
RIVISTA D E L  NUOVO CIMElqTO VOL. 3, N. 10 1980 

Geometric Formulation of Classical Mechanics and Field Theory. 

V. ALDAYA a n d  g . A .  DE A Z C ~ A G A  

Departamento de Fisica Tedrica, Facultad de Ciencias Eisicas - Burjasot (Valencia), Spain 

(ricevuto il 7 Giugno 1979) 

2 1. Introduction. 
4 PART I .  - Time-independent mechanical systems: symplectic structure. 
4 2. Hamiltonian formulation of classical mechanics. 
4 a) The Liouville and the symplectie forms. 
6 b) The Poisson bracket. Symplcctic diffeomorphisms. 
8 c) Hamiltonian systems. Symmetries of strictly symplectic syst_ems. 
11 3. Lagrangian formulation of classical mechanics. 
11 a) The Legendre transformation. 
12 b) The symplectic form wz on T(.M). Lagrange equations. 
14 4. Equivalence between the (regular) Hamiltonian and Lagrangian 

formulations. 
15 P~RT II.  - Time-dependent mechanical systems: contact structure. 
15 5. Introduction. 
16 6. Contact structures. 
17 7. Mechanics of nonautonomous systems. 
17 a) Preliminaries. 
18 b) Hamilton equations. 
19 e) Symmetries and the Noether theorem. 
22 d) Canonical transformations. 
22 8. Regular dynamical systems and contact structure on R • T(M) : Lagrangian 

formalism. 
23 9. Symplectic structure on the manifold of solutions in the case of the 

(( time-dependent )) mechanics. 
23 a) Introduction. 
25 b) The tangent space to the manifold of solutions ~a .  
27 c) Symplectic form on ~ .  
30 d) Poisson bracket. 
31 e) A trivial example: equations of motion on the manifold of solutions 

of the free particle. 
32 PXRT II I .  - The variational approach and field theory. 
32 I0. Introduction. 
33 11. Variational principles on JI(E) and JI*(E) in field theory. 
33 a) The Lagrangian approach to field theory. 
37 b) Variational formalism on JI*(E) and covariant Hamiltonian 

formalism. 



2 V. ALDAYA and J. A. DE AZCARRAGA 

39 12. Variational approach to classical mechanics. 
40 13. A first application to relativistic fields. 
40 a) The Klein-Gordon field. 
41 b) The Proca field. 
42 c) The Dirae field. 
43 d) The Rarita-Sehwinger spin-~ field. 
44 14. Symmetries in the modified Hamilton formulation. 
47 15. Application: space-time symmetries and Noether currents. 

a) Klein-Gordon field. 
49 b) The Proca field. 
49 c) The Dirac field. 
50 d) Rarita-Sehwinger field. 

e) Conformal symmetry of a massless fermion field. 
5-2 APPENDIX A. - vector bundles. 
52 A.1. Locally trivial fibre bundles. 
54 A.2. Vector bundles. 
54 A.3. Tangent [T(M)] and cotangent [T*(M)] space of a manifold M. 

The tangent (differential) application. 
56 A.4. Tangent and cotangent vector bundles. Tangent and cotangent groups. 
5 8  A P P E N D I X  B .  - Jet  bundles J~(E). 
5-8 B.1. The bundle J~(E) of the v-jets of the fibre space ~ = (E, g, M). 
60 B.2. Co-ordinate system on JqE).  
61 B.3. The r-jet prolongation to F(~(Jr(E))) of a vector field of F(~(E)). 
64 B.4. The prolongation to /'(v(J~*(E))) of a vector field of /~(v(E)). 

.La Fisica ~ scritta in 
linguaggio matematico 
GALILEO GALIL~I, l l  Saggiatore 

1 .  - I n t r o d u c t i o n .  

Since the classical work of Car tan  [1], the  appl icat ion of the  methods  of 
(~ modern  ~) differential geomet ry  to physical  problems has been continuous 

and  has undergone a s teady increase in recent  years.  Apa r t  f rom their  p rom-  

inent  role in the deve lopment  of the  (symplectie) formulat ion of classical 

mechanics,  as described in the excellent book of A b r a h a m  and  Marsden [2], 

their  influence in other  branches  of physics has  been considerable. The modern  

formula t ion  of the  theory  of gauge (Yang-Mills) fields is p robab ly  one of the  

mos t  conspicuous examples  of this t rend,  bu t  certainly not  the  only one [3]. 

Another  area in which this geometr ical  approach  has been par t icular ly  frui tful  

is the  s tudy  of the var ia t ional  principles in classical field theory  (*). Since the  

ear ly work  of Dedeeker  [4] on the var ia t ional  calculus, the  subject  has  at-  
t r ac t ed  the  a t t en t ion  of m a n y  authors  [5-18]. As is known (see, e.g., [7, 10, 18] 

and  references therein),  the  use of the  techniques of differential geomet ry  

(*) ~ Classical ~> is used here in the sense of (~ nonquantized ~. 
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and the fibre bundle formalism in particular provides a scheme within which 
the formulation of the variational principles and the conservation laws (through 
the Hoether theorem[5, :10, 11, 18]) take a specially elegant form. At the 
same time, the introduction of the Poincard-Cartan form, a useful tool specially 
advocated by Garcia-P6rez and P6rez-Rend6n [10, 11; see also 18] allows a 
neat distinction between the ordinary Hamilton principle--which leads to 
the (Euler) Lagrange equations--and the so-called modified Hamilton prin- 
ciple which, in an adequate formulation [18], leads to the Hamilton equa- 
tions. As is well known, both variational principles do not always lead to 
the same set of solutions; they are equivalent, however, when the regularity 
condition is fulfilled. 

As already mentioned, the geometric differential approach has been ex- 
tensively applie4 to the formulation of classical mechanics (see, e.g., the books 
of ref. [2, 19-23] and also the classical text [24]). In contrast, a systematic 
study of the variational principles in their different formulations and in con- 
nection with the simplest (elementary) systems of relativistic field theory 
has not been carried out. This is one of the objects of the present work ia 
which, in particular, we shall obtain the equations of motion of those systems 
and the ~oether currents underlying their Poincar6 symmetry. This appli- 
cation has, apart from the illustrative character of the methods involved, the 
interest of the differences between the various variational principles and, in 
particular, the consideration of the modified Hamilton principle. In fact, we 
shall devote particular attention to the question of the equivalence between 
the ordinary and the modified Hamilton principle for the different systems. 
As a result, since the (( Hamiltonian ~) we shall introduce in field theory is a 
Lorentz scalar one--it  is not the zeroth component of a four-vector--, in the 
ease of equivalence we shall obtain an invariant Hamiltonian formulation 
which, despite its simplicity, is generally overlooked in favour of the common 
Lagrangian one and to which it is completely equivalent. 

This review, however, is not restricted to field theory. The other objective 
of this work is to show the parallelism which exists between field theory and 
classical mechanics. We believe this is best exhibited by the geometric for- 
mulation, which is specially suited to manifest the underlying structural unity 
of both theories and to exploit their similarities. With this aim, we have in- 
cluded previously a systematic review of the well-established symplectic (*) struc- 
ture of (time-independent) mechanics and also described the contact structure 
of the mechanics of nonautonomous systems and the symplectic structure 
which may be constructed on the manifold of solutions. The question of the 
symmetries is also analysed in the case of mechanics, to show that  its for- 

(*) The word symptectic seems to have been invented by Hermann WEYL (H. ~VEYL: 
The Classical Groups, Their Invariants and Representations (Princeton, N.J., 1946, 
first edition 1939)). 
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mulat ion is conceptually similar to the case of field theory.  The variat ional 
approach to mechanics, however, is only briefly discussed after  the general 
description of the variat ional  formalism (on the cross-sections of a fibre bundle) 
given in the par t  devoted to field theory.  This incidentally shows the non- 
preponderant  role of the variat ional  principles in classical mechanics, a f~ct 
often obscured in the more conventional  approaches. 

The distribution of the topics covered by  this review can be found in the 
index. The paper  is self-contained; all the mathemat ica l  notions required for 
its reading beyond the notion of exterior  differential or Lie derivat ive are 

included in two appendices a t  the end. No a t t empt  has been made towards 
completeness in the bibliography; the references included are those which are 
most  re levant  to the tex t  among those known to the authors. A very  complete 
bibliography on some of the topics covered by  this paper  m ay  be found in the 
second reference given in [2]. 

P ~ T  I 

Time-independent mechanical systems: symplectic structure. 

We review in the following sect. 2-4 the mechanics of autonomous systems 
or systems which do not  depend explicitly on time. Time will thus appear  
in this par t  as a parameter  and not  as an independent  variable contr ibut ing 
in one uni t  to the dimension of the manifold. The theory  is developed 
in a way as to stress the similarities with the more general cases to be con- 
sidered later  on. As general references for this par t  (and also for par t  of the 
next) the reader  may  consult ref. [2, 2a, 2b, 19, 21, 22, 22a, 23]. 

2. - Hamiltonian formulation of classical mechanics. 

a) The Liouville and the symplectic ]orms. Let  M be a differentiable 
manifold of dimension m, I:(M)= (T(M),TI~, M) the tangent  bundle and 
~*(M) = (T*(M), ~M, M) the cotangent  bundle, dual of ~(M) (*). The manifold 
M, base of bo th  vector  bundles, will be locMly parametr ized by  the co-ordi- 
nate  system (ql, ..., q,.) = {q~}. The q~ thus denote the degrees of freedom of 
the mechanical  system~ tha t  will be defined later  on, for which M will be the  
con]iguration mani]old. The tangent  sp~ce T(M) will be parametr ized (*) by  
the co-ordinate system (q~T} = (qi, dq~}, usually wri t ten by  abuse of language 
(q~,~i}. The co-ordinate system of the cotangent  space T*(M)- - the  space of 

(*) The spaces and bundles considered in this section are defined in appendix A. 
The reader is referred to it when necessary. 
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1-forms ~ on T(M)- -wi l l  be denoted by  the applications {qi, ~/~q~ -- p~} ; T*(M) 
will thus be the phase space of mechanical system. These conventions for the 

co-ordinate systems reflect the fact  tha t  the vectors which define the basis 
of the vector  fibre parts  of T(M) [T*(M)] m a y  be taken as ~c/~q ~ [dq~]. 

Le t  T(T*(M)) be the tangent  space to the space T*(M) of 1-forms on T(M), 
and T(T*(M))~ (T(T*(M)), zz*.~n, T*(M)) the corresponding tangent  bundle. 
The various spaces up to now introduced appear in the following commuta t ive  

diagram : 

T(T*(M))  ~ T(M) 

~"~T*(M) :T~M 

where ~ is the tangent  application (to).M) and the action of the different maps 
is defined in terms of the co-ordinate systems by  (*) 

~,~, :(q,, ~,) e ~'(M) -+ q, e M ,  

).,:(q~, pJ ~ T*(M) ~ qi c M ,  

:~r.(.,n : (q ~, p~; dq i, dp J  e T(T*(M)) --~ (q~, p~) e T*(M), 

~ : ( q ' ,  p,; dq', dp,) e T(T*(M)) ~ (q', dq') e T(M) ,  

i = l~ ...~ m.  

The dual of the upper  line of the diagram gives 

T(T*(.,I/)) ~ T(~X) 

dual dua l .  

T*(T*(M))  (ZT)* T*(M) 

We m a y  use now the application (2~)* 'T*(M)-~  T*(T*(M)) to define a form 
A on T*(~V)A~I~(~*(T*(M))) ,  the Liouvilte /o~,~, whose e~t~rior derivative 
will give the symplectic /orm ~o on the cotangent  space T*(M). 

Let  x be a point  of M, ~ ~ o~dq ~ c T*(M) a 1-form and 

(2a.1) 

an element of T(T*(M)) at  ~ ( X i =  dqi(X~), X*----dpi(X~.)). I f  <,  } de- 
notes the contraction between vectors and 1-forms, it  is clear tha t  

(2a.2) 

(*) In the last line (qi. dqi) really means qi[X~( )] = q~, ~i[i~( )] = dq i. 
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The Liouville fo rm m a y  now be defined [19] as the 1-form A over  T*(M) such 

tha t  A : c ~ - +  (2~)*e,. Indeed,  since (appendix A.4) 

(2a.3) T - __  X,II(X~) = X * ~qi ' 

we find (2a.2) equal to X~e~ and consequently A is wri t ten as 

(2a.4) A = Pi dq i , 

since p~(a~) = ~ .  The symplectic Jorm on T*(M) is now defined as 

(2a.5) co = - -  d A ,  

where the minus sign is in t roduced for convenience. I n  local co-ordinates,  

(2a.6) co = dqiAdp~. 

Thus  o) is nit exact  (2a.5) and  nondegenerate  (rank ( o ) ) =  2m) 2-form and  

T*(M) is endowed by  co with  a symplectic structure. According to D a r b o u x ' s  

theorem [2, 19, 22, 23] any  sympleet ic  manifold (i.e. any  2m-dimensional  man-  
ifold with a closed (locally exact) 2-form of rallk 2m) admits  local (symplectic) 

charts  (x ~, y~) in which co = dx~Ady~. When  the symplectic  s t ructure  is de- 
fined on T*(M) th rough (2a.5), the  Yl are the p~ ~ ~c/~q ~ and co is given b y  
(2a.6). Thus we m a y  take  co in the above canonical fo rm and ex tend  to 
all sympleet ic  manifolds a n y  loeM assert ion p roved  in the canonical basis 
(for instance,  the  base of phase space of mechanics) which is invar iant  with 

respect  to canonical t ransformat ions  (see below). 
co~ is~ bu t  for a numerical  factor,  dqlA...AdqmAdplA...Adpm; thus corn is 

a vo lume fo rm on T*(M) and, consequently,  the cotangent  bundle is orientable. 

b) The Poisson bracket. Symplectic dif]eomorphisms (*). The appl icat ion 

X--+ixco, where i means inner product ,  defines an isomorphism between 

F(v(T*(M)) ) ,  the modulus  of vector  fields on T*( M) (cross-sections of v(T*(M))) 

and  F(z*(T*(M))), the modulus of 1-forms (cross-sections of z*(T*(M)))on 
T*(M). I n  local co-ordinates,  for 

(2b.1) 

we find 

(25.2) 

Oq ~ + X~ Sp~ 

ixa) ~ (dq~Adp~)(X) = X ~ d p ~ -  X* dq ~ . 

(*) As an ~dditional reference for subsect. 2b), the reader may consult [23a]. 
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Reciprocally, given a 1-form o ~ = a ~ d q i ~ - o t * ~ d p i e F ( z * ( T * ( M ) ) ) ,  the as- 

sociated field X is given by  the condition 

(2b.3) 

with the result 

(2b.4) 

i X  (20 ~-  O~ 

- -  o X~ = ~*~ ~q~ - -  ~ ~Pi 

The Poisson bracket  of two Pfaff forms ~ and fi of F ( ~ * ( T * ( M ) ) )  is now de- 
fined by  

i.e. it is the one-form associated through to with the Lie bracket  of the fields 

X~,  X~ associated with ~ and ft. Thus the Poisson bracket  of 1-forms m ay  
be considered as the prolongation of the Lie bracket  on F ( ~ ( T * ( M ) ) )  to 
to  

Let  ], g now be two functions on the symplectic manifold T*(M) .  The 
Poisson bracket o] ], g is defined by  

(2b.6) {], g} --~ o~(Xj, X~), 

where X j ,  X~ are the vector  fields associated ((2b.3)) with the 1-forms dr, 
dg (*). (The function o~ (X~, X~) is sometimes called the Lagrange bracket of X~, 
X~.) Thus 

(2b.7) {]~ g} ~ ix~ ix s (o = -Lx~ ] = -- Lx  I g 

where L is the Lie derivative. In  terms of local (canonical) co-ordinates (q~, Pi) 
we have, for instance, 

e/ e el e 
(2b.8) X1 -- 

c~pi ~qi ~qi~p~ 

and 

(25.9) {t, g } -  c~] c~g ~)r c~g 
~qic~pi ~pi ~q~ 

i = l ~ . . . ~ m ~  

which is the usual expression for the Poisson bracket  in Newt onian mechanics 
and so definition (2b.6) has identical global properties. 

A canonical t ransformation is defined in classical mechanics as a transfor- 

(*) Note that, with this definition, {d], rig} as defined by (2b.5) is simply d~j, g} 
as giveu by (2b.6). This is easily checked by using the identity on forms 
i[xl.x~] = ~xs ix~ - -  ixg Lx 1. 
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marion which preserves the Poisson bracket .  Le t  (S, o~) alld (S', co') be two sym- 

plectie manifolds and ] : S - - > S '  a differentiable application. Then the ap- 

pl icat ion ] preserves the symplect ic  s t ructure  when ] * o t =  o~, where ]* is the 

appl icat ion dual  of / (pull-back) operat ing oi1 forms. When  f is a diffeomor- 

ph ism of ~/'*(M) on T*(M) such tha t  ]*e9 = ~o, ] is a symplectic di]/eormor- 
phism or symplectomorphism [21] and  defines a canonical trans]ormation of 

the mechanical  system. The canonical t ransformat ions  preserve the volume ele- 
men t  in phase  space. 

c) Hamiltonian systems. Symmetries o] strictly symplectic systems. A 
dynamical Hamiltonian system on T*(M) (*) (frequently denoted by  (T*(M), 
09, Xz)  ) is a vector  field X z  such tha t  ix eo is a closed Pfaff form. More pre- 

cisely, one speaks of a locally Hami l ton ian  sys tem in this si tuation, since in 

general the existence of a funct ion H such tha t  ix,o) ~-- dH is guaran teed  only 

locally (Poincar6 lemma).  When  ix o~ is bo th  closed and exact ,  then  

(2c.1) ix,  o) = dH 

globally,  and  the  dynamical  sys tem is globally Hami l ton ian  (**). I n  this case 

the  Hami l ton ian  vector  field admits  a t t ami l ton ian  funct ion H on T*(M). 
We shall restr ict  ourselves to globally Hamiltoniam systems henceforth.  

A Hami l ton ian  H is thus defined as a funct ion H:T*(M)  -~ R. B y  means 

of canonical co-ordinates (q*, p~), H ~ H(q ~, p,) and the associated vector  field 
is given b y  

~H ~ ~H c ~ 
(2e.2) X ,  - -  

~P~ ~cq ~ ~q~ ~Pi 

Thus the integral  curves of XH (applications c: I  ~ T*(M), where I is the uni t  
interval ,  such tha t  dc/dt ~--X~) are given by  the solutions of the Hamilton 
equations 

(2c.3a) dq~--  c~H dp~ _ ~H 
dt ~cpi ' dt ~qi " 

whose symplect ic  s t ructure  is clearly exhibi ted when they  are wri t ten in the 
fo rm 

(2e.3b) 
dt  \ p j  _ 

(*) These definitions are trivially extended to any symplectic manifold (S 2~, co) 
co[v= dxiAdyi ( U c S  "-'~) and are not restricted to the case S ~ . . . .  T*(M~'), c o = - - d A  
previously considered. 
(**) When the first cohomology group of S '~m vanishes, if the 1-form ixco is closed 
it is also exact, and a locally Hamiltonian system is also globally Hamiltonian. 
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I t  should be noted  t ha t  in the above equations dq~/dt is not  necessarily ~ ;  

this will happen  in the case of regular i ty  to be discussed la ter  on. 

Under  symplect ic  diffeomorphisms, the symplect ic  fo rm o) and  conse- 

quent ly  the H am i l t on  equations are preserved. I n  the same way,  a Hamil -  

ionian vector  field preserves the  symplect ic  fo rm and, if L x o  = O, X is Hami l -  

tonian:  L x o  = 0 <:> d(ixw) ---- 0, since L x =  ix d ~- dix.  X is often referred to as 

an (infinitesimal) canonical transJormation. 

L e t  us now consider the symmetr ies  of the s tr ict ly symplect ic  dynamica l  

sys tems up  to ~ow considered, i.e. those defined orr a sympleet ic  m~rrifold 

S 2'~ (in par t icular  T*(M)) .  These systems,  defined b y  a vector  field XH of 

F(~(8))  ( F ( ~ ( T * ( M ) ) ) ) ,  correspond to mechanical  systems whose Hami l ton ian  

f u n c t i o n - - t h e  (, energy integral  )>--does not  depend explicit ly on time. 

Le t  ~ be ~ group of diffeomorphisms of the  symplect ic  manifold  of gen- 

erators  given b y  the Hami l ton ian  vector  fields X$. Then ~r is a symmetry  

o! the Hami l ton ian  system X , ,  and  the functions G ~ defined b y  

(2c.4) i x ] o  = dG ~ 

are constants oJ the motion, when 

(2c.5) Lx~ H =- 0 

(this condition m a y  be relaxed to Lx~H = const). Clearly, (2c.4) and (2c.5) 

imply  

(2c.6) dH(X~) = 0 ---- (ix oJ)(X~) = o ( X ~ ,  XH) = --  (ix~o~)(X~) ~-- --  dG~(X~), 

i.e. the  1-forms dG ~ are first integrals of X ,  (*) and  consequently the G ~ are 
constants  of the motion.  This resul t  m a y  be considered as a restr ic ted version 

of the Noether  theorem to be considered later  on (subseet.  7c)). We finally 

note  t ha t  (2c.6) ur~d (2b.5) give 

(2c.7) [x$ ,  x . ]  = 0 

and  tha t  the expression o ( X ~ ,  Xu)----0 reproduces the familiar  result  

(2c.s) {Go, = o ,  

indicating t ha t  the Poisson bracke t  of the Hami l ton ian  and  a conserved quan- 

t i t y  is zero. 

(*) A Pfaff form a is said to be a first integral of X if ~(X) ~- (X, a ) =  0. This 
generalizes the following definition: a function ] is a first integral of X if 
X.] = L x !  = a/(X) = 0. 
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In  the case of the symplectic mechanics the symplectic manifold is 
(T*(M),  co), where co is defined by  (2a.5). Thus we find that ,  in general, to  
consider a symmet ry  problem the vector  field has to be defined on the sym- 
plectie munifold. However,  in the case of mechanics, X~ is usually defined 

~s ~ diffeomorphism of M~ not  of T*(M).  Thus ~ c~nonical procedure is re- 
quired to lift vector  fields o n ' M  to vector  fields on the cotangent  space T*(M).  
The si tuation is summarized by  the following diagram: 

T(T*(M)) ;4> 
2 I 'Ix 

T*(M) > M 

where )~ is the lift of X to the cotangent  bundle;  the diagram is easily under- 
stood by  recalling tha t  a vector  field on a manifold is a cross-section of the  
corresponding tangent  bundle (appendix A). X is now uniquely determined 

by  the following two conditions (cfr. appendix A.4): 

a) Xo)~, = ~ o X  (X  is projected onto X, commuta t iv i ty  of the diagram), 

b) L~A ~- 0 (invariance of the canonical Liouville form). 

B y  writing X ----2~(8/~q ~) + X~(~/~pi) ,  X ~ Xi(~/~qi),  condition a) imme- 

diately gives X ~ ~ X ~ and condition b) gives 

~XJ 
(2c.9) 

SO tha t  ((A.4.4)) 
8XJ ~c 

(2C. ]0)  ~ : X i - ~  -p j  ~qi ~Pi" 

I n  this way, the vector  field X is automatical ly Hamiltonian,  since L~A --~ 0 
implies i~dA = -  d ( i ~ A ) = -  d(A(X)), so tha t  isco is exact. Thus the re- 

stricted above-mentioned version of the Noether  theorem may  be formulated 

for the case of mechanics (T*(M),  co--- - -  dA) as follows: 

((Let Xu be a Hamil tonian system on T*(M) and let dH---- ix  co. I f  X~ 
is a vector  field on M such tha t  (dH) ()~s) ---- 0, where 9~ is the canonical lift of 

X ,  to T*(M), then the 1-form d(i~sA) = d(A(X~)) (or the function A(X~) = G~) 
is a first integral of X , .  )) 

The theorem follows from the above considerations by  put t ing co ---- -- dA 
and realizing then  tha t  ix co ~ dG~ implies d(i~ A)----dG~. In  local co-ordi- 
nates we obtain from (2c.10) and A ---- pidq ~ the result A(2~) ~ X~p~. 

Example. As a simple example, let us obtain in the case of a free part icle 

the conserved quantit ies associated to the generators (on E3, the Eucl idean 



GEOMETRIC FORMULATION OF CLASSICAL MECHANICS AND FIELD THEORY 11 

three-dimensional space) of the translations and the rotations of the Galilei 

group (*). These generators are writ ten on M as 

~ ~ i j . X  ~ X  k ' (2c.11) X ( i  ) b~ c~x~, M(~) k j i, j ,  k = 1, 2, 3 . 

Thus, since X ~ i  ) = 5~ and M~) ---- e,.kx~, the conserved quantities turn  out to 

be, as expected, the momentum p and the angular momen tum xAp. ~ o t e  

that ,  in evaluating the conserved quantities, only the components on M of 

the symmet ry  vector field are relevant. However, the full vector field on T*(M) 
is required to check whether X,  is a symmet ry  or not. For  instance, for the 

rotations one gets from (2c.11) and (2c.10) 

(2c.12) ( 
~x ~ 

and one easily verifies tha t  (dH)217(~)= 0, since dH = (p/m)dp. 

3. - Lagrangian  formula t ion  o f  c lass ical  mechan ic s .  

a) The Legendre trans/ormation [9, 19, 2]. I n  the previous section we 

have constructed the Liouville form A e F(v*(Z*(M))) in a canonical w a y  

and developed from it the Hamil tonian formalism on the cotangent space 

T*(M) (**). There is not, however, such a Liouville form on T(M) nor there 

exists a canonical way to t ransport  the symplectie structure on T*(M) to T(M) 
because of the absence of a canonical isomorphism between a space (T*(M)) 
and its dual (T(M)). ~qevertheless, it is possible to t ranspor t  the formalism 
to T(M) when a function is defined on this space, which satisfies certain con- 

ditions. Such a function L:T(M)-~R,  L : L(q i, ~) is called Lagrangian and 

the equivalence between both  formulations follows when the Lagrangian is 

regular. 
To see how this can be performed, we need first the concept of vertical 

or fibre derivative. Let  M be a manifold of dimension m, T(M) its tangent  

space, T~(M) the fibre space over a point x ~ M (which is itself a vector space of 

the same dimension m) and L a Lagrangian function on T(M). The fibre 

derivative D ~ of Lx (restriction of L to the fibre over x ~ M), D~L., is defined 

as the derivative of L restricted to the fibre at  x, Tx(M). By extending this 

(*) In the natural realization, the Galilean boosts require the explicit presence of time 
and thus cannot be defined on M. 
(**) As already mentioned, it is possible to develop directly a Hamiltonian formulation 
on any symplectic space (S 2"~, ~). 
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definition of D + to all fibres, the vertical or ]ibre derivative D~ (the derivat ive of 
L in each fibre of T(M)) is a map DL:T(M) -+ T*(M) such tha t  '~xc M, 
X~ E T~(M), 

(3a.1) DL:X: + T:(M) -~ (D+L)(X:) =-- D(L[:)(X:) + T*(M) . 

Indeed (D~L=)(X~) is a linear application and defines a covector of T*(M), 
(D'L)(X~).(X'~)ER. By definition, D~ is a fibre-preserving map;  however, 
since the correspondence X~-+(DvL~)(X~,) is not  necessarily linear, DL is not,  
in general, a vector  bundle mapping. 

Le t  e (e*) be a point  of T(M) (T*(M)). Using, as is customary,  the same 
symbol for the co-ordinate system as for the co-ordinates themselves, we obtain 

(3a.2) ,1 , / [  q'(e) = q~ I 
e + T(M) -+ e* = DLe + T*" ( : . ) / I  ~(e) = d[' J ' 

q~(e*) = q~ 

~L 
p~(e*) =-~q~ 

(3a.2) defines DL in terms of local co-ordinates. DL will have an inverse if the 

Jacobian  of the t ransformation det ( ~ L / ~ c ~  ~) (the Hessian of L) is different 
f rom zero; this corresponds to the si tuation for which the tangent  application 
D~:T(T(M)) ~ T(T*(M)) is an isomorphism. In  this case DL is f requent ly  
referred to as the Legendre trans/ormation and L is said to be regular. 

Other  considerations on the Legendre t ransformation may  be found in [25]. 

b) The symplectic ]orm ~oL on T(M). Lagrange equations. Let  L(q i, ~) 
be a regular Lagrangian on the configuration space. DL allows us to t ranspor t  
the symplectic form on T*(M) to T(M);  if D* is the pull-back of the Legendre 
application acting on forms, 

D*:(o dq~Adp~-~oL dq~A d (~c~) (3b.:1) 

Thus 

(35.2) 

Clearly, 

(3b.3) 

~2L 
~L -- c~i c~qJ 

~L 
dq~A dq j + ~ i  ~ dq~Adq j" 

~2L 
~o~oc det  ( ~ j )  dqlA...A dq'~A d~IA...A d~'~ 

is a volume form on T(M) (L is regular) in the same way r " was for T*(M) 
(subsect. 2a)). 

We m a y  now proceed along lines similar to those of subsect. 2c). A Hamil-  

tonian vector  field XE on T(M) is a vector  field such tha t  

(35.4) ix=eL = dE,  X~ e ~(T(M)) 
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(we consider X .  globally H~miltonian, so ~hat ix co is exact).  Thus, given a 
function E on T(M), we may  associate to it  a set of << Hamil tonian  equations ~). 
The question now arises of finding E from L so tha t  (3b.4) le~ds to the Lagrange 
equations. This is accomplished by giving the action AL of L as an intermediate  
step. The action A~ of L is the application AL :T (M)  --+-JR defined by  

(3b.5) A : X : e  T~(M) -+ ( D ' L ) ( X : ) . ( X : )  + JR . 

]n  local co-ordinates, 

(3b.6) 
8 L .  

A~ ' (p ,  ~)  -+ - -  T .  

Then the function E, the energy of the system described by  L, is the real func- 
tion on T(M)  given by  

(3b.7) E = A L - - L  = ~ . ~ T - - Z ( q  +, ~ ) .  
c T  

I t  is now easy to show tha t  X~ = X~(r ~ ~) + 2{~(~/~q~) generates the 
Lagrange equations through (3b.4), if E is the energy as given by  (3b.7). As 
an example, we shall perform this culculntion in detail. F rom 

(3b.8) 

and  

(3b.9) 

we get 

(3b.10) 

c~E ~E 
dE - - -  d i + d~i 

~q~ q c ~  

' 2L  X i ~:E _ (X~dqJ--  X~(lq9 + ~ j  ( E(I~J--X~(]q ~) 

X~, 

Thus a vector field X~ which satisfies (3b.4) is given by  

(3b.n) 

~E 

M~z 
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where M j~ is the inverse of M , .  Xr  generates the following equations: 

(3b.12) X ~ dq~ X ~ -- d ~  
- -  dt ' ~ dt 

and it  only remains to show tha t  3b.12) are equivalent  to the Lagrange equa- 

tions when E is the energy of L. F rom 

(3b.13) 
DE D2Z 
@' D~'~J ' 

DE ~ ~L c~L 
Dq-- ~ = Dq~Dq jqj Dq~ 

we get X~ = ~ - d q ~ / d t ,  which indicates tha t  eqs. (3c.12) couple together  
(because of the regulari ty of L) in a single second-order set of equations which 

reduces to 

(3b.14) 

~2L d2q ~ D2L dq ~ ~L 
+ - - 0 ,  

Dq k ~ j  dt 2 Dq ~D~ j dt Dq j 

i.e. 

~cqJ -- 0 , 

which const i tute the Lagrange equations. 

4. - Equ iva lence  between the  (regular )  H a m i l t o n i a n  and Lagrang ian  formu-  

lat ions .  

We m a y  now ask which is the Hamil tonian H (or the vector  field XH) which 

corresponds to the energy E of subsect 3b). Since DL is a diffeomorphism be- 
tween T(M) and T*(M), there exists an ~pplication D-ZI(- DH) :T*(M) ~ T(M).  
Then the (obviously regular) Hamil tonian H is defined by 

(4.1) H ~ EoD~ 1 ~- EoD~.  

Thus the function H : T * ( M ) - ~ R  takes at  (qi, pj) the value ~ ( D L / ~  ~) - - L ,  
as was expected. There is now a complete symmet ry  between both  (regular) 
Hamil tonian  and Lagrangian formalisms; L determines D ~ ( :  D~ 1) and H,  
and the regular Hamil tonian H (for which the regulari ty condition reads 
det (D2H/Dp~pj) ~ 0) determines D H ( :  D i  1) and L. The contents of sub- 
sect. 3a) through subsect. 3c) may  be now summarized by  the following corn- 
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mutative diagrams: 

R ~  

R 

T(M)~ T*(M) 

E=AL-L H o.=o[ ~ 

R 

L 
R'* 

T(T(M))~. " T(T*(M)) 

o~ 
;r(M) ~----- �9 T*(M) 

E H 

R 

that  we take from [2]. In the first of them, A~ is the action on T*(M)  defined as 

(4.2) 

and D.  may be written as 

~H 
c'p i 

D.:(q,, pj)_~ (q~, eH~ = 
~pj]  (q% q~) . 

PA~T I I  

Time-dependent  m e c h a n i c a l  sys tems:  contact  structure.  

5. - Introduction. 

As has been shown in the previous part, one of the virtues of the symplectic 
formalism for the time-independent mechanical systems is that  of providing 
a canonically defined Poisson bracket for any pair of differentiable functions 
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on the phase space T*(M). Only the definition of the symplectic form is neces- 

sary, and T*(M) is always endowed with a symplectic structure. (By contrast,  

a sympleetic structure is not  granted on T(M); this requires the existence of 

a regular Lagrangian.) 

When  the definition space of physical quantities is enlarged to include the 

t ime t (a situation which corresponds to the (( explicit ~) dependence on t), the 

phase space is accordingly extended to T*(M)•  (and the ((configuration ~) 

space to T(M)•  and thus the symplectie structure is lost since the di- 

mension of the space (2m + 1) is odd. Nevertheless, on the manifold of so- 
lutions of a Hamil tonian field depending on time, it is possible to define a sym- 

plectic structure in such a way tha t  a symplectomorphism with T*(M) is 

obtained for each time to (*). As in the case of the (~ t ime-independent )) 

mechanics (i.e. mechanics of autonomous systems), the definition of a sym- 

plectic structure on the manifold of solutions on :R • T(M) will require the ex- 

istence of a regular Lagrangian. I n  any case, however, the canonical s tructure 

is again lost in the sense tha t  the previous existence of a Hamil tonian on 

T*(M)•  (or a Lagrangian on T(M)•  is required. 

Let  us now turn  our a t tent ion to the contact  structure which, for time- 

independent systems, replaces the sympleetic structure. 

6 .  - C o n t a c t  s t r u c t u r e s .  

Let  E be a manifold of odd dimension 2m + 1. A contact structure is the 

pair (~f, ~o) where ro is a closed two-form of maximal  rank (which will be 2m). 

An exact contact maniJold is the pair (E, O), where 0 is a one-form of constant  

class 2m + 1, i.e. such that  the codimension of the characteristic space of 

O(**) is 2m + 1 .  I t  is not  difficult to see tha t  O defines an exact contact  struc- 

ture if and only if CA(dO) ~ is a volume form on ~" and that  accordingly E is 

orientable. 
The Darboux  theorem of subsect. 2a) is easily extended to the odd-dimen- 

sion case. Since the class of a form of constant  class is the minimal number  

of functions required to express it, around each point y ~ E there is a local 

(*) In the case of mechanics, the definition of a sympleetie structure on the manifold 
of solutions does not present special difficulties. The case of classical field theory is 
more difficult, however, since the equations of motion are equations oi1 partial deriva- 
tives instead of ordinary differential equations and thus a point in ~ phase space ~ does 
not determine a single solution. The case of mechanics will be considered in sect. 9. 
(**) Given ~ form D, a characteristic vector ]ield of D is a vector field X such that 
ix.Q=ixd~?= O. The codimension of the characteristic vector space at a point y 
(i.e. codlin (tad .Q n raddl2)(y)) is the class of the form D at y. If D defines a contact 
structure, (tad D)n ( raddO)= 0. If X is a characteristic vector field of .(2, D is said 
to be an absolute integral invariant of X. 
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co-ordinate sys tem (z, u 5 v~), such tha t  on U c W, y e U: 

(6.]) OIv = dz ~ v~du ~ . 

The 1-form O is called contact 1-]orm; i t  is clear t ha t  any contact  s t ructure  
(~, (o) is locally exact.  

An instance of contact  s t ructure  is obta ined when, in a t ime- independent  
(autonomous) mechanical  system, the symplect ie  fo rm is restr ic ted to a hyper-  

surface of constant  energy. Here ,  however,  we are ra ther  more  interested in 

the reciprocal si tuation, i.e. in e x t e n d i n g - - b y  adding the t i m e - - a  symplect ic  

s t ruc ture  to a contac t  structure.  This process is guaranteed  by  the following 
Proposit ion: 

Let  (S, o~) be  a symplect ic  manifold  of dimension 2m and let p be the ca- 
nonical project ion of R X 2 -> S defined b y  p : (z, s) -> s. Then (R X S, p* o) ~ aS) 

- - w h e r e  p * o  is the pul l -back of eo to R X S---is a contact  structure.  If ,  in ad- 

dition, o)---- - - d A ,  where A is a 1-form, then  ( R x S ,  0 ) ,  where 

(6.2) 0 = dz ~- p * A ,  

is an exact  contact  structure.  The contact  fo rm c5 has as characterist ic  vector  

field (ixD ~ 0 (*)) X = 8/8z, the generator  of the  d isplacement  on R. I n  fact ,  

if eo is dosed  and  the characterist ic  bundle [2] ({X r T ( R  X S)lixo~ ~-- 0}) is of 

dimension one, co is a contact  form. 

7.  - M e c h a n i c s  o f  n o n a u t o n o m o u s  s y s t e m s .  

a) Preliminaries.  Let  (S, ~o) be a symplect ic  manifold,  H(t,  s) a dif- 
ferentiable function oll /~X S and let p ' co  ~r denote the lifting to /~ X S of 
the symplectie  fo rm on S. The closed two form on R x S 

(7a.1) ~ n  = ~5 ~ d H A d t  

defines a contact  s t ructure ,  because, as is immedia te ly  checked, dtA~9~ is a 
vo lume form on R X S, since (o m is a volume form on S. Thus (R x S, ~ , )  is a 

contac t  manifold of dimension 2m ~ - l .  

If ,  in addition, r2~ ~ -  d o n  and H(s, t):/= 0 for every  pair  (t, s ) ~  R X S ,  
then  ( R •  0~),  where 

(7a.2) OH ~ p * A  --  H d t ,  doJ ~ --  d A  , 

(*) Since d5 = 0, to'~define a characteristic vector field it suffices that ixr = 0. 
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is an exact  contact  manifold. The contact  1-form O~ is usually called Poincard- 
Cartan lotto; in the calculus of variations (to be considered in sect. 12) the 
integral fOH is f requent ly  called Hilbert's invariant integral. The following 
proposition (due to Cartan) will be useful later  on: 

Le t  (8, w) be a symplectie manifold, and let H(t, s) be a function on R • S. 
There is a unique vector  field ~ ,  e F(~(R X S)) such tha t  

a) dt()~.) = 1, 

b) i i  g 2 . =  0 (or i~ dOH----0 in the case f 2 . - - - - -  dO.  (*)). 

To show tha t  this is the case, it is sufficient to note tha t  condition a) re- 
quires )~,  to be of the form 

8 
(7a.3) XH --~ 8t + X t ,  Xt  e F(~(S)). 

Then, if we call II~ ~ ttltx~ (i.e. the restriction of H to a t ime t) condition b) 
reads, since ~H ---- ~5 ~- dHA dr, 

i~, .QH : ix,o~ ~- dHt (Xt) dt -- dHt : O, 

which is zero if Xt is the Hamil tonian field of o) (associated with H,), since 
then ((2c.1)) ix w ~ dHt and (dii)Xt = ix i x ~  ~-O. Thus ~ is the sum of 
the generator  of the t ime translations and of the t tami l tonian  vector  field 
corresponding to the fixed-time t tami l tonian  Ht;  )~, may  be called the dynamical 
system associated with the contact ]orm f2n(Og). 

b) IIamilton equations. Let  us now extend the situation of sub- 
sect. 2c) to include the explicit dependence on time. With  the same notat ion 
of sect. 2, let M be a differentiable manifold of dimension m, T*(M) the co- 
tangent  sp~ce, A the Liouville form on T*(M), but  let now I I  be a differentiablo 

funct ion on R x T * ( M ) .  The pair (RxT*(M),OH) with On having the same 
expression as in (7a.2) is clearly an exact contact mani]old associated with the 
Hamiltonian ]unction H. Let  {t, qi, p,} be a local co-ordinate system on 

R X T*(M). (We might  ment ion tha t  the space R X T*(M) obtained by  adding 
t ime to the usual even-dimensional phase space is called evolution space [21].) 
Then )~,  is given by  

(*) In the language of Caftan [1], this is equivalent to saying that On ((2H) is a rel- 
ative (absolute) integral invariant of XH. 
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The integral curves corresponding to this dynamical  system are thus given 

by  the equations 

dq i ~H dp~ ~H dt 
(7b.2) d~. -- c~p~' d-~ : - -  ~q~' d~ : 1 ,  

where 2 is the parameter  of the curves. The last equat ion allo~s us to identify 
(up to a shifted origin) 2 with t ime and thus the first two are the familiar Ha- 
mil ton equations (el. (2c.3)). We shall call ~/, the  space of cross-sections 
s e F(R  • T*(M) ---> R) solutions of (7b.2). 

Given 2 ~ ,  it  is trivial to calculate the evolution with t ime of any physical 
quant i ty  specifed by  a function F on R •  

(7b.3) 
c~/,, 

Z~ F : -~- + {F, H } ,  

where { , }  indicates the Poisson bracket  on T*(M).  F is a constant of the 
motion if L y F  : 0; if F ve F(t),  (2c.8) is recovered. In  particular,  if F : H, 

L~HH : ~H/~ct, which shows tha t  H is not  a conserved quant i ty  if H : H(t). 

c) Symmetries and the Noether theorem. Let  us consider a mechanical 
system on R • T*(M) defined by  a Hamil tonian funct ion H. We shall write 
the associated Poincar~-Cartan form as O : A -  H dt without  expliciting the 
subscript  H and the pull-back p*. Before formulat ing the Iqoether theorem, 

we prove the following simple lemma: 

Let  X be a vector  field on R •  T*(M), X ~ F ( ~ ( R •  T*(M))). Then we have 

(7c.1) ix dole = 0 

for any section s c r the set of solutions of the Hamil tonian field )~R given 
by  (7b.1). 

The proof is done by  direct computation.  We shall make it here since 

expressions similar in s t ructure to (7c.1) will appear  later  on (sect. 11). 
An arbi t rary  vector  field on R •  T*(M) is of the form 

X ~  + X *  ~ (7e.2) .x = x  o ~ +  ~ - - .  
cq ~ ~Pi 

From dO = dp~Adff ~ -  dHAdt  we get ixdO = -- ixco -- d H (X )d t  q- dr (X)dHt ,  i.e. 

X o~H/\ i ~o ~H ~H . ~H 
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and, restricting ourselves to cross-sections s ~ F (R  X T*(M)), 

(7c.3) ix dOl~ = 

~xa(dqi ~H .~i( ~Pi 
= [ ' d t  + 

~H) Xo(~H dq ~ + 
~P~ 

dt = 0 .  

I t  is clear tha t  (7c.3) is zero for cross-sections of rYE. Reciprocally, given an 
arbi trary vector field X~F(~(R  • T*(M))) ,  a cross-sections of F(R  • T*(M)--~R) 
satisfies (7c.1) if it is a solution of the Hamil ton equations, since, X* and X ~ 
being arbitrary, the coefficients in (7c.3) must  be zero (the coefficient of X ~ 
then vanishes identically). Thus the solutions of the Hamil ton equations are 
equally determined by the sections s which satisfy (7c.1) VX. This result will 
be also obtained from the variational principle (sect. 12). 

The Noether theorem may now be established precisely [10]. Let  X~ be 
a vector field which corresponds to a symmetry  of the dynamical system 
( R x  T*(M),  0) ,  i.e. such tha t  

(7c.4) LGO = d~x,, 

where d~x, is a 1-form (which may  be zero) depending on X~. Then 

(7c.5) d(ix O -- ~x~) [., = 0 Vs ~ ~ 

and the function (ix O -  O~x.) is the Noehter invariant associated with the 
symmet ry  generated by Xs. The proof is simple: (7c.4) m a y  be written as 
(ix d -~  dix,)O ~--d~x,, and, by restricting ourselves to cross-sections of ~ . ,  
(7c.5) is obtained by using (7c.1). 

In  the particular case in which H V= H(t), L x O - ~  0 (we shall omit d~x,) 
gives for a field X~ on T*(M) ( X O :  O) 

(7c.6) Lx, A -- 0 ,  Lx H = O. 

The second expression of (7c.6) is simply (2c.5) and the first, written as ix o) 
= d(ix A), tells us tha t  X~ is a Hamiltonian field in the sense of subsect. 2v). 
This reproduces again the results of subsect. 2c) ((2c.8)) with the conserved 
quant i ty  G~ ~ iz A. 

Example. Let  us consider the simplest case of a free particle of mass m, 
for which H = p 2 / 2 m .  The generators of the Galilei boosts on /~• 
are given by 

(7c.7) X:i) = t ~  + m6,. ~p--~.. 
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Then 

(7c.8) 

i%) dO = m6ij dq j -- t dpi -- Pi d t ,  

ix(,) 0 = p i t ,  d i x ( o O = p i d t @ t d p i ,  

Thus the associated Noether  invariant  is given by  , i % ) 0 -  m(~i~q ~ = p i t -  mqi, 

i.e. ( p / m ) t -  x is a constant  of the motion. 

A n  extended note on the Galilei group. The above expression of the generators 
of the Galilei boosts could be obtained, for instance, f rom the corresponding 
ones on R •  ((B3.21)) by  means of the Legendre transformation.  The 

reader  ma y  wonder, however, about  the appearance of the mass m of the 
particle in (7c.7) which does not  appear  in the expression of the boosts on 
R •  T(M) .  This is a result  which may  be t raced to the peculiar s t ructure of 
the Galilei group [26] and to the fact that ,  al though there is a canonical way 
to prolong vector fields on B •  to R •  ((B3.19)), this is not  the ease 

when one tries to expand their  action to the evolution space R • T*(M),  which 
is the relevant  space for the Hamil tonian formalism. In  fact,  it may  be seen 
in general that ,  to obtain a canonical realization of a symmet ry  group (canonical 
meaning here in ternls of canonical transformations,  see the next  section), 
one has to consider [27, 28] the realization of its Lie algebra in terms of Poisson 

brackets in which the s t ructure  constants of the Lie algebra are kept  only 
up to some additive numerical  constants. In  this way, what  turns out to be 
relevant  is an extension of the Lie algebra by  neutral  elements (i.e. which 
commute  with all others). These, which give rise to the factor  system or phase 
exponents,  determine an extension of the symmet ry  group by  the (~ phase 
group ~>. The different extensions are determined by  the second cohomology 
group; in the ease of the Galilei group in which we are interested, H2(fr U~) 
(where U~ is the ~ phase group ~>) turns out  to be Z2 @ R [29]. The elements 
of R (the cyclic group ( 1 , -  1) is un impor tan t  in our context)  characterize 
the mass of the particle. This is the reason why the mass of the particle m ay  
be in terpre ted [21] as a eohomology class of the Galilei group. In  contrast ,  the 
role played by  the mass in the case of Poincar5 is completely different: it has 
been known since the work of Wigner[30]  tha t  H~(~r U ~ ) =  Z2, a result  
which is usually formulated by  saying tha t  all the project ive representat ions 

of ~r come from the representat ions of ~+ ,  its universal covering group. 
Thus the mass of the e lementary  systems appears as an index part ial ly labelling 
an irreducible representat ion of ~r not  an extension of it. 

Finally, it  might  be interest ing to mention tha t  the special role played 
by the mass in Galilean mechanics also shows up in the Lagrangian formulat ion 
on R •  T(M) ,  although not  directly, since the extension of vector  fields to this 
space is canonically defined with independence of the given Lagrangian as- 
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soeiated with the dynamical  system. I n  fact,  it is well known [31] t ha t  the 

Lagrangian  of a free part icle is not  invar ian t  under  Galilean boosts, bu t  tha t  

the t r ans formed  Lagrangian  differs f rom it  in a to ta l  t ime der ivat ive of a certain 

funct ion involving the mass,  sometimes called gauge function, which in the 

var ia t ional  approach  does not  al ter  the equations of motion.  I t  m a y  be then  

seen [32] t ha t  there is a close relat ion between the gauge functions and  the  

group exponents  ment ioned earlier and t ha t  these gauge functions are specified 

b y  the equivalence classes of the exponents ,  i.e. b y  the mass m. 

d) Canonical trans]ormations. Le t  (S, co) and  (S', o)') be two sympleet ic  

manifolds of dimension 2m and let (R• ~,) ,  (RxS ' ,  D,,) be the corre- 

sponding contact  manifolds. A diffeomorphism C:R • S---> R X S' is a canonical 

t r ans fo rmat ion  

a) if the t ime is preserved,  i.e. if the d iagram 

C 
R x S  ~ R X S '  

P l~ I 1 p' '  
R < > R 

where I is the ident i ty  on R, is commuta t ive ;  and 

b) if H and H '  are functions on R • S and  R X S' ,  

C* ~ . ,  = Q ~  , 

where Q~ = c5 -~ d H A d t  and Qu' ---- oh'q- dH 'Ad t .  

I t  m a y  be seen tha t ,  as a consequence of b), CTo_~u----Xz,oC and tha t  the 
canonical t ransformat ions  accordingly preserve the Hami l ton ian  fo rm of the 

equations of motion.  We shall not  dwell any  longer on the canonical t rans-  

format ions  nor consider the Hami l ton-gacob i  theory,  for which the reader  

should refer to the extensive t r e a t m e n t  of ref. [2] or to [22]. 

8. - Regular dynamical systems and contact structure on R X T(M):  Lagrangian 
formalism. 

Many of the previous considerations have  been made  for a general contact  

s t ruc ture  on R • S, where S is a sympleetic  bu t  otherwise a rb i t ra ry  manifold. 

Thus the above s tudy  m a y  be extended in principle to R • T(M). However ,  

the  p rob lem which immedia te ly  arises is tha t  there is no canonical symplect ic  
s t ruc ture  on T(M). The si tuat ion is analogous to t h a t  of the ~ t ime-inde- 

penden t  ~> mechanics and m a y  be solved in a similar fashion. Given a func- 

t ion J5 on R XT(M) (locally L ~ L(t, qS q~)), the explicit ly t ime-dependent  
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Lagrangian function, we may define the Legendre t ransformat ion DL:I tX  

X T(M) -+ R •  T*(M) by trivially extending the definition given in subsect. 3a) 

to the present  si tuation to t ranspor t  the Liouville form A and the symplectic 
form from T*(M) to T(M). The closed two-form (SL p*wa = p*(d[D*A]) 

will again require the regulari ty condition for L (nonzero Hessian) to define 

a contact  s t ructure on R XT(M).  
The reasoning now proceeds along lines similar to those of subsect. 3b). 

Once the l - form ~ * p'.(DLA ) defining the exact  contact  s t ructure has been ob- 
tained, and given a function E on R •  :/'(M), the Poincar6-Cartan 1-form m ay  

be writ ten as 

(8.~) O~ = p*(D*A) -- E dt 

and a (~ H~miltonian ,) field 2~  may  be obtained whose trajectories on the base 
manifold will be the Lagrange solutions associated with L if E = A L - - L ,  

where AL is the action of L. In  local co-ordinates on R •  T(M) 

(8.2) p*(D*A) = ~ dq , 

(8.3) A~ ~Ldq ~ E - - ~ L "  = ~q=5 , ~ q ' - - L ( t ,  qi, ~':) 

and the Poincar6-C,~rtan form is writ ten ,~s 

~L 0i (8.4) 0~ = ~---~ + L dr,  

where O i ~ d q i - - t ~ d t  is called structure /orm of the bundle R •  
(see appendix B.4). 

To conclude this section we will just  mention tha t  the (regular) Hamil- 
tonian H which defines a dynamical  system with contact  form On and whose 
trajectories correspond to those of the dynamical  system defined by  0~ is 
related with E through the expression 

(8.5) H =- EoD~ 1 

similar to (4.1). 

9 . -  Symplectic structure on the manifold of  solutions in the case of  the 
(~ time-dependent ~ mechanics. 

a) I~troduction. As has been pointed out at  the beginning of this part ,  
the  necessity of introducing the t ime variable in the definition of the base 
manifold for (explicitly) t ime-dependent  mechanical systems spoils the gym- 
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plectic s t ructure described in par t  I. The loss of this symplectic s t ructure 
also implies the absence of the Poisson brackets which might  be relevant  in 
a possible quantizat ion of the mechanical system. This fact alone is already 
a sufficient mot ivat ion to look for a way of circumventing the difficulty of the 
odd dimensionality of the contact  manifold to reintroduce a canonical struc- 

tu re  into the theory.  In  fact, looking at  the manifold of solutions of the me- 
chanical system, one observes tha t  such a manifold is even dimensional and 
that ,  accordingly, it might  possibly admit  a symplectic structure. We devote 
this section to showing tha t  it is indeed possible to endow the manifold o]/, 

of solutions s ~ ~/H c F(R X T*(M)) of the Hamil tonian system ~7,, with such 
a structure.  

The most immediate  problem in pursuing this task is the definition of the 
tangent  space in each point s E ~?[H. In  the present  case of the classical me- 
chanics there are no special difficulties, since ~}7, is made up of solutions of an 
ordinary differential equation determined by  the vector  field X ,  on the fibre 
bundle R x T * ( M ) - + R  (or, when the Lagrangiau description is used, on 
R X T(M)).  Because one is dealing with an ordinary differential equation, the 
manifold of solutions may  be characterized by  the set of initial conditions. 

B y  using canonical co-ordinates (q~, p~) for T*(M), the situation is intuit ively 

depicted by  the following figure: 

(q~,p~) 
{nitial concl i t lons 

for" t o q~(t) 

______/~ 9 ,.(r ) 
t rct je ctor ies 

The evolution space. 

) t  

Given a dynamical  system, the t ra jec tory  is uniquely determined by  giving 
(qi, p~) at  a certain time, and the trajectories do not  intersect with each other;  
the set of the initial conditions is thus in one-to-one correspondence with ~u .  
In  the more general case of classical field theory,  however, the solutions which 
describe the behsviour  of the physical system are obtained from a system of 
part ial  derivat ive equations. Thus, to proceed in an analogous manner,  the 
space ~/[~ of solutions of the field equations would have to be characterized 
by  a space whose points (the initial conditions) would be submanifolds of 
dimension m -- 1 of tile generalized <~ phase space ~>, where m is the dimension 
of the manifold which plays in the variat ional  formalism a role similar to tha t  
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of t ime in mechanics (in the applications considered in the nex t  par t ,  this 

manifold  is the Minkowski space all; it is clear t ha t  the ~0(x) of field theory  are 

the analogous to the q* of mechanics).  Thus,  the process of endowing r with 
a canonical s t ructure  is clearly more  difficult. We shall not  consider it  here (see 

ref. [10, 11], the last  given in [4], the first of [7], [33, 34] and  references therein) 
to t rea t  instead the case of mechanics,  whose precise formulat ion we shall 

develop basing ourselves on an a l ready existing work [10]. 

b) The tangent space to the mani]old o/ solutions ~[H. The fibre space 

E ~ -  B we are dealing with in this pa r t  is not  necessarily a vector  bundle (*) 

~nd accordingly the s t ructure  of the space of cross-sections (see, e.g., [35-37]) 

is complicated in general. Nevertheless,  the set F(E) of differentiable cross- 

sections of E m a y  be endowed with a s t ructure  of a locally Banach  manifold  

upon which the tangent  space m a y  be defined (see, e.g., [37]). We shall, how- 

ever, define the tangent  space to the manifold of solutions following a pro- 

cedure which is specially suited for our purposes. The construct ion is based on 

the following theorem [36] which is applicable to our case: 

Le t  E ~ - B  be a (C ~) differentiable fibre bundle over  B. I f  s ~ / ' ( E ) ,  the 

set of its (C r176 differentiable cross-sections, the tangent  space T~(F(E)) at s 
can be identified canonically with F(s*T'(E)),  where s * T ' ( E ) - + B  is the 

pul l -back bundle (appendix A.I)  of the ver t ical  tangent  bundle T~(E)2Y~E 
b y  s. This m a y  be described b y  the following d iagram:  

s* T~(E) > T"(E) 

-I , t 
B >- E 

where s* T'(/~) ---- {(x, X:) e B X TV(E)/s(x) ~- e = p~(X,)} and S(x, X:) = X: .  We 
note tha t  T'(E)2:> E is the bundle tangent  to the fibres of E-->B, so tha t  its 

sections are vector  fields of the fo rm 

(9b.1) X" : X(x,  y) ~ ,  
yc 

where (x, y) is a local co-ordinate sys tem for E. 

I t  is now clear tha t  the cross-sections of s*Tv (E)~-B  are in one-to-one 
correspondence with the sections of T~ -~E  when one restr icts  oneself to 

s(B) c E  on which .~' is a bijection: given a section a:x E s(B) c E - - > X ~  Tv(E), 

(*) In the case of the time-dependent mechanics, E~R• is not necessarily 
vectorial, since M is not necessarily a vector space. For the case of the critical cross- 
sections {trajectories) obtained in a variational approach, R is restricted to the closed 
(compact) time interval limited by the two fixed end points. 
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the  section a,. :x e B --+ (x, X ~) E s* T'(E) is determined,  and reciprocally�9 We 
may  thus identify in what  follows the tangent  space to / ' (E)  at  s E F(E) with 
the set of vert ical  vector fields on E restr icted to s(B). 

The redefinition of T,(F(E)) as F(s*T~(E)) allows us to parallely redefine 

the differential of the application 

(9b.2) / r :F(E~) -*/ ' (E2)  

induced by  a homeomorphism between two fibre bundles E~ and E2 o~'er the 
same base B in a form which will be specially adequate  for our purposes. This 

we shall do in several steps. First,  given ]:E~ ~ E2, the application d]:T(E~) -+ 
--> T(E2) defines, when restricted to T~(EI), an application 3]: T~(E~) -+ T~(E2), 
which is called vert ical  differential, 3] ~ d/Ir~(E ). Now, given s ~ F(E~), ~] in- 
duces an application ~ ]  :.~* T~(E~) -+ (]os)* T,(E~) in the following natural  way: 

�9 ~ X v . (9b.3) ~1  (x, X;~)) (x, [~](~(~,)],,,o.~)(~,) V e B, X ~' 

~ ] is called vertical di/]erential o] [ along the section .~. Finally, the differential 

of ] r  at  the point  s is given by  

(9b.4) (d/r)., = (3~/)1", 

i.e. by  the application on the space of cross-sections F(s* Tv(E~)) natural ly  
induced by  the action of ~,/  on s* T~(E1) (*). We may  thus use the r.h.s, of 
(9b.4) to compute the 1.h.s. The following diagram may  be helpful in con- 
sidering the above definitions: 

6"f 
s~ T~(E1) ~ (sol)* T~(E~) 

(E~) 6f ~, Ti ( 

v P2 

(*) d] r at s acts on T~(F(E)) ~nd (~j)r  on F(s* T~(E)), spaces which are in ~ one- 
to-one correspondence. 
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Le t  us now re turn  to the case of mechanics.  I n  this case we have  to con- 

s t ruct  the tangent  space T,(q],) a t  s to the manifold of solutions qZH of a Hu- 

mil tonian vector  field Xn on R •  T*(M) (or R •  T (M)  in the dual  si tuation).  

This construct ion has to be compat ib le  wi th  the fact  t ha t  q/ ,  is a submanifold  
{although not  an open submanifold) of _P(E), where now E is the  fibre bundle  

E = R•  Thus we define T~(~[,) as the vector  subspace of 

T~(F(E)) made  out of the cross-sections of T'(E)[~(R) (which m a y  be identified 

with those of s*T ' (E))  which commute with Xu .  
I t  is not  difficult to convince oneself of the  consistency of this definition. 

I f  ~-(~/,) is the r ing of functions on the manifold  r T~(~n) has to be the set 

of the derivat ions of the functions ] E ~'(q/~) a round s. Since q/ ,  = E/:~, 
where ~ is the equivalence relat ion which places in the same class all points 

of E belonging to the same t ra jec tory ,  ~-(~][,) m a y  be obta ined  f rom the func- 

tions of ~.~(E) which are constant  over  each one of the trajectories,  i.e. such 

tha t  they are first integrals of 2~,, 2~,.1 --~ 0 (subsect. 7b)). Indeed,  the re- 

striction of the  funct ion / on E (which we m a y  take  of class C ~) to ~ n  is pos- 

sible, since q/n can be injected into E (q/H ~ E / ~ )  and  ] takes  a cons tant  value 

on each t ra jec tory  (d/ is t ransverse  to the  flow of )~ , ,  d/()~n) - - ) ~ , . / =  0) so 
t ha t  the restr ict ion defines a differentiable function on q/n. Le t  us now im- 

pose to 7~" ~ F(z(E))  the condition of being a der ivat ion of ~'(q/n), i.e. a l inear 

appl icat ion of ~ ( ~ n )  on ~(q/n)  satisfying the produc t  der ivat ion law. V/ 

~(q/~),  :Y.] ~ ~-(~Y~) clearly implies t ha t  [2~, Y] ---- 0. However ,  Y, as such, 

does not  satisfy the condition Y.]  ~ 0, V / ~  Y = 0. This makes  it necessary 

to take the vert ical  pa r t  of Y, Y~ (*); accordingly Y is a vert ical  vector  field 

of T~'(E)I~(~), s ~ ~[,. 

c) Symplectic ]orm on q/H. Let  Y:, Z:  be two elements  of T,(o?/H) and 
hence vertical ,  since it  has been shown tha t  all the fields tangent  to ~/H at  s 
have  to be vertical.  The symplect ic  fo rm o) a t  the point  s is defined by  

(9c.1) (eo)~(Y:, Z:) ~- dO(]5:, Z : ) ,  

where dO is locally given b y  d p i A d q i -  dHtAdt .  To see t ha t  (9c.1) is a good 

definition, we have  to check a) tha t  the  r.h.s, is not  an a rb i t r a ry  funct ion bu t  

a constant  for a given s and  b) t ha t  • establishes a one-to-one correspondence 

between Hamf l ton ian  fields on ~ .  and  differentials ((9b.4)) of functions de- 

fined on ~ , .  Both  conditions are fulfilled: 

(*) Given s e q/~, there is a local co-ordinate system (~, qi./~j} in which s is written 
q i = / i ~ = 0 .  In such a system 2~= 8 /~  and 2~ . ]=0~]~] (~ ) .  

= Yi (~/cPi)) implies Y = 0 only if Y = Y,. Thus Y./  0 V / ( Y =  yo(~/~) + yi(~/~4i ) + * ~. 
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a) To see tha t  d O ( Y : ,  Z:) ~ R ,  i.e. tha t  X .dO(Y: ,  Z~) = 0 (*), we write 
for the vertical field Y: at  s ( =  with support  on the t ra jec tory  s defined by  
s'(t) and s*(t)) 

(9c.2) Y~ = Y~(t, s~(t), s~,(t)) q + :Y*(t, #(t) ,  s2(t)) ~p~, 

since Y: is a function on R (the time) valued on the fibre of T~(E), and a similar 
expression for Z~. Now 

(9c.3) 

so tha t  

(9c.4) 

dO( Y : ,  Z:) -~ iz, ir~ dO -~ Y* Z ~ --  Y~Z* i i 

( 8 ~/ c~ 8 ) d d 

Taking into account  tha t  IX, Y:]----0, one obtains the constraints on (9c.2): 

(9c.5) (t y i  _ yl~ ~cXi ~Xi__ 
d r - -  ~qk § Y: ~Pl,~ ' 

__ ., ~X~* d r :  + 
d t  eq ~ 

and similar ones for Z~ (note tha t  d Y / d t  corresponds to ~ Y / S t  + (~Y /~s ) .  

�9 (d s /d t ) -~  (SY/Ss*)(ds*/dt)  if one keeps in mind the origin of the different 
dependences on t). Using them now on (9c.4), one gets X .  dO(Y~ ,  Z:)~--O, 
since X ~ : 8H/Sp~, X *  ~ --  8H/~q ~ ((7b.l)). 

b) In  analogy with the situation on the sympleetic mechanics where 
L r A  : 0 ~ ire) : d / r ,  ]r ~-- A ( Y )  (subsect. 2c)), the following theorem now 
holds t rue:  

Given ~ vert ical  field yv oil E z R •  such tha t  Lr~ O ~ 0, its re- 
striction Y: to a section s e o/(~ belongs to Ts(~lH) and verifies tha t  

(9c.6) ir,~O~ : [d(ir.O)](,~l , 

where the subscript (s) on the r.h.s, means (( with support  on the section s )~ 
( that  is, the coefficients of the ] - form have support  on s ((9b.4)); this should 
not  be confused with the restriction d(iroO)Is which implies putt ing,  e.g., d q l z  

= (dq ' /d t )dt ,  etc., and which is zero for .~ E q/ ,  ((7c.3))). 

To prove (9c.6) we first find the conditions which L y O  = 0 imposes on an 
a rb i t ra ry  vector  field (to find the corresponding ones for ]7~ it is sufficient to 

(*) Since 2~:~ moves ~long trajectories, this equality implies that dO( ) is a constant. 
We shall omit the subscript H in )~tl henceforth. 
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put  y o =  0). These are, from the coefficients of dt, dq ~, dp~, 

29 

(9e.7) 

~H ~H yo ~H ~ u ~ yo 

c~q~ ~ = 0 , 

p ~ c~ p~ - -  @,, = 0 .  

For  a vertical vector  Y," e l's(qg,) one finds 

(9c.8) ir~o~ = Y* dq ~ -  Y~ dp~- -  c H  ];~ + 

and 

(9c.9) [d(ir 0)](.,) = [(l(pi Yi)](,) = 

r { --  q:dq'  + > + 
~ ]ri'[ 

Pi ~Cp,~ } dpk 
i 

at] 
+ P* c ~t J(~)" 

By  using (9c.7), (9c.8) and (9c.9) are seen to be equal (*). 
The reciprocal theorem also holds t rue:  Given a function ] on ~H, i.e. such 

tha t  as a function on E X.]  = 0, there exists a unique vert ical  field Y~ which 

commutes with .~ (and thus ]?s ~ T~(qgn)) and such tha t  (cf. subsect. 2b)) 

(9<10) i r ; /o  - -  d ] .  

Indeed,  it is trivial to find from (9e.10) and the condition 2~.1---- 0 tha t  

~p~' ~q~ 

and to check tha t  the vert ical  field Y~ thus determined satisfies the condition 
[2 ,  U ]  = 0. 

Note. ]n  particular, the function ] on gin might  be ] = izO, where Z is a 
vector field satisfying L z O  = 0 which, contrari ly to (9e.6), is not  necess,~rily 

(*) Note that, strictly speaking, irooJ dcfined as 1-form oll Ts(~ does not have 
horizontal component (dt in (9<8)) and that, correspondingly, [diroO]r has to be 
restricted to bc vertical (and thus dt omitted in (9c.9)). ttowevcr, this prccision is not 
relevant for the calculation. 
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vertical.  In  fact,  one may  check tha t  2~. (izO) = 0 if LzO -~ O, so tha t  ] is 
really a function on ~ ,  and then evaluate f rom i r ~ o  = d(izO) the vert ical  

field associated with ], which turns out to be 

(9c.12)  ~ ; ,  = (Z  ~ - Z ~  

I t  is interest ing to observe tha t  the invariant  associated to Y~, is again given 
by  ]. This is easily seen, since L r y O  results to be 

(9e.13) z~,;, o = L ~ O  - d [ Z ~  = d [ Z O ( p ~ X , - -  H)], 

so tha t  the I~oether invariant  associated with ] '~ is (iy;dOi~ = O) 

(9c.14) ir~=O + Z~ , 

which, since i r ~ O : p ~ Y  ~, turns out to be p ~ Z ~ - - H Z ~  The 

~ o e t h e r  invar iant  is the same as for Z and this shows the consistency of the 
definitions (*). 

d) 2oisson bracket. After  having" recuperated on ~[~ the sympleetic 

correspondence between vector fields on ~/[, and 1-forms, it is possible to define 
the Poisson bracket  between two arb i t ra ry  functions on ~?[~. This is done in 
the usual way (cfr. subsect. 2b)): given two functions ] and g on the manifold 
of solutions, the Poisson bracket  is defined by  

(9dA) {!, g} =-o~(Y~, Y~). 

In  local co-ordinates (10.1) takes the form 

(9d.2) {!' g} = Y**:~--  Y~*Y~ - ~p~ ~q~ c~p~ ~q~' 

where use has been made of (9c.11). 

In  part icular,  if ] ~ izO, g = iz, O with LzO ~-Lz ,  O ~ 0 (Z not neces- 
sarily vertical),  

(9d.3) {], g} = w(Y~, Y~) • dO(Y;,  :Y~), 

(*) The fact that a nonvertical component Z ~ shows up in the expression of Y~s is not 
an inconvenience; the symmetries compatible with the fibration R x T*(M)--~R will 
not alter the form (9c.11) (i.e. will not transform Z ~ into Z '~ Z'5 for iustanee). 
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which m a y  be shown to be equal  to 

(9d.4) dO(Z, Z ' )  = O([Z, Z '])  - -  itz,,zjO , 

which shows (cf. (2b.5)) t ha t  the algebra of the :Noether invar iants  m a y  be 

identified with the Poisson algebra on ~//x [10]. 

e) A trivial example: equations o] motion on the mani]old o] solutions o] 
the lree particle. Let  ~ now be the manifold of solutions of the equations of 

mot ion  for the free particle,  of Hami l ton ian  H = p2/2m. I t  is obvious t h a t  

~Z m a y  be paramet r ized  b y  /D and K ~, :Noether invar iants  associated with 

the  t ranslat ions and  boosts and  which determine the initial m o m e n t a  and  

positions. I n  part icular ,  as m a y  be easily checked f rom the expression of the 

:Noether invar iant  associated with  the  Galflean boosts (x ~ -  (p~/m)t), the sym- 

plectic fo rm m a y  be wri t ten  as 

(9e.1) o) = dK%d2,~, 

where the P~, K s themselves  p lay  the  role of Da rboux  canonical co-ordinates;  

K ~, P~ are real functions on ~ .  The function H on T*(M) x R  is a first integral  

of X and accordingly a funct ion on ~g. Le t  us c a l l / t  to H defined as a func- 

t ion on ~/z. 
Thus ~//is a sympleetie  manifold on which a H a m i l t o n i a n / 1  has been given. 

I t  is then  clear t ha t  the equations of mot ion  are given b y  

(9e.2) ixo9 = dl~ 

and, since d/7 = (~H/~K i) d K i q  - (~I~/~P~)dP~, we find 

(9e.3) X --  m ~K i '  

so t h a t  the  equations of mot ion  ill t e rms  of the  p a r a m e t e r  ~ read  

d K  i _pi dPi  
(9e.4) d ~  - -  m ~ d2 - -  0 ,  

i.e. K~-~ (P~/m))L-F q~ and P~----p~, where q~ and  p~ are constants.  The re- 

sult is not  surprising: the t ra jec to ry  for (9e.2) goes through all the initial con- 
ditions of the trajectories of the physical  mot ion  which correspond to the  same 

energy. :Note t ha t  ixco ---- d/1 implies t h a t / J  is a constant  of the mot ion on ~ .  
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PA~T ] I I  

The variational approach and field theory. 

10. - Introduction (*). 

The geometric formulat ion of field theory  will be developed by  using the 
var ia t ional  ~pproach, in par t  due to the fact  tha t  this formalism has been 

historically fruitful  in the development  of the basis of field theory  ~nd in par t  
because it  is in field theory tha t  this approach (together with the corresponding 

boundary  conditions) is more necessary from the physical point  of view. We 
shall give nevertheless a general formulat ion for the variat ional  principles 
and apply  it to the case of mechanics to recover (sect. 12), as a part icular  case, 
the equations of mot ion of the t ime-dependent  mechanics which were consid- 
ered in par t  I I  in connection with the contact  structure.  

The usual classical variat ional  formalism tries to find the critical points 

(cross-sections) of ~ real funct ion (the action integral) defined on u differentiable 
submanifold of F(E), the space of cross-sections of a certain differentiable fibre 

bundle  ( E , u ,  M), not  necessarily a vector  bundle. More precisely, given a 

section so c/~(E),  one defines /~o(E) as the submanifold of sections s ~ Fo(E)c 
c F(E) such tha t  they  coincide with So on some subset V of the boundary  8M 
of M, i.e. 

Fo(E) = {s e F(E)/s I. = So]F}, 

and applies the variat ional  formalism to select anmng the cross-sections of 
/ 'o(E) those which are critical. 

This variat ional  problem, which selects critical sections submit ted to the 
above type  of boundary  conditions, is called Dirichlet variational problem. 
:Nevertheless, one m~y consider other  types of variat ional  problems [36] us, 

for instance, the following: 

Free boundary problems. These arise when M is compact  and wi thout  
boundary ;  in this case the critical sections are looked for among the whole F(E).  

End mani]old problems. Given a closed differentiuble subbundle /v of E I~ ~ 
(the restrict ion of the fibre bundle E to the boundary  of M), FF(E) is defined 
as the set of cross-sections s of / ' (E)  such tha t  s(~M)c F. FF(E) is locally 
a closed linear subsp~ce of F(E) and thus a differeutiable submanifold of F(E), 
~nd the critical sections are looked for among those of FF(E). 

(*) As mentioned in sect. 1, we deal in this part with classical (as opposed to quantized) 
field theory. 
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We shall restr ict  ourselves in our applicat ions to field theory  to the  Di- 

richlet var ia t ional  p rob lem considered above.  I n  its more  f requent  formu- 

lat ion (*), s  is defined as a real funct ion on the bundle  J I (E )  of the  1-jets 
(appendix B) of the bundle E, and I is the funct ional  on / ' (E)  given b y  

(10.1) I (s) ~ f .LPw , s ~ F ( E ) ,  
j~(s)(M) 

where j~ is the 1-jet  prolongat ion and  o~ is the injection to JI(E) of the volume 

fo rm on M through  the project ion ~ : J ~ ( E ) - > M .  The critical points are 

obta ined  f rom the condition 

(10.2) (dI)~ = 0 ,  s e Fo(E) ,  

where d is defined as in subsect. 9b). The explicit expression of (10.2) in a 

physical  case determines  the  equations of mot ion  of the sys tem associated 

with the  funct ion ~ ,  the  Zagrangian;  in field theory  E will be  a vector bundle  

over  the  Minkowski space d /  and  we shall t ake  for so the  cross-section zero 
~t infinity (**). 

The restr ict ion to mechanics is slightly different as far  as boundary  con- 

ditions are concerned. The bundle E ~ R • M - >  R of mechanics is not  neces- 

sari ly vector ia l  and  thus there is no zero section. Moreover,  the necessity of 

t ak ing  zero bounda ry  conditions a t  infinity is not  re levant ,  since moving  

part icles m a y  separate  themselves  arbi t rar i ly  f rom a given domain. As a con- 

sequence, an a rb i t r a ry  closed in terval  Its, t2] of R is used, and the cross-sections 

~re forced to t ake  the value of a given section a t  its boundary .  For  the or- 
d inary Hami l ton  var ia t ional  principle this implies tha t  the cross-sections 
q(t) satisfy q(tl) ~-- q~, q(tp) ~ q2 at  the end points t~, t2. 

l l .  - Var iat ional  principles  o n  JI(E) and JI*(E) in  field theory.  

a) The Lagrangian approach to ]ield theory. As is known (see, e.g., [7, 10, 
11, 18]) the formula t ion  of the  ordinary  Hami l t on  principle s tar ts  f rom the 

definition of a funct ion c~ :J l (E)  -->/~, the Lagrangian  density,  on the  bundle 

(*) Others will also be considered. For instance, the modified Hamilton principle 
will consider the functional 11 defined on F(JI(E)).  
(**) The convenience is well known, however, of the use of cross-sections which do not 
belong to /'o(E); this is the case of the plane-wave solution of the field equations (the 
mathematical cross-section corresponds to the physical field, sect. 11). Strictly speaking, 
these plane waves correspond to solutions to an ~ end manifold variational problem ~ for 
which the physical space is reduced to a compact subset, and periodical conditions are 
imposed at the boundary. This is the case of the ~, box normalization ,~; the resulting 
discreteness of physical variables disappears when the size of the box goes to infinity. 
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J~(E) of the 1-jets of the vector  bundle (E, z, J/J) with base the Minkowski 
space ~ and fibre V~(R) or V~(C)(*). The solutions--(~ trajectories ~>--of 
the variat ional  problem consti tute a subset of the modulus F(E) of the cross- 
sections of E which is composed by  the solutions of the Euler-Lagrange (EL) 

equations (**). In  this scheme, the physical fields defined by  certain Lagran- 
gians are simply cross-sections of E which satisfy the EL equations. As usual, 

the  cross-sections of Fo(E) will be taken of class C ~ and vanishing at  infinity; 

nevertheless, this does not  imply tha t  other cross-sections of the EL equations, 

such as plane waves, have to be necessarily discarded. 
Le t  E =  V"•  be parametr ized  by  the co-ordinate system (x,,y~) 

(# ~ 0, 1, 2, 3; ~ ~ ] ,  ..., n); the bundle (J~(E),~,.#[) will be parametr ized  
by  (x,, y% y~) (appendix B.2). Given a Lagrangian density .Sf on J~(E), the  

Hamilton functional on the space of cross-sections/~o(E) is defined by  

( l la .1)  I(~p) = ~  ~Oi7915 (A) , ~ E / n o ( E ) ,  

where j l ( ~ ) ~  v~ 1 is the 1-jet prolongation (appendix B) of the cross-section ~, 
~o is the volume form on J4, eo ~ dx~ and again ~*(oJ) the pro- 

longation of w into J~(E) (which has the same expression, since n~*(w) only has 

components  on J / ) .  
Given the Hamil ton  functional I ,  the  ordinary Hamilton principle (prin- 

ciple I,  PI )  states tha t  the action ( l la .1)  must  be extremal~ i.e. 

(11a.2) (~I)(X) = o ,  v x  e 

where the Lie derivat ive is tuken with respect to the 1-jet prolongation X 1 
of an a rb i t ra ry  vector  field on E, X -~  X,(~/~x~)~ X~(~/~y~). The role of 
the  1-jet prolongation is easily understood:  for a section y~(x), the  1-jet pro- 

x (***) longation is given by  (y~(x), y,( ) = ~y~(x)) and thus this formalism ac- 
commodates  the dependence of Lf on the first derivatives of the field (a de- 

pendence on higher-order derivatives will obviously require higher prolon- 
gations [18]). As for the field X, the 1-jet prolongation )~1 is used to define 

(*) E has the structure of direct product bundle, E = V • d/. This is not a limita- 
tion: fibre bundles over the Minkowski space are trivial. For a classification of fibre 
bundles see, e.g., [38]. 
(**) In the most typical cases (Maxwell, Klein-Gordon, Dirac, etc.), these fields provide 
the support space for an unitary representation of the Poincar6 group. 
(***) For the sake of notational simplicity, y~ and y~ also denote the functions yC~(x), y~(x) 
which determine a certain cross-section y l e  F(jI(E)). We also note that the relevant 
vector fields in (1 la.2) are vertical ((10.2), subsect. 9b)); the horizontal component may 
be kept nevertheless, since it does not produce any new condition. 
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its action on JI(E) and its expression is found from the condition (appendix B.3) 

(lla.3) L~O~'= A~O ~ , 6~=-- dy~-- y, dx , 

in this way L~, maps cross-sections which are 1-jet prolongations into them- 
selves. 

The fact that only the vertical part of X is relevant in (11a.2) allows us 
to write 

= + \ + -g-6g ) + , (11a.4) 

and that 

(11a.5) L~,(2f~o) = (Ly12f)~o = X ~ 2 f  - ~ 8 2 f  ~ _ T o )  + X~ ~-y-y-yy~ dx AO,, 

i 

since, with 0~ ~ (--)~dx~ 3, dx~AO, : o~5~. By using the de- 
finition of X~ and 0 ~ and that L~. dya ---- (~X~/Sy ~) dy ~ + (~X~/Sx,) dx,, (11a.5) 
reads 

d [~ ~f X~ \ ~X~ ~ ~f 0~A 0~. 

If we take into account that the second term in (lla.6) will not contribute to 
the integral, that the third is zero when restricting to 1-jet prolongation 
cross-sections on account that 0~[~, = 0 and that the second contribution to 
the first is (d/dx,)(~Lf/Sy~).eo~ (11a.2) will be fulfilled if 

(11a.7) dx,d ( ~ )  -SAe-0"Sy~ 

~ X  (11a.7) is the familiar EL equation; in it, y,( ) =  8,y~(x). The space of its 
solutions will be called ~.v. 

The ordinary Hamilton principle starts from a functional defined on / ' (E )  
((11a.1)). Let us now consider the modified Hamilton principle (principle II ,  
PII)  whose starting point is a functional I '  defined on F(JI(E)). In complete 
analogy with the case of mechanics (cf. (8.4)) let us introduce the Poincar6- 
Cartan form 0 as 

( l l a . 8 )  0 = D + / 2 '  , Q - -  LPo~ , 

(11a.9) f2~ ---- S---~ 0 , .  
8y~ 

/ 2 ' =  O=A/2= , 
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~ o t e  t ha t  O s ~ ~fo), bu t  tha t ,  if we restr ict  ourselves to 1-jet prolongat ion 

cross-sections (as in PI ) ,  Ol~ = ge~oi~,. 

The modified Hamilton junctional I' on cross-sections of J~(E) is defined b y  

(11a.10) 

~nd P I I  establishes tha t  

(ha .n)  

which leads to the equat ion (*) 

(]1a.12) 

I'(y21) = f o  , 

(S#,l(X~) -fL=~O 

i~,dOl~,, = 0 

V ~ ~ I'o(J~(E)), 

=0, VXI~rIT(JI(E))), 

VX 1 

f requent ly  called Euler-Cartan equation. 
Let  us now evaluate  (11a.12) in local co-ordinates. O m a y  be wri t ten  as 

(11a.13) O ---- ~Lfdy~AO'~ d- ( -- ~--~ ) y; oJ , 

expression f rom which dO is found to be 

(11a.14) dO = [ - -~x~  \~y~]  -d- ey-- ~ -  ~y~ ~ dYnAmo d- 

() ~ge ~ ~q~ dy~Ady~AO~--ys~y-y~ ~-~ dy~Ao~. + ~ ~ ~y~Ady~Ao~ + ~ 

The expressiou ~or a general vector ~el~ of r(~(+~(E))) is 

(11a.15) X 1 = X ~ - ~  d- X~' ~ § Xs ~y~ , 

(*) In the above expressions we have not made explicit the fact that, in general, the 
fibre will be of type V~(C) (the physical fields are complex in general), but this is straigth- 
forward: if (xS, y~',yo,.,y~,y~,.s) is the system of local co-ordinates for J l (E)- - the  
asterisk denotes complex conjugate--it is sufficient to define now in (lla.8) 

9 ' =  0~A .c2~ § 0~.A O ~* , 
where 

8 ~  
{Ila.8') 0~. = dyo,.--y~,.sdxS zQ~'*~ 0 s , 

' ~ y . . ~  

while leaving the rest of the expressions unaltered. 
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so that  (llaA2) is satisfied if the equations for cross-sections 

(lla.16a) d (~,r  ~cf - - - - = 0  
dx, ~yv ~y~ 

and 

(lla.16b) ~y---~ ~ c~-~y~} L~- ~ -- y~J = 0 ,  

which come from the coefficients of X ~ and X~, are simultaneously fulfilled. 
The coefficient of X,  is zero if eqs. (11a.16) are satisfied, so that the corre- 
sponding component of X 1 might have been omitted from the beginning (ver- 
ticality of X~). 

t 
We shall call ~//~e the space of critical cross-sections for PII.  Inspection 

of the above equations shows that, in general, this space is different from #,'~. 
This was to be expected: no restriction to 1-jet prolongations was made in 
(11a.lO)-(lla.12). However, in the case of regularity of the Lagrangian density, 
i.e. when the Hessian det (~"~/~y~y~)~: O, (11a.16b) gives the :[-jet prolon- 
gation condition y~(x)= ~uy~(x) and (11a.16a) gives the EL equations; in 

! 
that  case, ~ = ~ z .  

b) Variational ]ormalism on J~*(E) and covariant Hamiltonian ]ormalism. 
The formalism on Ja(E) based on O, ~lthough Hamiltonian in form--the above 
equations constitute formally a system of ]irst-order differential equations-- 
does not have a Hamiltonian aspect. The typical Hamiltonian formalism 
involves momenta so that  the bundle J~(E) is inadequate for its formulation. 
I t  may, however, be constructed on J~*(E), the dual bundle of J ~ ( E ) ~ E :  
such a formalism, based on the definition of a Lorentz scalar Humiltonian 
density ~ on J~*(E), will lead to manifestly covariant Hamilton-type equa- 
tions. In the case of regularity these equations will be equivalent to the EL 
equations obtained through PI  for the associated Lagrangian density. How- 
ever, the formalism will not depend on the existence of a previous Lagrangian 
density. As another additional advantage, the formulation on JI*(E) will 
turn out specially suitable to characterize the symmetries of the Hamiltonian 
problem in field theory. 

Let (xu, y% y~., z~ ,~ 'u)  be a local parametrization of J~*(E). A Hamil- 
tonian density is defined as a (Hermitian real) scalar function on J~*(E). 
The Poincur6-Cartan form on J~*(E) is now defined as (cf. (7a.2)) 

(llb.1) 

and the modified Hamilton functional as 

(11b.2) r*(~ 1.) =fo*,  wl, e ro(Jl,(E)). 
~1"(.//l) 
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The solutions of the variat ional  problem are the cross-sections ~v ~* for which 

(11b.3) (Sv,,I'*)(X 1.) -~fLx,,O* 
where now 

(1lb.4) X ~* =X~-~  ~- X~ ~y~ ~-X~, ~ ~ ~y~. + X ~  + X~*,~-- . ~ .  

Equa t ion  (11b.3) leads again to 

(11b.5) ix,, dO* [r = 0 ) 

Le t  us evaluate (11b.5) in local co-ordinates, which we shall do in the re~l case 

to simplify the notation.  
Here  are two intermediate  steps: 

(11b.6) 

(11b.7) 

d O* = dzl ~ A d y~ A O ~ - -  (-~-~ d y~ -~ - ~  d ~  ) A o) , 

ix,, dO* = X~ dy~AO~--  X~  d~AO~ + d ~ A  dy~A ix,(Ol,) - -  

l~estricting to cross-sections and using ix,(co)----X~O~ and 

(11b.8) dx'Aix~(0,) = X ' O ,  --  5~X"Oo, 

one finds tha t  (11b.5) is fulfilled when the coefficients of X~ and X ~ are zero, 

~y~, 8,,1 ~ ~ ' ~  
(11b.9) ~x~ ---- ~z~ ' ~x~ -- ~y~'  

i.e. if the Hami l ton- type  equations (11b.9) are satisfied (again the coefficient 
of X~ is zero in tha t  case). The space of solutions of (11b.9) will be called ~ .  

The equivalence of (11b.9) and (11a.7) for regular Lagrangians m a y  now 
be easily established. By  defining the Legendre t ransformat ion in the  usual  

way, DL :e 1 ~ J~(E) --> n~(e ~) -~ e ~* ~ J~*(E) (D-~I:J~*(E) --> J~(E)), 
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(and analogous expressions for those co-ordinates with *), then the scalar 
funct ion 

(11b.11) J~ ~ ~ -- = a~y~ q- =~*~y=,~, S 

is defined on JI*(E). This definition for the Hamil tonian density associated 
to s is consistent with (11b.1), where y d~A0~ is the equivalent to the Liou- 
ville form of mechanics, and with (11a.8), (lla.9).  One checks immediately 
t ha t  the insertion of ~ in (11b.9) reproduces (11a.7) plus the 1-jet prolongation 
condition. Thus the regularity condition makes P I I  equivalent to P I  by  re- 
:stricting cross-sections yjle o2[~ to be of the ~ type (in the Hamfltonian-La- 
grangian approach, P I I  on J~(E)) or by establishing a one-to-one correspondence 
between cross-sections v~ 1 e ~ and yJ~* e uy~ (in the strictly Hamil tonian 
formalism, P I I  on J~*(E)). In  this case there is a one-to-one correspondence 

! 
between ~1/~, ~1[~, o1/~. 

12.  - Variat ional  approach to c lass ical  m e c h a n i c s .  

For the sake of brevity we restrict ourselves to P I I  in Hamiltonian form. 
In  tha t  case, JI*(E) is the bundle R • T*(M) ~ R, and, as mentioned in the 
introduction to this part,  I'o(J~*(E)) is the submanifold of cross-sections which 
take fixed values at  the boundary of the closed interval [t~, t=]. The differ- 
ential  ~=I' has now to be zero on the vector fields tangent  to JI*(E) with 
support  on [t~, t2]. Under these conditions, the critical points (cross-sections) 
of Fo(J~*(E)) satisfy (cf. (115.3)) 

{12.1) fL~,.O = O, 
sl*(T) 

w , ,  + T*<M))), 

where 0 z A - - H d t  (sect. 7). Due to the boundary conditions which impose 
fixed values for the cross-sections at  tl and t2, the vector fields of (12.1) are 
zero at these points. Thus the term 

(12.2) fdi ,,O 
sl*(/,) 

disappears after integration and the other contribution of Lx,. gives 

.(12.3) ix,. dO l=,*(r) = 0 ,  VX ~* . 

The reader will recognize iu (12.3) eq. (7c.1) which determines the cross- 
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sections which belong to ~ (*). Indeed,  since the radical of dO is of dimension 
one (O is a contact  form), (12.3) indicates tha t  the trajectories of ~u  are in- 
tegrals of ~7,, the generator of the modulus rad (dO) (dO(X ~*, X , )  _-- 0, VX~*). 

13. - A first appl icat ion to re lat iv is t ic  fields. 

Let  us now apply the previous formalisms to several simple examples ex- 
t rac ted  from the relativistic field theory of free e lementary  particles. We 
recall tha t  ~ t / i s  the Minkowski space and xs = (x ~ x ~, x ~, x 3) ; i t  is clear tha t  

the dimension m of the fibre space (indices ~, fi, ...) wiU depend on the spin 
of the field. The transit ion to the usual physical notat iou is made by  identi- 
fying the cross-section of E with the definition of the field in each point  of 

the Minkowski space. Because of t ranslat ion invariance, Lagrangian and  
Hamil tonian  densities will not  depend on xs. 

a) The Klein-Gordon /ieM. The fibre space is of dimension one. The 
usual KG Lagrangian density ( ~  r r  m 2 r 1 6 2  is, in the formalism Oll 

J ' ( E ) ,  given by  

(13a.1) ~ * = y ~ y ~ . ~ - - . m 2 y * y  , 

where ~F is the Minkowski metric tensor (~ z diag ( + ,  , , - - ) )  and m 
the mass of the field. P I  leads to the familiar KG equation, ( ~  + m~)y(x) --- O. 

I t  is clear tha t  ~ is regular; thus P I I  (eqs. (11a.16)) gives 

d 
(13a.2) d x .  y€ + m~y = 0 , yz = ~,y  , 

which reproduce the equation of the KG field. 
As .Lf is regular, it  is possible to define an equivalent  invariant  Hamil-  

tonian formulation. F rom (13aA) and (11b.11) one obtains 

(13a.3) 

and now (11b.9) gives the definition of the momenta  (~' ~ ~'y*, u*~' ~--~zy} 

and again ([~ + m~)y --~ 0. 
As is well known, a certain amount  of arbitrariness is involved in the de- 

finition of Lagrangians, since the addition of a total  derivative (dzF) does 
not  al ter  the EL  equations of motion. I t  is not  difficult to accommodate  this  

(*) And again that the action of the horizontal component is trivial in the sense that 
its coefficient is zero for critical sectioas (verticality of XI*). 
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situation in the fibre bundle formulation. Consider, for instance, the Lagrangian 
density on J~(J~(E)) (the co-ordinates being in general (x,, y% y~., ~ ~ Y~, Y~*~; 

c~ g,~, g~.,~, g,,~, g,.,,~)) lot  the KG field 

(13aA) ~ = _ y* g ~ . -  g*~.y - -  y***y~,- m ~- y*y . 

Since substituting J~(E) for E ~mounts to increasing the number of variables, 
l)I clearly gives for Lagrangians on J~(J~(E)) 

(1an.5) ~y~ d ,  ~ \~-~g ,~ ] = O, ~y~ dx ~ \~g , , , , ]  = 0 

(with the 1-jet prolongation conditions g,~ = ~ y  ,g~,,~ ~y.) plus the cor- 
responding equations for (y~., g~.,~) and (y~.., g~..,~). In  the case of the La- 
grangian (13a.4), (13a.5) gives g*~,. Jr m2y * = 0, y*~ -- ~,y* = 0, which com- 
bined reproduce the KG equation. Alternatively, one could have thought  of 
a Lagrangian on J2(E) (the bundle of the 2-jets of E of co-ordinates (x~, y% 
y~., y~, y~.~, y ~ ,  y~.~)) as, for instance, 

(13a.6) ~ �9 ~ ~f~G = - -  ~Y(Y*Yv~ ~ .~],~Y ~- Y~,Y~) - m2y*Y 

In  this case (11a.7) is no longer valid and it is necessary to substitute j* (the 
2-jet prolongation) for j* in the reasoning leading from P I  to the EL equations. 
For  a Lagrangian on J2(E) these read 

(13a.7) dxvdx % [ ~ . ~ ] - - d - ~  \ ~ ]  ~- ~y -- 0 

with the 2-jet prolongation conditions y , ~ =  a,y~, y ~ =  ~y~. Substi tuting 
now (13a.6) into (13a.7), one obtains again the KG equation. I t  is to be noted 
in passing tha t  the Lagrangians (13a.4) and (13a.6) provide an example of 
equivalent formalisms on J~(J~(E)) and J2(E), the equivalence being imple- 
mented by identifying g,~, g~,~ with y~, y ~  [18]. 

b) The t)roca ]ield. In  this case, the fibre index is also a L, rentz index. 
To avoid confusion with the base indices we shall use brackets to indicate the 

$ $ 

former. With  (x' ;  y('), y(,); yr y(,)~) as co-ordinate system for J~(E), ~ takes 
the form 

(13b.1) ~q~ "*(~)~, (~)--y *(t')yv,(/)~]vw~'~' 47 m~y*(~')yC~)~]vv ,y # ~ v 

1 " ~, = etc.) P I  gives for (13b.1) the Proca equations (in ( l a . ~ )  u (~) &y(,O, 

(13b.2) [~l~([~ § m s) --  ~ ~]y(~') = 0 ,  
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which, because m :/: 0, already include the subsidiary condition ~y(~)--~ 0 
which eliminates the spin-zero part.  As ~f is regular, the same result is obtained 
from P H  and again a scalar Hamil tonan formulation becomes possible. 
With  (x~, y(~,), y*~); ~(,)~, ~*~,)~) as a co-ordinate system for J~*(E) we find 
from (11b.10) 

(13b.3) ~*(~)~ = --y(~)~ + ~,~y(~)~, y(,)~ = �89 

and from (11b.11) 

(13b.4) 

The Hamilton-like equations (11b.9) read in this case 

(13b.5) ~(,)~ ~x ~ ' ~y(~) ~x~ 

(and similar ones for ~*, y*). I t  is now immediate to check tha t  the first de- 
fines the momenta  in terms of y*(~) (cf. (13b.3)), 

(13b.6) 

and tha t  combined with the second reproduces (13b.2). 
As in the case of the KG field, it  is also possible here to define Lagrangian 

densities on J~( j I (E) ) ,  J2(E) leading to (13b.2) through PI.  We shall not  con- 
sider this nor the case of the Maxwell field, whose t reatment ,  apart  from the 
fact  tha t  the subsidiary condition is not obtained from the Lagrangian (m ---- 0) 
and  the associated feature of gauge invarianc% may  be performed along similar 
lines to tha t  of the Proca field. 

c) The Dirac field. For the Dirac field E is the spinorial bundle asso- 
ciated to the representation D-",~174 D ~ of the group SLy, c of co-ordinates 
(x,, y% y~.), ~---- 1, 2, 3, 4. The simple Dirac Lagrangian on J~(E) is given by 

(13c.1) ~f~ ~_ iy~,.(7oy,)~y~t, - -  my~.(7O)~y~ ; 

our y-matrices are such tha t  7 ~ = 7o~, 7~ ~_ _ 7~t. P I  and (13c.1) immediately 
give the Dirae equation. However, since ~ is not regular (the Hessian vanishes 
identically), P I I  gives different results. From (11a.16a) and the corresponding 
adjoint  equation (coming from the coefficient of X~.) we obtain 

(13c.2) my~.(7~ + i~,y~.(7~ =- 0, ( i 7 ~ - -  m)~y ~ ~- O, 

i.e. the adjoint and the normal Dirae equation. The other two equations 
((lla.16b) and its associated one) are identically, zero; accordingly, no con- 
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! 
straint is provided for the y% and ~/v c ~gff. Imposing on the y% the con- 
dition y% ~ ~,y~ is equivalent to transforming P I  into P I I ;  when this is done, 

! 
~ e  = ~ -  This picture is not altered when the full Dir~c Lagrangian (Hermitiau 
and invariant under particle-antiparticle conjugation in quan tum field theory) 
is used instead of (13c.2). 

This result was to be expected. P I I  is of Hamiltonian type, i.e. leads to 
first-order differential equations. However, as the Dirac equation is already 
of first order, P I I  cannot simultaneously determine y~ and y%. Indeed, it is 
not  possible to construct directly from the Lagrangian ~ ~ D  a scalar Hamil- 
tonian formulation based on P I I  and leading to the Dirae equation. This 
is because the Legendre transformation (llb.10) is not  a diffeomorphism for 
~ , ;  the variables in Yf(y~, y~., s~, ss~*) are not all independent and there 
is no equivalence between (llb.9) and (lla.7).  In  fact, this situation is already 
present in the ordinary Hamiltonian formulation of the Dirac theory, where H 
is the generator of the time translations and leads to the equations of motion. 
_~%vertheless, it is still possible to write a scalar I tamil tonian ~ dealing with 
all variables as independent and to use the Lagrange multipliers to impose 
the required constraints. Indeed, the Hamiltonian density on J~*(E) 

(13c.3) 

(whose first term is what  would be obtained directly from s through (11b.11) 
and whose second and third terms include the constraints on the momenta and 
the Lagrange multipliers) leads through (11b.9) to the Dirac equution. How- 
ever, it is not clear what  physical meaning-- i f  any- -could  be associated to 
the )Js. 

d) The Rari ta-Schwingcr spin-~ field. J~(E) will be now the vector- 
spinor vector bundle of co-ordinates (x~, y(,~), y(~).; y(,~)~, y(,~).~); fibre indices 
(# = 0, 1, 2, 3; ~ ~ 1, 2, 3, 4) are inside brackets. The simple Lagrangian on 
JI(E) is given by 

(13d.1) ~fas = --iY(~)*(y~ + mY(~)*(7~ ("~) + 

i i 1 

PI  leads to the Rarita-Schwinger equations (y(~)~ ~ ~,y(,~)) 

(13d.'.,) 

i (7~( i7~  + m)7~)~y (~) = o ,  

which include the subsidiary conditions O~y(u ~) = O, 7#y(u ~) - -  O, which restrict 
the vector par t  to spin one and the product with the spinor part  to spin ~. 
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The equations for P I I  read in this case (coefficients of the components X(g~). 
and X(,~).~) 

L j = o.  

0 , 

Since the Hessian of ~Lf~s is again identically zero and has analogous charac- 
teristics as .LfD, the remarks made in subsect. 13c) also apply here. In  par- 
ticular, and as in the Dirac case, the above equations reproduce (13d.2) and 
leave y~)~ unconstrained. We shall not comment on this any further and shall 
only mention tha t  the case of spin l q- ol- is easily incorporated into the scheme 
by  taking 

(13d.5) ~ ( s  = --iY(ff,~,...~,,~,).(YoY(~)~Y~ ~1"''~) -~ mY(~,...l,m.(Y~ u~'l''~) + 

i 

i 
5 

which leads to an equation which is identical to (13d.2) but  for the 1 -  1 
additional vector indices in the fibre part  of the field; the irreducibility is ob- 
tained because of the symmetry  under permutations of the indices #1~ ...,ff~. 

14.  - Symmetr i e s  in  the  modif ied H a m i l t o n  formulat ion .  

As has been mentioned in sect. 1, the use of the Cartan form is specially 
useful in studying the symmetries of a system and in formulating the asso- 
ciated lqoether theorem [10, 11, 18]. In  this section it is our intention to show 
how this process, which leads to the Iqoether currents, may  be performed for 
the Hamiltonian-like formalism (PII).  

Let  us recall first the well-known l~oether theorem for the ordinary Hamil ton 
variational problem (PI) defined by a Lagrangian ~f. A vector field X ~ F(~(E)) 
is a symmet ry  of tile system described by ~ if 

(14.1a) L~ , (~o)  -- dA/~, = 0,  V~ ]1, 
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where A = A"O# is a three-form which does not  depend on y%. In  particular,  

A ma y  be zero as is the ease for the Poinear6 generators. I f  we pu t  A = 0, 
(14.1a) gives for a symmet ry  X 

(14.1b) d(i2,O) I~ = 0 ,  V~P ~ ~ ~/iol 

note  tha t  in (14.1a) the restriction is made on cross-sections which are 1-jet 
prolongations and tha t  in (14.1b) on cross-sections which are also solutions of 

the variat ional  problem. 
To extend the definition of a symmet ry  to P I I  on J~(E), we make use of 

the Carton form O. X I ~  F(r(JI(E))]  is a symmet ry  if 

(14.2a) Lx~O = 0 

(a more general definition as in (14.1a) is possible, bu t  we shall not consider it). 

This  definition is consistent with the one given for P I ;  indeed, in the case of 
t 

regular i ty  in which ~ 2 =  ~ 2 ,  we have for fields on E ((B.3.15)) whose action 

on JI(E)  is defined through their  1-jet prolongation 

(14.3) 

which is easily checked by  writing 0 in terms of 2". Using the Caftan formula 
for the Lie derivative and taking into account  (11a.12), one obtains from (14.2a) 

! 
(14.2b) d(ix, O) ]~,~ = O, V~ j E ~/~, 

from which the conservation of the current  associated with X 1 m ay  bc derived: 
on cross-sections of ~ e  and with j ~ ,  ixlO , we get 3j = 0, w h e r e ,  is the Hodge 
operator  and ~ the exterior  codifferentiM. In  terms of local co-ordinates, this 
reads ~u j ,  = 0 with 

(14.2c) - - j ,  = ~ X ,  § (X  ~ -  v~y~_4 ,') ~y~  + (X~, - -  ~ y~,X~) -~y~,,, ~- 

~y~-~ § (~Y~'--  c y~ ,"  

In  the case of regularity, the two last terms do not  appear  and the first line 

of (14.2c) reproduces the usual expression for the current  (which tony be di- 
rect ly  obtained from (14.1b)). 

The elegance of this formulat ion lies in the fact tha t  again the same de- 
finition may  be used for P I I  on JI*(E):  X 1. E F(v(JI*(E)))  is a symmet ry  
when (cf. (7c.4}) 

(14.4a) Lx,,O* = O, 
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where now O* is given b y  (l lb.1).  This definition is consistent with those given 

above~ since for the case of regular i ty  

(~4.5) Lx'*O* [21e, = L2,( ~f o)) I~'c~'~ , 

which is obta ined by  writ ing 0 in te rms  of ~ and taking into account  tha t  the  

resul t ing expression is defined on J~*(E) despite the presence of ~ .  We note  

in passing t ha t  an expression similar to (14.5) also holds in the ease of analyt ical  

mechanics (*). F r o m  (14.4a) we get  (cf. (7c.5)) 

! 

(14.4b) d(ixl.O* ) [~,, = 0 ,  V T  1. E d]/o,f ; 

in this case 

(14.4 ) ~ *  SY~* ,;/~ X" 
+ 8x" 

+ 
] 

and - - ] ,  is the t e rm  within curly brackets .  When  Jr '  comes f rom a regular  

Lagrangian  densi ty (14.4c) g ives - -as  it shou ld - - the  same current  as (14.2c), 
f where ~ 1 c  ~ z ,  which is, in turn,  the same result  we would have  obtained 

f rom P I  and  definition (14.1a). The formal ism presented here allows, however,  

for a more  general  t r e a t m e n t  of the definition of a s y m m e t r y  when P I I  is 

used for sys tems defined through densities on JI(E) and JI*(E). 
The previous expressions (14.2c) ((14.4c)) for P I I  solve the prob lem of 

finding the conserved current  associated with the s y m m e t r y  defined by  a 
certain field X I (X TM) on J I (E)  (JI*(E)). Note  tha t ,  a l though only their  com- 

ponents  on E are necessary in these expressions, the complete vector  field 

appears  in (14.2a) ((14.4a)). I n  m a n y  eases the action of the t r ans fo rmat ion  

which migh t  generate  a s y m m e t r y  is only given on E. This is the ease of t he  

generators  of space-t ime symmetr ies  which initially are only defined through 

their  action on the basis and  on the fibre space and  which will be considered in 

the nex t  section. As a l ready ment ioned,  the canonical procedure for extending" 

(*) With the definition OH = Pi dq ~ - -  H dt (subsect. 7a)) and the prolongations of 
X =  Xi(~/c~q i) given by 

c~X i 8 8 ~X i 
X T= X ~ -  + 0 j - -  X* = X ~ : - p j  

c~q i ~qJ ~c~ ~' c~q ~ c~q ~ cl~'~i 

(see appendix A.4) the fornmla which corresponds to (14.5) reads 

~x. OH = Lx~(Ldt) . 
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their  action to J~(E) is the 1-jet prolongation (appendix B); since the extended 
vector  fields t ransform 1-jet cross-sections onto themselves, this definition 

includes the situation for P I  ((14.:la), (14.]b)) as a part icular  case. In  terms 
of X,(x, y~), X~(x, y~) the condition of stabili ty of the Pfaffian system under  

X~ gives for 2;~ ((B.3.4)) 

c~X ~ ~X~ ~X~ ~X~ ~X~ ~X~ 

and a parallel expression for X~*,. 
For  the symmetries of the system defined on JI*(E), the  complete expres- 

sion of the field on Jx*(E) is required. This is because P I I  on J~*(E) is a Hamil- 
tonian principle in the sense tha t  it  leads to first-order equations in the fields 
and the momenta ;  an analogous situation may  appear  when considering P I I  

on JI(E).  However,  for a regular Hamil tonian on J~*(E) P I I  is equivalent 

to P I  when applied to the corresponding Lagrangian. I n  this case the notion 

of 1-jet prolongation may  be t ranspor ted  from J~(E) to Jx*(E) through the 

Legendre t ransformation,  the s t ructure  forms being now wri t ten as 

(14.7) 0 *~ = dye - -  ~ dx~ 

and then (see appendix B.4) ) ~ 1 " =  X ~ -X z  (~/~r~), where 

15. - Application: space-time symmetries and Noether currents. 

We now apply the theory  of the previous section to exhibit  the well-known 
relativistic invariance of the systems of sect. 13. Since the final resu l t s - - the  
Poincar5 genera tors - -a re  quite familiar, we shall restrict  ourselves to giving 
the more relevant  formulae to il lustrate how the theory works. 

a) Klein-Gordon ]ield. The vector  fields on the bundle E of the Poincar4 
group ~+ are given by  

= ~ " M ~  = ~ z ~ ,  

On JI(E), P~ is given by  the same expression, bu t  M,~ is now writ ten as 
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where the last two terms correspond to X ,  ((14.6)). I t  is now a simple task 
to prove tha t  L~  2~o ~ -0  = L~,O on cross-sections ~ so tha t  the currents 

are given by  (14.2c), where the fibre components X ~', X~,* are absent since the 
group acts trivially on the fibre part .  Thus for the conserved current  asso- 

ciated with P ,  and M ~  we obtain, respectively, 

(15a.3) 

(15a.4) ,I: e~ *,  i f _ _  2 * ea  , e~  * 

(in fact,  j(~,) is the energy-momentum tensor), which lead to the usual expres- 

sions for the charge densities ($ = 0) in terms of the K G  field by  put t ing y ~ r 

yo = ~or l~or instance the Hamil tonian density is given by  the familiar ex- 

pression 

(15a.5) J t -  + vr .re  + 

�9 o (15a.4) reads j ~ )  x~j~v ) .o and, in terms of I(~), - -  X v l ( g )  �9 

The invariance of the KG system when formulated on j12(E) now follows 

from the fact  tha t  Lx,. O* ~ 0, ~nd the currents from the scalar Hamil tonian 
m~y be obtained f rom (14.4c). However ,  because the system satisfies the reg- 

ular i ty  condition, bo th  formalisms are equivalent  and the same currents are 

obtained. We remark  that ,  al though the scalar ~ *  cannot  be identified with 
the energy, the usual Hamil tonian (15a.5) is, of course, obtained as the generator 

of t ime displacements. 
Before concluding with the KG field, let us make a few comments on the 

other  two formalisms which were ment ioned in sect. 13. I t  is simple to show 
tha t  the Lagrangian (13a.4) which led through P I  to the K G  equation also 
leads, as it should, to the appropriate  Poincar6 currents. Being defined on 
J~(J~(E)) it  is clear tha t  the Noehter  currents are given in this formalism b y  

the expression (cf. (14.2c)) 

(15a.6) --j~ : X~ ~f 4- (X~--gSX") ~g~ ~ f  4- (X~.--g,.,,~X '~) ~ 4- 

~g~,t, ' ~g~".~' ' 

which is part icularized to the K G  case by  put t ing  X ,  = 0 and X~ instead of X~; 
it  m a y  be checked tha t  (15a.6) and (13a.4) give again (15a.3) and (15a.4). 
Analogous considerations may  be carried out for the Lagrangian (13a.6) on 
J2(E). I t  m a y  be shown [18] tha t  in tha t  formalism the current  is given by  the 

general formula 

(15a.7) --j# =-X# ~5f2 4- (X~_y~X ~) [~s d ~f'~] 
~ f 2  

[ ~y~ dx~ ~Y~,3 § ( X ~ -  y~SX ~ ~y~,--~ 
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on the solutions of (13a.7); note tha t  the 1-jet prolongation of the field X now 
enters into the expression for ju. Again, by  using (14.6) and restricting (15a.7) 
to the KG case, the Poinear6 generators are recovered. 

b) T h e  .Proca f ield.  On E, ])~ = ~ ~ as before ~nd 

(15b.1) M,, '  = 6 ~'~' ~ x ~ "~" . . . . . .  + y(~)o . ,  

If  we start  from the Lagrangian (13b.1) on J~(E) ,  the expression of the currents 
is given by (14.2c), where the fibre index g has been replaced by (~). The trans- 
lation current is then given by 

~,*~') ~ ' v  ~ and y ( * ~ y ( ~  do not  contribute) and the Lorentz (the terms ~ ~,~ ~ )  
current by  

(15b.3) ~(~'~)~ = x u j ( ' ~ - -  x~j(u)~-- Y~)~(X~'~)7~Y (~) § yl,~)(Z* ~).~ " y(~)~ 

with (Z~)o~ = 5o~[. The same results are obtained from the scalar Hamil- 
tonian density ~ *  of (13b.4) and (14.4e); in particular, the usual Hamil tonian 

(15b.4) .~f - --[(V~*)(V~ ~) + (~oq~*)(~o~O~) + m ~ , ? , ]  

may  be recovered from fo)o by identifying y(u)(x) with the Proca field ~u(x).  

c) T h e  D i r a v  field.  The action of ~f+ on the Dirac bundle E is given by  

j ,  ~ ~ o i ( X ~ ) ~ y ~  d_~__" �9 =6~, ,x~ + ~ ~y~ *y ~.(Z'~*)~ ~y~.  , i, j ,  k =  l ,  2, 3 cyclic,  
(~5c.~) 

j~ i  Oi e a + " v'0i fl : 5~ox ~ + i ( s176  + zy~.(.,. )~, ~y~,. .  

The 1-jet extensions, with the additional components 

( 1 5 e . 2 )  

j i '  j i  rS;~ . . . .  i ,  ~'~,~,~3 ] ~ [y~,.,~;,~. § iyn.u(X~k)~] ~Y~,*~, - -  L ,~,.:j ~ - -  t.~ j~y uJ ~y~,----- 

- �9 " ~ ~oi , �9 -o~ ~ = y .  _ _ , . - - -  
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for the vector fields of the rotations and the boosts (~1 _~ p , ) ,  act on J~(E). 
The invariance of the Lagrangian (13c.1) may  now be verified by evuluuting 
L~,(~q~o)l~,. As in the previous cases, this is done from L ~ ( ~ r  (L~,~f).  
�9 ~o ~- s Ls, s ~ 0, as seen by direct computation, and L~,w 

(~,X~)eo : 0, since ~ X ~  is zero for all Poincar5 generators (in evaluating 
Z~  LZ the relation 7' ~'~.", ~ �89 [7~ 7~, 7r is useful). The currents are then given 
by (PI) 

(~5e.3) 
{ j(.)~ = iy~,(y~ ~"y ~ , 

which take the customary form by put t ing y~(x)-~ T(x). P I I  leads to the 
currents of (14.2c). However, these are not  the usual currents because ~ r ~ .  
~evertheless,  when y%--unconstrained by the EL equations for P I l - - i s  re- 
stricted to y~  ~ ~y~, the formulae (15e.3) arc recovered. 

d) Rarita-Sehwinger field. The same remarks made for the Dirac case 
apply also here. We shall only give the formulae for the sake of completeness: 
on E, 

,u~' ~ ( a e )  (15d.1) M~ ~ = ~ ' f . x  ~ ~- ~ ,~.y c~y--(~-- ) -~ i ( ~ ) ~ y ( ~ a ) ~ )  

plus conjugate terms, and the analogous to (15c.3) nre 

), 

where we have omitted the conjugate terms. As usual, j(~)~ may  be writ ten 
ia  the form 

(15d.3) ~(~)~ ~-- xaj (~)~- x~j '~)~ + ~zo)(Z~'~)~.~y(~) + ~ ) ( - - i Z ' ~ ) ~ y  (:'~) 

where u ~ , ) = -  iy(~o~,(y~ and the two Z's  have been defined in subsect. 15b) 
and 15c). 

e) Conformal symmetry o] a massless ]ermion field. As we have seen 
previously, all Poincar~ generators have in common the fact tha t  the com- 
ponent acting on the fibre, X~(~/~y~), does not  depend on x~ (X ~ :/= X~(x~)). 
As a, final illustration of the theory we shall now consider an example which 
is free of such a restriction, namely the conformal invariance of a massless 
fermion field. The vector fields of ~(E) associated with the conformal group 
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are wri t ten in the form [39] 

v _ _  

M ~  = o . ~ x  ~ + i(S~.)~y~ ~ - - i y ~ . ( S ; , , ) ~ y ~ . ,  

L (15e.1) K .  = (2x.x~--x~O;) + 2[ix.(~.)}y ~ + lx .y~,]@ + 

. 

D z x v ~  ~x ~ + ly ~' ~ + lye, ~y~. ' 

where l is the dimension of the field in terms of powers of length (--~ in this 

ease). (15e.1) shows tha t  the components  on y~ of the vector  fields corresponding 
to the conformal t ransformations depend on x~; in addition, we have now 

~ X ~  va 0 for K~ and D. The 1-jet prolongations are determined by  (14.6) 
with the result 

- - I  M#~ M~,~+ " ~ ~ ~ "~ ~' = [ ,(2~)~y o--  ~,~ y ~] ~y% 

�9 ~ ~ - -  , 6  "~ c3 -t- y~ ~ ~, ,  J 8y~,~ 

K~ = K~, + 2{i(Z.~)~y ~ + l~,.y~ + [ x ~ - -  x~6~-- x~]~o]y~ + 

(15e.2) + [ix~(2~)~ + lx~]  y~} + 

�9 t f l  ~, v v + 2{--*y~.(Z~)~ + l ~ y ~ ,  + y~,[x~bt,--X~bo--X ~,~] + 

+ Ya*o[--*x (X~)~ + lx. 8]} , ~y~.. 
S 0 D ~ = D  + (~--l)y~-g~ + (~--J)Y~'~by~.~" 

The conformal invariance of the ~ fermion f ie ld ,  determined (PI) by  the 
Lagrangian density 

(15e.3) ~q~ = -  o ~ ~ *y~*(y 7 )~Y~ 

is checked by  calculating (14.3) and noting tha t  now the t e rm ~(L~,~o) con- 
y v t r ibutes due to the fact  t ha t  ~,X(~,)----8x~ und 3~X(~)--~ 4. The currents are 

obtained from the first three terms of (14.2e) (PI) ; explicitly (and on ~ ~ ~ )  
the eonformal and dilatation currents are given by  

~j(~) = ,y~,(~. o ~ ~ )~{(2x, x ~ ~ - - x  ~ 5~) ~ - -  2(ix~Z'~, ~ + lx~,)}y ~' , 
(15e.4) 

[jr = y~.(~~ il}y~' , 

the Poincar6 currents again having the form (15c.3). 
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In  concluding we could ment ion tha t  on some occasions it may  be inter- 
esting to discuss the invariance of a system by  considering the current  which 

- - conse rved  or h o t - - m a y  be defined from d(ix.O)[~,~ , since the other  t e rm 

coming from Lx~O is zero on account  of the EL equations. In  this way one 
may,  for instance, discuss the relative implications of conformal and dilatation 
invariance of a given Lagrangian along the lines of the first'* two references 
of [39]. 

The authors  would like to  acknowledge their  Salamanea colleagues, and  
par t icular ly  L. J.  BoYA and P. L. GAICC~A, for enjoyable and st imulating con- 
versations during the past  few years. 

APPENDIX A 

Vector bundles. 

I n  this appendix we restr ic t  ourselves to  introducing the  most  re levant  
concepts concerning vector  bundles which are necessary for the main tex t .  
A more systematic  s tudy  of fibre bundles m ay  be found in ref. [37, 38, 40, 41] 
and, in the  context  of their  applications to physical  problems, in ref. [2, 7, 
19, 42-44~ 48]. 

A.1. Locally trivial fibre bundles. - Let  E, F, M be topological spaces. 
A locally trivial fibre bundle of fibre xv and base M is a t r ip le t  ~ ---- (E, 7r, M) 
( f requent ly  denoted  E-%.M), where ~r is a continuous application of E onto M 
(the projection), which satisfies the  following condition: 

For  every  x e  M, there  exists an open set U e  M including x and a 
homeomorphism 4}:x-l(U) -+ U X F  such tha t  p o d  ---- Jr, where p is the  pro- 
ject ion of U X F  onto U. E is called the  total space of the  fibre bundle  ~; 
Jr-l(x) is the  fibre over x, and ~r-l(Jr(e)), e E E, the  fibre through the point e. 

The pair  (U, r  is called a local chart of ~] and consti tutes a trivialization 
of the  restr ict ion ~lv. Given two local charts (U, ~b), (V, T )  such tha t  
U n  Vve {0}, one has for x e  U n  V, f e E ,  ~flo~-l(x, /)  : (X ,  g(x)/), where g 
is an applicat ion of U n V into the  gronp of homeomorphisms of 2'. (See the 
figure where bo th  the fibre and base spaces have been taken  of dimension one.) 

The simplest example of fibre bundle  is the Cartesian product  (M • F ,  ~, M), 
where z is the  canonical projection.  Such a bundle is called trivial and admits  
a global char t  (glob~ol co-ordinate system). Any bundle  isomorphic (see below) 
to a di rect-product  bundle is also trivial.  

A cross-section ~ of E - ~ > M  over N r M is a continuous application 
~ : N - + E  such tha t  ~roT is the  iden t i ty  on N. The set of cross-sections will 
be denoted  by  _F(N). 

Let  ~ = (E, ~, M) and ~' ---- (E', 7r', M') be two locally tr ivial  fibre bundles 
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with fibres F and F ' .  A homomorphism of 9 into 9'  is a pair  of continuous 
maps  (H, h), H:E--~E' ,  h:M-->M' such tha t  the  d iagram 

H 
E > E' 

M h , ) _ ~ r  

is commuta t ive .  The local represen ta t ion  of (H, h) is obta ined  by  tak ing  
local charts  (U, ~) [~ :~- I (U)  -~ U• U c M ]  of 9, (U',  ~0')[~0':~'-l(U ') -~ 
-->U'• U ' cM' ]  of 9'  such t ha t  h(U) n U':/:{O}. Then, for (x ,])~ 

C 1) (h(x), Z(x)/) , 

where l(x) (with x E U n h-l(U')) is a cont inuous appl ica t ion of the  fibre 
F on /~'. Two bundles  are isomorphic when the  hor izonta l  arrows of the  
above  d iagram m a y  be inver ted .  

Le t  9 = (E' ,  :~', M' )  be a locally t r iv ia l  vec tor  bundle  and  g u cont inuous 
appl icat ion of the  manifold  M over  M' .  Then there  is a fibre bundle  
9 : (E, :~, M) called reciprocal image of 9 (also called pull-back or induced 
bundle) and an homomorph i sm H which makes  the  following d iagram com- 
m u t a t i v e :  

H 
E > E '  

l r g M '  M > 

The eoas t ruc t ioa  is s imple:  i t  is suiilcient to define E as the  subset  of M •  
composed b y  the  pairs  (x, e'), x e M, e' e E', such t h a t  g(x)=.~'(e') and H 
as the  appl icat ion H:(x,  e ' ) r  e'. E is f requen t ly  no ted  M• (which 
iudieates t ha t  i t  is the  p a r t  of the  direct  p roduc t  compat ib le  with the  con- 
di t ion imposed by  the  existence of the  homomorph i sm g and the  appl icat ion 
z '  over  M' )  and  :~ is called the  pul l -back  of :~' b y  g. 
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A.2. Vector bundles. - The vector  bundle  s t ruc ture  is obta ined by  impos- 
ing to the  fibre E the  condit ion of being a vec tor  space V~(R) (or V"(C)) 
of dimension n. Then the  funct ions  g which de te rmine  the  change of local 
char ts  t ake  their  values g(x) on the  l inear  group of the  fibre space, GZ(n). 
Thus~ a vec tor  bm~dle is essential ly a manifold with a vector  space a t t ached  
to each of its points.  5Iore precisely, a vector  bundle  is defined as follows: 

Le t  ~] ~- (E, ~, M) be a locally t r iv ia l  fibre bundle  of fibre given by  a 
vec tor  sp~ce F of dimension n. A s t ruc ture  of vec tor  bundle  is de te rmined  

on ~/ b y  a family  ~ f f ~  {(U~, ~o~)} of local charts  which satisfy the followin~ 
conditions : 

a) (U~} is an open cover  of M. 

b) Fo r  every  pair  (~  fl) for which 

~q~-J(x, ]) = (x, g~(x) /) 

u~ n v~ r {o}, 

[(x, ]) �9 ( u~ n u~) • F ] ,  

where g ~  is a cont inuous appl icat ion of U~ n U~ on GL(~), i.e. q~q~ is a 
local vec tor  bundle  isomorphism.  

c) The fami ly  ~ is maximal ,  i.e.~ if ~ / '  is a family  of charts  of ~ which 

sutisfies a), b) and  includes ~ ,  then  ~ / ' :  ~ .  ~ is called the atlas of ~] 
(which is somet imes  wri t ten  as ~ ~- (E~ z,  M;  ~ ) )  and its elements  are  the  
vec tor  char ts  of ~. 

The funct ions  g~  de te rmine  the  changes of charts  and are accordingly 
called transition ]unctions; they  satisfy the  compat ib i l i ty  condit ion 

(A.2.1) g~(x)g~(x)  ~- g~(x) , Vx E Us n U~ n U~ . 

I n  other  words,  ( U ~  g~)  is a coeyele on M with  values in G.L(n) subord ina ted  
to (Us}. Reciprocal ly,  it can be shown tha t ,  if (U~) is an open covering 
of M, F a vec tor  space of finite dimension and  g~ :U~  n U~-~ GZ(F) 
family  of cont inuous mappings  on U~ n U~ satisfying (A.2.1), there  exists ~ 
vec tor  bundle  of fibre F ,  ~7----(E~ ~ M)~ for  which the  g's  are t rans i t ion 
functions.  Moreover,  ~ is unique bu t  for equ iwlences  (*). 

All the  other  proper t ies  of fibre bundles are easily t r anspor ted  to vector  
bundles.  I n  par t icular ,  a different]able vec tor  bundle  s t ruc ture  is obta ined 
when the  buse M is a different]able manifold and the  changes of charts  are 
g iven b y  different]able t rans i t ion functions.  As a final comment ,  let us say 
t h a t  the  zero section of E is the base  M;  the  name  is given because x E M is 
the  zero e lement  of the vec tor  space ~-~(x) (the fibre over  x). 

A vec tor  bundle  with a one-dimensional  vector  space as fibre is called 
line bundle. 

A.3. Tangent [T(M)] and cotangent [T*(M)] space o] a man]]old M. The 
tangent (di]]erential) application. - Let  M be a different]able manifold of di- 

(*) Two locally trivial fibre bundles V = (E, ~, M) and V'= (E', ~', 3I) with the same 
base M are said to be equivalent if there exists an isomorphism (H, h) : ~--~ ~' for which 
h is the identity on M. 
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mension m and let  x be a point  of M. A (differentiable) curve  c a t  x E M 
is a (differentiable) appl ica t ion c : I - +  M, I c R  with 0 E I  and  c(0) = x. 

Le t  cl and  c2 be two curves a t  x and  let  (U,~v) be a local char t  with 
x ~  U. c~ and  c2 are said to be  t angen t  a t  x i f  and  only if ~voc~ and ~oc2 are 
t angen t  a t  ~ (x )~  R ''~ (in the  usual  sense of t angency  in Rm). I t  is s imple to 
see t ha t  the  not ion of t angency  does not  depend on the  chosen local char t ,  
p rov ided  they  are compat ib le  as char ts  of a differentiable manifold.  I n  the 
,same fo rm i t  is clear t h a t  the  t angency  is preserved b y  a differentiable appli-  
ca t ion  J of M into ano the r  differentiable manifold 3T: if cx and  c~ are t angen t  
a t  x e M, J(c~) and f(c~) are also t angen t  a t  ](x) ~ N.  

I t  is ev ident  t ha t  the  t angency  a t  x e M is an equivalence relat ion among  
the  curves passing th rough  x. The t angen t  space T~(M) is the  space of the  
equivalence  classes {c}~. T~(M), endowed with  the  s t ruc tu re  of vec tor  space 
th rough  the  usual  vector  s t ruc tu re  on R "~, is then  called t angen t  vector  space 
to M at  x. The tangent space to M is defined as T(M)  =- [J T~(M). B y  tak ing  

xGM 

the  dual  of T~(M), the  co tangent  vec tor  space T*(M) at  x is obta ined;  the 
votangent space T*(M) is defined analogously  as T * ( M ) =  ~J T*(M). Both  

x ~ M  

manifolds  IF(M) and T*(M) have  dimension 2m if M has dimension m. 
Le t  J :M ~ N be a differentiable appl icat ion and  {c}~ a class of t angen t  

curves  at  x ~ M. The tangent application to f is the  appl icat ion jT :T (M) -+  
--> T(N)  defined b y  

{/oc},(x,. 

The  definition is obviously  class independent  (see above).  I f  g is ano ther  
appl ica t ion  g :N  -+ K,  

(A.3.2) (go]) T = gTOIT 

(functorial  p roper ty )  and  if / is a diffeomorphism, (]--X)T = (/T)--I .  The appli- 
cat ion ]* dual  of l T (or pull-back of / T) is called the cotangent  application.  

Local representation. Let  (U, F) be a local char t  of M, x E U c M. A class 
{c}x of local curves at  x is wr i t t en  in R ''~ as {~oc}~(~). The line in R m (~voc)v,~) 
= q)(x) -F et, t ~ (0, 1), where e is the  m-dimensional  vec tor  I)((voc)(t = 0) '1  
(1 is the  na turM basis in R), m a y  be t aken  as a r ep resen ta t ive  of the class 
{q~oc}~f(~). D(~voc) is the  usual  J acob ian  ma t r i x ;  given a co-ordinate  sys t em 
q~=x~oq~ on M, i = 1 ,  ...~ m, 

D(q%c)(0)-I -- dq~(c(t)) 
dt it=o 

Now let. f : M  --+ _N be a differentiable appl icat ion and  (V, ~f) a local char t  
a round  f(x). The local represen ta t ion  of ]T is now given b y  

(A.3.3) ]T:(x, X,)  --> (](x), D(~fo]oc)(0). l)  ~ (/(x), (Df)(x) .X~) ,  

since, b y  the  chain  rule, 

D ( ~ o l o c ) ( 0 ) .  1 = D ( ~ o o ] o ~ - l o ~ o c ) ( 0 ) .  1 ---- 

= [ D ( ~ o o / o q 0 - x ) ] ( ~ 0 o c ) ( 0 ) ' D ( ~ o c ) ( 0 ) ' l  ~ (DJ)(x)'X~. 
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The second component  of the tangent  application,  D(])(x).X~ defines the 
di]]erential o/ ] th rough  d ] ( X ~ ) =  (D])(x).X~ where X~ is a vec tor  field 
(appendix A.4) a t  x (*). The above  relat ions are shown pictorial ly in the  
following d iagram:  

r 

c 

R m R s 

O(~ofocp ).e 
I 

loca l  represent&t/on of fT 
% 

The two components of the tangent application. 

((~,o]oqT~):R'~-~R'). By tak ing  co-ordinates Fo]o~-~ -->]~(q~), i = 1, ..., m ;  
j = 1, ..., s and D] is the  Jacob ian  of the t ransformat ion ,  ~/@q~. 

A.4. Tangent and cotangent vector bundles. Tangent and cotangent gr6ups. - 
The t r ip le t  T(M) =(T(M)~ZtM~M), where the  project ion 7r~:I ' (M)~,M 
is defined b y  ~({c}=)= x, together  with the at las ~ - - ~  {T(U~), ~v~}, where 
{(U~ ~ ) }  gives a differentiable s t ruc ture  to M, has the s t ruc ture  of a dif- 
ferent iable  vec tor  bundle  with fibre R".  Thus T(M) is a vector  bundle  called 
tangent bundle to M. Subs t i tu t ing  T*(M) for T(M) and ?* for ~v~T one ob ta ins  
the  cotangent bundle to M~ ~*(M) ~ (T*(M),)~M, M). 

I t  is clear tha t  the  changes of charts  of T(M) are given b y  the differenl ial  
(in the  usual  sense in R "~) of the  changes of char ts  ( ? ~ o ~  1) of the  manifold  M. 
This allows for the  following equivalent  definition of T(M): let M be a differ- 

ent iable  manifold of dimension m defined by  its ma.ximal at las  ~7~-- {( U~, ~v~)}. 
T(M) is the  differentiable vec tor  bundle  of base  M and fibre R "~ defined b y  
the  cocycle ( U ~  D(~o~o~0~)). 

A vector /ield X on a differentiable manifold M is a diffcrentiable cress- 
section of T(M); a field o/ 1-forms on M is a differentiable cross-section of 
T*(M). 

.Local co-ordinates. Let  (U, 9) be a local char t  of M and let Ix'), i = ] ,  ..., m, 
be  a co-ordinate  sys tem on R m. The set of funct ions {q~----x~o~) const i tu tes  

(*) When ] is an application of M m on R, d] is the ordinary exterior derivative of the 
function ]. Strictly speaking, in the above paragraph the tangent vector X x should 
be replaced by its representation e in R m ; we have kept X x following a common practice. 
The same can be said of the local representations of x and ](x), wMch more precisely 
should be written as ~(x), ]~(9(x)). 
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a co-ordinate  sys tem for U c M. A char t  of ~(M) on the  open set U will be  
given b y  {7(U),  ~v T} and thus a co-ordinate  sys tem on 7 (U)  will be given by  
{q~T} ~_ {q~, dq~}; the  appl icat ions dq ~ are also f requen t ly  denoted by  q~. I n  the  
co tangent  space 7*(U) we shall t ake  as a co-ordinate  sys tem {q~,p~ ~ ~/~q~}, 
where ~/~q~ is the  dual  sys t em of dq~; the  no ta t ion  ~/c~q~ corresponds to the 
fact  t ha t  the  set  of fields on U is in one-to-one correspondence with the  set 
of der ivat ions  of the  a lgebra  of the  local differentiab]e funetiol~s on U. 

A vec tor  field [1-form] on U will be locally wr i t ten  as X = X~(qJ)(~/~q ~) 
[a = ~(q~)dq~], where X~[~,] are m differentiable functions on U c M. 

Tangent and cotangent groups. Many of the  group of t rans format ions  which 
are re levan t  in mechanics  are defined only on the base  space M ( through their  
act ion on the  co-ordinates  qi) and not  on the  co-ordinates and velocities or 
on the  co-ordinates and m o m e n t a  which are usual ly  the  (confgura t ion  and  
phase)  spaces of definition of physica l  quanti t ies.  Thus the p rob lem arises 
of ex tend ing  the  act ion of a group on M to 7(M)  or /~*(M) in a na tura l  
way.  The solution is s imple:  if ~b t :M-+  M, t ~ R, is a one -pa ramete r  group 
of diffeomorphisms of M with  p a r a m e t e r  t, the t angen t  appl icat ion q)~ for 
each t is a one -pa ramete r  group of diffeomorphisms of 7 (M)  whose restric- 
t ion to M is ~bt. Thus we m a y  ex tend  to 7(M)  the  vec tor  field X which gen- 
era tes  Ct. 

Le t  X = X~(qr ~) be the  res t r ic t ion of an a rb i t r a ry  vector  field on M 
to U c M. I n  U, X give rise to a one -pa ramete r  group, r  q)~:x-+ 
-~ qSt(x), qSo(X ) -= x, of which X is the infinitesimal generator ,  i.e. 

d )i t=o (A.4.1) x ~ = ~ r  . 

The tangen t  appl icat ion ~bt v defines the  following act ion on 7 (U)  (eq. (A.3.3)): 

(A.4.2) r  X~) -+ (~b~(x), D((P~)(x).X~) = (~b~(x), ~ ~J(X~) , 

where  (qi, ~) is the  co-ordinate  sys tem of 7 (U)  and  X .  an a rb i t r a ry  vector  
of 7:.(U). Now the genera tor  of ~bT, or prolongated vector fiehl X T, is given b y  

and  thus 

(A.4.3) 
~c ~j ~X ~ 

X ~ -_  X ~ ( q J )  . 

To prolongate  a vec tor  field X on M to 7*(M), one proceeds in an analo- 
gous way  b y  construct ing the  one-pa ramete r  co tangent  group q}~ to evalua te  
the genera tor  as before. The resul t  is 

c ~ c~X~ 
(A.4.4) x *  = x i - z - - ~ - p ;  c~q~ ~ p i '  cq o 
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as was der ived b y  using the  Liouville fo rm in subseet.  2c) (eq. (2c.10)). Bo th  
procedures  for obta ining X* are  equivalent ,  since, given a one -pa ramete r  group q) t 
of diffeomorphisms of M, the  co tangent  group ~b t preserves the Liouville form, 
r =_d 

A P P E N D I X  B 

Jet bundles J~(E). 

We develop in this appendix  the  notions of the  je t  bundles  required for 
the  main  tex t .  The concept  of jet  bundles was in t roduced b y  EHRESlVIA~I2~ [45] ; 
the  in te res ted  reader  m a y  also consult ,  e.g., ref. [7] to which we conform here 
mos t  of our nota t ion,  and  ref. [36, 46]. We  shall consider only  trivial bundles 
when dealing with  je t  bundles  to avoid introducing a connection [7, 10, 11] 
on the  fibre space E which would complicate  unnecessari ly the  notat ion.  I n  the  
general  case, we should say (see below) (( t ha t  W and all covariant der ivat ives  
vanish  ~ ins tead of s imply  saying <( der ivat ives  ~). Because of these simplifying 
reasons,  mos t  of t h a t  follows will be wr i t t en  in local co-ordinates.  

Despi te  the  fact  t ha t  only f irst-order jets  are used in mos t  of the main  
t ex t ,  we shall  here  define the  r- jets  with general i ty ,  since this does not  offer 
addi t ional  difficulties, r - th  order jets  are used in the  context  of generalized 
field theory ,  where Lagrangian  densities depend on higher-order  der iva t ives ;  
see, e.g., [18]. 

In  what  follows, the  fibre of the  bund le - -wh ich  will be a vector  s p a c e - -  
will be on the  real  field R. The general izat ion to the  complex field is t r iv ia l  
and  direct ly  t aken  care of in the main  text .  

B.1. The bundle Jr(E) o] the r-jets o] the ]ibre space ~ ---- (E, 7~, M). - Le t  
~- (E, ~, M) be a differentiable vec tor  bundle  on M with  fibre Vm(R). E will 

denote  hencefor th  bo th  the  to ta l  space and the  fibre bundle  itself. Le t  F(E) 
be the  set of all differentiable cross-sections T of the  fibre E (we shall t ake  
of class C~). / ' (E)  has a s t ruc ture  of ~ ( M ) - - m o d u l u s  on the  algebra ~ ( M )  of 
the  (C =) differentiable funct ions on M. E will be  assumed to be  a t r iv ia l  
vec tor  bundle  (E = M •  R"~; it  will be pa ramet r i zed  b y  the  co-ordinate sys t em 
(x~, y~}, tt =-1 ,  ..., n, a = 1, ..., m),  so t ha t  /~(E) will a lways admi t  a basis 
and  consequent ly  will be a free modulus  of dimension m. 

Le t  x be  an a rb i t r a ry  point  of M and r a posi t ive integer.  Le t  / ~  be  the  
submodulus  of F(E) composed b y  the  cross-sections T which are zero at  x 
up  to the  r - th  order  der ivat ive,  i.e. such tha t  ~,~ . ,oT(x) = 0 for q ~-- 0, 1, ..., r. 
The quot ient  

(]~.1.1) _F(E)/F$ _ J~ (E) ,  

whose e lements  are the  classes composed by  cross-sections which t ake  them-  
selves and  their  der ivat ives  up to order  r the  same values at  x, is a vector  
space over  R. The equivalence class of a cer tain cross-section ~v is called the  
r-jet o] T a t  x;  the  point  x is called the  source of the  je t  and  the  point  T(x)  e E  
the  target of the  jet .  I n tu i t i ve ly  one m a y  describe an equivalence class as 
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including all the funct ions T : M - ~  E whose Taylor  deve lopment  coincides up  
to the  r - th  te rm.  The union 

(B.1.2) U J ~ ( E )  - -  J~(E), 

with the  t a rge t  project ion z~:J~(E) ~+M defined b y  u~:J~(E) -> x, has a vec tor  
bundle  s t ruc tu re  over  M, and will be called the  vector  bundle (J~(E), ~ ,  M) 
o] the r-jets of E. As a pnr t icular  case, J~ = E. 

For  convenience,  we give now ano ther  definition of the  bundle  J~(E) which 
is more  general,  since it  does not  require  a vec tor  s t ruc ture  for E [7]. Le t  
(E, ~, M) be a differentiable fibre bundle  over  M and _F(E) the  space of its 
differentiable cross-sections. On F(E)• M we m a y  define the  following equiv- 
alence re la t ion:  

(B.1.3) V~P, T '  c F(E)~ Vx, x '  e M (T, x) ~.~ (~', x ' ) ,  

if 

a )  X ~ X r, 

b) T coincides with T '  up to order r, 

~,. ,oT(x) = ~,. ,~ T ' ( x ) ,  q = 0 , 1 ~ . . . ~ r .  

The quot ient  set,  F ( E ) •  J~(E), is the  space of the  r- jets  of E.  
The project ion (T, x ) - ~  x of F(E)• M--~ M goes to the  quot ient  and thus  
defines a project ion s~:J"(E)  -~ M which gives to J'(E) the  s t ruc ture  of fibre 
bundle  over  M. The fibre over  x, (s')-~(x), m a y  be identified with the space 
J~(E) previously  defined in the  case t ha t  E be a vec tor  bundle.  :Note finally 
tha t ,  since two cross-sections coinciding up to order r also coincide for r'<~r, 
one m a y  define the  m~p 

(B.1.4) 7~,', r' :Jr(E) ---> J r ' (E ) ,  

which in tu i t ive ly  corresponds to re ta in ing  the  first r '  t e rms  of the  Taylor  
deve lopment  init ial ly given up to order r. 

Given u section T E F ( E )  and  a point  x e M, the  pair  (~, x ) c F ( E ) •  
belongs to one of the  classes of F(E)• M/~ ' ,  precisely the  one character ized 
b y  the  r first der iva t ives  of the  section ~P t aken  a t  x. The appl icat ion 

(B.1.5) j ' : F ( E )  ~F(J~(E) ) ,  -- , j ' : T - > j ' ( ~ P )  --~ T" 

where  j '(T)(x) is the class defined by  the first r der ivat ives  of kP a t  x, is called 
r-jet prolongation (or extension) 0 t ~ and is wr i t t en  as f ( T )  or s imply  5 u+ (in 
general ,  je t  prolongat ions wi]l be  denoted  by  a bar).  

As a par t i cu la r ly  simple example  of a 1-jet bundle,  let us consider now 
the  ease for which E = / ~ x M ~  R, where  M is a differentiable manifold.  
F(E) is then  the  set  of curves of the  manifold  M, and  the  equivalence rela- 
t ion (B.1.3) for r = 1 is wr i t t en  as (with 5 u ~ c, t ER)  

(c,t)~..~'(c',t ') Ve, c '~F(E) and t , t ' ~ R ,  
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if a) t = t' and b) dc/dt = dc'/dt ' ,  i.e. ~ places in the same class all the 
curves with the same tangent  at  t. The tangent  thus characterizes the equiv- 
alence class, and F ( E ) •  1 is nothing but  the vertical tangent  space to E, 
T~(E) = R X  T(M)~ where T ( M )  is defined as in appendix A.3. We then  have 
J~(E) = R X  T ( M ) ,  and this will be the space of definition of (time dependent) 
Lagrangians (sect. 8). 

B.2. Co-ordinate system on J q E ) .  - Let U c M,  ~-a(U) ~ U X R "  and let 
{x,, y~} be a co-ordinate system for x-l(U) r E. For  the set of local sections 
/ '(z-~(U)) the equivalence relation (B.I.3) may  be expressed in the form 

(B.2.1) 

if x = x' and 

(B.2.2) 

(T, x) ~Z (T', x') 

/ y~(T)(x) = y~(T')(x), 

~,~...,~y~(T)(x) = %,.. .~y~(T')(x) . 

The functions on F ( ~ - x ( U ) ) X  U defined by 

(B.2.3) 

y~ :(T, x) --> y~(T)(x)  , 

y~:(T, x) -+~,,y~(T)(x) , 

cu �9 I~ff Ym...~'( , x) -+~,_.~3]~(T)(x) 

are stable through the equivalence relation and define on the quotient set 
functions o n  Jr (~- i (U)) .  Thus the set of functions {x ~, y ,  y],,, Ym~., "", Y~,...~,}, 
symmetr ic  in the lower indices, constitutes a co-ordinate system on j r (~-~(U))  
(aS customary, we will not  often distinguish between y~, y~(T) or T~; no 
confusion should arise from that) .  In  this co-ordinate system the projection 
(B.1.4) is wri t ten as 

(B.2.4) ~ '~"(  x~, Y~, Yz~, ""~ Yt,...,~) -+ ( x€ Y~, Yu~, "",  Y,..#,') 

and the jet  prolongation (B.1.5) 

(B.2.5) j~(T~) = (y~, ~u~y", ..., ~,~..,.y~) �9 

Note tha t  not all sections T~ e F(Jr (E) )  are r-jet prolongations of some sec- 
t ion T E F(E)  and that ,  in general, y~,..~, r ~m...~,y ~. In  contrast,  given a 
point (x ~, y~, ,/~,, ..., Ym...,~) E J~(E), there is always a local section ~u such that ,  
~t x, 

(B.2.6) y~l...~(x) = ~m_~y~(~P)(x) , q = O, 1~ ..., r ,  

as may  be verified by  writing T as a formal Taylor series around x with coef- 
ficients (y~ y , , ,  , yt,,...~.)(x) [46, 47]. 
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I t  is simple, f rom (B.2.6), to characterize the r-jet  prolongat ion of W~ F(E). 
Let  us consider the  set of s t ruc ture  1-forms on J*(E), {0~...,~}, ~ = 1, ..., m, 
s ~ 0, 1, ..., r - - 1 ,  defined by  the  following local expression: 

(B.2.7) 0 ~ = d  ~ ~ 

Then the r- jet  extension j~(T) ~ [P~ of W e  F(E) is the only cross-section of 
J~(E) such tha t  j~ is an injection of F(E) into F(J~(E)) and 

Thus  j~(F(E)) appears as a re la t ive integral  of the noncomplete ly  integrable 
Pfaffian system {0~...~,,}. We shall see in the nex t  section tha t  this charac- 
ter izat ion is specially useful in defining the je t  prolongat ion of vector  fields. 

B.3. The r-jet prolongatio_n to/'(~(J'(E))) ol a vector field o] r(~(E)). - The 
r - je t  prolongat ion j ~ ( X ) -  X r of a vector  field X on E m ay  be obtained by  
.considering its action as a one-parameter  group on E (and on M in particular) 
and on F(E). Given the action of the group on F(E)• M and by  taking the 
quot ient  by  ~ ' ,  the  generator  of the  group_on J~(E) is j '(X). However ,  we 
may  take  advantage  of (B.2.8) and define X ~ as follows. 

Given a vector  field X on E,  its r- jet  prolongation by  jr is the only vector  
field on J~(E) such tha t  ,Y~ is an infinitesimal contact trans[ormation (i.c.t.), i.e. 
~such tha t  

( B . 3 . 1 )  L ~ = A ~ ........ '0 e 
s ' ~ s  

s : 0, 1, ...~ r - - 1  . 

In  this way,  the s tabi l i ty  of the  Pfaffian system {0~,...,~} under  2~ guarantees 
t h(~t r- jet  prolongations are mapped onto r-jet  prolongations.  

Condit ion (B.3.1) allows us to calculate explici t ly f[~ as well as A~,....~. 
For  instance, for the 1-jet prolongat ion we write 

(B.3.2) X ~ X~(x~, y~) - ~  ~- X~(x ~, y~) ~y~ , 

a nd  obtain 
~X~ ~X ~ 

(B.3.3) A~--  8y~ ~y~ y~ , 

~X~ ,(B.3.4) X ~ -  
~x~ 

~ X ~  ~ X ~  ~ ~ X *  

F o r  the 2-jet prolongat ion we pu t  

(B.3.5) :~-" = X + X; ~ ; + ~ ; ,  ~y;~ 

.and similarly obtain [18], besides (B.3.3) and (B.3.4), 

(B.3.6) A ~ , -  ~y~ y~, ~y~ , AZ, ---~y~ , 
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together  with 

(B.3. ~) -~  8X~ X ~  = ~x ~ - - - - y ~ , ~ x  ~ + A#~y~ + -~#~,v~ �9 

The above procedures of evaluat ing the jet  prolongation are not  the only 
ones. For  example,  one may  take advantage  of the dual i ty  existing between 
the Pfaff  systems and the associated differential systems. For  instance, the 
sys tem of fields P•  orthogonM to the Pfaffian system P = {0" -~ dy " -  y~ dz~'} 
is clearly genera ted  by  the fields Yu and Z~ given by  

(B.3.8) Y~ ~- ;  + y~ - , -- , = ,8y~ Z~ ~y~ 

since O~(2u Yu + ~' # 2#Z,) = O. Thus, as it is evident  t h a t  IX. 1, Z] ~ ] 9• ( X  it and 
X ~ do not  depend on y~), the l - j e t  prolongation is given by  the condition 

(B.3.9) [21, Yu] = A~ ]z  + F;~ ~y~. 

Indeed,  (B.3.9) is sufficient to determine,  besides A~ and F ~ ,  the expressions 
(B.3.2)-(B.3.4) for 27 1. That  this should be the case is easily shown: 

(B.3.10) (L:~O~)(:Y~,) = (10~()7', Y~) + (diy,0~)(Y~). 

By  using the iden t i ty  

(B.3.11) d~2(X, Y)= L~9(Y)--L1.~(X)--O([X, Iq), 

valid for ~lly 1-form ,(2, the first t e rm of the r.h.s, of (B.3.10) gives 

(B.3.12) 

~md, since the second is X , ,  we get 

(B.3.13) (L~10~)(~r/~) : _ 0cr Jr/el) 

:rod thus L2,0~' = A}O~ and (B.3.9) imply each other.  
The above procedures of introducing the 1-jet prolongation of vector  fields 

on E are of mathemat ica l  character.  We can give, in addition, one more w'~y 
of defining 27 1 which is direct ly  re levant  to the symmet ry  problem considered 
in sect. 14. Consider the Lie der ivat ive of the Poincar6-Cartan form (11a.8) 
and (11a.9) : 

~ \ 0  ~ 0 ~ = . + (Lx O )AO. + 

eye, 
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When the Lagrangian densi ty  is regular,  bo th  formalism on J~(E) (PI for s 
P I I  for O) give the same results (subseet. l l a ) ) .  I t  is then naturM to require 

(B.3.15) 

for the 1-jet prolongation X ~ on Ja(E) of vector  fields X on E. In  fact,  it is 
clear, by  using (B.3.2), t ha t  the second t e rm on the r.h.s, of (B.3.14)--which 
has to be zero, since the first and the third do not  contr ibute  to (B.3.15) because 
of (B.2.8)--again reproduces (B.3.4). 

As a final r emark  on j% we note  tha t  j~ is an isomorphism between the 
algebras defined by  the fields on E and thei r  images on J~(E), since j~ is an 
injection and 

(]3.3.16) j l ( [ X ,  y ] )  z [ j l ( X ) ,  j a ( y ) ] ,  

as ma y  be checked by  direct  computat ion.  This impor tan t  p rope r ty  guarantees 
tha t  the s t ructura l  relations between generators  on E are not  lost in the 
process of extending thei r  action to JI(E) .  

As an application of the above general  procedure  let  us consider as in 
appendix B.1 the par t icular  case for which E is the t r ivial  bundle  /~ = M •  
•  where M is a differentiable manifold of dimension n. A vector  

field on E is wr i t ten  as 

(B.3.17) X = Xt ~ + X ~q~ , i 1, ..., n .  

The Pfaffian system is defined by  (Olv = 0 =>~= dq~/dt) 

(B.3.18) P = {0 ~ = dqi--~ ~dt}, i = 1, ..., n ,  

and the 1-jet prolongation of X is given by  (cf. (B.3.4)) 

(B.3.19) 

When the field X is a ver t ical  field (Xt = 0) and ((independent of t ime ~ 
(which is the case of the mechanics ((independent of t ime 5 sect. 2 and 3) 
2~1 coincides with the genera tor  (A.4.3) of the tangent  group on T(M) asso- 
ciated with the group on M genera ted  by  X. 

As an example,  we may  evaluate  the  expression on R • T(M) of the GMilei 
boosts. This is obtained by  applying (B.3.19) to their  expression on R •  

(B.3.20) X, )  = tsar) + ,  

which leads immedia te ly  to the  result  

(B.3.21) 
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B.4. The prolongation to/'(7(JI*(E))) o/a vector field o] F(T(E)). - On J~*(E) 
there is no canonical way of establishing a notion equivalent to the 1-jet 
prolongation on JI(E).  However,  once a diffeomorphism between both spaces 
is established, we may  associate to y~ = ~y~  the corresponding one in J~*(E). 
For  regular Lagrangians,  the Legendre t ransformation is such a bijection and 
it is possible to associate to ~y~  the corresponding momentum ~ ((11b.10)). 
Thus it is na tura l  to define as the j'~" prolongation of the fiehl X of (B.3.2) 
the vector  field on J~*(E) 

(B.4.1) 

which is determined by the condition 

(3.4.2) Ly,.O*~ = A~O*e , 

where the 0 *~ are defined by (14.7). As was to be expected, A~ is given by  

bX~ ~ ~cX, 
(B.4.3) A~ ~-- ~y~ - -  ~ -c~y ~ 

and 

X~ = ~ [ ~ x ~  ~z~xo 
(B.4.4) _ , ,  e x ,  

i.e. the field on J~*(E) is defined as the field t ransformed by  the derivative 
of the application DL (which acts trivially on the components X~ and X~). 
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