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In this paper we consider the general problem of coherent spontaneous emission 
of a system of N two-level atoms coupled to a single-mode e.m. field (1). The system 
shall be considered enclosed in a travelling-wave cavity in order to avoid the compli- 
cations due to the spatial degree of freedom of the e.m. field. 

Following DICKE (1), the initial state is assumed to have definite population dif- 
ference 2d, and co-operation number J ;  no photon is initially present. The first assumption 
on the initial state implies that  the atoms radiate coherently and the second that  the 
system starts evolving via purely spontaneous emission. The first quantum-mechanical  
s tatement  of this problem has been lucidly made by DICK]~ (1) several years ago, and 
the solution was found in the framework of first-order t ime-dependent perturbation 
theory. In the following our aim is to remove such limitation, giving a full quantum 
solution, at least in the case where the co-operation number J is much bigger than 1. 

The interaction Hamiltonian is 

(1) Hl~ t ~ ~ K ( a J  + + a~J  - ) , 

2? 
where J ~  ~ ~a~ (a~ are the individual atom flip operators), a is the annihilation 

operator of the single-mode e.m. field with frequency u = A E / h  (AE being the energy 
difference between the two levels of the atomic system) ; and K is the coupling constant. 
By describing the angular-momentum operators J~ in terms of two harmonic oscil- 
lators (2) the Hamiltonian (1) can be writ ten as 

(2) = h K ( a a l a  z + a#a~a,) , 
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which,  as is well  known,  r ep resen t s  the  ma in  f ea tu res  of the  cohe ren t  coupl ing  of 
t h r e e  s ingle-mode boson fields (3). 

In the  fol lowing ~ e  will c o n c e n t r a t e  oil H a m i l t o n i a n  (1) and  discuss t he  so lu t ions  
af the  sys t em wi th  _Y two-level  a toms .  I t oweve r  wi th  ve ry  l i t t l e  effort  all ou r  resu l t s  
can be ca r r ied  over  to the  processes desc r ibed  by  (2). 

We  wri te  the  SehrSd inger  e q u a t i o n  in the  i n t e r a c t i o n  p i c tu re  

(3) 7 ~'~ !~o(0)= K ( a t J  - -~- aJ  ÷ )lq,(t)". 

Due  to the  conse r va t i on  of J~  = J( , I - -  1) and  9 I - -  J a + n . =  (Ja)i. (n = a+a is the  num-  
be r -o f -pho tons  opera tor )  w e  can  s imply  lahel  the  s t a t e s  b y  ti le n m n b e r  of pho tons ,  
a n d  define the  a m p l i t u d e  for  h a v i n g  ~t p h o t o n s  a t  the  t i m e  t ~s 

wi th  the  condi t ion ,  a p a r t  f rom a phase  faetor ,  

(4) 

B y  the  def in i t ion 

A(n.  0) h,0.  

_l(t~, l) = i'~a(n, t) 

t he  Schr6d inger  equa t i on  becomes  

(5) 
8 

~ a 0 t , . t ) =  In(,) r - -M ~ n)( , / -~ 3 I - - n , @  1 ) ] } a ( n - - l . t ) - -  

- .  ( ~ +  1 ) ( J - - M +  .n.+ 1 ) ( J - + - M - - n ) ] ½ a ( n T  l, t ) .  

We can ~o'ive now a so lu t ion  for shor t  t imes  of th i s  e q u a t i o n ;  t he  r ange  of v a l i d i t y  is 
c o n s t r a i n e d  b y  the  condi t ion  t h a t  t he  mean  n u m b e r  of p h o t o n s  g(t) be  m u c h  smal le r  
t h a n  J .  I t  is easy to cheek t h a t  the  so lu t ion  of (4) a n d  (5) is 

(6) 
J - -  3[ + ,n) ½ 

a(n, t ) =  ( tgh  (J :- M)~ Kt)"(sceh (J T M)½ Kt)  J-M+~ 

and  for t he  p r o b a b i l i t y  d i s t r i b u t i o n  

(6a) p(,~., t) = ( tgh  2 (J + 3l)~Kt)'~(scch 2 (J + i]f)½Kt) J-~+*. 

In  the  fol lowing we shal l  be i n t e r e s t e d  in t he  two l imi t ing  eases M = J a n d  M 0. 

(~) F o r  a c o m p l e t e  d i s c u s s i o ~  of  t h e  r e l e v a n c e  of  £ I ~ m i l t o n i a n  (2) to  ~ p ~ r a m e t r i c  ~ p r o c e s s e s  see  
N ,  BLOEMBERGER: NoMinear Optics ( N e w  Y o r k ,  1965) .  
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For  . M =  J :  

(7) p(~,  t) = ~ ~" 1 

\1  -5 s ( t ) /  1 + s ( t ) '  

where 

(8) ~(t) = sinh ~ (2J)½Kt, 

which is obviously a chaotic d i s t r ibu t ion  wi th  mean  photon  n u m b e r  g iven by  ~(t) (4); 
its dispersion is 

(9) (An) ~ = ~(t)[1 + ~(t)] 

and  i ts  range of va l id i ty  is for ~(t)<( 2J,  and  therefore up to 

for M =  O: 

(lo) 

is a Poisson d is t r ibu t ion  where 

(11) 

and  

and  is val id  for 

1 
K t  ~_ - -  

(2J)½ ; 

(~(t)p 
p(n,  t) _~ exp [--  ~(t)] 

n! 

~(t) = J tgh 2 (J)½Kt 

(An) 2 = ~(t) 

1 
K t  << .d--=. 

We now s tudy  (4) and  (5) when the  previous cons t ra in ts  are no t  met  (i.e. t > 1/(2J)t) .  
By  defining a new ampl i tude  

(12) 

where 

G(n) = 

and  

we derive from (5) 

(13) 

A(n ,  t) = [G(n)]½a(n, t) , 

E ( n ) E ( J - -  J l  + n ) E ( J  + M - -  n) 

F ( n - -  1 ) ~ ( J - -  M +  n - -  1 ) F ( J +  M - - a - -  1) 

iF(n) : 2"/~F(n[2 + 1) , 

~A 
--~ (n, t) = K G ( n ) [ A ( n - -  1, t ) - - A ( n +  1, t ) ] .  

We notice t ha t  a good approx imat ion  for G(n) is for all 

(14) G(n) ~_ [(I + n ) ( J - -  M + n + 1)(J + M - -  n ÷ 1)]i, 

(4) T h i s  so lu t ion  h a s  b e e n  f o u n d  i n  a d i s cus s ion  of t h e  p a r a m e t r i c  ampl i f i e r  b y  B .  R .  MOLLOW a n d  
R .  J .  GL&UBER: P~]$. Rev., 160, 1076,  1097 (1967). 
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whet(, use has been made of 

/ ' ( n / 2 4 - 1 )  ( n +  l)½ 

Ins t ruc ted  by the na tu re  of the classical solution of the p rob lem we set 

(15) ~ = (J  ~ 3/) sin ~- On 

and we notice that  a var ia t ion  of n by one uni t  gives us a ve ry  small  va r ia t ion  of 0, 

i 1 (16) A0,~ = On= ~ O~ x ~- , 
n +  1 ) ( J +  M n,+ 1) 

thus  hint ing to the possibil i ty of a t ransi t ion to the cont inuous var iable  0. We  now 
expand  the r.h.s, of (13) in a Taylor  series in A0,; we have  

(17) / - - I  (A0~) 2 +  ... A(,~-].t) =l(,~.l.t)=--I~ +-_~OUo" 

and we are willing to neglect der iva t ives  of order  higher  than  1. This is possible as 
long as 8A/~O does not  va ry  considerably in the small  i n t e rva l  A0,,; this condi t ion is 
cer ta inly met  if we wai t  a t ime  t* such tha t  n(t*)>> 1. still  being n(t*)<< J .  

Vsing eqs. (15)-(17) we get the par t ia l  differential  equat ion  

(18) A a  (0. t) :- K [ ( J  - -  3[ '- 1) + (J  + ] i )  siil, 0]~_2_ 2~A (0, t) : 0 
~t 

and going over  to ttw new var iable  

0 

f 
0 

we wri te  (18) as 

(20) ~A &4 - - + K - - = o .  
~t c~u 

As is well known this  equat ion  has as its solution 

A (u ,  t) = 2F(u - -  K t )  , 

where F(u)  has to be de te rmined  by the  ini t ial  condit ions (ampli tude d is t r ibut ion  for 
t =  t*). F r o m  (12) for the probabi l i ty  d is t r ibut ion  in t~ we get  

1 
(21) p('~, t) ]a(n,, t)J 2 = A2(n, t) 

G(~) 
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und noticing that  1]G(n)= (An),, we write (21) as 

(22) p(n, t) = F2(u, - -  Kt) An , .  

The normalization conditions is (passing to the continuum in u) 

J + ~  f 
(23) ~,p(n,  t) = du2 '2(u--Kt)= 1, 

- - c o  

which is evidently satisfied at all times if 

~1-¢o 

f duF2(u) = 1. 

- -co  

The solution •2(u--Kt) represents a probability distribution in u which does not 
deform as the time varies. This, however, does not mean that  the probabili ty distri- 
bution in n does remain constant, as is clear from the nonlinear relationship between 
n and u,  (eqs. (15) and (18)) 

(24) 
+ +  

n =  (J÷M)(J--M÷2j÷ 1 1)sd~ [ 2 J ÷  1]½un 2 J ÷  1] 

where sd is one of the Jacobi elliptic functions (5). 
From eq. (22) the K-th  moment of the photon distribution at a certain t ime $ can 

be calculated as 

JA-M f (25) (n~(t)) = ~. n~p(n, t) = du nk(u)-Fs(u-- Kt) , 
II--O 

where n(u) is given by eq. (24). 
An exact calculation of the properties of the photon distribution is really quite 

complicated to do in practice, however a simple approximate result for the mean number  
of photons is obtained by setting in eq. (24) u = Kt  (e), i.e. 

J ÷ M  (26) ~(t)= ( J ÷ M ) ( J - - M ÷  1)sd2 k [ 2 J ÷  1]½t - - ~ .  
2J ÷ 1 2J ÷ 1] 

From this we gather that  ~(t) is a periodic function of the time, with period 

1 ( 2 +1) 
(27) T = . K ( 2 J q -  1)½ z + l n j - - M ÷  1 " 

(5) See ~¢I. ABR~OVITZ a n d  I .  STEGU~¢: l~andbook o] Mathematical Functions (New York) .  
(*) T h i s  r e s u l t  w o u l 4  b e  e x a c t  i f  F t ( ~ t - - f k )  w e r e  a v e r y  s h a r p  Imxet ion,  i n  t h e  l i m i t  d ( u - - t k ) .  

I n  t h e  a c t u a l  s i t u a t i o n  F:(u --tk) i s  n e v e r  a ~-f tmot ion,  b u t  i t s  s h a p e  is  d e t e r m i n e d  b y  t h e  s h o r t - t i m e  
so lu t ions  (6) a n d  (6a).  T h e  effect  of  t h i s  i s  e s s e n t i a l l y  t o  m u l t i p l y  (26) b y  ](t) w h i c h  is  a l m o s t  c o n s t a n t  
and a p p r o x i m a t e l y  e q u a l  t o  1, h a v i n g  i t s  m i n i m u m  fo r  t = T]2, a n d  b e i n g  a f ew  p e r c e n t  different 
f r o m  1 i n  t h e  w o r s t  case  M = J .  
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We now discuss fo rmulae  (26) and  (27) in the  two l imi t ing  cases M =  J and  M =  0. 
Fo r  M =  J .  i.e. when  all a t o m s  are in i t ia l ly  exci ted,  the  .~d func t ion  has  per iod  

1 
(28) 7' [~-~ In (2,1 - 1)] 

K ( 2 J  ~- 1)½ 

and  i ts  shape  a r o u n d  i ts  m a x i m u m  (25). which  occurs  at  T/2 ,  is v e r y  well  app rox -  
i m a t e d  l)y t he  f ime t ion  (5) 

(29) ~(t) = 2J  seeh~K(2J - - -  1)½(t-- T/2)  . 

We note  t h a t  t |w  ra t io  be tween  the  d u r a t i o n  of a single spike and  the  r epe t i t i on  
t ime  T is g iven  by  

2 
R . . . . .  ( < 1 .  

In (2 ,1+ 1) - -  n 

For  M--0, the  so-called s u p e r r a d i a n t  s ta te ,  the  pe r iod  is shor t e r ,  n a m e l y  

1 
( 3 0 )  T = - [.n + In 2] 

K ( 2 J  ~ 1 )~ 

and  t he  shape  of t~(t) is m u c h  sm¢)other ('~) a n d  R ~ I .  
W e  t m ' n  to the  d ispers ion  of the  p h o t o n  d i s t r i bu t i on .  Again  t he  use of (25) to e v a l u a t e  

(An) ~- ( ~ 2 ( t ) ) , -  ~,'~(t)) ~ is in p rac t i ce  qu i te  a rduous ,  b u t  we can ~'et a fa i r ly  good approx-  
i m a t e  e s t i m a t e  f rom the  f o r m u l a  

/ A ~ \  
(31) A,~ = \ I i E /  (~,~)o = a ( , , ) (~u)0 .  

This  f o rmu la  needs  at  leas t  two commen t s .  F i r s t  it c a n n o t  give accura te  resu l t s  when  
~.(u). as g iven  by  (24), var ies  to() d r a m a t i c a l l y  in t he  i m i g h b o u r h o o d  of u -  t K  as u 
var ies  by  (Au) 0. Sccend.  (Au)o i~ l lw cons t an t  dispers ion in the  t~-distr ibution to be  
ca lcu la ted  f rom tim r c q u i r t ' m e n t  t h a t  the  s h o r t - t i m e  sohl t ion  be jo ined  to the  so lu t ion  
of t he  pa r t i a l  d i f fe rent ia l  e q u a t i o n  (2o), i.e. 

t 
(32) (Au), = (An)t=t. ( ; (~ , )  . 

Fo r  M =  J ,  we h a v e  f rom (3l).  (32), (7). (8) and  (9), 

1 
(33) (Au)° = (2J- - -  1)-"} 

and  

(:~4) ~.. ~_ ,~(t) (1 -TJ/'(t)~½ 

wi th  the  w a r n i n g  t h a t .  according" to t he  first c o m m e n t  a f te r  eq. (31), t i le f ac to r  ill tho  
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square root should be replaced by a nonzero one for ~(t) extremely close to its maximum 
value 2J. 

The essential feature of (34) is that  the dispersion of the photon distribution tends 
to conserve the chaotic nature of the initial  distribution appropriate to purely spon- 
taneous emission. 

For M =  0, eqs. (31), (32), (9) and (10) lead to 

(35) 
[ n(t)~\ ½ 

= 

which is similar but  not quite the same as the dispersion of a binomial distribution. 
For ~(t)<< J it is hardly distinguishable from a Poisson distribution, and the state 
of the radiation field is coherent (~). This is exactly what one would have expected 
after observing that  in such a range of ~ the source of the radiation field (i.e. the trans- 
verse component of the total angular momentum) is essentially classical. A more com- 
plete description of this work shall be given in a separate paper. 

We want  to thank Prof. R. J. GLAUBER for useful discussions aHd:a:readiag of the 
manuscript.  
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