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C R I T E R I A  F O R  S E C O N D  O R D E R  

Q U A S I L I N E A R  D I F F E R E N T I A L  E Q U A T I O N S  

T. KUSANO (Fukuoka) and Y. NAITO (Kobe) 

1. I n t r o d u c t i o n  

We are concerned with the oscillatory (and nonoscillatory) behavior of 
quasilinear differential equations of the form 

(A) ( p ( t ) l y ' l " - l y ' )  ' -~- q ( t ) l y r - l y  • o, t ~ a, 

where a and a are positive constants and p(t) and q(t) are continuous func- 
tions on [a, oo). We assume throughout the paper that p(t) > 0 and q(t) >= 0 
on [a, oo), and 

(1.1) dt 
(p(t)) 1/~ < ~ "  

By a solution of (A) we mean a function y 6 C 1 [T~, c~), Ty => a, which has 
the property ply'la-ly ' 6 CI[Ty, c~) and satisfies the equation at all points 
t >= Ty. The solutions vanishing in some neighborhood of infinity will be 
excluded from our consideration. A solution of (A) is said to be oscillatory if 
it has an infinite sequence of zeros clustering at t = ~ ;  otherwise a solution 
is said to be nonoscillatory. 

A striking similarity existing between (A) and the linear equation 

(B) (p(t)y')' + q(t)y = 0, t > a, 

was observed by Mirzov [6,7] and Elbert [1,2], who showed in particular that  
Sturmian theory (e.g. separation and comparison theorems) for (B) could 
be extended in a natural way to (A). Thus it is shown that all solutions 
of (A) are either oscillatory or else nonoscillatory, so that the possibility of 
coexistence of oscillatory and nonoscillatory solutions is precluded for (A). 
We say that (A) is oscillatory [resp. nonoscillatory] if all of its solutions are 
oscillatory [resp. nonoscillatory]. 

The main objective of this paper is to establish criteria for oscillation 
and nonoscillation of (A) emphasizing a further similarity between (A) and 
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(B). The criteria presented in Section 3 will then be used to characterize the 
phenomena of strong oscillation and nonoscillaton of the differential equation 

(A~) ( p ( t ) l y ' l " - l y ' )  ' + A q ( t ) l y l ~ - l y  - O, t > a, 

where )~ > 0 is a parameter. By definition, (A~) is strongly oscillatory [resp. 
strongly nonoscillatory] if (hA) is oscillatory [resp. nonoscillatory] for every 

> 0; (A~) is defined to be conditionally oscillatory if there exists a constant 
Ao > 0 such that (A~) is oscillatory for every ~ > ~0 and is nonoscillatory for 
every ~ < ~o. Such a constant ~0 is referred to as the oscillation constant of 
(A~). This definition follows that of Nehari [8] for the linear equation 

(B~) (p(t)y')' + Aq(t)y = O, t > a, 

and our result for (A~) stated in Section 4 is designed for a natural general- 
ization of Nehari's oscillation theorem [8]. The results for (A) and (A~) find 
apphcation to quasilinear degenerate elliptic partial differential equations of 
the type 

N 

D~(tDu]m-2Diu) + c(txl)lul - u = o, 
i=1 

x E E~, 

where m > 1, N > 2, Di = O/Oxi, i = 1 , . . . , N ,  D = (D1 , . . . ,DN) ,  E~ = { x 
e RN: [xl > a},  a > 0, and c(t) is a nonnegative continuous function on 

In the main body of the paper extensive use is made of the function 

~t r176 d s (1.2) 7r(t) = = (p(s)) 1/a' t > a, 

which is well-defined because of (1.1). We note that the study in the same 
spirit of (A) in which p(t) satisfies the condition 

~ dt 
(p(~) lla -- O0 

has already been made by Kusano, Naito and Ogata [4] and Kusano and 
Yoshida [5]. 
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2. Gene ra l i zed  Riccat i  equation and comparison t h e o r e m  

In this section of preparatory nature we first demonstrate a close con- 
nection between (A) and the first order differential equation 

(2.1) u' + q(t) + a(p(t))  -4  [u I o = 0 

which may well be called a generalized Riccati equation, and then on the 
basis of this connection we establish a comparison theorem of HiUe-Wintner 
type for a pair of equations (A) and 

(2.2) (p(t)lz']'~-lz') ' + Q( t ) l z l" - l z  = O, t > a, 

where Q : [a, oo) --, [0, ~ )  is a continuous function. 

TH~,OP, EM 2.1. The equation (A) is nonoscillatory if and only if the gen- 
eralized Riccati equation (2.1) has a solution defined in some neighborhood 
of  infinity t = ~ .  

PROOF. If y(t) is a solution of (A) such that y(t) # 0 for t > to, then the 
function 

(2.3) u(t) = p(t),r l "- ly l ( t  ) 

t . -1  t l y()] y() 
satisfies (2.1) for t > to. Conversely, if u(t) is a solution of (2.1) defined on 

�9 [to, oo), then it is easy to verify that the function 

y ( t ) = e x p  P-~I  PiS) 'ds ' t e [ t ~  

satisfies (A) for t > to. 

A further analysis of (2.1) yields another characterization for the nonoscil- 
lation situation of (A). 

THEOREM 2.2. The equation (A) is nonoscillatory if  and only if 

(2.4) (Tr(t))~+lq(t)dt < 

and there exists a continuous function u : [to, cr --~ R, to > a, such that 

(2.5) (~( t))%(t)  is bou.ded on [to,~), (~( t ) )"u( t )  >= - 1  for t >= to, 
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and 

(2.6) 
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(Ir(t))~+'u(t) 

>= (~(s))O+lq(s)ds+(a+ 1) (p(s))--~(~r(s))au(s)ds 

f f  ' --~Ot (p ( .S ) )  -- ~" ( 7t" (,S)) a + l  I ?.t(8) I a+l  ~ ds,  t > to. 

LEMMA 2.3. Let y(t) be a solution of (A) such that y(t) ~ 0 .for t > to. 
Then, y(t) is bounded on [to, oc) together with 

(=(t)) ~p( t) l y'( t)t ~-ly ,(  t) 
l y ( t ) l~- ly ( t )  �9 

(2.7) 

Furthermore 

(2.8) 

and 

(2.9) 

(Tr(t))~p(t) ly'(t)lo-ly'(t) > -1,  t > to 
ly(t)l~-'y(t)  = = 

l imsup (lr(t))C~p(t) ]y'(t)lc~-ly'(t) < O. 
t-,oo ly(t)l~-ly(t)  = 

PROOF OF LEMMA 2.3. We may assume that  y(t) > 0 for t >= to. Since 

p(t)ly'(t)]~-ly'(t) is nonincreasing by (A), we see that  y'(t) is eventually 
of constant sign, that  is, y'(t) > 0 for t >= to or there is tl > to such tha t  
y'(t) < 0 for t ~ t l ,  and that  

1 1 
(p(s))-~y'(s) ~ (p(t)) ~y'(t) for s ~ t ~ to. 

1 
Dividing the above by (p(s)) z and integrating it over [t, v] gives 

1 ~t "~ ds (2.1o) y(~-) <= y(t) + (p(t)) %'(t)  1, ~- >_ t > to. 

If y'(t) > 0 for t >= to, then we have from (2.10) 

1 
y(~) <_ y(t) + (p(t)) ~r ~ > t >_ to, 
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which shows tha t  y(t) is bounded on [to, or If y'(t) < 0 for t > t l ,  then  y(t) 
is clearly bounded  and, lett ing r ---, or in (2.10), we have 

1 
0 < y(t) + (p(t)) "Zy'(t)~r(t), t > to. 

In either case we obtain 

lr(t)(p(t)) ~ y'(t) > -1 ,  t > to, 
y(t)  = = 

of which (2.8) is an immedia te  consequence. 
The  relation (2.9) trivially holds if y'(t) < 0 for t => t~, since in this case 

the  function (2.7) itself is negative for t >= tl. If y'(t) > 0 for t >_ to, t hen  
there  exist positive constants  cl and c2 such tha t  

y(t) > cl and p(t)ly'(t)lo:-ly'(t) < c2 for t > to, 

which implies 

C t ,  l y ' ( t ) !~  < c~ 
) ]y( t ) l~-ly( t )  = c~' t > t o .  

Since ~r(t) --+ 0 as t --* ~ ,  we then  conclude tha t  

lira (Tr(t))ap(t) ly'(t)10:-ly'(t) = O. 
o:--1 ~- '~  ly(t) l  y(t)  

This proves (2.9), and the proof  of the  l emma is complete.  

PR oo~  o~" THEORZM 2.2. (The  "only if" par t . )  Let y(t) be a solution 
of (A) such tha t  y(t) ~ 0 for t > to. Define u(t) by (2.3). By Theorem 2.1 

u(t) is a solution of (2.1) on [t0, oo). We now mult iply  (2.1) by (~r(t)) ~+1 
and integrate  over [t, r], r > t > to, to obtain 

(2.11) (Tr(r)) o:+lu(~-) - (~r(t))o:+lu(t) 

+ ( ~ +  1) ( p ( s ) ) - z ( r r ( s ) )~u ( s )d s+  (Tr(s))o:+lq(s)d~ 

+ ~  ( p ( ~ ) ) - ~ ( ~ ( ~ ) )  u ( , )  I o e~ ; o, ,- _> t _> to. 

In view of the  boundedness  of (~r(t))0:u(t) (cf. Lemma  2.3) we see tha t  

Acta Mathematica Hungarica 76, 1997 



86 T. KUSANO and Y. NAITO 

and 

for any t __> to. Therefore, letting r ~ oo in (2.11), we find that  
f[,o ~r~+l(s)q(s)ds is convergent, i.e., (2.4) holds, and 

+(ct+ 1) (p(s))--~(~r(~))%(s)ds 

establishing (2.6) with equality sign. That (~r(t))~u(t) >= - 1  for t > to fol- 
lows from Lemma 2.3. 

(The "if" part.) Suppose that (2.4) ho~as and let u(t) be a continuous 
function having the properties (2.5) and (2.6). Let C[to, ~ ) b e  the Prfichet 
space of all continuous functions on [to, ~ )  with the topology of uniform 
convergence on every compact subinterval of [to, ~c). Consider the set 

(2.12) v =  {veC[to,~):-l<=v(~)<=(~(t))%(t), t>=to}, 

which is a closed convex subset of C[to, oz). Define the mapping F : V  
C[to, oo) by 

(2.13) ~r(t)(Fv)(t)- ' (~r(s))c'+tq(s)ds+(a+ 1) (p(s))--~v(s)ds 

+a (p(s))--~lv(s)l ~ ds, t > to. 

If v C V, then from (2.13), (2.12) and (2.6) it follows that 

(rv)( t )  4__ ( r ( r~u) ) ( t )  <= (Tr(t))"u(t), t >= to, 
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and 

~r(t)[(Fv)(t)+ 1] 

= ( p ( s ) ) - ~  ~ v(~ ~ + (~ + 1)v(s) + 1 d~ = o, t ~ tO, 

where we used here also the property that the function a]~[ ~e~ + (a + 1)~ is 
strictly increasing for ~ => -1 ,  i.e., 

(2.14) al~[ ~-e~9- + (a + 1)~ + 1 => 0 holding for ~ _>_ -1 .  

This shows that F maps V into itself. It can be shown in a routine man- 
ner that F is continuous and F ( V )  is relatively compact in the topology 
of C[t0, oo). Therefore, by the Schauder-Tychonoff fixed point theorem, 
there exists an element v E V such that v(t) = (Fv)(t),  t > to. Define w(t) 
= v(t)/(Tr(t))".  Then, in view of (2.13), w(t) satisfies the integral equation 

j O0 
( z r ( t ) )a+lw( t )  = (w(8)) a+lq(8) ds 

+(~+ ~) (p(s)) - ~ (,~(s)) % ( s )  es 

+ .  ( p ( s ) ) - 5 ( , ~ ( s ) ) ~  t____to. 

Differentiating the above and dividing by (~r(t))a+l shows that  w(t) solves 
the generalized Riccati equation (2.1) for t _>_ to, and the desired conclusion 
that  (A) is nonoscillatory follows from Theorem 2.1. This completes the 
proof. 

We note that the "only if" part of Theorem 2.2 provides the following 
simple oscillation criterion for (A). 

THEOREM 2.4. The equation (A) is oscillatory if 

~a ~176 (2.15) ( ~r(t)) ~+lq(t) dt = oc. 

It is now natural to ask what can be said about the oscillatory behavior 
of (A) with q(t) satisfying 

f O0 (2.16) ( ~ ( t ) ) ~ + l q ( t ) ~ t  < oo. 
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An answer to this somewhat delicate question will be given in the next sec- 
tion with the help of a Hille-Wintner type comparison theorem below. 

TItEOREM 2.5. Consider the equations (A) and (2.2) subject to the con- 
ditions (1.1) and 

(2.17) (Tr(t))"+aq(t)dt < c~, (~r(t))O+XQ(t)dt < ~ .  

Suppose that 

(2.18) (Tr(s))"+lq(s)ds < (Tr(s))"+lQ(s)dt, t > to. 

Then, the nonoseillation of (2.2) implies that of (A), or equivalently, the 
oscillation of (A) implies that of (2.2). 

PRooF. Assume that (2.2) is nonoscillatory. Then, by the "only if' part 
of Theorem 2.2 applied to (2.2), there exists a continuous function u : [to, oc) 
--+ R, to => a, satisfying (2.5) and 

(2.19) 

+~ 

f t  ~176 
(Tr(t))a+'u(t) >_ (Tr(s))a+lQ(s)ds 

~C~O 1 
+(~+ 1) (p(s))-~(~(s))  %(s) es 

f t  oK) 1 (~ (p(s))-~(~(s))~+ll~(s) l  ~ d~, t => to. 

Using (2.18) in (2.19), we see that u(t) satisfies tbe integral inequality (2.6) 
for t >= to, and hence that (A) is nonoscillatory by the "if" part of Theorem 
2.2. This finishes the proof. 

3. Genera l ized  Euler  equa t i on  and oscillation criteria 

The goal of this section is to prove the following theorem giving oscilla- 
tion and nonoscillation criteria for (A) subject to (1.1) and (2.16). 

THEOREM 3.1. Suppose that (1.1) and (2.16) are satisfied. 
(i) (h) is oseillato,-y q 

(3.1) liminft_~ (Tr(t))-I (r(s))"+Xq(s)ds > ~ " 
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(ii) (A) is nonoseil latory if  

(3.2) (/r(t))  -1 (Tr(s))=+'q(s)ds  < \ - ~ - - ~ ]  

for  all sufficiently large t. 

Our proof of this theorem makes use of the observation that  the analysis 
of (A) is reduced to that  of the simpler equation 

(3.3) ( taly ' l=-ly ')  ' + q ( t ) l y l " - l y  = O, t >__ a, 

where 5 is a constant such that  5 > c~. In fact, for any fixed 5 > a ,  the change 
of variables ( t , y )  --* iT, Y )  given by 

(3.4) v = (a'(t)) -6--:a, Y ( T ) =  v(t)  

transforms (A) into 

(3.5) (T61Yl -aY i + Q ( T ) [ Y I ~ - I Y  = O, r > TO, 

where ro = (~r(a)) -"/(6-~) 

(3.6) 
( ~ _ _ . )  a+ l  1 6 

Q(r )  = (p(t))  z (~r(t)) 6--:Zq(t), 

and the dot denotes differentiation with respect to r .  
Note that  (3.3) is a special ca~e of (A) in which p(t)  = t 6 satisfies (1.1) 

and defines, according to (1.2), the function ~r(t) to be 

, t ~ ' a .  (3.7) x-(t) - ~ _ (~ = 

THEOREM 3.2. The equation (3.3) is oscillatory i f  

(3.8) f oo q(t) dt = oo 

and 

(3.9) 1 t~+l_6q(t ) _ dt = oo. 
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PROOF. Suppose tha t  (3.3) has a nonoscillatory solution y(t) which may 
be assumed to be positive for t ~ to. Since t6[ y ' ( t )[~- ly ' ( t ) is  nonincreasing 
for t _> to by (3.3), either y~(t) > 0 for t _> to or there is tl > to s u c h  that  y'(t) 
< 0 for t => tt .  We claim that  the first case does not happen. Suppose the 
contrary: yt(t) > 0 for t _>_ to. Then,  integrating (3.3) on [to, t] and using the 
fact that  y(t) >= c, t >__ to, for some constant c > 0, we have 

ta(y ' ( t ) )"  = t6o(Y'(to)) " - q(s) (y(s) )"  ds 

<=tg(y'(t0))"-~" q(,)d,, t>=,o, 

from which, because of (3.8), it follows tha t  ta(y ' ( t ) )"  --+ -oo as t -+ co. 
This contradiction proves that  y~(t) < 0 for t __> tl. 

Let us consider the function u(t) defined by (2.3), i.e. u(t) = ta[ y'(t)[ ~-1 

.y ' ( t ) /[y(t)]~- 'y(*) .  Then, u(t) < O, t > t l ,  and we see that  t-(a-a)u(t)  is 
bounded on Its, oc) (cf. (2.5) and (3.7)), and that  u(t) satisfies 

(3.10) 
5 a+l  

u ' ( t ) + q ( t ) + a t - a  tu(t)l ~ =0 ,  t > tl 

(cf.(2.I)).  Multiplying (3.10) by t - (a-a)  and integrating on [tl,t] gives 

(3.11) t-(5-CX) u( t ) _ tT(5-CO u( Q ) 

+(a - a)  s ~ - a - l u ( s )  ds + s~-aq(s) ds 

+~ *-a+~-a[~*(*)l%-~d*---0, t>=h- 

We now use the Young inequa~ty 

A a B b 
A B  <= - -  + 

where A, B,  a, and b are positive constants with 1/a + 1/b = 1, to es t imate  
the integrand of the first integral in (3.11) as follows 

(~-~)s~-~-ll~(~) l = ( ~ + ~ ) o + ~  o+~ u ( , ) t - ( ~ - ~ ) ( ~ + l )  o + ~  o+I 

< o[ 
. +  1 (~+ 1)o+1, ~+1 t,,(, ) 
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1 1)-~s-~-~] ~+~ +Vu [(5 - ~)(~ + 

We then see from (3.11) that  

t-(6-C')u(t) - t?(6-~)u(tl) + Jl s~-6q(8)d8 + 

which implies 

t 6 

8-~+~-~lu(~)l ~ Jtl 

f =(~-~) 8~-~-llu(~) I d~ 

/ t  , ~ (~_oe~a+l s f  ds 
< '~ ~-~+~ ~ d~+ \~-T-~/ V 

dtl 

t-(~-~)u(t) _ t'((6-'~)u(t,) 

+ -s s~+l-Sq(s)-  \ - ~ - ~ ]  J ds =< 0, t>tl.  

91 

ds 

1~ O~" ot+l 
�9 
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THEOREM 3.3. Suppose that ~ > a and A > O. 
(i) (3.12) is oscillatory if 

(3.13) 

A being a positive parameter,  which is called a generalized Euler equation. 
It can be shown that  (3.11) is conditionally oscillatory and its oscillation 
constant is [(5 - a ) / ( a  + 1)] ~+1 

(tSly'la-ly') ' + Ats-a- l lyIa- ly  - 0, t _>_ a, (3.12) 

We now consider the following particular case of (3.3): 

Letting t --+ co in the above and using (3.9), we conclude that  t - (~-a)u( t )  
- + - c o  as t--+ co, which contradicts the boundedness of t-(~-a)u(t) on 
It1, co). This completes the proof. 
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(ii) (3.12) /s nonoscillatory if 

(~ 0r \ a + l  

PROOF. The equation (3.12) is a special case of (3.3) with q(t) = At 8-~-1. 
Since the conditions (3.8) and (3.9) hold for this function q(t) provided A sat- 
isfies (3,13), the first statement follows from Theorem 3.2. 

The equation (3.12) with A = [(~i - (~)/(a + 1)] a+l is nonoscillatory, since 
it ha~s a nonoscillatory solution y(t) = t -(~-~)/(~+1). This fact combined with 
the Sturmiun comparison theorem proved by Elbert [1] shows that the second 
statement is true. 

Oscillation and nonoscillution criteria for (3.3) now follow. 

TIIEOREM 3.4. Suppose that 6 > (~. 
(i) (3.3) is oscillatory if 

l i m i n f t - z - J  s - ~ ( 6 - ~ ) q ( s ) d s  > (c~ + 1) c~+1" (3.15) ' - ~  

(ii) (3.3) is nonoseiIIatory if  

(3.16) t - z -  s-"+~!(6-~)q(s)ds ~ ( a +  1)~+ 1 

for all sufficiently large t. 

PROOF. (i) Suppose that (3.15) holds. There exist positive constants A* 
and T such that A* > [(5 - a)/((~ + 1)] ~+1, T __> a, and 

Since 

~-~ f t  ~ a f t _ _ ) ,  t--z-" s - ~ ( 6 - a ) q ( s )  ds > 6 _ c~ for t ~ T. 

t - ' g -  S ~ ] , ~ -- ct 

we have 

s - ~ ( 6 - ~ ) q ( s )  ds > s -~'+~I (~-")(A*s 6-a-1) ds, t>_T.  

Noting that the genera~zed Euler equation (3.12) with A = A* is oscillatory 
by Theorem 3.3 and applying Theorem 2.5, we conclude that (3.3) is oscil- 
latory. 
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(ii) Let /Xo = [ ( 6 -  a)/(c~ + 1)] c~+l, The equation (3.12) with ,X = ~Xo is 
clearly nonoscillatory. Since (3.16) can be written as 

s - ~ ( ~ - ~ ) q ( s ) d s  < ~ _  $ot = s-~+~!(8-")(AoJ-a-1)ds, 

it follows from Theorem 2.5 that (3.3) is nonoscillatory provided (3.16) is 
satisfied. 

PRoof" OF TItEOREM 3.1. We are now ready to prove Theorem 3.1 
stated at the beginning of this section. Let a constant ~ > a be fixed, and 
introduce the new variables (r, Y) defined by (3.4). Then (3.3) transforms 
into (3.5) with the coefficient Q(7) given by (3.6). Theorem 3.4 applied to 
(3.5) shows that (3.5) is oscillatory if 

(3.17) l iminf r ~  f ~  a(~f - a)" r--,~ a - ~ ( 6 - ~ ) Q ( a ) d a  > (a + 1) ~+i 

and that (3.5) is nonoscillatory if 

, -o f o ~  _~-.+..~ ~-~, ~(~ - a)~ 
(3.18) r - z -  j~ a ~ ( )Q(a)da < ((~ + 1)a+ 1 

for aJJ sufficiently large r .  It is a matter of easy computation to verify that  the 
inequalities (3.17) and (3.18) transform back to (3.1) and (3.2), respectively, 
which are directly applicable to the original equation (A). This completes 
the proof. 

We conclude this section with an oscillation theorem of slightly different 
nature. 

THEOREM 3.5. Suppose that (1.1) and (2.16) are satisfied. The equation 
(A) is oscillatory if 

(3.19) limsup (~r(t)) - I  (Tr(s))a+lq(s)ds > 1. 
t--*~ 

PgOOF. Suppose that (A) is nonoscillatory. Let y(t) be a solution of (A) 
such that y(t) > 0 for t > to. Consider the function u(t) defined by (2.3). Ac- 
cording to Theorem 2.2 and Lemma 2.3, u(t) satisfies (2.5), (2.6) and (2.9). 
From (2.6) and (2.14) we see that 

(,~(t)) ~+~u(t) + ~-(t) 

o + (~ + 1 ) ( ~ ( ~ ) ) % ( s )  + 1 ds 

Acta Mathematiea Hungarica 76, 1997 



94 T. KUS/kNO and Y. NAITO 

+ (~r(s))a+lq(s)ds> (Tr(s))a+'q(s)ds, t > t o ,  

which implies 

~t  ~176 
"(r( t))  -1 (~r(s))~+lq(s)ds<= (~r(t))~u(t)+ l, t > t o .  

Taking the upper limit of the above as t ~ oo and taking (2.9) into account, 
we find 

lira sup ( r ( t ) )  - 1 J ~  t--.~ (~r(s))~+lq(s)ds < 1, 

which contradicts (3.19). The proof is thus complete. 

REMARK. Theorems 3.1 and 3.5 can be considered as a natural general- 
ization of the classical oscillation criteria of Hille [3] for the linear equation 
(B) with p(t) - 1. 

4. S t rong  osci l la t ion a n d  nonosc i l l a t ion  

We are now in a position to discuss the problem of strong oscillation and 
nonoscillation for the equation 

(A~) (p(t)ly'l~-ly') ' + Aq(t)[yl~-ly = O, t >= a, 

where p(t), q(t), a and a are as in the preceding sections. Our main result 
here shows that the situations for strong oscillation and strong nonoscillation 
of (An) can be completely characterized. We need only to consider the case 
where the coefficient, q(t) satisfies (2.16), since otherwise (A) is oscillatory by 
Theorem 2.4, so that (A~) is strongly oscillatory. 

THEOREM 4.1. Suppose that (1.1) and (2.16) are satisfied. 
(i) (AiQ is strongly oscillatory if and only if 

(4.1) 
f t  ~ 

lim sup (zr(t)) -~ (~r(s))a+lq(s)ds=oo. 
t--toO 

(ii) (A~) is strongly nonoscillatory if and only if 

(4.2) ~ r lim (~r(t)) -1 (TC(S))a+lq(s)ds=O. 
t -,-*oo 
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PRoof.  (i) Let (A~) be strongly oscillatory. From (ii) of Theorem 3.1 it 
follows that 

(4.3) limsup(w(t))-lt--.oo (~r(s))~+l(Aq(s)) ds>= -~-~]  

for every A > 0. But this implies (4.1), since otherwise (4.3) would be vio- 
lated for sufficiently small values of A. 

If (4.1) holds, then 

limsup(~r(t)) -1 (~r(s))~+l(3.q(s))ds=oo>l forevery 3 .>0 ,  
t---*cr 

and so (A; 0 is oscillatory for 3. > 0 by Theorem 3.5, implying the strong 
oscillation of (A~). 

(ii) Let (A~) be strongly nonoscillatory. From the proof of Theorem 3.5 
we see that 

F limsup(~'(0) -1 (r(~))~+~(3.q(~))ds<=l forevery 3.>O. 

The arbitrariness of 3. then implies that 

F lira sup (~r(t)) -1 (Tr(~)) c~+lq(~) ds = 0, 

which is equivalent to (4.2). 
If (4.2) holds, then 

F lim (Tr(t)) -1 (r(s))~+~(3.q(s))&-Oforevery 3.>O, 
t -.-*-c<5 

and from (ii) of Theorem 3.1 it follows that (Aa) is nonoscillatory for every 
3, > 0. Thus (Aa) is strongly nonoscillatory. 

From Theorem 4.1 we conclude that the equation (A~) is conditionally 
oscillatory if and only if either 

F 0 < lim (~r(t)) -1 (rr(s))~+lq(s)ds < ~ (4.4) 

o r  

(4.5) ~ oo 

0 < liminf (lr(t)) -1 (w(s))~+lq(s)ds 
----- t--+oO 

< lim sup (Tr(t)) -1 (~r(s))c~+lq(s)ds< e~. 
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Information about the oscillation constant of a conditionally oscillatory 
equation (A~) is provided by the following theorem, where use is made of 
the notation 

(4.6) 
i O0 q. = liminft...~ (Tr(t))-I s (~r(s))~+lq(s)ds'  

s q* = lira sup (~r(t)) -1 ds. 
t - - * ~  

THEOREM 4.2. Suppose that 0 < q. <= q* < oo. Then the oscillation con- 
stant Ao of the equation (A~) satisfies 

1 ( a "~ ~+1 { 1 1 ( a ) ~+1} 
(4.7) q'-7 \ ~ - - ~ ]  < Ao < min ~- 'qz ~ " 

I f  in particular q. = q*, then 

(4.8) )to = --q. \ ~ - -~ - ]  = q--~ 

PRoof. Let )t E (0,)t0). Then, (A~) is nonoscillatory, and so by Theo- 
rems 3.1 and 3.5 we have 

and 

liminft_~ (~r(t))-I (~r(s))~+l()tq(s)) d s =  )tq. =< ~ - ~ ]  

jft (:X) limsup (~(t)) -1 (~(s))~+l() tq(s))  ds = )tq* _<_ 1, 
t---*oo 

from which, letting )t ~ )to-, we obtain 

)to< I ( a  ~ + 1  1 = q* \ ~ - ~ j  and )t0 < q. 

Let )t e ()t0, cc). Since (A~) is oscillatory, from Theorem 3.1 we see that 

lira sup (~-(t)) -1 (71"($)) ~+1 ()tq(8)) ds = )tq" >= (~ 
t -*co  

which, in the limit as A ~ s implies 
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The t ruth  of (4.7) is thus verified. It is clear from (4.7) that  (4.8) holds in 
the case q. = q*. This completes the proof. 

It would be of interest to observe that  the results developed above can be 
applied to the study of the oscillatory behavior of degenerate elliptic partial 
differential equations of the type 

N 
(4.9) ~Di(]Dul~-2D,u)  +C(IXl) lulm-2U=O, x e  Ea, 

i.= l 

where m > 1, N => 2, Di = O/Oxi, i = I , . . . ,N, D = ( D 1 , . . . , D N ) ,  Ea = { x 
e R N :  Ix[ >_ a } , a  > 0, and c :  [a, c~) ~ [ 0 , ~ )  is continuous. Our at tent ion 
will be focused on radial solutions of (4.9), that  is, those solutions which 
depend only on Ix[. As it is easily verified, a radial function u = y([xl) is 
a solution of (4.9) in E~ if and only if y(t) is a solution of the ordinary 
differential equation 

(4.1o) (tN-~ly'lm-2y') ' +tN-lc(t)lyl'~-2y=O, t >_a, 

which is a special case of (3.3) in which ~f = N - 1, a = m -  1 and q(t) 
= tN- l c ( t ) .  Note that  the condition (1.1) holds if and only if N > m, in 
which case the function 7r(t) defined by (1.2) reduces to 

r ~ -  1 N-m 
- - t -  .,--'-T t > a. 

~ ( t )  - -  N - m ' = 

Theorems 2.4, 3.4 and 3.5 specialized to (4.10) yield the following result. 

COROLLARY 4.3. Suppose that N > m.  
(i) All nontrivial radial solutions of  (4.9) are oscillatory i f  

(4.11) N-l-~m~-l(N-m) t - c(t) dt = ~ .  

(ii) Suppose that 

(4.12) t N - l -  ~ m - f ( N - m ) c ( t )  d t  < oo. 

Then, all nontrivial radial solutions of  (4.9) are oscillatory i f  

N--m ~00 
lim inf t ~ 8N-l-mm---•_l (N-m)~(o'~ 

- ~ o / d s  > 

( m -  1) (N - -  m )  m - 1  

7Tt m 
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or if  

limt~c~sup t Wzr-~N-m j[tCC sN-l -mm-l  (N-rn) c( s) d.s > ( ~ -- ~ -- rrt m-1 

(iii) Under the condition (4.12) all nontrivial radial solutions of (4.9) are 
nonoscillatory if 

N -- m jft c~ 
lim sup t '~r-~ 

t - - + ~  

g m 
8 -1-~:T-I(N-m)C(S)'' ds < 

(m - 1 ) (N - m) m-1 
m m 

One can speak of strong oscillation and nonoscillation of the equation 

N 

~ Di(IDu{m-2Diu) + Ac(Ixl)  lulm-2  -- o, x Ea, 
i=1 

on the  unders tanding  tha t  only radial solutions are the  object  of consider- 
at ion,  and one can easily derive criteria for s t rong oscillation and nonoscil- 
lation of (4.9h) in this sense from Theorem 4.1. The  details are left to the 
reader.  We notice tha t  the oscillatory behavior of (4.9h) in the  case m >= N 
has already been investigated in the papers [4,5]. 
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