9 334 

�9 329 

�9 327 

�9 325 

�9 393 

�9 327 

�9 323 

�9 322 

.322 

�9 322 

�9 335 

�9 327 

�9 329 

�9 

�9 350 

�9 336 

�9 337 

�9 338 

.313 

�9 306 

.296 

�9 377 

�9 364 

�9 

�9 351 

.502 

�9 479 

.510 

.439 

�9 484 

�9 442 

.497 

�9 491 

.488 

�9 487 

�9 559 

�9 489 

�9 485 

�9 484 

�9 483 

.483 

�9 

�9 

.493 

.497 

�9 523 

�9 

�9 

�9 

�9 

�9 475 

�9 

�9 538 

.526 

�9 5 2 1  

�9 

e[2] eE3 ] 

150 200 

147 191 

133 164 

139 173 

141 179 

140 175 

139 175 

141 180 

143 183 

143 184 

113 124 

146 190 

147 194 

147 193 

147 192 

145 188 

147 193 

149 196 

148 195 

148 195 

129 157 

145 190 

144 187 

142 183 

146 .188 

144 �9 

142 �9 

124 

136 

142 

153 

114 

119 

123 

129 

150 

147 

153 

139 

148 

140 

150 

149 

149 

148 

165 

149 

148 

147 

147 

147 

150 

149 

149 

149 

154 

151 

151 

151 

146 

144 

142 

161 

157 

156 

154 

201 

192 

204 

178 

194 

179 

199 

197 

195 

195 

227 

196 

194 

194 

193 

193 

201 

196 

197 

199 

210 

203 

201 

202 

189 

190 

186 

216 

211 

209 

206 

5.3 rE. ] and r<.> for  n>__4 

In Table 2 the values of rE~ l and r<.> for n = 2 ,  3, 4, . . . ,  20 are given 
for a rectangular [R], a normal [N], an exponential [El, a compound 
exponential [B], and a J-shaped [J] distribution, and the values of r~j 
and r<~> for n = 2 ,  3, 4 , . . . ,  10 are given for a gamma [G] and a special 
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[SP] distribution. (Refer to 7.1 and 7.2 for Sup vE~ ~ and Sup r<~> in 
Table 2.) 

5.4 The relation between efficiency and parameter 

There are the families of distributions with the parameter  which 

0;5 

0.4 

O. 333 

0.3 
O. 283 

0.2 

0.1 
0 

0.6 

0.5 

0.4! 

0.3 

0.2 

0.1 

( 
Z' (2 ]~T~2> 

5 

Fig. l a .  [S]  

10 

} 
i 

\ 
\ 

\ 
\ 

T[3~ 

-rC2 ] 

2 5 10 

Fig. l b .  [B] 
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I!, 
0 . 5  "" . . . . . . .  

0 " 4 I ~  

O. 3; 

0.2 

0.1 

rC3? 

. . . . . . . . . . . .  r'12) 

z':~] 

I 

5 10 " p 

Fig. lc. [J]  

0.5 

0.4 

0.3 

0.2 

"L'(3 ) 
Z'(3~ 

p . I , ,  I 0.1 1 5 10 

Fig. ld.  [T l 

Fig. 1. The variation of values of v[2], v<~), v~3] and v<3> with the parameter 

has its effect on rE~ l and r<~>. Here we shall only show several examples. 
In Fig. I the values of v~2~, r<2>, vc31 and v<~> are traced against the para- 
meter  of the distribution for the families of the compound exponential 
[B], the J-shaped [J], the symmetric [S] and the triangular [T] distri- 
butions. 
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There are some limits which are easily obtained. 

In [ S ]  lim rE2~= 1 , l imrc~= 3 , limr<3>- 2 5 - 4 ~ / 7 -  and 
p ~  4 ~ 8 ~ 36 

In [ J ]  

1 lim v<3>- 
~p~O 3 

lim r:2~ 1 lira r<2>-- 5-- ~ -  lim rc3~ = l -~  

lira r~2~= 0 and lim ra>-  1 
p~o ~o 2 

s 33--2r , lim r~31-- 592 In [ T ]  l i m z ~ 2 ~ = ~ ,  l imr<v= 
~ 2 5  ~ 50 ~ - ~  1225 

49 9 0 1 8 -  90~/4-~ and max r~2]- lim r<3>-- when p = 2 
~ - ~  11025 p 150 

In [ W ]  l i m  - ~ [ l o g  2 12 
b - ~  -E2~ = -  \ ~ ]  and limb~o rE~ = 0 . 

6. Examples of the distribution of YE.3 

In order to compare the  distribution of our est imate :KEel with tha t  

of the usual sample mean X~ we shall give several examples. 

Let  h~(x)  be the pdf of YE~: and let g,~(x) be the pdf  of X~. 

( i )  Let  the pdf of the  population be 

( 6 . 1 )  f ( x ) = l ,  O < _ x _ < l .  

Then, we have 

{ (6.2) h~(x)-- -% 6-(1-x)~( l+2x)  ' 

and 

(6.3) h3(x) 
/ 9 (3x)5{ 84-- 56(3x) + 12(3x) 2 -- (3x) 8 } 

O<_x<_ 1 , 
- -  - - 2  

l ~_x~ l  , 
2 - -  - -  

, O _ x < _  1 , 
- -  - -  3 

9 { 1191 -- 3888(3x) + 4536(3x) ~ -  2268(3x) 3 + 630(3x) 4 

- - 2 5 2 ( 3 x ) 5 + l 1 2 ( 3 x ) 6 - - 2 4 ( 3 x ) T + 2 ( 3 x )  8} 1 < _ x < _ 2  
' 3 - -  - - 3 '  
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2s-~(3(1-x))5{84-56(3(1-x)) 
+12(3(1-- x))2-- (3(1-- x)) 3} , 2 _ _ x ~ l  . 

3 -- -- 

The pdf's g2, g3 are well known (see, for example, [1] p. 245). 
h2, g~ are shown in Fig. 2 a. 

21 

The pdf's 
The pdf's ha, g3 are shown in Fig. 2 b. 

h~ (~) 
. . . . .  j~(x) 

~ ~ . .  f(~) 

.Y7 - X-~.--I, 
j y  ~ . .  i 

0.5 1 

Fig. 2a .  h2 and g~ for the rectangular  dis t r ibut ion 

(ii) 

(6.4) 
Then 

(6.5) 

and 

(6.6) 

/•, h3(~ ) 

.,2- . - ~ - - ~  
. , /  \ ,  i / /  \x 

. / \ .. t 

0..5 1 

Fig. 2b .  h3 and g8 for the rectangular  dis t r ibut ion 

Let the pdf of the population be 

f ( x ) = e  -~ , x > O  . 

h 2 ( x ) = 8 ( e - ~ X - e - ~ X ( l + 2 x ) )  , x > 0  , 

g2(x) = 4 x  e -2~ , x > 0 . 
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T h e  p d f ' s  a r e  s h o w n  in F i g .  2 c. 

F\\\ 
0.8 h~(z) 

- - - - - - f ( ~  
0.6 

0.4 

o I .  , . .. , ~ - "  ~ - - - ~ " - ~ _ - ~ - _ ~ _ _ - = _  
1 2 3 

Fig. 2c. h~ and g~ for the exponential distribution 

(iii) 

(6.7)  

T h e n  

L e t  t h e  p d f  o f  t h e  p o p u l a t i o n  b e  

f ( x ) = 2 x  , 0 = < x = < l .  

(6.8) h~(x) = 

6 (7xS- -4x  7 ) 0_<x_< 1 
' - -  - -  2 ' 

J • - (  - -  272x 7 + 700x 6 - -  644x 5 245x ~ - -  35x ~ + 7x z -  1) + 
9 

~1 <x_<l, 
2 - -  - -  

0 

Fig. 2 d. 

- -  h , , ( . , :  ) 

- -  /..-- ..... ..h 

0.5 1 

h2 and g~ for the right-triangular distribution 
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and 

(6.9) g2(x)  ="  

32x3 ,  O ~ x ~ ,  
3 -- --2 

3 2 x 3 + 1 6 x  .... 16 l < x < l  
3 3 2 -  -- 

The pdf ' s  hi, g2 are shown in Fig.  2 d. 

(iv) L e t  the pdf  of the  populat ion be 

f ( x ) = 3 x  ~ , -I<x<1. (6.10) 
Z 

Then 

(6.11) h~(x) =- 

and 

g~(x) = ,  

70 ( - 2 5 6 0 x  11+ 40656x 5+ 79200x 4-+- 69300x 3 

+ 40040x 2 + 13860x + 2016) , 

70 (2560xll -- 40656x ~ + 79200x 4 - 69300x ~ 

4- 40040x z- 13860x + 2016) , 

- • 0 - 0  (32x5 + 80x ~ + 60x + 12) , 

2-~0- ( -- 32x 5 + 80x 2 -  60x + 12) , 

-l<x~O, 

O~x<l. 

The pdf ' s  h2, g~ are shown in Fig.  2 e. 

- -  L ( ~  ) 

---- f(~) 

'\ /J 
\ l,'- "\ / . _ .  1 

- 0 1 

Fig. 2 e. h2 and g2 for the symmetric  dis tr ibut ion 

--l<x~O, 

0~<i, 
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7. Supv~.~ and Supr<.> 

7.1 Sup rE~ ~ 

From the tables in section 5, it will be found that  the values of 
r~] are, for each fixed n, concentrated in ra ther  small range. I t  is 
known tha t  r:2~_<_1/3 for all continuous distributions with finite variances, 
and this supremum is at tained by  the rectangular  distribution [3]. Thus 
we are led to the consideration of the supremum of r ~  for general n. 
We shall give the value of Sup r ~  which is at tained by the rectangular  
distribution for general n. 

The v:~ z which we are going to maximize was given by  

(7.1) r:~]= J - -  Z a~,~ as= 1 (ff~, _if)2 , 

k = l  , / ~&O" k = 1  

We can without loss of generality assume that 

(7.2) 

Then 

(7.3) 

t~=O and J = l  . 

equal to zero. 

(7.5) 

where  

~:~= n ~:~ u~-~(1-u) ~-~ du , 

where  G=G(u)=F-I(u), i.e., the inverse function of the cdf F(x). 
In order to maximize (7.3) under the conditions (7.2), we put  the 

first variat ion of 

(f;a~,kG.u~-~(1-u)'~-~ du) ~ f~o G (i~o G2 ) (7.4) 1___ ~ -221 d u - 2  d u - 1  

Then we obtain as the characteristic equation 

1 ~ a~.~r~,~u~_~(l_u),~_~_,~_2G=O, 
Tt, k =  l 

- [1Gu~-~ 1 u~-~ (7.6) J'~'~- ]o ~ - j du . 

In tegra t ing  the left-side of (7.5), it  turns  out to be 

(7.7) 21=0 . 

Multiplying (7.5) by  G(u) and integrating, it turns  out to be 

(7.8) ~c~=~.  



UNBIASED ESTIMATES OF THE POPULATION MEAN 25 

From (7.5), G(u) mus t  be a polynomial of degree at  most  n - 1 .  Let  

n - - I  

(7.9) G(u) = Z aju j �9 
y = 0  

Then f rom (7.5), (7.6), (7.7), (7.8) and (7.9), we have 

n--1 

(7.10) ~,~= ~, a~B(j+k,  n - k + l ) .  
j = O  

and 

~-~ n- -1  \ I . 

Hence we have the following equat ions;  

s=0 s+l  

( j = 0 ,  1, 2 , - . . , n - l ) .  

Now it is easy to prove the  following le'mma (see, [12] p. 62). 

LEMMA 1. I f  a, b are non-negative integers, then 

(7.13) 
~=0 1 1 0 , a>b . 

P R O O F .  Let  us consider the  polynomial 

(7.14) p(x)=(l+x)bx~=(l+x)~[(l+x)-l} ~ 
=(l+x)b{~ (~) (-1)~-~(l+x)J 

The coefficient of x b is 

On the other  hand, f rom the definition of p(x) it mus t  be equal to 

( b _ )  if b>a, and O, if a>b. T h i s c o m p l e t e s t h e p r o o f o f l e m m a  1. 
b a ' = 

By this lemma (7.12) becomes 
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.1. (,/-ill) 
3"=0,1,2, . . . , n - - 1 .  

(n-V(~§ ~,  ~. ~ : 0  ~ , . - ,  ~~ ~.-- Let us denote 2" n 

(7.17) 1=co0> o)~>... > o)~_1>0. 

If a2=a~ . . . . .  a~_l=0, then a0<0 and ala0g=0, since G(u) must be the 
inverse function of the cdf F(x) with zero mean. From (7.16) we can 
show that  for a solution satisfying an_t=a,,_2 . . . .  = a y + l = 0  and aye0  
the corresponding R must be coj. Hence the solution which maximizes 
the corresponding 2 must be of the form 

(7.18) a~_~=a~_~ . . . . .  a2=0 and a~ao:/:O. 

Thus we can conclude that 

(7.19) G(u)--ao-2aou 

and 

(7.20) 2-- n--1 
n-t-1 

From the condition (7.2), a 0 = - ~ r 3 .  Thus, G(u)=-~-3+2~/-3u inde- 
pendently of n. Of course, G(u) is the inverse function of the distri- 
bution function of the rectangular distribution. 

Summarizing the above discussions, we have the following theorem 

THEOREM 3. 

n--1 for n~2.  
Sup vc~- n + l  ' 

This supremum is attained by the rectangular distribution, where'Sup' 
is taken for all continuous distributions with the finite variance. 

7.2 Sup r<~> 

We shall start  with proving the following lemmas. 

LEMMA 2. 

n - - 1  Sup r<~> 
n 
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where ' S u p '  is taken for all continuous distributions with the finite 
variance. 

PROOF. Let  f ( x )=px  p-~, O < x < l ,  where p>O.  This distribution 
has been discussed in 5.3 [J] .  In this case, we have 

ò ~.~ = ( p §  1)2(p+2)p~-k{ n! 
ò2 ( k -  1)!(np+2)((n-- 1)p+2)  . . .  (kp+2)  

_p~-~+l( n! 

( k - - 1 ) ! ( np+  l ) ( ( n - 1 ) p +  l )  . . .  ( k p - F 1 ) ) ~ }  " 

Hence 

lim.a~'~ = l  0 , l ~ k ~ n - 1 ,  

k = n .  

On the other  hand, by the definition 

T<n > -- _ _  
0"2-- G#n> __ 1__ ( O`=,i-F o'n,2-~- �9 �9 �9 -~-o'n,~ ) 2 

G 2 n o "  " 

Thus we have 

limc<.> = 1 1 _ n-- 1 
p-~o n 

This completes the proof of Lemma 2. 

LEMMA 3. 

n - 1  
r<~><-- , n>=2 . 

n 

PROOF. Let  2(i, X 2 , . . . ,  X~ be a random sample of size n drawn 
from the population. Let  (X~., X ~ . . . . ,  Xc~)) be their order statistics. 
Since X~+X2+. . .  +X~=Xc~)+Xa)+... +Xc~), we have 

na2=a~,~+o`~,,2-t - . . .  q-G~,.q-2 Cov (X~., X(2))+ �9 �9 �9 + 2  Coy (Xr Xc~) 

= o`7,,1-r ò ~,2-1- �9 "-4- o`7,,,H- 2o`~,1o`~,2-? .. �9 +2o` . . . .  ~ò ,,~ 
=(o`,,,l+o`~,~+"" 2_ 2 ~. + o`~,~) - -  n ~<~> . 

Thus we have 

~" 1 n--i r<~> = 1 - - .  o`<~>_< 1 
o`2 -- n n 

From Lemma 2 and Lemma 3 the following theorem has been proved. 
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THEOREM 4. 

n- -1  Sup r<~>- , n > 2  . 

8. Related problems 

8.1 A modification of sampling 

The method mentioned above may be applied with various modifi- 
cations. We shall here simply discuss only one example. 

Let 2(1, X ,  . . . ,  2(10 be an independent random sample from a popu- 

lation. Let us define Y(,, Y(21), Y(22) and - *  Yz3] by 

and 

Yc~) =min  IX ,  2(2} , 

Yc21~=min {max {X3, X4}, 

Y(22)=max {max {XT, Xs}, 

max {Xs, X6}] , 

max {X~, X~0}] 

2 
2 

Then :YE~ is obviously an unbiased estimate of the population mean. Let 
us denote the pdf of the distribution of Yc2,) by f~2i~(x), i = 1 ,  2, then 

= 

and 

A , 4 ( x )  �9 

The variance of YE~ is given by 

~:(?E~) = 1 (4~L + o2(y~,) + ~i,~) I 

a*2-- 3a~(YE~) and ~* -- ta2 r 2 It  should �9 ~" and v~] by [3]-t - [3]z �9 Let us define a[3] [~- 

be noted that :Y[~ is based on three measured observations. If a 2~,2 is 

considerably larger than a~,2 ~, then it will be expected that  such an esti- 
mate may be useful. 

Suppose tha t  the pdf of the distribution of the population be e-L 
(x>0).  Then we have 

3 25 11 
/2m=-~,  /24,4= 12 E(Y(21~)=2/zm--/~4'4=~ ' 
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H e n c e  

a n d  

a~ _ 1 and ~ _ 5 
4 4 

4z~ ~ + 2z~ ~ ' - -  3 8 4  

~. _ 181 =0.471 
~3~- 384 

Thus our estimates in the exponential population satisfy the following 
inequalities ; 

~2~( -- 0.250) < ~<2>( -- 0.345) < r~(--- 0.389) 

~(= 0.471) < ~E4~(= 0.479) < r<3> = 0.510 . 

8.2 Note on Neyman-allocation 

When we want to apply the so-called Neyman-allocation we may 
have to estimate the variances ~,i, r "-', a~,~ and sometimes we may 
have to use the approximate values in practical cases. For this reason 
we shall simply consider the quantity v~> defined in the following. Let 
us define ~<~>*~ by 

2 2 

<n> -- -- ~----~-- ~ -l- 

n ~ n/~ n~2 n~/ 

where ~9~+/~2+... + ~-- 1 and each 29~> 0. Let us define r~> by 

* _ _  ~ - -  ' J < n >  T<n> a2 

(i) For simplicity suppose that n=2 and G~,~=~,~. Then we have 

r*>=l-- .1 (az,,~2_ 1 (~2.~ 2. 

Let ~2,1_ ~2,~_ r and let /~=p=l-fl~. Then 

Hence ~>>0 is equivalent to 
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1 1 - -  
2 2 = = 

I t  should be noted that ~__<T~__<I. For example in the normal population 

T2=0.68169. Hence :~>/0 is equivalent to 0.218gpg0.782. 

that n=2 and the population has the exponential (ii) Suppose 
distribution. Let 

Then 

1 
/~I---- - -  1--  f 1 2 .  

l + p  

r~>-- 10p-- p2_ 5 
16p 

Hence ~>>=0 is equivalent to 

5--2~/5- =<p_= 5 + 2 4 ~ -  , 

and 

is equivalent to 1=<p=<5. 
In Fig. 3 this T~> is traced against p. 

T <2) 

O. 345 

0.3 

0.25 

0.2 

0.1 

0.0 / 
5-2JX 

"r ~2} 

2~I-E5 

. p  

Fig. 3. v~> for the exponential distribution 
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