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Summary. — The characteristic difference between the paleoguantal
calculation (addition of partial probabilities) and the neoquantal one
(addition of partial amplitudes) for the correlation of photon polarizations
in cascade transitions is derived in terms of elementary trigonometry.
This deliberate use of simple formulae aims at a transparent rendering
of the change in paradigm required by the so-called EPR paradox
(which is truly the 1927 Einstein paradox), namely that 1) the two
photons do not possess polarizations of their own when leaving the source C,
but borrow one later, when interacting with the analysers L and N;
2) the die is thus not cast at O, but later, at L and N; 3) the correlation
between the measurements at L and N is tied through O, in their common
past. The tight connection between this« Einstein nonseparability » and the
nonlocality in Feynman’s « theory of positrons » is demonstrated through
an analysis of the ete~ annihilation into two photons. Thus the Einstein
paradox corresponds, in the « new wavelike probability calculus», to the
Loschmid and Zermelo sort of paradox in the old probability calculus.
That is, it contrasts the intrinsic time symmetry existing at the elementary
level to the jactlike macroscopic time asymmetry. Our discussion deliberately
by-passes the hidden-variable problem, our model in this being Einstein’s
by-passing of the mechanical aether when proposing special relativity.
We believe that here today, like there in 1903, the problem is fayloring
the wording after the (operationally good) mathematics. Moreover, that
the change in paradigm, which is needed, comes through a victory of
formalism over modelism.

1. — Introduction: cascade experiments.

The quantum-mechanical prediction () in atomic-cascade experiments
(fig. 1) in which photon pairs propagating in opposite directions along an axis

(1) See, for example, M. A. HorNE: Ph. D. Thesis, Boston University (1970) (mimeo-
graphed).
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« and passing linear polarizers L and N with relative angle « are counted is,
in the (J =0, J =1, J = 0)-type cascade,

(1) 1) = 0,00 = Leostx, (1,00 =<0,1) = }sin®a

for the probabilities of answers (ves, ves) and (no, no), (yes, no) and (no, ves)
respectively, and. in the (1, 1, 0)-type cascade,

(2) 1,10 = /0,0, = Lsine, (1,00 = <0,1> =% cos?a.

The experimental verifications are excellent (2).

L" L L’ N/ N N/I
c
xf— - ——= -  — - ,,,{Vﬂ,},,,,x
Tig. 1. — Photon polarization correlation experiments. (', atomic cascade; L', N/, mono-

chromatic filters; L and N, linear polarizers with adjustable angles 4, B (1 —B=u«);
L". N7, coincident photodetectors.

Had these ¢xperiments been performed in the days of the old quantum
mechanics, they certainly would have produced the same sort of stupefaction
as the Michelson experiment did. Moreover, as will be shown, they also do
require, in de Broglie's (*) words, a radical change of «our familiar notions
pertaining to space and time »,

Consider for instance the case in which « = /2 with the (0,1, 0)-type
cascades. The « neoguantal » prediction is (1, 1> = 0, meaning that all photon
pairs propagating in opposite directions along x are found with both linear
polarizations, parallel to either of the two Cartesian axes y and 2 defined by
the linear polarizers L and N. This would have been felt to be a paramount
paradox (*) by any « paleoquantal » physicist, because he believed each photon
pair leaving the source € to possess polarizations, compatible of course with
the dynamies of the xvstem, but essentially independent of the orientations

() S.J.Freepyaxond J.F.Cravser: Phys. Rev. Lett., 28, 938 (1972); J. F. CLAUSER:
Phys. Rev. Lett., 36. 1223 (1976); E. Fry and R. C. Tuovpsox: Phys. Rev. Lett., 37,
465 (1976).

(®) L. DpE BroGLIE: Une tentative d'interprélation causale et non linéaire de la mécanique
ondulatoire, Chap. 12 (Paris, 1956), p. 73.

(*) Paradox: ¢ A very surprising, but perhaps true statement » (Sense No. 1 in all dic-
tionaries). Copernicus’ heliocentrism has been a paradox.
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of the polarizers L and N—and even of their presence or absence. For in-
stance, in the case considered, parallel linear polarizations making all sort of
angles with the orthogonal axes y and 2 should have been found, or possibly
circular polarizations of equal helicities. Thus the paleoquantal prediction
was (in this & = /2 case with the (0, 1, 0) cascades) that a large number of
(yes, yes) answers should occur. On the other hand, the subensemble of photon
pairs with (parallel) linear polarizations parallel to either y or z should have
been of zero meagsure.

The experimental fact could not be more opposite: photon pairs with the
above property are oll of the photon pairs in this experimental arrangement.
This is a paradox (*) proper, the sort of which requires a change of paradigm (°).

Three major statements follow necessarily from the experimental (®) findings:

1) The photons in the pairs issuing from the source C do not possess pol-
arizations of their own. They borrow one later, by interacting with the meas-
uring devices L and N.

This, of course, is a specification of a well-known general statement in the
neoquantal mechanics. The point is that there is perhaps no more direct ex-
perimental proof of it than this one.

2) In the chance game that is at stake, the die is east, so to speak, noi
at the beginning, at C, but in the end, at L and N.

This is the very paradox EINSTEIN (®) was clever enough to point out
as early as 1927 and which he (*%), SCHRODINGER (°), RENNIGER (), DE
BroGLIE (%) and others rejected as unacceptable. It is today an experimenial
truth (2).

3) The correlation found to exist between the measurements at L and N
is not tied, in space-time, along the spacelike vector LN (which is physically
empty), but (fig. 2) necessarily along the Feynman-style zigzag LCN made of
two timelike vectors (which is physically occupied). In other words, the meas-
urements at L and N do produce the same wave collapse at C, in their common
past. Or, again in other words, Einstein’s prohibition to « telegraph into the
past » does not hold at the level of the quantal stochastic event (the wave col-
lapse). This statement is thus of a factlike (') and macroscopic nature.

(%) Paradox and Paradigm, edited by R. G. CoLoony (Pittsburgh, Pa., 1973).

(°) A. EINSTEIN: in Rapports et Discussions du V Conseil Solvay (Paris, 1928), p. 253.
() A. EinsteIN, B. PoborLsky and N. Rosex: Phys. Rev., 47, 777 (1935).

(®) A. EinsTEIN in A. Binstein, Philosopher Scientist, edited by P. A. ScmiLep
(Evanston, Ill., 1949), p. 85, 683.

(®*) E. SCHRODINGER: Naturwiss., 23, 844 (1935), see p. 845.

(1 M. ReENNINGER: Physik, 158, 417 (1960); Phys. Zeits., 136, 251 (1963).

(11) H. MEHLBERG: in Current Issues in the Philosophy of Science, edited by H. I'E16L
and G. MAXweLL (New York, N.Y., 1961).
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This is the interpretation of the Einstein paradox I (*?) have proposed
quite a few times, and which now STAPP ('?), BELL ('), DAVIDON (%) and
others (**) are more or less advocating or pointing at.

Fig. 2. — Space-time diagram of the Einstein paradox: the die is east not at the
severance point-instant O, but later, at L and ¥, where and when the measurements
are performed. Thus the correlation between I and N is tied through C, in their common
past, via the Feynman-style zigzag made of the timelike vectors ('L and CXN.

2. — Neoquantal and paleoquantal calculations for cascades.

From the two (orthogonal) pure helicity states L.L, and R, R, of the
pairs of photons ¢ and b, we build the two (orthogonal) P-invariant states

1 1 N
9 (LaLb + erRb) - (Ef{Eg 7" L;Lu) ’

3)

st

S (LLy— R, R = | [EiE— BVE;),

where the well-known formulae

" V2L, =B + ik, +2R,=E —ib:,
\V2L,=E/'—iE:, A2R,=E;!+IiE]

have been used; y and z denote arbitrary Cartesian axes orthogonal to the line
of flight = of the two photons.

(*2) O. CosTa DE BEAUREGARD: Compt. Rend., 236, 1632 (1953); Rev. Inleri. Plilos.,
61-62, 1 (1962); Dialectica, 19, 280 (1965); in Proceedings of the International Conference
on Thermodynamics, edited by P. T. Laxpser¢ (London, 1970), p. 539.

(13) H. P. Starp: Nuovo Cimento, 29 B, 270 (1975).

) J. S. BELL: Epist. Lett., 9, 11 (1976).

(1) W. C. Davipox: Nuovo Cimento, 36 B, 34 (1976).

(%) Sce footnote (13) in J. F. Cravser and M. A. HorxE: Phys. Rev. D, 10, 526 (1974).

(14
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A and B denoting the angles with, say, the y-axis of two linear polarizers
respectively inserted on the paths of the photons a4 and b, and setting

(5) A-B—q,

now we calculate, using the « golden rule» of the meoquantal mechanics that
partial amplitudes rather than partial probabilities should be added, and their
modulus squared, the overall transition probability.

Turning the polarizer 4 by AA changes the phase of the photon L, by
— A4, and turning the polarizer B by AB changes the phase of the photon
L, by + AB. Thus the transition amplitude towards the (yes, yes) answer
is proportional to exp [ix] for the L,L, pair and, similarly, to exp [— da] for
the R, R, pair. Adding (respectively, substracting), squaring the absolute
value and normalizing, we obtain the expression <1,1) as in (1) (respectively,
as in (2)). The calculation of <0, 0, <1, 0> and <0, 1) proceeds similarly and,
on the whole, formulae (1) and (2) are recovered.

What is interesting is the expansion of the expressions (for, say, the (0, 1, 0)
case)

(6a) 1,1y =<0, 0> = % lexp [¢o] + exp[— ix][2=2 (1 -+ cos 2a),
(6b) 1,05 =<0, 1> = § |exp [ta] — exp[— o] |2 = } (1 — cos 2a) .

In both of the formulae, the contribution
(7 {1,130 = <0, 03 = <1, 03 = {0, 1) =}

is the paleoquantal prediction, if we assume that the photon pairs do leave
the source C in either the L,L, or the R, R, state. The contributions

(8) A, 1>=AL0,0>=1cos2c, AL, 05> =A0,1>=— } cos2a

are the neoquantal corrections, containing the phase relation between the pho-
tons a and b.

Second, we use as orthogonal states the linear polarizations along y and =.
The transition amplitude towards the (yes, yes) answer is cos A cos B for the
B, E; state, sin A sin B for the E?E* state, cos A sin B for the E!E; state
and sin A cos B for the E?E" state. Using the « golden rule», we again find
formulae (1) and (2).

What is interesting is in, say, the (0,1, 0) case the expansion of the ex-
pressions '

9 {1,1) =<0, 0> = % (cos A cos B + sin A sin B)? =
= } (cos? A cos? B -} sin? 4 sin®B) + }sin 24 sin 2B,
(10) <1,0>=<0,1>= 1 (sin A cos B— cos A sin B)?=

= 1 (sin? 4 cos® B - cos? 4 sin? B) — } sin 24 sin 2B
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The contributions

1,155 = <0, 07 = L(cos2 4 cox? B - sin? 4 sin® B),
(11)

1,00, == <0, 1>, = 3 (8sin2 A cos* B L cos? 4 sin2 B)

are the paleoguantal predictions assuming that the photon pairs do leave the
source as a statistical mixture with (parallel) linear polarizations parallel to
either the y- or the z-axis. The contribution

(12) A, 15 = A0, 00 = — A1, 0> = — A0, 1> = Lsin 24 sin 2B

is the neoquantal correction, containing the phase relation between photons
a and b (*7).
In summary:

1) The Einstein paradox has its root in the replacement of the paleo-
stochastic rule of addition of partial probabilities by the neostochastic rule
of addition of partial amplitudes. This statement is either explicit or implicit
in most papers dealing with the Einstein paradox, and traces the origin of the
paradox (*) to a well-known specific rule of the neoquantal mechanies. Di-
RAC (%) and LANDE (1*) among others are adamant on this point.

2} The algebraic difference between the neostochastic and the paleo-
stochastie transition probabilities essentially contains the oif-diagonal terms.
This is again, in general, a very well-known statement.

3) While the neostochastic formula is invariant with respect to changes
in the representation, the paleostochastic ones are not.

4) The (noninvariant) neoquantal correction can be made zero with
certain settings of the measuring apparatus, or certain choices of the repre-
sentation. In these cases, the neoquantal transition probability is formally
that of a classical mixture.

5) The specific difference between the new rule of addition of partial
amplitudes and the old rule of addition of partial probabilities emphasizes
the wavelike nature of the neostochastic theory.

(*") Formulae (11) and (12) are obviously not rotation invariant around the x-axis.
We can rewrite (12) as 8A = cos 24— cos 2(4 + B), the latter term having mean
value 0 by rotation avound x. Thus in the mean {1, 1pg=<1,1>—§ cos2x. See in
this respect D. Bouym and H. AHARONOV: Phys. Rev., 108, 1070 (1957). Lé
(%) P. A. M. Dirac: The Principles of Quantum Mechanics, 3rd Edition (Oxford, 1947).
(*) A. Laxpt: New Foundations of Quantum Mechanics (Cambridge, 1965). A con-
troversial, but suggestive book.
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It is a wavelike probability caleulus in which, incidentally, there must be
(and there is) a tight binding between the two macroscopic irreversibility facts
of wave retardation and of probability increase, as also of the two laws of
intrinsic symmetry between retarded and advanced waves, on the one hand, and
between (blind) statistical prediction and retrodiction, on the other (2°).

This brings us back to the time and space aspect of the paradox, as em-
phasized first by EINSTEIN (¢).

3. — Neoquantal and paleoguantal correlations in general.

It is surprising that the formulae presented in this section are not found
(to my cognizance) in any of the competent presentations (*!) of correlated
quantal systems, although their import is implicitly stated. Our impetus for
writing them down came from a preprint by GarvUccro and SELLERI (22), but
(at least in this preliminary form) their presentation was not identical with
the one we are giving here.

The typical system we are discussing is described as a pure state ¥ ex-
panded in the form of a sum of partial amplitudes

(13) P> = Z"fl?’i>l Vi)

where @; and y; span two independent Hilbert spaces; the subsystems @, and y;
are thus coupled, although this coupling may very well result from an inter-
action that has ceased for some time—as is the case discussed in this paper.
By definition,

(14) wjzc:c,-, dw;=1.

A and B denoting the Hermitian operators describing two measurements
to be performed upon the subsystems ¢ and ¢, the quantal correlated mean
value (invariant under changes of the orthobases, or « co-ordinate frames ») is

(15) {4, B)= E 207 e @ild e, {wi|Bly;) .

(2%) For an overdll view and a guide in the literature of the subject, see 0. CoSTA DE
BEAUREGARD : Proceedings of the International Oongress for Logic, Method and Philosophy
of Science, edited by Y. Bar HiLrEL (Amsterdam, 1964), p. 313, or Studium Generale,
24, 10 (1971).

(*') See, for instance, F. LoNDoN and E. BAUER: La théorie de I’observation en mécanique
quantique (Paris, 1939); P. A. MoLpAUER: Phys. Rev. D, 5, 1028 (1972); F. J. BELIN-
FANTE: Measurements and Time Reversal in Objective Quantum Theory (Oxford, 1975),
p. 26.

(*2) A. Garvuccio and F. SELLERI: Nuove Cimento, 36 B, 176 (1976).
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Denoting the contribution with i = j as
(16) (4, By =Y wi{d<{B
with
(17) Ay =<Lgldlp.>, (B> = {y:Blyo,

and the contribution with 7 £ j as

(18) A4, By =} 3 ¢ edpild| @) (pilBlys> + c.c.

)
(neither of which is co-ordinate invariant), we write
(19) {4, B) = {4, B) + A4, B),

where {4, B), is the classical correlated mean value, expressed as a mizture,
and implying separate statistics for the subsystems ¢ and yp (« local hidden
variables », in the ecrypto-deterministic philosophy). A{A4, B), containing the
« off-diagonal » terms (and, thus, the phase relations between the ¢,’s and the
p./’s), is the neoquantal correction which, when added to the paleoquantal
correlated mean value (16), yields the neoquantal correlated mean value (15).
It thus belongs typically to the wavelike probability calculus.

The A(A4, B) contribution of expression (18) is rendered zero if one (a for-
tiori both) of the operators A or B is diagonalized by the representation. The
mean value (4, B> then assumes the form (A, B>, it would have with mix-
tures. But this is a mere semblance, relative to the co-ordinate frame (and to
the operator diagonalized in it).

Of course, if one of the magnitudes 4 or B is measured, then the phase
relations are lost and the overall system becomes a mixture—although the
larger system comprising also the measuring device remains in a pure state ().

In summary:

1) The specific difference between the new wavelike probability calculus

and the old classical one consists in the replacement of the addition rule (16)
of partial probabilities by the addition rule (13) of partial probability am-
plitudes. The numerical difference between the corresponding correlated mean
values (4, B) and <4, B, is the off-diagonal term A{A, B> of expression (18).
Contrary to {4, B), neither (A, B, nor A(A4, B) are co-ordinate invariant.
A{A, B) is rendered zero by diagonalizing at least one of the operators 4 or B.

2) The Einstein paradox (°), belonging specifically to the new wave-
like probability calculus, is tied with the existence of phase relations between
distant systems, these being (as already said) propagated both forwards and
backwards in time.
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4. — The essence of the paradox.

As this point, a little fable will help us to understand matters: At midnight
GMT, two travellers leave the Caleutta airport C, one for London L, the other
for Nagasaki N, each carrying a closed box which contains or not the one ball
which a third man, in Calcutta, has enclosed, behind a veil. Having landed
at 6 GMT, each traveller opens his box, and then immediately learns what
the other man finds.

The point is that, when made explicit, the logical inference between L
and N is not telegraphed along the spacelike vector LN, which is physically
empty, but rather along the Feynman-style zigzag LON made of two timelike
vectors, once towards the past, once towards the future (fig. 2).

There is nothing paradoxical in this, however, because what we have be-
tween L and N is pure telediction with no teleaction admixture. The die is
cast at C, so to speak, and this is virtually the end of the story. From then
on we have in each subsystem a «local hidden variable » with value 0 in one
box, 1 in the other.

It is precisely there that the new quantum mechanics makes the radical
change, because, as pointed out by EINSTEIN (%) as early as 1927, it is claimed
that the die is cast not at C, but later, where and when a measurement is made:
at L or N—at L and N if both measurements are made.

The reason for this is the neoquantal fact that nonsimultaneously measurable
magnitudes do exist—for example, linear polarizations of a photon in two
nonparallel or nonorthogonal directions. Moreover, both observers at L and N
can in principle decide which magnitude they will measure after the photon
pair has left the source C (but, of course, before it reaches L and N).

For these quite compelling reasons, quantum mechanics considers that
it is at L andfor N, not at C, that the die is cast. In this precise sense, what now
we have between L and N is telediction plus teleaction—the very sort of thing
that horrified EINSTEIN (¢%), SCHRODINGER (?), RENNINGER (1°), DE BROGLIE (3)
and many others, but now is known (2) to be the experimental truth.

Of course, an experiment even more crucial than those already performed
would be (as emphasized first by BorM and AHARONOV (2%)) one in which the
polarizers at L and N-are turned after the photons of the pair have left the
source C. AsPECT (%) has defined and is building such an experiment.

It is quite obvious that, if the neoquantal answer is again vindicated in this
new switching experiment, this would prove directly the telediction plus teleaction
existing between L and N (in the dice game we are playing). Let us bet, with
the majority of theoretical physicists, that this will be the case, and proceed.

() D. BoaM and Y. AHARONOV: Phys. Rev., 108, 1070 (1957).
(3*) A. Aseecr: Phys. Leit., 34 A, 117 (1975); Phys. Rev. D, 14, 1944 (1976).

4 — Il Nuovo Cimento B.
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In summary:

1) In the neoquantal dice game, «the chance occurs not when the dice
are shaken in the box, but when they stop rolling on the table. However, the
two issues are correlated. »

2) If two (or more) measurements are performed at L, N ... on the same
quantal system C, they are bound to produce the same wave collapse at (—
in their common past. This is exemplified in the observations of impacts of
o-particles upon a ZnS screen by two or more observers (fig. 3).

L% ® y/v

Fig. 3. — Space picture of an Einstein-style correlation between two measurcients L
and N performed upon the same quantal event C': impact of an a-particle (issuing from
a source S) upon a ZnS secreen.

3) Thus, contrary to the common feeling and to a natural assumption (%},
also held inevitable by very famous physicists (3%), observers at L and N are
not really independent: they are co-operating or competing for producing the same
¥ collapse—in their common past. This has important philosophical impli-
cations that have been discussed elsewhere (13-23-26),

4) Thus the neoquantal stochastic event—the transition, or wave col-
lapse—does not affect the future alone (us was assumed erroneously), buf,
symmetrically, also the past.

5) As will be shown in the next two sections, this statement is written
down since the beginning in the very tables of the law of the neoquantal mechanics—
but it was not received by its own followers.

6) As a corollary, physical irreversibility (in both forms of probability
increase and of wave retardation) is a factlike (not lawlike (*')) macroscopic
phenomenon implying ensembles (von Neumann’s ensembles). Both of these
formulations are reciprocal to each other, and are tied together by the neo-
quantal formalism. This I have discussed elsewhere (¥7).

(33) 0. CosTa DE BEAUREGARD: Found. Phys., 6, 339 (1976); Synthese, 35, 129 (1977).
(3%) J. Harr, C. Kiv, B. McELrOY and A. SuiMoNY: Found. Phys. (in press).
(2") 0. CosTa DE BEAUREGARD: Cah. Phys., 12, 317 (1958). See also ref. (*°).
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5. — Time symmetry of the wave collapse in relativistic quantum mechanics.
Spinless particles.

The formulae I am presenting in this section (only outlining their demon-
stration) are extracted from a book now out of print (®).

By using units such that ¢ = 1 and # = 1, setting #* = it and 4, u, v, 0 =
=1, 2,3, 4, the Klein-Gordon equation for a free particle with unspecified
spin

(20) (@ — m2) yp(z) =0

assumes in k-space the expression

(21) (k,* - m?)6(k) =0,

whence either

(22) k) =k k* +m2=0 or O(k)y=0.

Thus the Fourier expansion of y(z) may be written as
(23) v@) = (22| [ [exp (i1, 1 0(0k) e
n

where the integral is over both sheets of the mass shell 5(k) = 0, because we
do not exclude that the particle is endowed with an (unspecified) spin; by
definition,

+ 1 on sheet 7,
(24) gk)=1] — 1 on sheet 7_,

0 otherwise .

The scalar volume element dz is defined as the length of the vector dz* through

(25) Eve dn‘ = — i[dkﬂ dk, dkg]
and
(26) I dn=— mdnl .

(3) 0. Costa DE BEAUREGARD: Précis de mécanique quantique relativiste (Paris, 1967).
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>

The reciprocal Fourier integral is, ¢, denoting the Gordon current operator,
(27) o) = — 5 (27) f f f exp [— ihy2?] 2up(a) dot .

It is over an arbitrary spacelike surface ¢ and is invariant if the vector k* is
assumed to end on #; do* is defined as

(28) &1yme 40" = — [z, da, dux ] .

Jurvg

Using the weli-known Dirac (18) notations, we rewrite (23) and (27) in the
forms

(29) (riay = <alk) (Klay,

(30) Ckiay = () Cajay

with, by definition,

2% exp [ik, 2% if n(k) =0,

0 otherwise.

(31) @lky = ki’ = {

The double bar | in these expressions is intended to recall that they are
used in connection with the second-order Gordon equation.

The general definition of the projectors x> <@l and k) (k| is contained
in the Parseval equality

(32) _q%-nffj‘—a(gj_% do? :ffféuebf(k) dn,

where the integral over the spacelike surface ¢ is invariant. Again, using Dirac’s
notations and also imposing the orthonormality condition, we rewrite (32)
in the form

(33) {alby = <alw> (elb> = {alk) kb = das .
Substituting (27) into (23) and introducing the Jordan-Pauli propagator

(34) D — @) = (@l a’> = (27)3 f f f exp [ik,(a* — &) e(k) dy
N

(which is odd in @ — 2’ and is zero outside the light-cone), we solve the Cauchy



TIME SYMMETRY AND THE EINSTEIN PARADOX 53

problem () in the form
(35) zlay = (ala" <a'|a) ,
or more explicitly

(36) Yo) = — o f f J'D(a;—a;')g’,,qp(m’) dg'n

Formula (35) expresses the expansion of the wave function {z|a) at any
point-instant # upon the complete orthogonal set of Jordan-Pauli propagators
{xz|*’y with apices @' or o', the coefficients of the expansion being the values
(&'|ay of <(x|a) on o'.

That two propagators {z|z’'> and (x|z’> are indeed orthogonal follows
from the formula

(37) @la’y = <a'|a) <aa”> .
According to the formulae

(38) wla’> = {olk> ko>
and (similarly)

(39) |7 = <k|a) =]k,

expressions (31) and (34) are Fourier associated. From this we deduce (by
transposing a well-known argument of the nonrelativistic quantum me-
chanies (*°)) that #* is the position operator of our unspecified-spin particle
in the following sense.

We fix (fig. 4) an arbitrary spacelike surface ¢ and ask if the particle goes
or not through an arbitrary, and arbitrarily small, element d¢* on ¢. This ob-
viously transposes the nonrelativistic question: at some arbitrary time ¢, we
ask if the particle is inside an arbitrary, and arbitrarily small, volume element
drdydz. Formulae (35) or (36) show that the eigenfunction associated with
this question is the propagator {z|z"), replacing in our case the nonrelativistic
O(@~— «'). Thus the four co-ordinates x* being bound by the condition that x is
on a fized o, and considering the Fourier transforms (38) and (39), we see that,
in this formalism (and within the approach of the position measurement prob-
lem we have defined), #* is the position operator of our (unspecified spin)
particle.

(*) See also J. SCAWINGER: Phys. Rev., 74, 1439 (1948), p. 1451.
(3%) <x|k> is the eigenfunction of %+ in the x representation, while (k|a> =<(x|k>*
is the eigenfunction of »* in the & representation.
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As for the probability that the particle crosses a given element de* on g,
it is expressed by the left-hand side of formula (32) with ¢ = b. It is the flux
of the Gordon current through the element ds? (as should have been expected).

Fig. 4. — Space-time picture of a covariantly defined position measurement performed
upon a Klein-Gordon particle: does the particle pass or not an arbitrary elemeut de?
at z* on a spacclike surface ¢? The corresponding eigenfunetion is the Jordan-Pauli
propagator with apex at x, nonzero inside both the future and the past light-cone. Thus
the wave collapse affects symmetrically the future and the past.

From the various implications of the above formalism we extract, in view
of our present problem, the following conclusion:

The eigenfunction associated with the relativistie position measurement
(defined as crossing an element do* at 2? on a spacelike surface o) is the Jordan-
Pauli propagator with apex at x2.

This implies not only that, if found at z*, the particle has come inside the
past light-cone, and will go inside the future light-cone (which is known since
the early days of relativity theory), but also that the wave collapse occurring
at x> produces the propagator {x'|x)> extending into both the future and the past.

This, of course, is the key we are proposing not for reducing the Einstein
paradox (which is impossible, because it is a real paradox), but for for-
malizing 1.

In summary:

The completeness of the basis for expanding the wave function at any
point instant in terms of orthogonal propagators requires the presence of both
retarded and advanced waves. This in turn requires the presence of both the
positive and the negative frequencies in the reciprocal Fourier transforms,
as shown in the very derivation of formula (36) through (23) and (27). That
these two intrinsic symmetries (as opposed to large factlike macroscopic asym-
metries) are tied together is made obvious by the two well-known expressions
of the Jordan-Pauli propagator

2D@—&)=D,—~D_=1D, —D

et adv *
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6. — Time symmetry of the wave collapse in relativistic quantum mechanics.
Spinning particles.

The formalism (%) is very similar to the preceding one. However, now
the integrals over the arbitrary spacelike surface ¢ in space-time can be written
a8 involving the Dirac-current rather than the Gordon-current operator, so
that the normal derivative of the wave function is nolonger required, but rather
a linear combination of the components of the wave funection.

The main new ingredient needed for our purpose is the projector projecting
any solution of the Klein-Gordon equation upon a solution of the spinning-
particle equation (2!). In the familiar cases of the Dirac spin-(1/2), or the
Petiau-Duffin-Kemmer spin-0 or -1, particles, the expressions of this pro-
jector are (in the & representation)

(40) P=_(yik*—im),

(41) P = — (kak* — Pufr ko F?) .

a']'-‘ x| =

Thus, by denoting the Klein-Gordon operator as G and the spinning-particle
operator as 8, the wave equation is written in the x representation and, by
using Jauch and Rohrlich’s (32) notation,

{ IS = |PGy> = (@10 + m)p =0,
(42)

0 = ¢(— aro* + m) ¢ = {YGP| = (@8],
and, in the & representation,

{ 80> = |PGO)Y = (ouk? + im) L =0,
(43)

0 = (8| = (6GP| = L(ark* -+ im)

(¢ = y in the Dirac case, « = f in the Petiau-Duffin-Kemmer case).
The Parseval equality assumes the new form

(@) Capy=<afo) <alb>=<alky Koy =i[ [ [ arg? do =i [ [Far£* ek s,
] ”

(31) See in this respect H. UmEzawa and A. Visconti: Nucl. Phys., 1, 20 (1956).
(®2) J. M. JaucH and F. Rouruicu: The Theory of Photons and Electrons (Cambridge,
Mass., 1955).
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which is much more symmetric than (32); e(k) remains defined by (24) and
d#a by (25). (44) contains the new definition of the Hermitian scalar produet
(where now we use gingle vertical bars, thus recalling that we are using a first-
order wave equation).

Using formulae (31), (34) and the projector P, we get the definitions
(45) Celky = Pk,

(46) (xlw'y = Plx|a’y,
and then write down the reciprocal Fourier transforms

(47) ¢"(@) = (xlay = <ok kla),
(48) (k) = (kla> = <klw) {zla),
and the formula solving the Cauchy problem (which is also the expansion of

the wave function on the complete orthogonal set of propagators with their
apices on an arbitrary spacelike surface o)

(49) {wlay = {ajx") {z'|ay
with, as before,

(50) @'y = @' |y (ol
and

(51) lrle'y = x|k ey
Similarly,

(52) <klED = kel <2k -

Given (fig. 4) an arbitrary spacelike surface ¢ and, upon it, an arbitrarily
small arbitrary element do?, we define a position-plus-spin measurement (%)
of our particle by the question « does our particle pass or not through do?».
Now the corresponding eigenfunction is the propagator {(x|z") instead of {xjx'>
of sect. 3.

The implications remain the same as before. If the answer is yes, the par.
ticle has come inside the past light-cone and will go inside the future light-

(*3) One need not say that this approach to the position measurement problem differs
essentially from the one leading to the various definitions of the position operator of
a spinning particle. No attempt is made to discuss the relation (if any) between these
approaches. Also, for brevity in discourse and notation, the photon has been given
a (very small) rest mass.
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cone with apex a' at do'*. Moreover, the propagator {(z|z'> is the collapsed
wave corresponding to this position-plus-spin measurement. Thus the wave
collapse affects symmetrically both future and past, and this is the key I am
proposing for dealing with the Einstein paradox.

7. — Einstein nonseparability and Feynman nonlocality.

It is quite obvious that the Einstein (%7) nonseparability between the dis-
tant measurements at L and N (fig. 2) as tied through two timelike vectors
connected at C, in the past of both L and N, looks extremely akin to the
Feynman (3¢) sort of nonloecality implied in his symmetric theory of partieles
and antiparticles. In order to test the content of this idea (if any), we derive
in this section, using the Feynman relativistically covariant technique, the
correlation between the polarizations of the photon pair issuing from the an-
nihilation of an electron-positron pair (%). For obvious symmetry reasons,
we will work in the rest frame of fhe overall system.

¥, v, v, ¥,

Fig. 5. — The two Feynman graphs for an e*e- annihilation drawn in the overall rest
frame: at each vertex, there is zero energy transfer, and 3-momentum transfer p -+ k
and p —k, respectively.

In this frame all four particles have the same (total) energy (half of the total
energy of the overall system). Moreover, they have opposite 3-momenta:
+ p for the e-et pair, denoted, respectively, as ¢, and y,, and 4 k for the
photon pair, denoted as A, and A,. Therefore, at each vertex of the two graphs
that are implied (fig. 5), there is no energy exchange, but only a 3-momentum
exchange with the value p — k in one graph and p + k in the other. Thus
with 4, p,...=1,2,3, 4 and ¢, j,..=1,2,3, we write down the Feynman

(3t) R. P. FEYNMAN: Phys. Rev., 76, 749 (1949), see especially p. 749.

{*) 0. CosTta DE BEAUREGARD: Compt. Rend., 283 A, 1003 (1976); Phys. Lett., 60 A,
93 (1977). Being expressed in the rest frame of the electron-positron pair, this approach
is not directly applicable to the various experimental tests of the Einstein paradox using
electron-positron annihilation.
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Iowest-order amplitude as

— _ im - t kY, , im 4 (pr— k) y, ,
(A3) Vo {y,:_ (pﬂ:u;c):::rzll :r(]) ) ¥ ,}1/1,,A;'Afl.

Now we take the axis » parallel to < k (that is, to the photon rays) and,
using gauge invarinnce, A* =0 and A*= 0. Then the expression [(p -+
k)2 omt - [(p— k)2 - m3)~t factorizes, and the amplitude comes out as
proportional to the sum of two terms:

(54) "r/l = m?;,, wb(/?l(‘]/*qdy + ‘40244112) + Illll/_ya ‘}/z,,;wb[Acz*ley_ AL_yAdZ] ’
(55) Iy =G,y A DA+ By p, Ad piAL
As we know (see formulae (3) and (4)), the parenthesis and the bracket in (54)

are the two P-invariant amplitudes built from the left- and right-polarization
states

V2L =Ar+iA5, V2R =Adr— A7,
(56) ~ ,
A2 Ld =4, — 14/ s V2 Ry= Ay + 147,
where ./, i found to contain contributions L, R, and L,E., implying the pres-
ence of orbital angular momentum. These we discard by requiring from now
on that » and k are collinear, so that the two graphs in fig. 4 are assumed to
be plane figures.
This allows an interesting simplification. Using the Dirac equation
57 (y.p"—im)y, =0,
the definition

aud the expressions
(59) ()= L. L,+ R.R,, []1=L.L,— R.R,
for the parenthesis and the bracket in (34), we rewrite o7, as
(60) A= B§,p,(L.Ly+ R, R)) 4 i, v, 9,[ L. La— R R.] .
At this point, the result we were aiming at is established. If either

.Y %, OF ¥, 1y, is zero, the photon pair amplitude is the P-invariant state
appearing, respectively, in the (0,1, 0) and the (1, 1, 0) atomic cascades (dis-
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cussed in sect. 1 and 2), so that the tight binding between the Einstein non-
separability and the Feynman nonlocality concepts is obvious.

What now we add does not belong strietly to our subject.

If ¢y, and ¢,y, v, are both nonzere, the amplitude «/; is not P-inva-
riant (3¢).

The two pure-helicity photon states being

L.L,  with RER,=0,
(61)
R.R, with L,L,=0,

the corresponding ete— states are
(62) PPy, £ Wavw,  With By, T, v,9,=0.

To study their implications, we use the standard representation where y,,
— 4y,, (spin operator along z) and — iy,,, (magnetic-moment operator along x)
are diagonal with traces -1 4+1—-1—1, +1—141—1, +1—-1—-1+41,
respectively, and use the relations

a; = fa, = gl_, a, =— Pa,=—pr,,

b1=_ﬂb3:_“lglb7 bzzﬁb4:ﬂrb

(63)

between the «large» and «small » real amplitudes of y, and y,. We then
rewrite formula (62) as

(64) AE£ALL=0F frmr,

(the upper and lower signs being associated).

This is the helicity condition on the ete— pair that is associated with the
pure-helicity condition on the two photon state. In the extreme relativistic
limit, B = + 1, this condition is either ,7, = 0 or I,], = 0. The case in which
the ete~ pair annihilates at rest, § = 0, is P invariant.

Incidentally, very similar formulae and conclusions can be derived by
using the Petiau-Duffin-Kemmer algebra, and they would be significant for
charged particles of spin 1.

In summary:

There is a very tight connection between the Einstein (*7) nonseparability
and the Feynman (34) nonlocality concepts, showing again that the « paradox »
under discussion belongs to the neoquantal wavelike probability calculus,
and that it implies intrinsic time symmetry at the elementary level.

(3%) It is, of course, PO invariant, as most easily seen by exchanging the convention
in which the e~ has positive and the e+ negative energy against the opposite one.
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8. — Conclusion.

All formulae in this paper are simple, and either well known, or easily
derivable from known formulae.

When dealing with a true, or real paradox (*), that is, when aiming at for-
mulating a new paradigm (3), it is extremely appropriate to use formulae the
simplest as possible, and the closest as possible to the (paradoxical) experi-
mental facts. This is what ExxsTeIN did when proposing the special relativity
theory, and what DE BROGLIE did when proposing wave mechanics.

No discussion is found in this paper on the hidden-variable problem, as
discussed in depth by BELL, CLAUSER, HORNE, SHIMONY, HOLT, D’ESPAGNAT (%)
and others. The reason for this is that, important as these works have been
historically and in helping elucidating the problem, the whole so-called hidden-
variable approach suffers, as it seems to me, from the same drawback as the
deceased theories of the luminiferous aether: too much faith in mechanistic
realism, unnecessary complication, and insufficient faith in the operational
formalism.

We deem that (contrary to a widespread belief) the most important changes
in paradigm result from a victory of formalism over modelism rather than the
contrary. Thus, they consist in understanding the true meaning of the operational
formulae as they stand. They «unveil the Sense of the Scriptures » by strictly
tayloring the wording after the mathematics.

The paradigm we are proposing—which, in de Broglie’s (%) words, obviously
upsets « our familiar notions concerning space and time»—is complete time
symmetry in the quantal stochastic event, the transition, or wave collapse.

Of course, this raises the question of how to reconcile this intrinsic time
symmetry at the elementary level with the factlike macroscopic time asymmetry.

It is well known that an analogous problem existed in classical statistical
mechanics, where it gave rise to the famous Loschmid and Zermelo paradoxes.
It even existed in the classical probability calculus itself, where predictive and
retrodictive problems (« problems in the probability of causes») were treated
by quite different methods, contrasting the intrinsic time symmetry of the transi-
tion probabilities existing in most cases (2°). Thus, what we have here is a trans-
position of an old problem inside the field of the new wavelike probability
calculus.

Of course, quite a few new elements are brought in together with this trans-
position, of which we mention only two. The first one is, of course, that the
« factlike (1) physical irreversibility », certainly absent at the elementary

(37) We quote for instance B. p’EspaanaT: Phys. Rev. D, 11, 1424 (1975) as one of the
later papers, and one containing many references to the literature.
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level, comes in together with macroscopic statistics, namely von Neumann’s (*)
ensembles and the density matrix. It is then easy to show that von Neumann’s
entropy increase due to the measuring process logically follows from retarded in-
tegration of the wave equation. Thus the two main forms of physical irrever-
sibility—entropy increase and wave retardation—are tied together in the neo-
quantal mechanies.

APPENDIX T

Coherence length of wave trains.

That the Einstein paradox is caused by the off-diagonal terms in transition
probabilities and thus by the phase relations between the Hilbert-space com-
ponents of the wave function does not imply that these relations get obliterated
when the distance between the source ¢ and the receivers L and N becomes
larger than the coherence length of the wave trains (*).

Consider the case we are interested in, light polarization. It is an exper-
imental fact that, say, the linear, or the circular, or any elliptical polarization
of a light beam is exactly preserved over distances immensely larger than the
coherence length of the wave trains. In fact, it is preserved over cosmological
distances; otherwise, all light from astronomical sources would be received
a$ incoherent,

Therefore, it would make no sense to contemplate a future development of,
say, the proposed Aspect (2¢) experiment, in which the distances CL and CN
between the source and the receivers would be larger than the coherence length.

In summary, the experimental fact is that there is no detectable phase
shift between any of the two orthogonal components of a pure polarization state.

ApPENDIX 1T

‘Where and when does a transition occur?

Consider, for example, a light beam (fig. 6) emanating from a source S
and crossing successively two linear polarizers L and N, the directions of
which are 4 and B. Where and when does the transition of a photon’s polar-
ization from A4 to B occur?

(3®) J. voN NEUMANN: Mathematical Foundations of Quantum Mechanics (Princeton,
N.J., 1955).

(3%) For a recent experimental proof see A. R. WiLson, J. Lowe and D. K. Burr:
J. Phys. G, 2, 613 (1976).
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The classical answer was when the photons issuing from I, impinge upon V.
This is, however, a macroscopical prejudice, impressed upon our minds by our
familiarity with the factlike (*') preponderance of retarded over advanced waves.

L N
5 l
x ,,G, [ RS f - X
Tig. 6. — Quantal transition of photons issuing from a source S and passing successively

two linear polarizers with angles .f and B (x=—=.1--B).

From the neoquantal mathematical formalism (not to speak of the very
successtul experimental proofs () of the Einstein paradox) a very different
concept follows. The transition occurs « somewhere in between» I and N,
and consists in cos?a of the photons jumping from the retarded wave having
passed L into the advanced wave that will pass N.

Fig. 7. -- Quantal transition of photons issuing from a source S and passing suecces-
sively two holes .l and D in screens L and N. a) Classical, macroscopic concept
(retarded waves); b) neoquantal coneept of the ¥ collapse: symmetry between retarded
and advanced waves,

Consider also (fig. 7) those photons emanating from a source § and passing
successively two small holes 4 and B inside screens L and N. Mutatis mutandis
the discourse is the same as before and, as very explicit pictures ean be drawn
in this ease (fig. Ta) and b)), no more comment will be made.

Notes added in proofs.

1) Pflegor and Mandel's (1% retrodictive correlation erperimeni between occupation
nwmbers of photon waves eremplifies the time-inverted FKinstein parados: nonseparabilily
of sources that will interfere.

(*°) R. L. PrrLEGOR and I.. MaNbpEL: Phys. Rev., 159, 1084 (1967); Journ. Opt. Soc.
Amer., 58, 946 (1968).
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If we denote by x' and x” two point-instants inside the interference region,
by =z, and @, two point-instants inside the sources, by »; and n, the corresponding oec-
cupation number operators, the (18) type contribution is written as

(65) A = 3 jmy o™ ® <& [nyle"y + c.c.

with (r=1,2)
(66) @ nglamy = o',y <@g |y (2|27

2) The Binstein correlation (either predictive (%) or retrodictive (%)) is inherent in
the (relativistically covariant) S-matriz formalism.

The Feynman transition amplitude {y,|y,> between an initial p{c,) and a final v(a,)
state may be expanded in the form

(67) SAUNEECADZCIN

where the complete set of orthogonal projectors |®,>(@,| is the one adapted to the

problem (polarization states (%) or occupation number states (*), for instance).
Formula (67) is the expansion of either |¥,) (in predictive problems (*)) or of {¥,>

(in retrodictive problems (4°)) in the form V

(68) =3¢ 11 o> »

i A

which is the n factor generalization of (13). For example, in quantum electrodynamies,
the |{p;>’s are the photon |A), the electron |§> and the positron |yp) states.

The «paradox » is, of course, that the correlation exists in the absence of « present »
interaction, if there is either a past () or a future interaction ().

3) By using formula (26) in the form %,d#n* = mdy, the Parseval equality (32) is
cast in the more symmetric form

(69) -1 f ff‘a;.p dot = f f f 0,10, o(k) dnt
4 n

® RIASSUNTO (%)

8i deriva la caratteristica differenza tra il calcolo paleoquantico (somme di probabilita
parziali) e quello neoquantico (somme di ampiezze parziali) per la correlazione di po-
larizzazioni di fotoni in transizioni a cascata sulle basi della trigonometria elementare.
Questo uso deliberato di formule semplici mira a rendere chiaro il cambiamento di
paradigma richiesto dal cosiddetto paradosso di EPR (che & realmente il paradosso di
Einstein del 1927), cioé che 1) i due fotoni non posseggono polarizzazioni in proprio
quando lasciano la sorgente C, ma ne prendone in prestito una pil tardi, quando inter-

(*) Traduzione a cura della Redazione.
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agiscono con gli analizzatori L e N; 2) il dado non & tratto in ¢, ma piu tardi, in L
¢ N'; 3) la correlazione tra misurazioni in L e N ¢ legata tramite ¢ nel loro comune
passato. La salda correlazione tra questa « non separability di Einstein » e la non localita
nella « teoria dei positoni » di Feynmann ¢ dimostrata attraverso un’analisi dell’anni-
chilazione di eve~ in due fotoni. Cosi il paradosso di Einstein corrisponde, nel « nuovo
calcolo della probabilita ondulatoria », al tipo di paradosso di Loschmid e Zermelo nel
veecliio caleolo delle probabilita. Cioé esso contrappone lintrinseca simmetria tempo-
rale che esiste al livello elementare alla macroscopica asimmetria temporale fattuale.
La nostra discussione trascura deliberatamente il problema delle variabili nascoste, pren-
dendo come modello in cid la trascuratezza di Einstein riguardo l’etere meccanico,
nel proporre la sua relativitd ristretta. Crediamo che qui oggi, come 13 nel 1905, il
problema sia costruire il discorso secondo la matematica (valida dal punto di vista
operativo). E in pin il fatto che il cambiamento di paradigma, che & necessario, av-
venga attraverso una vittoria del formalismo sul modellismo.

CummeTpHd BpeMeHH M mapajiokc DfiHTeiina.

Pe3tome (*). — C nmoMoibI0 31€MEeHTapHOM TPHIOHOMETPHHE OIPEIENIETCS XapaKTePHOS
pasjigiMe MEXIy HaJeOKBAHTOBBIM BblYHCIeHHEM (CyMMUpOBaHUE TAPUHATBHBIX Be-
POATHOCTE#) H HEOKBAHTOBBIM BBIYHCIEHHEM (CyMMHUpPOBAHME NAPLHATIBHBIX AMITIUTYX)
IS KOPPSJAAUUM TOApH3aLni GOTOHOB B KACKaIHBIX NeEpexonax. YKazaHHoe obmy-
MaHHOE€ UCMONb30BAaHME MPOCTHIX GOPMYJ MMeEeT 1esib — CHOPMYIHPOBaTh B SIBHOM
BUAC HU3MEHEHME B mapagurMe, Tpebyemoe Tak wHa3piBaeMbiM EPR mapamoxcoM
(XOTOPBL sBNsETCSA MAPAIOKCOM DiHIITENHA), a uMenHo: 1) aBa GoTOHA HE O6NAnAOT
MONISIPU3ALMSMH, KOF 2 UCIIYCKAIOTCs UCTOYHUKOM C, HO HO3Xe NMpeoOpeTaloT moasapu-
3aHMI0, KOTOa B3aMMOACHCTBYIOT ¢ aHanusatopamu 1. u N; 2) IBeT HE HacT uHdop-
mauuro 06 mcrounuke €, a 06 awanusaropax L u N; 3) Koppensuus MeXnay H3Me-
penusiMu B L u N cBszana yepes C, ux oOwusm npowasim. Awanns ete” aHHUTHISALNA
B 1Ba (OTOHA HEMOHCTPHUPYET TECHYIO CBA3b MEXOY ITOH « DHHINTCHHOBCKOH Hepa-
3ITUIAMOCTBIO » M HEIOKANBLHOCTHIO B M2l HMAHOBCKOM « TEOPHH IO3HTPOHOB ». TakuMm
06pa3oM, napagoxe DHHUITEHHA NPH « HOBBIX BOJIHONOJZOOHBIX BEPOATHOCTHEIX BBIYH-
CIIEHUSIX » COOTReTCTBYeT mapanokcy Jlommuga u Iepmeno B cTapbiX BEPOATHOCTHBIX
BLIYUCTICHUAX. YKa3aHHOe OOCTOATE/NLCTBO COMOCTABINACT GHYMPEHHIOW CUMMEMPUIO
8pemenu, KOTOpas CyuIeCTBYET Ha JJEMEHTAPHOM YPOBHE, C Oelicmeumenvroil Maxkpo-
cronuueckoii acusmsiempueli epemenu. Hama auckyccuss YMBIIIJIEHHO HE 3aTparuBaet
HpoGIeMy CKPBITHIX MEPEMCEHHBIX. MBI CYHTAEM, YTO ceroiHs, kak u 8 1905, npobrema
cocTout B nmpucnocobnennn Gopmynuposok. TaxuMm oOpa3om, 3TO M3MEHCHHE B Iapa-
IUrMe, KOTOpOE SBIIsNETCH HeOBXOMUMEIM, HMPOMCXOANT Yepe3 mobeny dopmanusma
HAJ MOIEIN3MOM.

(*) [Ilepesedeno pedaryueil.



