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ABSTRACT: A geological survey project, including the ex- 
ploration of nonrenewable resources, typically includes the 
following steps: planning of the survey, field mapping, acquisi- 
tion of data, achieving of data, processing and fusion of all 
relevant information, which are closely followed by an inter- 
pretation of the final survey results. In this process, important 
spatial data layers are topographic map, often digital elevation 
model (DEM), geological map, several sets of geochemical and 
geophysical survey maps, airborne or space-borne remote 
sensing data and, sometimes, old archived data. Each of these 
multiple layers of geological exploration data can first be 
preprocessed, and input into a chosen geographic information 
systems (GISs). This will be followed by information represen- 
tation and fusion steps for the final imaging of the processed 
and fused information. Most commercially available GISs 
however do not have information fusion and focusing capabili- 
ties. Users of the slected GIS must first be able to represent the 
preprocessed geological survey information with respect to the 
target geological hypothesis. In the case of mineral exploration, 
the target hypothesis can be a specific mineral deposit(s) being 
explored. 

Compared to the model driven exploration approach, the data 
driven geological exploration utilizes multiple sets of exploration 
data and there are several mathematical tools available for 
information representation and fusion. Some of these include the 
traditional probability approach, evidential belief function meth- 
ods, AI/Expert systems and the fuzzy logic approach. 

In this paper, the fuzzy logic approach of quantifying the 
exploration information with respect to the target hypothesis, 
and several of the fuzzy operators which are frequently used 
for geological resource exploration are critically reviewed. 
Although our understanding of the fuzzy information represen- 
tation and fuzzy operators is still incomplete, many case studies 
of applying fuzzy logic approaches to various exploration 
projects have concluded that the final fuzzy membership 
function maps or the final fuzzy theme maps are considerably 
more accurate than the results obtained using any conven- 
tional intuitive approach, including the brute stack of the 
exploration (spatial) data using a GIS. In general, the effi- 
ciency and accuracy of the final fused information with respect 
to the target hypothesis increases with the increasing number 
of geological exploration data layers. 

If  a specific Earth system model is available, or a mineral 
deposit model in the case of mineral exploration projects, is 
available or is known a priori, fuzzy logic approach can easily 
be combined with currently popular machine-reasoning pro- 
cesses such as the neural network approach. In this type of 
quantitative spatial reasoning and fuzzy logic information 
fusion, uncertainty and error analysis is also important. In 

most cases, propagation of errors and uncertainties can be 
handled and estimated in the same manner as the processing 
and fusion of main exploration data. 
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1. I N T R O D U C T I O N  

In resource exploration, it has been customary for a 
geologist to estimate and combine field survey informa- 
tion qualitatively, purely based on one's  knowledge and 
experience. In digital information processing, however, 
there have been serious attempts to quantify the observed 
information and associated uncertainties using entropy as 
demonstrated by Shannon (1948). Many scientific disci- 
plines including geophysical  inversion theory, however,  
have not adopted Shannon's concept until recently. In- 
stead, they tried to define the available information from 
various types of  laboratory experiments and field observa- 
tions and to draw qualitative conclusions. In geological 
resource exploration, many field surveys are limited to 
near-surface regions and produce data sets with incomplete 
spatial coverage even at the surface, due to logistical 
constraints. As a result, geologists routinely use intuitive 
expertise in geological reasoning and decision making 
processes. Many traditional data processing techniques 
adopted in geophysics have focused on inversion and 
statistical approaches (Mathai and Rathie, 1975), and 
they have very limited applications, often lacking spatial 
coverage and associated uncertainties. 

Geologists have recognized and accepted situations 
involving incomplete data sets and imperfect knowledge 
since the early days of  geological science. The problem 
of  imperfect knowledge has been rigorously tackled by 
philosophers, logicians and mathematicians for more than 
two thousand years. Although increasing numbers of  
geological scientists now use mathematical analysis tools 
and techniques that are based on statistics and probability, 
most applications are based on classical set theory as 
established by Georg Cantor (1845-1918).  Recently, how- 
ever, fol lowing developments  in computer  science and 
increasing volume and types of  exploration data, it has 
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become necessary for geological scientists to accept the 
new concepts of reasoning with imperfect knowledge 
from incomplete data sets, and to develop more accurate 
and reliable decision-making process. There have been 
many approaches to the problem of imperfect geological 
knowledge: traditional statistical theory, evidential belief 
function theory, Boolean reasoning, rough set theory 
(Pawlak, 1996), and fuzzy set theory proposed by Zadeh 
(1968). Fuzzy logic is also utilized in the classification of 
spatial themes in satellite data and also in many geophysi- 
cal data interpretation (Ishibuchi et al., 1996). In this 
paper, I will discuss the basic theory of the fuzzy logic 
approach in geological resource exploration applications. 

2. CLASSICAL S E T - - A  HISTORICAL BACK- 
GROUND 

Traditionally, geological scientists have relied on the 
classical set as developed by Georg Cantor. A set is a 
collection of objects or thoughts, within a certain realm, 
taken as a whole. Each object in the collection is called 
an element (or member) of the set. The notation 

a ~ A  

denotes that a is an element of the set A. In this case, we 
understand that a is a member of A or a belongs to A. 
This method of describing an object is comparable to the 
way a geologist maps an outcrop in the field and 
determines to which rock types the outcrop belongs, i.e., 

outcrop "a" E rock type "A". 

In general, this is a definite statement that the outcrop "a" 
belongs to a rock type '~4" as determined by the geologist. 

Consider, in turn, the same geologist who takes a 
magnetometer to the same outcrop and takes a reading in 
the hope of determining relative content of magnetic 
minerals in the outcrop. The magnetometer reading, X, 
read by the geologist, is a number calibrated with respect 
to the magnetometer design parameters. If this number is 
properly calibrated, it can indeed provide the geologist 
with a defmite percentage of the magnetic mineral. How- 
ever, if the geologist wishes to connect the magnetic 
survey data (i.e., the magnetometer reading) to a specific 
mineral deposit type, the magnetic survey data X can not 
provide 100% evidence that a specific mineral deposit 
exists at the location. The magnetometer reading X can, 
at best, provide an indirect indication of the target mineral 
deposit. In this context, the exploration data (i.e., magne- 
tometer reading X) represent partial information or 
"fuzzy" information about the exploration target and the 
mineral deposit hypothesis. 

The classical set satisfies algebraic roles, such as the com- 
mutative, associative, distributive, and absorption laws. 
Operations which assign each element of a set A to each 

element of a set B are said a mapping or transformation 
from A to B. Union and intersection of sets A and B are 
also defined as in the classical set theory (Iyanaga and 
Kawada, 1980). The first publications in fuzzy set theory 
were by Zadeh (1965) and Goguen (1967, 1969) and 
included the generalization of classical definitions of a set 
and propositions to accommodate fuzziness of the newly 
defined sets. 

3. THE BASIC CONCEPT OF A FUZZY SET 

Let us consider characteristic features of a real explora- 
tion process; real exploration data are very often uncertain 
or vague in a number of ways. Geological mapping of rocks 
in the field can be viewed as a definitive and deterministic 
step, even when one can dearly see the transitional change 
fi'om one rock type to another, because each rock type is 
defined by certain ranges of component minerals. In many 
real cases, however, problems become more difficult due to 
many factors which cannot be controlled by a geologist. In 
most exploration areas, bedrock is at least partially covered 
by thick overburden material and/or heavy vegetation. In 
such cases, even a sharp geological boundary has to be ex- 
trapolated under the overburden cover and the exact spatial 
extent of the geological unit becomes vague. 

Most geophysical survey data pose a similar problem 
to exploration hypotheses. The design of most geophys- 
ical instruments is precise and calibration of these 
instruments is also exact with respect to chosen refer- 
ences. However, the information content of each data set 
is vague and non-deterministic with respect to exploration 
hypotheses (e.g., lithologies, mineral deposit models, 
complex geological factors associated with hydrocarbon 
traps, etc.). Zadeh (198719) appropriately wrote: "As the 
complexity of a system increases, our ability to make a 
precise and yet significant statement about its behavior 
diminishes until a threshold is reached beyond which 
precision and significance become almost mutually exclu- 
sive characteristics". 

Due to incomplete information, the "final outcome" of 
an exploration task can not be known exactly. This type 
of inherent uncertainty, in the classical set theoretical 
sense, has often been handled by probability and statis- 
tical methods. In this situation, the events (elements of 
sets) or the statements are well defined and this kind of 
uncertainty or vagueness is called "stochastic uncertainty". 
In contrast, vagueness concerning the description of the 
semantic meaning of the events, phenomena or statements 
themselves, is what we call "fuzziness". Fuzziness can be 
found in many aspects of geological exploration, such as 
porosity of formation rocks, electrical capacitance of dis- 
seminated mineral ores, reflectance of outcrop rocks, and 
other deposit model parameters in exploration problems. 

Let X be a collection of objects denoted generically by 
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x then a fuzzy set A in X is a collection of ordered pairs: 

X = f i x ,  I x X}, 

where ~ ( x )  is called the membership function or grade 
of membership (or degree of truth) of x in A which maps 
X to the membership space M. (If M contains only two 
points and 1, _A is a non-fuzzy classical set). The range of 
the membership function is a subset of the nonnegative real 
numbers whose supremum is finite (Zadeh, 1965, 1987a, c; 
Zimmermann, 1984). 

4. CLASSICAL MEASURES OF FUZZY EVENTS 

Zadeh (1968) published on the probability of a fuzzy 
event and the axiomatic definition of fuzzy probability 
measures and he demonstrated that the fuzzy probability 
measures can be characterized uniquely either by a 
probability measure or a Markoff kernel. Zadeh (1968) 
defined the probability P of a fuzzy event A or a fuzzy set 
.4 whose membership function ~ta is measurable by 

/5 (A ) = S~A (x ) dp (x ) 

where p is some classical probability measure (Zadeh, 1968, 
1987a, b, c; Klement, 1980). The probability t5 has the 
following properties: 

(i) P ( 0 ) = 0  and P ( 1 ) = I  
(ii) P (A UB)+P(A nB)=P(A)+P(B) 
(iii) if (A,),~zu is an increasing sequence of fitzzy events then 

/5 ( U X , ) = s u p / 5 ( f i ) .  
n~lN n~lN 

The union and intersection of fuzzy sets are used in the 
usual sense here, i.e., union and intersection are expressed 
by the maximum and minimum of the membership func- 
tions respectively. 

A fuzzy probability measure is a function 

m : A ---* [0, 1], 

which fulfills the above properties (i), (ii), and (iii) among 
many others which are satisfied by many classical prob- 
ability spaces (Klement, 1980). 

5. FUZZY O P E R A T O R  

The membership function is the fundamental compo- 
nent of a fuzzy set and operations with fuzzy sets are 
defined via their membership functions (Zadeh, 1965). 

The membership function ktMtu(x) of intersection of a 
fuzzy set.4 is defined by 

~I~MIN(X ) = min {~ta-(x), ~th-(x)}, x~X.  

This intersection operator is also called the "fuzzy AND" 

operator or "MIN" operator in some publications (An et al., 
1991; Bonham-Carter, 1994). The membership function 
~M~(x) of the union D=A UB is point-wise defined by 

~tMAx(X ) = max {~t%(x), ~t,-(x)}, x~X.  

As above, this operation is called the "fuzzy OR" or 
"MAX" operator. This operator behaves like the Boolean 
OR and the output membership values are controlled by 
the maximum values of the input information. The 
membership function of the complement of a fuzzy set A, 
~tc(x ) is defined by 

la~(x)----1-/.tA(x ), x ~ X .  

In addition to the above basic operators, there is a large 
number of operators, many of which are specially design- 
ed for specific applications in complicated engineering 
problems. Some of these operators are also used effec- 
tively in the spatial data fusion applications of geological 
exploration data (An, 1992; Bonham-Carter, 1994). A 
combined membership function p~,b(x) of a fuzzy set A 
is defined as 

n 

i=1 

where ~ti(x) is the fuzzy membership function for the ith 
subset of A. (In a geological exploration application, the 
subscript i may represent individual map layers to be 
combined). In this case, the combined fuzzy membership 
values tend to be very small due to the effect of multiply- 
ing several numbers smaller than 1.0. This fuzzy operator 
is also called fuzzy algebraic product operator. The next 
useful fuzzy operator is the algebraic sum operator, which is 
defined by 

n 

1 -I-[(1  -rti)- 
i=1 

The algebraic sum operator is complementary to the alge- 
braic product operator and the result is always greater 
than or equal to the largest contributing fuzzy member- 
ship value. This operator can be used when there is an 
evidence that supports the chosen exploration hypothesis 
and the combined evidence is more supportive than in- 
dividual pieces of evidence. Another useful fuzzy opera- 
tor is the ~/(Gamma) operator which was proposed by 
Zimmermann and Zysno (1980). The membership func- 
tion ~(x) of the combined fuzzy algebraic product and 
fuzzy algebraic sum operation is defined by 

~t~(x)= (Fuzzy algebraic stan)r, (Fuzzy algebraic product )O-~, 

where 7 is a parameter chosen in the range (0, 1). When 
Y is 1, the combination is the same as the fuzzy algebraic 
sum and when 7 is 0, the combination is same as the 
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fuzzy algebraic product result (An, 1992). Therefore, care- 
ful choice of Y can produce output membership values 
which can ensure a flexible compromise. 

In geological application of digital data fusion, the 
available data or spatial data have, in most cases, varying 
degree of information content with respect to the chosen 
exploration hypothesis. In such cases, it becomes necessary 
to use several different fuzzy operators separately or a 
combination of selected operators depending on the char- 
acteristics of each data layer (Moon and Jiang, 1995; 
Moon et al., 1998) The situation is similar for oil and gas 
exploration application, utilizing a fuzzy logic approach. 
If one attempts an integrated imaging of well-log data, 
surface seismic and VSP data, and associated reservoir 
characteristics, the information content of each data set 
will be considerably different with respect to the hydro- 
carbon deposit model of the study site. In such a case, the 
relationship between each data set with respect to the 
specific hydrocarbon deposit model will favor a certain 
fuzzy operator or a combination of several fuzzy operators. 

6. FUZZY I N F O R M A T I O N  R EPR ESENTAT ION 

Most geological exploration tasks include multiple sets 
of spatial data layers. They include geological maps, 
geochemical data, geophysical data and other auxiliary 
information. To carry out a systematic integration (or 
fusion) of these types of spatial data towards a chosen 
exploration hypothesis, there are several steps to follow: 
preprocessing of individual data layers, information 
representation, integration (digital fusion), visualization, 
and decision making (Moon, 1995). Assuming that all 
exploration data are properly digitized, the preprocessing 
and geocoding steps with the exception of certain spe- 
cialized processing tasks can be carded out utilizing any 
of a number of available commercial and public domain 
geographic information system (GIS). 

6.1. Exploration Data--Spatial Data 

Definition of spatial data may vary slightly depending 
on applications. In resource exploration, the data gather- 
ing step usually comes first along with field work. 
Information layers obtained from field observation or 
field measurements using specific instrumentation are 
called "spatial data" which are often symbolic models or 
a collection of symbols. As an example, a geological map 
is a symbolic model that includes all the geological 
symbols mapped in the field. Most survey data for non- 
renewable resource exploration are thus spatial data, 
whereas many of the data sets used in renewable resource 
studies also include (multi-) temporal information. In 
hydrocarbon and mineral exploration, the most important 
and basic information layer is the geological map. The 
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Fig. 1. Typical spatial data layers in resource exploration. 

next most important spatial data is the topographic map, 
including both paper and digital maps, necessary as a 
base map. 

Other types of exploration data include geological struc- 
ture maps, geochemical survey data, well-log data and 
geophysical survey data, including various types of seismic 
survey sections (Fig. 1). These real world observations and 
measurements are characteristic of the instrument adopted 
and the personnel involved in the survey, and are usually 
represented by field variables and spatial objects. Definitions 
and detailed description of spatial objects are given in many 
textbooks (e.g., Bonham-Carter, 1994; Burrough, 1986) and 
will not be repeated here. 

Spatial objects are usually described in terms of 
dimensions (0-D, l-D, 2-D, and 3-D) and in terms of 
mode of occurrence at the time of observation. Observed 
gravity values at each gravity station and geochemical 
analysis results of samples at each sampling site represent 
point data and they are typical 0-D data. Lithological 
boundaries of geological formations are 1-D spatial ob- 
jects and anomalous zones on a geochemical map represent 
2-D spatial objects. Similarly, a geometric description of 
a subsurface ore body constitutes a 3-D spatial object. 
Salt domes and underground cavities are also 3-D spatial 
objects. In applications where the geometric dimension, n, 
is more than 3, such as multi-spectral remote sensing data, 
a feature defined by each spectral window datum can be 
described as a hyperspectral or n-D spatial object (Bene- 
diktsson et al., 1997). 

6.2. Spatial Reasoning in Non-renewable Resource 
Exploration 

An exploration project involves several steps: planning, 
field survey, data processing, digital data integration or 
data fusion, visualization of the fused information with 
respect to the target proposition, interpretation and deci- 
sion making. Among these steps, the information represen- 
tation, digital data fusion, visualization, interpretation and 
decision making steps are often collectively referred to as a 
spatial reasoning process, a term probably derived from the 
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Fig. 2. Block diagram of spatial data processing steps. 

discipline of artificial intelligence (AI) and expert system 
study in computer engineering (Fig. 2). 

In a mathematical form, the spatial data fusion steps 
may also be explained as a mapping or a transformation 
between the raw field data and the final, digitally fused, 
information with respect to a chosen exploration hypothe- 
sis. Suppose that n maps represent various exploration 
data such as geology, specific geochemical survey data, 
etc. in a prospecting area A. Evidence contained in the 
ith layer of the n map database can be denoted by Ek (k--- 
l, 2, 3, ..., n). The complete set of the n layer database in 
A may be written as 

E={E1, E2,--', E~}. 

For each layer of exploration data, information representa- 
tion may be scaled with respect to the target hypothesis 
in such a way that 

gk : Ek ~ [0, 1], 

where yk(e) represents the actual information content with 
respect to the exploration target model. Here gk(e) also 
defines a mapping G(E) from the observed data space to 
the exploration information space. 

Suppose that dk(e) is defined as the "probability" that e 
of Ek is related to having an exploration target at a point p 
in A where the observation e is made. Here the word 
"probability" does not necessarily have the same meaning 
as in "probability and statistics". The mapping dk for each 
layer of exploration evidence, Ek represents the degree of 
"compatibility" of the observation e at p in A (Moon, 1993). 
Let us now define a proposition ET (exploration target) that 
a point p in A belongs to a deposit of the target type. A 
membership function 

Uk(ETle)=dk(e) 

then represents the degree of certainty that p is a member of 
the set of points which belong to a deposit, given e in A. 

Now consider a set of n observed values {el, ez, "" ", e,} 
of pieces of evidence {El, E2, "", E,} at a point p in A. 
Supposeare {dl, d2, "", d,} are defined on {El, Ez, "", E,}. 
We then have representations {dl(el), d2(e2), "-', d,(en)} at 

the point p where the observations are made for ET. We 
now wish to integrate these n representations into one 
single function. The integration rules depend on the in- 
terpretation of the mapping used (Moon, 1993). In 
general, a traditional probabilistic approach has been used 
most frequently, however an evidential belief function 
approach has also been used (Moon, 1990; An, 1992; 
Bonham-Carter, 1994). Although the basic concept is 
very similar, the mathematical details and interpretation 
of the results are quite different. 

Suppose we now have the fuzzy membership function, 
Uk(ETte)=dk(e ) for all k =1 ,  2, 3, ---, n for each layer of 
evidence {el, e2, - ' ,  e,} at a point p in A. Now, our task 
is to define a membership function from membership 
functions U~(ETk). This can be accomplished using 
many different types of operators available in fuzzy set 
theory as discussed above. Choice of operator or 
operators depends on the exploration hypotheses (model) 
and the data sets available. Among the fuzzy operators 
listed above, the fused membership function using the 
algebraic sum operator takes the form of 

n 
U(ETIel, e 2, - - - ,  en)=EUk(ETlek) 

k=l  

+ s  s Uk(ETIek) Ui(ETIej)+"" 
k=l  j=k+ 1 

+ (-1)"UI(ET ]eO"'Un(ET le,) 

and similarly the fused membership function using the T- 
operator is 

E ; U(ETIe 1, ea,"-, en)= l-'I gk(ETlek) 
k=l  

-[X-~__I(1-Uk(ETIe~))] 7 

w h e r e 0 <  T<-- 1. 
Spatial information representation and fusion procedures 

using classical probability and evidential probability are 
similar in their basic approach. The data layers collected 
from an exploration project are represented with conditional 
probabilities Probk(elET ) that the observation e of Ek is 
made at a point p with a condition that the location p 
contains target deposit. One then can combine the individual 
target probability contributions using Bayes theorem (Moon, 
1993). Similarly, if an evidential belief function is used for 
representing multiple layers of exploration data, Dempster's 
rule can be employed for fusion of the multiple layers of 
exploration data (Moon, 1990; 1993). If there are unsur- 
veyed or missing sections of data, an evidential belief 
function approach is particularly effective because of further 
quantization of spatial information (or unknowns) in terms 
of plausibility and ignorance functions. These two additional 
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mappings of plausibility and ignorance along with the 
weighted evidential belief function representation make the 
final decision making process considerably more accurate 
and precise. This unique feature may be crucially important 
with exploration projects with sparse survey coverage. 

7. APPLICATION FORMULATION 

Digital data fusion of multiple layers of exploration 
data is, in fact, a mapping process, which transforms 
multiple layers of unweighted survey data into a single 
fused layer of information tuned towards the exploration 
target. Let [E, U(ETIE)] be the multiple sensor input and 
output vector pairs where E = {El, E2, "", E,} is the input 
exploration data and U(ET[el, e2, "" ", en) is the final fused 
information. The mapping ~ can then be defined such that 

U(ETIe l ,  e 2 , " "  , en)=a (w, E)  + e ,  

where the final fused information layer U(ETIe, e2, " ' ,  e,) 
is the final m dimensional output depending on the 
problem formulation, w represents the weighting for each 
exploration data layer with respect to the chosen explora- 
tion model (or target hypothesis), and e={el, ~, ---, e,,} is 
an error vector associated with U(ETIel, e2, "'" e,,). Even in 
a single exploration area with a given set of survey data, 
w can be quite different depending on the target 
deposition model, therefore, the mapping ~ includes two 
stage mapping: information representation and digital fusion 
(Moon, 1993). 

8. FUZZY-NEURAL NETWORK 

Fuzzy set theory has relatively well understood for 
approximate reasoning and fusion of geological explora- 
tion data (An et al., 1991; An, 1992; Moon, 1993; 
Bonham-Carter, 1994). Although fuzzy set theory has 
also been applied successfully in various fields of science 
and engineering, there still exists two difficulties: lack of 
guidelines to decide or adjust the membership functions 
of fuzzy variables, and short of algorithms for automatic 
role generation. Therefore, many investigators have recently 
tried to combine the concepts of neural network with fuzzy 
set theory to overcome problems (Takagi and Hayashi, 1991; 
Yager, 1992). 

Generally neural networks are good at approximating 
nonlinear systems as the fuzzy set theory is used for 
simplifying nonlinear information structure. Learning 
ability, parallel processing and distributed knowledge 
representation are the major features of neural networks. 
On the other hand, the neural network suffers from 
unstructured knowledge representation, opposite to the 
structured knowledge representation in fuzzy systems. 
Therefore, the combination of the two theories would be 
able to provide a new paradigm to model realistic, often 
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Fig. 3. Structure of three layer fuzzy neural network for ex- 
ploration data processing and fusion. 

nonlinear exploration models with high degrees of uncer- 
tainty. Fuzzy neural networks are increasingly used in 
many other disciplines, particularly in engineering control 
system applications (Yager, 1992; Hauptmann and Heesche, 
1995; Yao and Kuo, 1996). 

A schematic diagram of a three-layer fuzzy neural 
network structure is shown in Figure 3, representing a 
multiple data set exploration project. In many engineering 
problems, the hidden layer can be adequately trained with 
the known input and an expected or desired output, 
however, many geological exploration tasks depend on 
either a selected deposit model or models, in which case 
the hidden layer will closely represents the deposit model 
and the exploration reasoning process will depend largely 
on the model parameters. If one chooses to adopt a data- 
driven exploration approach, the hidden layer can pose 
problems because the final output is completely unknown 
in many resource exploration problems and the hidden 
layer cannot be trained adequately. 

With the evolution of second generation fuzzy systems, 
a considerable amount of research has focused on the 
integration of fuzzy logic and artificial neural networks, 
giving birth to neuro-fuz~ systems or an Integrated Neuro- 
Fuzzy System (INFS). The term neuro-fuzzy generally 
refers to the fusion of fuzzy systems and neural networks 
with the aim of combining the advantages of both para- 
digms and at the same time compensating for the inade- 
quacies with respect to the target hypothesis. In many 
exploration problems, the deposit models are neither robust 
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nor universal, and an application of a neural network 
approach of data fusion does not appear to be suitable. 
But some of the data layers such as a set of geophysical 
data can be modeled using a specific mathematical model, 
in which case an optimized inversion of limited amount 
of observation may be used for training of the hidden 
layer. In the data-driven exploration model, we usually 
do not have any background information with respect to 
the exploration hypothesis and we have to guess the in- 
formation content of the observed input data. Subsequently, 
the choice of fuzzy operators that will replace some of the 
hidden elements of the neural network to be adopted can be 
somewhat arbitrary. 

9. ERROR AND UNCERTAINTY ANALYSIS 

There are, in general, two types of uncertainties and 
errors in integration and fusion of exploration data sets. 
The first type of error and uncertainty is introduced to the 
data from the beginning when experiments are carried out 
or when the field surveys are performed. Analysis of this 
type of error and uncertainty is relatively well established 
and there are several methods of estimating and evalua- 
ting them. The second type of error and uncertainty is the 
one introduced during the information representation and 
digital fusion of the preprocessed information layers 
because of vagueness of the original information conta- 
ined in the data sets with respect to the exploration target. 
The impreciseness of mathematical operators employed 
during the digital fusion stage introduces additional uncer- 
tainty (An et al., 1994). This has been an inherent 
problem with data fusion using both fuzzy logic and 
evidential belief function approaches. In a neural network 
approach, the design of the network and training of the 
neurons using both the input and output information can 
minimize this type of error or uncertainty. 

The fusion of exploration data discussed above inclu- 
des independent interpretation of each data layer Ek (k= 1, 
2, 3, ..., n) and mapping of the data into a fuzzy space, 
assigning membership fimctions to each data object. 
These errors and uncertainties associated in the fuzzy 
membership functions subsequently propagate through the 
entire reasoning process towards the final membership 
function (An, 1992). In the above, the algebraic product of n 
membership functions is given as 

n 
~J~c~ (X ) = H ~ti " 

i=1 

Let B-i be the algebraic product with the ith term deleted i.e., 

Then, we have 
a~tp 
a/xi = ~t_/. 

Let ei be the error term associated with the membership 
function from the ith Ei. The error, ep, associated with 
algebraic product can be estimated using Taylor 
expansion with the second and higher terms ignored and 
is given as 

n 

Ec~ ~ Z ~J'-i Ei 
i~1 

,~, ei 

The ~p can then be further normalized using the resulting 
membership function g. The normalized error is, in fact, 
the relative error. Similarly, if we denote the algebraic 
sum discussed above as 

n 

~tA_SV u = 1-1--I (1 -- ~'s 
i=1 

= I - v  

n 

where v = I - I ( 1 -  ~t i), the relative error associated with the 
l=1 

algebraic sum operation becomes 

V s Ei 
aA- SUM - -  I -- V l - -g / "  

l=1 

In the case of the 7-operator, the relative error in the final 
fused information becomes 

er=(1 _ ~ ecom b .91- F_,A._SU M 

(An, 1992; Moon, 1993). Numerical computation of the 
above errors which propagate through the fusion (or 
aggregation) processes is a relatively easy task, whereas 
quantitative estimation of the errors and uncertainties 
introduced through information representation and data 
fusion operators is considerably difficult. 

Another further complication is the fact that, as dis- 
cussed above in Section 7, the multiple layers of data sets 
which we collect in the field for a specific exploration 
project are often inter-linked through a very complex 
deposit model. Some of these data sets are even depen- 
dent on each other, making the whole data fusion process 
even more complicated (Jiang et al., 1997). 

As we discussed at the beginning of this paper, the 
membership functions are relative. A fuzzy membership 
function close to 1.0 does not necessarily mean certainty 
with respect to the target hypothesis. If, however, the 
final fused membership value is higher at one location 
than at another, it does mean that the possibility for the 
target proposition is higher at the former location than at 
the latter. The errors or uncertainties propagated through 
the fusion of various exploration data layers do not 
necessarily have the same precise meaning. In this sense, 
the interpretation of the errors and uncertainties in the 
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final results is more vague than the error analyses of 
many physical experiments. 

10. CONCLUSION 

Exploration strategies for non-renewable resources have 
been changing rapidly along with the accelerating innova- 
tions in computer hardware and information processing 
technology. Although the basic philosophy of geological 
exploration remains the same, the methodology has been 
changing to the extent that we now utilize multiple sets 
of exploration data simultaneously, and visualize the final 
target information in an optimum way with minimized 
uncertainties. There are still a number of areas for further 
investigation and many of the mathematical tools we 
employ require further research. The main problem we 
can identify at this point is the exact quantization of the 
field survey data. There are several ambiguities. First, 
most exploration data we collect in the field are I-D, 
2-D, and rarely 3-D, whereas almost all exploration 
targets are 3-D. This requires interpolation of the avail- 
able information by a geologist utilizing, in the past, his or 
her own expert intuition, but recently more utilizing 
accurate and more sophisticated mathematical approach. 
Second, most exploration equipment we routinely use is 
designed based on simple principles with a limited number 
of parameters representing the overall physical characteris- 
tics. Therefore, the survey data we collect with these in- 
smLrnents can provide us with only partial information. 

To overcome the inherent ambiguities in modem explora- 
tion techniques (see above), exploration geologists have 
used several mathematical tools such as statistical and 
probability theory, fuzzy logic approach of quantizing 
vagueness, and evidential belief function method in addition 
to the conventional data processing techniques. 

The fuzzy set approach of converting exploration field 
data into exploration information is not exact in mathemat- 
ical sense but provide us with an opportunity to carry out 
spatial reasoning process with less subjective human in- 
tervention. It also improves the consistency of exploration 
data processing and considerably reduces mistakes. How- 
ever, one of the problems of using fuzzy logic approach 
to processing exploration data lies in the availability of 
optimum operators with respect to the target proposition. 
Many of the simple fuzzy operators being used by 
geologists now are designed by engineers for different 
applications and there is no one fuzzy operator which can 
adequately be utilized for all deposit models (Jiang et al., 
1997). It may in fact be impossible to expect one fuzzy 
operator to integrate and fuse multiple sets of exploration 
data. Even for one type of base metal exploration, several 
fuzzy operators are used in parallel and some in com- 
bination (Moon and Jiang, 1995; Jiang et al., 1997). 
Application of fuzzy operators both in parallel and/or 

in combination can adequately fuse partial information 
contained in each data layer with respect to the target 
hypothesis. The problem of conditional dependency of 
certain data layers can also be resolved in this approach. 
A marriage of fuzzy information representation and fuzzy 
reasoning process with neural networks can provide more 
effective and accurate solution, however, development of 
a neuro-fuzzy system for resource exploration problems 
requires further research and investigation. 

Error and uncertainty analysis is an important step in 
any integrated exploration data processing. There are two 
types of errors and uncertainties in fuzzy data fusion and 
information imaging of exploration data. The errors and 
uncertainties originating from direct experiments and field 
survey can be adequately estimated following the traditional 
approach. The errors and uncertainties introduced from the 
fuzzy membership assignment and during the application of 
fuzzy operator(s) are, however, considerably more complicat- 
ed and again require further investigation and research. 
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