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In this paper we consider the general problem of coherent spontaneous emission
of a system of N two-level atoms coupled to a single-mode e.m. field (*). The system
shall be considered enclosed in a travelling-wave cavity in order to avoid the compli-
cations due to the spatial degree of freedom of the e.m. field.

Following DiIckE (1), the initial state is assumed to have definite population dif-
ference M, and co-operation number J; no photon is initially present. The first assumption
on the initial state implies that the atoms radiate coherently and the second that the
system starts evolving via purely spontaneous emission. The first quantum-mechanical
statement of this problem has been lucidly made by Dickr (%) several years ago, and
the solution was found in the framework of first-order time-dependent perturbation
theory. In the following our aim is to remove such limitation, giving a full quantum
solution, at least in the case where the co-operation number J is much bigger than 1.

The interaction Hamiltonian is

1 H,, = iK(aJ* + a'J™),

X
where Ji=2%a,f (6f are the individual atom flip operators), ¢ is the annihilation

k=1

operator of the single-mode e.m. field with frequency v = AE/h (AF being the energy
difference between the two levels of the atomic system); and K is the coupling constant.
By describing the angular-momentum operators J, in terms of two harmonic oscil-
lators (2) the Hamiltonian (1) can be written as

(2) H, = ﬁK(aala; + afazaz) ,
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(*) J. SCHWINGER: in Quantum Theory of Angular Momentum, ed. L, C. BIEDENHARN and H. Vax
Dam (New York, 1965), p. 229.
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which. as isx well known. represents the main features of the coherent coupling of
three single-mode boson fields (3).

In the following we will concentrate oun Hamiltonian (1) and discuss the solutions
of the system with N two-level atowns. However with very little effort all our results
can be carried over to the processes desceribed by (2).

We write the Schrdodinger equation in the interaction picture

(3)

~
(e

)
o~

() = K(a'J™ -+ @l )iyt

Due to the congervation of J2=J(J 1) and M =J;+n=(Jy), (n= a'a is the num-
ber-of-photons operator) we can simply label the states by the number of photons,
and define the amplitude for having # photons at the time { as

Aty = nly(t);

with the condition, apart from a phase factor,

(4 Ao 0y =0, .
By the definition
A, t) = i"a(n. 1)

the Schrodinger equation becomes

(5) %(l(n,. =T =M )]+ M—n+ DEan—1.1)—
3

— (4 D — M+ a+ )+ M —n)aln+ 1,1) .

We can give now a solution for short times of this equation; the range of validity is

constrained by the condition that the mean number of photons 7(¢) be much smaller
than J. 1t is easyv to check that the solution of (4) and (5) is

J— M+t
(6) alin, ) = ( ) (teh (J + MP Kt)*(scch (J + Mt Kt)I—u+1
n

and for the probability distribution

M+ n

J
{6a) pln, t) = ( ) (tgh? (J + MEKE)#(sech? (J -+ MPKRE)7 4+,

‘W

In the following we shall he interested in the two limiting cases M =.J and M = 0.

(*) For a complete discussion of the relevance of Hamiltonian (2) to ¢ parametric » processes see
N, BLOEMBERGER: Nonlinear Optics {(New York, 1963).
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For M=J:
q e Al \* 1
(7 p(n, 8} = (m 1+ 7(l) ,
where
(8) 7(t) = sinh? (2J R} K¢,

which is obviously a chaotic distribution with mean photon number given by #(t) (*);
its dispersion is

® (Am)* = n(t)[1 + n(?)]

and its range of validity is for 7(t) < 2J, and therefore up to

1
Kt ~—( ;
(27)}
for M =0:
(0
(10) p(n, 1) ~ exp [—n(t)] l
is a Poisson distribution where
(11) n(t) = J tgh? (J) Kt
and
(An)? =7n(l)
and is valid for
1
Kt < Fi

We now study (4) and (5) when the previous constraints are not met (i.e. t > 1/(2J)F).
By defining a new amplitude

(12) An, t) = [G(n)Tta(n, t) ,
where
Fn)F(J— M+ n)F(J + M —n)

Gm) = Fin— 1) FJ— M+ n—1)FJ+ M—n—1)

and
F(n)=2:T(nj2+ 1),
we derive from (5)

(13) %(n, f) = KEGm)[A(n—1, 1) —A(n+ 1,1)].

We notice that a good approximation for G(n) is for all n

(14) Gmy ~[(1+aff—M+a+ )J+ M—at+ 1R,

(*) 'This solution has been found in a discussion of the parametric amplifier by B. R. MorLLow and
R. J. GLAUBER: Phys. Rev., 160, 1076, 1097 (1967).



890 R. BONIFACIO and G. PREPARATA

where use has been made of

Instructed by the nature of the eclassical solution of the problem we set

(15) = (J + M)ysin26,

and we notice that a variation of » by one unit gives us a very small variation of 0,

1 ¥
16 AD, =0, — 0 =~ - s
{16) i ! [(n+ J + M —n—+ 1)]
thus hinting to the possibility of a transition to the continuous variable 6. We now
cxpand the r.h.s. of (13) in a Taylor series in Af,; we have

2. 1/e24
am An—1.—dn— 1.6 ~ K [((_1_) (Aen)+—(°ﬂ ) (AB,)2 + ]
ch/g, 2\¢0% /g,

and we are willing to negleet derivatives of order higher than 1. This is possible as
long as ¢4/¢H does not vary considerably in the small interval Af,; this condition is
certainly met if we wait a time #* such that n(t¥*)>» 1. still being n(t*) < J.

Using eqs. (15)-(17) we get the partial differential equation

1 , od
(18) (6.1) — K[(J — M = 1)+ (J 4 M) SIIlﬂe]%Te 6,1 =0
C

&
ct

and going over to the new variable

0
(19) d !
YT T T M sintep
0

we write (18) as

o |
(20) MorS .

ct u

As is well known this equation has as its solution
A(u, t) = Flu— Kt) ,

where F(u) has to be determined by the initial conditions (amplitude distribution for
i{=1t*). From (12) for the probability distribution in n we get

2n pln, t) = |a(n, )2 =

G(n) A 1)
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and noticing that 1/G(n) = (Au),, we write (21) as
(22) p(n, t) = Fu, — Kt)Auw,, .

The normalization conditions is (passing to the continuum in w)

J+M Iy
(23) > pn, t) =fduF2(u —Kt)y=1,
n=0

—0

which is evidently satisfied at all times if

+oo

fduF%u) =1.

—m

The solution F2(u—Kt) represents a probability distribution in # which does not
deform as the time varies. This, however, does not mean that the probability distri-
bution in n# does remain constant, as is clear from the nonlinear relationship between
7 and u, (egqs. (15) and (18))

LTI M+

24
(24) 2J + 1

sd? ([2J‘+ 11w,

J+ M
2+ 1)’

where sd is one of the Jacobi elliptic functions (5).
From eq. (22) the K-th moment of the photon distribution at a certain time ¢ can

be caleulated as
4o

J+M
(25) (nk(t)y = 3 nkp(n, ) =fdu wi(u) F2(u — Ki)
n=0

where n(u) is given by eq. (24).

An exact calculation of the properties of the photon distribution is really quite
complicated to do in practice, however a simple approximate result for the mean number
of photons is obtained by setting in eq. (24) u= Ki (5), i.e.

(26) gy — LT ﬂ’f;MJr Y o (k[2J+ 1)t

J+ M
2J+ 1) °

From this we gather that 7i(t) is a periodic function of the time, with period

@7 2J 4+ 1 )

1
/A — -
E(2J + 1)#( J—M+1

(*) See M. ABraMOVITZ and I, STEGUN: Handbook of Mathematical Functions (New York).

(%) This result would be exact if F*(u —tk) were a very sharp function, in the limit du —tk).
In the actual situation F*(u —ik) is never a é-function, but its shape is determined by the short-time
solutions (6) and (6a). The effect of this is essentially to multiply (26) by f(¢) which is almost constant
and approximately equal to 1, having ite minimum for {= 7/2, and being a few percent different
from 1 in the worst case M =J,
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We now discuss formulae (26) and (27) in the two limiting cases M =.J and M =0.
For M =J. i.e. when all atoms are initially excited. the sd function has period

1
(28) T —= m L’{ e In (Q.oIA l)‘l

and its shape around its maximum (23). which occurs at T/2, is very well approx-
imated by the function (3)

(29) n(ty = 27 seeh2 K (27 - DYt — T2y .

We note that the ratio between the duration of a single spike and the repetition
time T is given by
2

R = E—
In(2J+ 1)+ =

For M = 0. the so-called superradiant state, the period is shorter, namely

1
30 T=———— [7+1n2
(30) Ked 1 ]

and the shape of #(#) is mneh smoother ) and R~1.

We turn to the dispersion of the photon distribution. Again the use of (25) to evaluate
(An)2 = n3(t)> —<n(t)>? is in practice guite arduous, but we can get a fairly good approx-
imate estimate from the formula

An )
(31) An = (A—) (Aw), = () (Au), .

n

This formula needs at least two comments, First it cannot give accurate results when
n(u). as given by (24), varies too dramatically in the neighbourhood of w=tH as u
varies by (Aw),. Second. (Au), is the constant dispersion in the w-distribution to be
calculated from the requirement that the short-time solution be joined to the solution
of the partial differential equation (20}, i.e.

(32) (At = (An)pope s

For M =.J, we have from (31). (32), (7). (8) and (9),

N / ]
(33) (A= s
and

3 b
(34) An ~7(l) (1 —%})>

with the warning that. according to the first comment after eq. (31). the faetor in the
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square root should be replaced by a nonzero one for n(t) extremely close to its maximum
value 2J.

The essential feature of (34) is that the dispersion of the photon distribution tends
to conserve the chaotic nature of the initial distribution appropriate to purely spon-
taneous emission.

For M =0, egs. (31), (32), (9) and (10) lead to

92\ ?
(35) An = (n(t))} (1—"((13) ,

which ig similar but not quite the same as the dispersion of a binomial distribution.
For n(ty < J it is hardly distinguishable from a Poisson distribution, and the state
of the radiation field is coherent (). This is exactly what one would have expected
after observing that in such a range of @ the source of the radiation field (i.e. the trans-
verse component of the total angnlar momentum) is essentially classical. A more com-
plete description of this werk shall be given in a separate paper.
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