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GALILEO GALILEL, Il Saggiatore

1. — Introduction.

Since the classical work of Cartan[1], the application of the methods of
«modern » differential geometry to physical problems has been continuous
and has undergone a steady increase in recent years. Apart from their prom-
inent role in the development of the (symplectic) formulation of classical
mechanics, as described in the excellent book of Abraham and Marsden [2],
their influence in other branches of physics has been considerable. The modern
formulation of the theory of gauge (Yang-Mills) fields is probably one of the
most conspicuous examples of this trend, but certainly not the only one[3].
Another area in which this geometrical approach has been particularly fruitful
is the study of the variational principles in classical field theory (*). Since the
early work of Dedecker[4] on the variational calecnlus, the subject has at-
tracted the attention of many authors [5-18]. As is known (see, e.g.,[7, 10, 18]
and references therein), the use of the techniques of differential geometry

(*) «Classical » is used here in the sense of « nonquantized ».
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and the fibre bundle formalism in particular provides a scheme within which
the formulation of the variational principles and the conservation laws (through
the Noether theorem[5, 10,11, 18]) take a specially elegant form. At the
same time, the introduction of the Poincaré-Cartan form, a useful tool specially
advocated by Garcia-Pérez and Pérez-Rendon [10,11; see also 18] allows a
neat distinction between the ordinary Hamilton principle—which leads to
the (Euler) Lagrange equations—and the so-called modified Hamilton prin-
ciple which, in an adequate formulation [18], leads to the Hamilton equa-
tions. As is well known, both variational principles do not always lead to
the same set of solutions; they are equivalent, however, when the regularity
condition ig fulfilled.

As already mentioned, the geometric differential approach has been ex-
tensively applied to the formulation of classical mechanics (see, e.g., the books
of ref.[2,19-23] and also the classical text[24]). In contrast, a systematic
study of the variational principles in their different formulations and in con-
nection with the simplest (elementary) systems of relativistic field theory
has not been carried out. This is one of the objects of the present work in
which, in partieular, we shall obtain the equations of motion of those systems
and the Noether currents underlying their Poincaré symmetry. This appli-
cation has, apart from the illustrative character of the methods involved, the
interest of the differences between the various variational prineiples and, in
particular, the consideration of the modified Hamilton principle. In fact, we
shall devote particular attention to the question of the equivalence between
the ordinary and the modified Hamilton principle for the different systems.
As a result, since the « Hamiltonian » we shall introduce in field theory is a
Lorentz scalar one—it is not the zeroth component of a four-vector—, in the
case of equivalence we shall obtain an invariant Hamiltonian formulation
which, despite its simplicity, is generally overlooked in favour of the common
Lagrangian one and to which it is completely equivalent.

This review, however, is not restricted to field theory. The other objective
of this work is to show the parallelism which exists between field theory and
classical mechanics. We believe this is best exhibited by the geometric for-
mulation, which is specially suited to manifest the underlying structural unity
of both theories and to exploit their similarities. With this aim, we have in-
cluded previously a systematic review of the well-established symplectie (*) strue-
ture of (time-independent) mechanics and also described the contact structure
of the mechanics of nonautonomous systems and the symplectic structure
which may be constructed on the manifold of solutions. The question of the
symmetries is also analysed in the case of mechanies, to show that its for-

(*) The word symplectic seems to have been invented by Hermann WEYL (H. WEYL:
The Classical Groups, Their Invarianis and Representations (Princeton, N.J., 1946,
first edition 1939)).



4 V. ALDAYA and J. A. DE AZCARRAGA

mulation is conceptually similar to the case of field theory. The variational
approach to mechanics, however, is only briefly discussed after the general
description of the variational formalism (on the cross-sections of a fibre bundle)
given in the part devoted to field theory. This incidentally shows the non-
preponderant role of the variational principles in classical mechanics, a fact
often obscured in the more conventional approaches.

The distribution of the topics covered by this review can be found in the
index. The paper is self-contained; all the mathematical notions required for
its reading beyond the notion of exterior differential or Lie derivative are
included in two appendices at the end. No attempt has been made towards
completeness in the bibliography; the references included are those which are
most relevant to the text among those known to the authors. A very completfe
bibliography on some of the topies covered by this paper may be found in the
second reference given in [2].

Parr I

Time-independent mechanical systems: symplectic structure.

We review in the following sect. 2-4 the mechanices of autonomous systems
or systems which do not depend explicitly on time. Time will thus appear
in this part as a parameter and not as an independent variable contributing
in one unit to the dimension of the manifold. The theory is developed
in a way as to stress the similarities with the more general cases to be con-
sidered later on. As general references for this part (and also for part of the
next) the reader may consult ref. [2, 2a, 2b, 19, 21, 22, 224, 23].

2. — Hamiltonian formulation of classical mechanics.

a) The Liouville and the symplectic forms. Let M be a differentiable
manifold of dimension m, ©(M)= (T(M),ny, M) the tangent bundle and
(M) = (T*(M), Ay, M) the cotangent bundle, dual of (M) (*). The manifold
M, base of both vector bundles, will be locally parametrized by the co-ordi-
nate system (¢, ..., ¢") = {¢°}. The ¢’ thus denote the degrees of freedom of
the mechanical system, that will be defined later on, for which M will be the
configuration manifold. The tangent space T(M) will be parametrized () by
the co-ordinate system {¢"} = {¢/, d¢%}, usually written by abuse of language
{¢, ¢'}. The co-ordinate system of the cotangent space T*(M)—the space of

(*) The spaces and bundles considered in this section are defined in appendix A.
The reader is referred to it when necessary.
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1-forms o on T(M)—will be denoted by the applications {¢, 3/c¢’ = p,}; T*(M)
will thus be the phase space of mechanical system. These conventions for the
co-ordinate systems reflect the fact that the vectors which define the basis
of the vector fibre parts of T(M) [1*(M)] may be taken as ojc¢’ [dg?].

Let T(T*(M )) be the tangent space to the space T*(M) of 1-forms on 7(M),
and (T*(M)) = (T(T*(M )y Topecayy TH(M )) the corresponding tangent bundle.
The various spaces up to now introduced appear in the following commutative
diagram:

T(T*(M)) —= T(M)

}L]’
TTr*(an) Ty,
T*(M) TN

where A7, is the tangent application (to /) and the action of the different maps
is defined in terms of the co-ordinate systems by (%)
(g% ') e T(M) —~q'eM,
Au (¢ pi) € T*(M) —qelM,
Fpron (@5 s dgly dp,) € T(T*(M)) — (¢, p;) € T*(M),
gy pes Ay dp) e T(THID) > (¢f, dg') € T(M),
i=1,..,m.
The dual of the upper line of the diagram gives
T(T«(M)) — T(M)
4
dual dual.
() B0 )
We may use now the application (1%)*:T*(M) — T*(T*(M)) to define a form
A on T*( M) Ae]’(r*(T*(M))), the Liouville form, whose exterior derivative

will give the symplectic form w on the cotangent space T*(M).
Let # be a point of M, a, = a;dge TH(M) a 1-form and

' 0 S
2a. wo= Xi-— L X¥
(2a.1) X, Xaqf+ .

an element of T(T*(M)) at a,(X!=dg'(X,), X} =dp(X,)). If (,) de-
notes the contraction between vectors and 1- forms, it is clear that

(20.2) (X)) = (X, (Ag)* o)

(*) In the last line (¢, d¢f) really means ¢[A%()]=¢’, ¢[45()]1= d¢-
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The Liouville form may now be defined [19] as the 1-form A over T*(M) such
that Ao, — (4})*«,. Indeed, since (appendix A.4)

i )
(2a.3) AL(Xa,) = X a0

we find (2a.2) equal to Xia, and consequently A is written as

(2¢.4) A =p,;dg¢,

since p; (o) = o;. The symplectic form on T*(M) is now defined as

(20.5) o=—dda,

where the minus sign is introduced for convenience. In local co-ordinates,
(2a.6) o = dg'Adp,.

Thus o is an exact (2¢.5) and nondegenerate (rank (w)= 2m) 2-form and
T*(M) is endowed by w with a symplectic structure. According to Darboux’s
theorem [2, 19, 22, 23] any symplectic manifold (i.e. any 2m-dimensional man-
ifold with a closed (locally exact) 2-form of rank 2m) admits local (symplectic)
charts (x% y,) in which w = da’Ady,. When the symplectic structure is de-
fined on T*(M) through (2a.5), the y, are the p,=0/d¢° and w is given by
(2¢.6). Thus we may take o in the above canonical form and extend to
all symplectic manifolds any local assertion proved in the canonical basis
(for instance, the base of phase space of mechanies) which is invariant with
respect to canonical transformations (see below).

w™ is, but for a numerical factor, dg*A...Adg"Adp,A...Adp,; thus o™ is
3 volume form on 7*(M) and, consequently, the cotangent bundle is orientable.

b) The Poisson bracket. Symplectic diffeomorphisms (*). The application
X —> iy, where 7 means inner product, defines an isomorphism between
F(r(T*(M ))), the modulus of vector fields on T*(M) (cross-sections of (T*(M )))
and I (-c*(T*(M))), the modulus of 1-forms (cross-sections of r*(T*(M))) on
T*(M). In local co-ordinates, for

(2b.1) X—Xii+X’“i
) N og’ ! api,
we find
(2b.2) fro = (AgAdp)(X) = Xidp, — X7 dg'.

(*) As an additional reference for subsect. 2b), the reader may consult [23a].
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Reciprocally, given a Il-form o= o«,dg’+ a«**dp,cl’ (r*(T*(M ))), the as-
sociated field Y is given by the condition

(2b.3) iy =«
with the result

.0 0
2b.4 Xo=a®i— —u, .
(2b.4) G .

The Poisson bracket of two Pfaff forms « and  of I’ (t*(T*(M))) 18 now de-
fined by

(2b.5) {2, B} =iy, 20,

i.e. it is the one-form associated through o with the Lie bracket of the fields
X,, X, associated with o and f. Thus the Poisson bracket of 1-forms may
be considered as the prolongation of the Lie bracket on F(T(T*(M))) to
to I'(7*(T*(M))).

Let f, ¢ now be two functions on the symplectic manifold 7T#(M). The
Poisson bracket of f, g is defined by

(2b.6) 9 =0, X,),

where X, X, are the vector fields associated ((2.3)) with the 1-forms df,
dg (). (The function o (X,, X,) is sometimes called the Lagrange bracket of X,
X,.) Thus

(2b.7) o =ixiro=1ILy f=—Iyyq,

where L is the Lie derivative. In terms of local (canonical) co-ordinates (¢’, p;)
we have, for instance,

{(2b.8) X, = ——
and

(2b.9) {f,g}=—~———-—l, 7::1,...,1%,
which is the usual expression for the Poisson bracket in Newtonian mechanics

and so definition (25.6) has identical global properties.
A canonical transformation is defined in classical mechanics as a transfor-

(*) Note that, with this definition, {df, dg} as defined by (2b.5) is simply d{f, ¢}
as given by (2b.6). This is easily checked by using the identity on forms
i[x,,xg] = I/X,'i,lq7 - 'ng LX,-
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mation which preserves the Poisson bracket. Let (8, o) and (§', w’) be two sym-
plectic manifolds and f.8 -8 a differentiable application. Then the ap-
plication f preserves the symplectic structure when f*w'= w, where f* is the
application dual of f (pull-back) operating on forms. When f is a diffeomor-
phism of T*{(M) on T*(M) such that f*o = w, [ is a symplectic diffeormor-
phism or symplectomorphism [21] and defines a canonical transformation of
the mechanical system. The canonical transformations preserve the volume ele-
ment in phase space.

¢) Hamiltonian systems. Symmetries of strictly symplectic systems. A
dynamical Hamiltonian system on T*(M) (7 (frequently denoted by (I*(M),
w, X ,2.)) i§ a vector field X, such that g, @ is a closed Pfaff form. More pre-
cisely, one speaks of a locally Hamiltonian system in this situation, sinee in
general the existence of a function H such that iy, = dH is guaranteed only
locally (Poincaré lemma). When 4y o is both closed and exact, then

(2¢.1) iy, 0 = dH

globally, and the dynamical system is globally Hamiltonian (**). In this case
the Hamiltonian vector field admits ¢ Hamiltonian function H on T*(M).
We shall restriet ourselves to globally Hamiltoniam systems henceforth.

A Hamiltonian H is thus defined as a function H:7T%(M) — R. By means
of canonical co-ordinates (¢%, p,), H = H(q’, p;) and the associated vector field
is given by

(2¢.2) Xy=r o — .
Thus the integral curves of X, (applications ¢:I — T*(M), where I is the unit

interval, such that de/dt = Xj) are given by the solutions of the Hamilton
equations

d¢* ©oH dp, ¢cH

(2¢.3a) dt  op,’ e~ o

whose symplectic structure is clearly exhibited when they are written in the
form

a (g 0 I\ [0H[¢
2¢.3b — = .
(2630) at\p) ~\=1 o) \omjep,

("} These definitions are trivially extended to any symplectic manifold (S, w)
w|y=dx*Ady, (Uc8*) and are not restricted to the case S = T*(MH™), w=—dA
previously considered.

(*") When the first cohomology group of 82 vanishes, if the 1-form iy is closed
it is also exact, and a locally Hamiltonian system is also globally Hamiltonian.
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It should be noted that in the above equations dgf/d¢ is not necessarily ¢';
this will happen in the case of regularity to be discussed later on.

Under symplectic diffeomorphisms, the symplectic form « and conse-
quently the Hamilton equations are preserved. In the same way, a Hamil-
tonian vector field preserves the symplectic form and, if Lyw = 0, X is Hamil-
tonian: Lyw = 0 <> d(iyw) =0, since Ly= iy d 4 diy. X is often referred to as
an (infinitesimal) canonical transformation.

Let us now consider the symmetries of the strictly symplectic dynamical
systems up to now considered, i.e. those defined on a symplectic manifold
S (in particular T*(M)). These systems, defined by a vector field Xy of
I'(x(8)) (F(r(T*(M )))), correspond to mechanical systems whose Hamiltonian
function—the « energy integral »—does not depend explicitly on time.

Let @ be a group of diffeomorphisms of the symplectic manifold of gen-
erators given by the Hamiltonian vector fields X;. Then % is a symmetry
of the Hamiltonian system Xy, and the functions G* defined by

(2¢.4) iz = dG°
are constants of the motion, when
(2¢.5) Ly:H=0

(this condition may be relaxed to Ly:H = const). Clearly, (2¢.4) and (2¢.5)
imply
(2¢.6) dH(XY) = 0 = (i, 0)(Xg) = o(Xg, X)) = — (ixgo)(Xx) = — A6 (X4),

*

i.e. the 1-forms dG° are first integrals of X, () and consequently the G* are
constants of the motion. This result may be considered as a restricted version
of the Noether theorem to be considered later on (subsect. 7¢)). We finally
note that (2¢.6) and (2b.5) give

(2.7) [X3, X,]=0
and that the expression w(X§, X,) = 0 reproduces the familiar result
(2¢.8) {G,H} =0,

indicating that the Poigson bracket of the Hamiltonian and a conserved quan-
tity is zero.

(*) A Pfaff form « is said to be a first integral of X if o(X)=<X, «>=0. This
generalizes the following definition: a funection f is a first integral of X if
X.f=Lyf=4df(X)=0.
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In the case of the symplectic mechanics the symplectic manifold is
(T*(M), w), where o is defined by (2a.5). Thus we find that, in general, to
consider a symmetry problem the vector field has to be defined on the sym-
plectic manifold. However, in the case of mechanics, X is usunally defined
as a diffeomorphism of M, not of T*(M). Thus a canonical procedure is re-
quired to lift vector fields on’ M to vector fields on the cotangent space T*(M).
The situation is summarized by the following diagram:

T(T*(M)) ;—?% T(M)
X e I(1(T*(M))) Xel(«(d)),

T*(M) oy

where X is the lift of X to the cotangent bundle; the diagram is easily under-
stood by recalling that a vector field on a manifold is a cross-section of the
corresponding tangent bundle (appendix A). X is now uniquely determined
by the following two conditions (cfr. appendix A.4):

a) Xol, = 270X (X is projected onto X, commutativity of the diagram),

b) L;A =0 (invariance of the canonical Liouville form).

By writing X = X(9/d¢*) + X}(0/0p,), X = X(0/d¢*), condition @) imme-

diately gives X?= X* and condition b) gives

X
(2¢.9) X =—pg
so that ((A.4.4))
_ o ox @
2¢.1 X=x-2L_pt o
(210) =N Ty B,

In this way, the vector field X is automatically Hamiltonian, since L=/ = 0
implies i-dA = — d(iz4) = — d(A(X)), so that izw is exact. Thus the re-
stricted above-mentioned version of the Noether theorem may be formulated
for the case of mechanics (T*(M), » = — dA) as follows:

«Let X, be a Hamiltonian system on T*(M) and let dH =i, w. If X,
is a vector field on M such that (AH)(X,) = 0, where X, is the canonical Lift of
X, to T*(M), then the 1-form d(iz A) = d(A(X,)) (or the function A(X,) = @)
is a first integral of Xy.»

The theorem follows from the above considerations by putting w = — dA
and realizing then that iy w = d¢, implies d(z’}‘/l) = d@,. In local co-ordi-
nates we obtain from (2¢.10) and A = p,dq’ the result A(X,) = X!p,.

Example. As a simple example, let us obtain in the case of a free particle
the conserved quantities associated to the generators (on E;, the Euclidean
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three-dimensional space) of the translations and the rotations of the Galilei
group (*). These generators are written on M as

jal

; ©
(26.11) Xo=dzry  Mo=ebal oo
C

S i,j,k=1,2,3.

Thus, since X{, = ¢! and M, = e, ia’, the conserved quantities turn out to
be, as expected, the momentum p and the angular momentum xAp. Note
that, in evaluating the conserved quantities, only the components on M of
the symmetry vector field are relevant. However, the full vector field on T*(M)
is required to check whether X, is a symmetry or not. For instance, for the

rotations one gets from (2¢.11) and (2¢.10)

_ ¢ ]
2 e kg & @
(2¢.12) M, sl,.(:v Epriy apj)

and one easily verifies that (AH)M, = 0, since dH = (p/m)dp.

3. — Lagrangian formulation of classical mechanics,

a) The Legendre transformation [9,19,2]. In the previous section we
have constructed the Liouville form Ael (r*(T*(M ))) in a canonical way
and developed from it the Hamiltonian formalism on the cotangent space
T*(M) (*"). There is not, however, such a Liouville form on 7(M) nor there
exists a canonical way to transport the symplectic structure on 7*(M) to T'(M)
because of the absence of a canonical isomorphism between a space (T*(M))
and its dual (T(M)). Nevertheless, it is possible to transport the formalism
to T(M) when a function is defined on this space, which satisfies certain con-
ditions. Such a function L:T(M)—~ R, L = L(¢%, ¢°) is called Lagrangian and
the equivalence between both formulations follows when the Lagrangian is
regular.

To see how this can be performed, we need first the concept of vertical
or fibre derivative. Let M be a manifold of dimension m, T(M) its tangent
space, T (M) the fibre space over a point © € M (which is itself a vector space of
the same dimension m) and L a Lagrangian function on 7'(M). The fibre
derivative D* of L, (restriction of L to the fibre over x € M), D*L,, is defined
as the derivative of L restricted to the fibre at x, T.(M). By extending this

(*) In the natural realization, the Galilean boosts require the explicit presence of time
and thus cannot be defined on M.

(**) As already mentioned, it is possible to develop directly a Hamiltonian formulation
on any symplectic space (8™, w).
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definition of D¢ to all fibres, the vertical or fibre derivative D, (the derivative of
L in each fibre of T(M)) is a map D,:T(M)-> T*(M) such that Vee M,
X, € To(M),

(3a.1) DX, e T (M)~ (D°L)(X,) = D(L|.)(X,) e THM) .

Indeed (DvL,)(X,) is a linear application and defines a covector of TX(M),
(D”L)(Xw)-(X;)eR. By definition, D, is & fibre-preserving map; however,
since the correspondence X,—(D*L,}(X,) is not necessarily linear, D, is not,
in general, a vector bundle mapping.

Let e (¢*) be a point of T(M) (T*(M ). Using, as is customary, the same
symbol for the co-ordinate system as for the co-ordinates themselves, we obtain

3a.2 (M %] . gie) = ¢ gi(e*) = ¢
o) e€ T(M) —e* =D eeI*(] )/ g e oL

:5&_6

(3a.2) defines D, in terms of local co-ordinates. D, will have an inverse if the
Jacobian of the transformation det (02.L/0¢*0d¢’) (the Hessian of L) is different
from zero; this corresponds to the situation for which the tangent application
DI T(T(M)) — T(IT*(M)) is an isomorphism. In this case D, is frequently
referred to as the Legendre transformation and L is said to be regular.

Other considerations on the Legendre transformation may be found in [25].

b) The symplectic form w, on T(M). Lagrange equations. Let L{(q’, ¢%)
be a regular Lagrangian on the configuration space. D; allows us to transport
the symplectic form on T*(M) to T(M); it D} is the pull-back of the Legendre
application acting on forms,

{3b.1) Diio = dgAdp; — o, = dg‘Ad (qu)
Thus
(3b.2) 0= 2 aq, dg'Adg? -+ 3 aqu.,. dg'Adg’.
Clearly,

oL
(3b.3) w™oc det (a aq)dq A AdgmAAGHA ... A dg™

is a volume form on T(M) (L is regular) in the same way o™ was for T*(M)
(subsect. 2a)).

We may now proceed along lines similar to those of subsect. 2¢). A Hamil-
tonian vector field X on T'(M) is a vector field such that

(3b.4) iy0,—=dB,  Xpet(T(M)
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(we consider X globally Hamiltonian, so that iy « is exact). Thus, given a
function £ on T(M), we may associate to it a set of « Hamiltonian equations ».
The question now arises of finding F from L so that (3b.4) leads to the Lagrange
equations. This is accomplished by giving the action A, of L as an intermediate
step. The action A, of L is the application A,.:T(M) — R defined by

(3b.5) A:X,eTM) > (D"L)(X,)(X.,) e R.

In local co-ordinates,

oL

gt

(30.6) Ap(qh §F) —
Then the function E, the energy of the system described by L, is the real fune-
tion on T(M) given by

al

cL . oL
@ﬂ—ﬂmﬁ-

(3b.7) E=4,—L=

It is now easy to show that X, = X (0/0¢%) —,LX;(a/aq'i) generates the
Lagrange equations through (3b.4), if # is the energy as given by (35.7). As
an example, we shall perform this calculation in detail. From

ok )
(35.8) AE = g—qﬂ dgi - zq dg*
and
(30.9) iXEc«)L:q—ajL*-, (Xidg'— X3 dq) + = L (Xidg — X7 dg?)
og’ o’ oGt o’
we get
oE 02 L \,, &L
30.10) a_qf:(*q'faqi_aq'faqf) Tegieg T
0B _ oL X,=M,X}
ogt cq’@qj # ”

Thus a vector field X which satisfies (3b.4) is given by

ORI
3b.11) oL
(8- OF (L L\ 0B
XE—Mﬂ _ S Mr— ,
d¢* " \8¢*oq' ¢ og o¢!
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where M’ is the inverse of M,;. X, generates the following equations:

_dg
o

dge
T

(35.12) X3

and it only remains to show that (3b.12) are equivalent to the Lagrange equa-
tions when F is the energy of L. From
cE L . oF oL . oL
gl - L i
(3b'13) eq‘i aq'i aq'jq ’ aqi aqigq'jq aqz
we get X, = ¢*= d¢’/df, which indicates that eqs. (3¢.12) couple together
(because of the regularity of L) in a single second-order set of equations which
reduces to

oL dx¢* oL d¢* oL
0¢to¢’ dt* ' 0¢*o¢’ At o

(3h.14) ie.
a(or) en_
di\og’] o¢8

whieh constitute the Lagrange equations.

4. — Equivalence between the (regular) Hamiltonian and Lagrangian formu-
lations.

We may now ask which is the Hamiltonian H (or the vector field X,) which
corresponds to the energy F of subsect 3b). Since D, is a diffeomorphism be-
tween T(M) and T*(M), there exists an application D, (= Dy): T*(M) — T(M).
Then the (obviously regular) Hamiltonian H is defined by

(4.1) H = EoD,* = EoDy.

Thus the function H:T*(M) >R takes at (g7, p;,) the value ¢i(dL/2¢") — L,
as was expected. There is now a complete symmetry between both (regular)
Hamiltonian and Lagrangian formalisms; L determines D, (= D}') and H,
and the regular Hamiltonian H (for which the regularity condition reads
det (02 H/Op,0p;) +# 0) determines Dy(= D;") and L. The contents of sub-
sect. 3a) through subsect. 3¢) may be now summarized by the following com-
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mutative diagrams:

R T(M)< > T (M)

DT
L
rrm)= > (r(m))
DT
H
XE XH
i D
R TM) < - —> (M)
DH
E H
R

that we take from [2]. In the first of them, 4, is the action on T*( M) defined as

. oH
{4.2) Ay (g p5) %Piapi

and Dy may be written as

A

. cH oL
Dy (g, p;) ‘%(qzy a_p,) = (¢% §%) .

Parr 11

Time-dependent mechanical systems: contact structure.

5. — Introduction.

As has been shown in the previous part, one of the virtues of the symplectic
formalism for the time-independent mechanical systems is that of providing
a canonically defined Poisson bracket for any pair of differentiable functions
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on the phase space T*(M). Only the definition of the symplectic form is neces-
sary, and T*(M) is always endowed with a symplectic structure. (By eontrast,
a symplectic structure is not granted on 7'(M); this requires the existence of
a regular Lagrangian.)

When the definition space of physical quantities is enlarged to include the
time ¢ (a situation which corresponds to the « explicit » dependence on f), the
phase space is accordingly extended to T*(M)xR (and the « configuration »
space to T(M)XR), and thus the symplectic strueture is lost since the di-
mension of the space (2m + 1) is odd. Nevertheless, on the manifold of so-
lutions of a Hamiltonian field depending on time, it is possible to define a sym-
plectic structure in such a way that a symplectomorphism with 7%(M) is
obtained for each time f,(*). As in the case of the «time-independent »
mechanies (4.e. mechanics of autonomous systems), the definition of a sym-
plectic structure on the manifold of solutions on R X T(M) will require the ex-
istence of a regular Lagrangian. In any case, however, the canonical structure
is again lost in the sense that the previous existence of a Hamiltonian on
T*(M)x R (or a Lagrangian on T(M)XR) is required.

Let us now turn our attention to the contact structure which, for time-
independent systems, replaces the symplectic structure.

6. — Contact structures.

Let % be a manifold of odd dimension 2m - 1. A contact structure is the
pair (¢, w) where o is a closed fwo-form of maximal rank (which will be 2m).
An exact contact manifold is the pair (¥, @), where 6 is a one-form of constant
class 2m -+ 1, i.e. such that the codimension of the characteristic space of
O (**) is 2m - 1. It is not difficult to see that @ defines an exact contact struc-
ture if and only if @A (d@)™ is a volume form on % and that accordingly ¥ is
orientable.

The Darboux theorem of subsect. 2a) is easily extended to the odd-dimen-
sion case. Since the class of a form of constant class is the minimal number
of functions required to express it, around each point y € ¥ there is a local

(*) In the case of mechanics, the definition of a symplectic structure on the manifold
of solutions does not present special difficulties. The case of classical field theory is
more difficult, however, since the equations of motion are equations on partial deriva-
tives instead of ordinary differential equations and thus a point in « phase space » does
not determine a single solution. The case of mechanics will be considered in sect. 9.
(**) Given a form 2, a characteristic vector field of £ is a vector field X such that
iz =17d2=10. The codimension of the characteristic veector space at a point y
(i.e. codim (rad 2 nraddQ)(y)) is the ciass of the form 2 at y. If 2 defines a contact
structure, (rad Q) n (radd®)= 0. If X is a characteristic vector field of 2, £ is said
to be an absolute integral invariant of X.
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co-ordinate system (z, u?, v,), such that on Uc ¥, ye U:
(6.1) O, = dz + v, du’.

The 1-form & is called contact 1-form; it is clear that any contact structure
(%, w) is locally exact.

An instance of contact structure is obtained when, in a time-independent
(autonomous) mechanical system, the symplectic form is restricted to a hyper-
surface of constant energy. Here, however, we are rather more interested in
the reciprocal situation, é.e. in extending—by adding the time—a symplectic
structure to a contact structure. This process is guaranteed by the following
Proposition :

Let (8, w) be a symplectic manifold of dimension 2m and let p be the ca-
nonical projection of EX 8 — § defined by p:(z, s) —s. Then (RX 8, p* w = @)
—where p*@ is the pull-back of w to B X 8—is a contact structure. If, in ad-
dition, &» = — dA, where A is a 1-form, then (RX S, ®), where

(6.2) 0 =dz+p*a,

is an exaet contact structure. The contact form & has as characteristic vector
field (ix& = 0 (")) X =0/0z, the generator of the displacement on R. In fact,
if o is elosed and the characteristic bundle [2] ({X € T(RX 8)jixw = 0}) is of
dimengion one, w is a contact form.

7. — Mechanics of nonautonomous systems.

a) Preliminaries. Let (8, w) be a symplectic manifold, H({,s) a dif-
ferentiable function on RX S and let p*w =& denote the lifting to R xS of
the symplectic form on S. The closed two form on R xS

(Ta.1) Qu =&+ dH At

defines a contact structure, because, as is immediately checked, &tA Q% is a
volume form on R X8, since w™ is a volume form on S. Thus (BX S, 24) is a
contact manifold of dimension 2m 4 1.

1f, in addition, £, = — d@, and H(s, )5 0 for every pair (¢, s) e RxS,
then (Rx S8, @), where

(1a.2) Op=p*A—Hdt, do—=—add,

(*) Since da = 0, tojdeﬁne a characteristic vector field it suffices that iz@ = 0.
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is an exaet contact manifold. The contact 1-form @ is usually called Poincaré-
Cartan form; in the caleulus of variations (to be considered in sect. 12) the
integral f Oy is frequently called Hilbert’s imvariant integral. The following
proposition {(due to Cartan) will be useful later on:

Let (8, w) be a symplectic manifold, and let H(t, s) be a function on R X S.
There is a unique vector field X, ¢ I'(v(Rx 8)) such that

a) A Xy) =1,
b) iz, Qu=0 (or iy dOy =0 in the case Qy = — dOx ().

To show that this is the case, it is sufficient to note that condition a) re-
quires X to be of the form

> 2
(7“.3) X[]Zé‘t‘+Xt, XtGF(T(S)).

Then, if we call H, = H|,, (i.e. the restriction of H to a time ¢) condition b)
reads, since 2, = @ - AdH A1,

i Qy=ig0+dH, (X,)dt—dH, =0,

which is zero if X, is the Hamiltonian field of o (associated with H,), since
then ((2¢.1)) iy,0 = dH, and (dH)X, =1, i, » = 0. Thus Xy is the sum of
the generator of the time translations and of the Hamiltonian vector field
corresponding to the fixed-time Hamiltonian H,; X, may be called the dynamical
system associated with the contact form Qu(@y).

b) Hamilton equations. Let us now extend the situation of sub-
sect. 2¢) to include the explicit dependence on time. With the same notation
of sect. 2, let M be a differentiable manifold of dimension m, T*(M) the co-
tangent space, A the Liouville form on 7*#(M), but let now H be a differentiable
function on RXT*(M). The pair (RxT*(M),Oy) with @4 having the same
expression as in (7a.2) is clearly an exact contact manifold associated with the
Hamiltonian function H. Let {t, ¢', p;} be a local co-ordinate system on
RxT*(M). (We might mention that the space R X T*(M) obtained by adding
time to the usual even-dimensional phase space is called evolution space[21].)
Then X, is given by

(- =5t \ep. o ot b,

o 0 (8H 0 ©oH 9
ot )

(*) In the language of Cartan [1], this is equivalent to saying that @y (2)is a rel-
ative (absolute) integral invariant of X, .
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The integral curves corresponding to this dynamical system are thus given
by the equations

dg* OH dp, cH dt

dz ~ op,’ dr ¢t dd

where 1 is the parameter of the eurves. The last equation allows us to identify
(up to a shifted origin) A with time and thus the first two are the familiar Ha-
milton equations (cf. (2¢.3)). We shall call %, the space of cross-sections
se M(RXT*(M) — R) solutions of (7b.2).

Given X u, it is trivial to caleculate the evolution with time of any physical
quantity specifed by a function F on RXT*(M):

’\Iﬂ
(76.3) Ly F = %Z‘ +{F, H},

where {,} indicates the Poisson bracket on T*(M). F is a constant of the
motion if L. F =0; it F = F(i), (2¢.8) is recovered. In particular, if ¥ = H,
L. H = 0H/ot, which shows that H is not a conserved quantity if H = H(f).

¢) Symmetries and the Noether theorem. Let us consider a mechanical
system on RxT*(M) defined by a Hamiltonian function H. We shall write
the associated Poincaré-Cartan form as @ = A — H dt without expliciting the
subseript H and the pull-back p*. Before formulating the Noether theorem,
we prove the following simple lemma:

Let X be a vector field on RXT*(M), X € F(r(RX T*(M))). Then we have
(7e.1) iyd@], =0

for any section s € %y, the set of solutions of the Hamiltonian field X, given
by (7b.1).

The proof is done by direct computation. We shall make it here since
expressions similar in structure to (7¢.1) will appear later on (sect. 11),
An arbitrary vector field on R X T*(M) is of the form
0 ., © « O

= 0 _ —— ;
(7c.2) X=Xog+X 8q£—|~Xl 5

From 40 = dp;Adg' — AHA QL We geb x40 = — iyo — AH(X)at + Al X)dH,, i.c.

. oH oH oH oH
— | x> o Vg —{ Xi— X0 = == x *
iy d@® (X,- + X E)q")dq (X X 3 i)dpl (8q"X +a iX,)dt
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and, restricting ourselves to eross-sections s € I'(RX T*(M s
(7¢.3) iy dO], =

d¢* oH o Op; OH) o(aH dg* oH dpi)}
Iyt _ Y= Xi|l— 2 — — —}dt=0.
{X’ (dt ap,») +X ( ot ot +x og° dt + op, dt

It is clear that (7¢.3) is zero for cross-sections of #;. Reciprocally, given an
arbitrary vector field XeF(r(R X T*(M))), a cross-section s of I'(R x T*(M)—R)
satisfies (7c.1) if it is a solution of the Hamilton equations, since, X} and X‘*
being arbitrary, the coefficients in (7¢.3) must be zero (the coefficient of X°
then vanishes identically). Thus the solutions of the Hamilton equations are
equally determined by the sections s which satisfy (7¢.1) VX. This result will
be also obtained from the variational principle (sect. 12).

The Noether theorem may now be established precisely [10]. Let X, be
a vector field which corresponds to a symmetry of the dynamical system
(Rx T*(M), ©), i.c. such that

(Te.4) Lxs@ = doy, ,
where day is a 1-form (which may be zero) depending on X,. Then
(7¢.b) A9y, @ —ax ). =0 Vs e Uy

and the function (ix @ — ay,) is the Noehter invariant associated with the
symmetry generated by X,. The proof is simple: (7c.4) may be written as
(iy,d 4 diy,)© = day , and, by restricting ourselves to cross-sections of %y,
(7¢.5) is obtained by using (7c¢.1).

In the particular case in which H # H(t), Ly @ = 0 (we shall omit day)
gives for a field X, on T*(M) (X°=0)

(70.6) LiyA=0, LgH=0.

The second expression of (7¢.6) is simply (2¢.5) and the first, written as iy v =
= d(ig,A), tells us that X, is a Hamiltonian field in the sense of subsect. 2¢).
This reproduces again the results of subsect. 2c) ((2¢.8)) with the conserved
quantity G, =iy 4.

Example. Let us consider the simplest case of a free particle of mass m,
for which H = p?/2m. The generators of the Galilei boosts on E X T*(M)
are given by

(7e.7) X = zagﬁ +omd,, —
oq’
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Then
ix, 46 = md; d¢’ — tdp, — p,dt,

(7c.8) ix,0 =pit, dig,@=pdt+tdp,,
Ly 0 = d(md;q’) .

Thus the associated Noether invariant is given by /ix(i)@ — md;; ¢ = p;t — mq,,
t.e. (p/m)t — x is a constant of the motion.

An extended note on the Galilei group. The above expression of the generators
of the Galilei boosts could be obtained, for instance, from the corresponding
ones on Rx T(M) ((B3.21)) by means of the Legendre transformation. The
reader may wonder, however, about the appearance of the mass m of the
particle in (7¢.7) which does not appear in the expression of the boosts on
RxT(M). This is a result which may be traced to the peculiar structure of
the Galilei group [26] and to the fact that, although there is a canonical way
to prolong vector fields on RxX M to Rx T(M) ((B3.19)), this is not the case
when one tries to expand their action to the evolution space R X T*(M), which
is the relevant space for the Hamiltonian formalism. In fact, it may be seen
in general that, to obtain a canonical realization of a symmetry group (canonical
meaning here in terms of canonical transformations, see the next section),
one has to consider [27, 28] the realization of its Lie algebra in terms of Poisson
brackets in which the structure constants of the Lie algebra are kept only
up to some additive numerical constants. In this way, what turns out to be
relevant is an extension of the Lie algebra by neutral elements (i.e. which
commute with all others). These, which give rise to the factor system or phase
exponents, determine an extension of the symmetry group by the «phase
group ». The different extensions are determined by the second cohomology
group; in the case of the Galilei group in which we are interested, H*(¥, U,)
(where U, is the « phase group») turns out to be Z, ® R[29]. The elements
of R (the eyclic group (1, — 1) is unimportant in our context) characterize
the mass of the particle. This is the reason why the mass of the particle may
be interpreted [21] as a cohomology class of the Galilei group. In contrast, the
role played by the mass in the case of Poincaré is completely different: it has
been known since the work of Wigner[30] that H%@l, U,) = Z,, a result
which is usually formulated by saying that all the projective representations
of .@1 come from the representations of @1, its universal covering group.
Thus the mass of the elementary systems appears as an index partially labelling
an irreducible representation of 2, not an extension of it.

Finally, it might be interesting to mention that the special role played
by the mags in Galilean mechanics also shows up in the Lagrangian formulation
on Rx T(M), although not directly, since the extension of vector fields to this
space is canonically defined with independence of the given Lagrangian as-
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sociated with the dynamical system. In fact, it is well known [31] that the
Lagrangian of a free particle is not invariant under Galilean boosts, but that
the transformed Lagrangian differs from it in a total time derivative of a certain
funetion involving the mass, sometimes called gauge function, which in the
variational approach does not alter the equations of motion. It may be then
seen [32] that there is a close relation between the gauge functions and the
group exponents mentioned earlier and that these gauge functions are specified
by the equivalence classes of the exponents, i.e. by the mass m.

d) Canonical transformations. Let (S, w) and (8, ') be two symplectic
manifolds of dimension 2m and let (RX 8, Qy), (RXS', £4) be the corre-
sponding contact manifolds. A diffeomorphism C:Rx 8 — R X8’ is a canonical
transformation

a) if the time is preserved, i.e. if the diagram

R><S——C—>R><S’

pl j2
1 Y

R <«— R

where I is the idenfity on R, is commutative; and

b) if H and H' are functions on EX S and R xS,
C*QH': QH’

where Qp = & + dHAAL and Q5 = &'+ dH'AdL.

It may be seen that, as a consequence of b), "X, = X, 0C and that the
canonical transformations accordingly preserve the Hamiltonian form of the
equations of motion. We shall not dwell any longer on the canonical trans-
formations nor consider the Hamilton-Jacobi theory, for which the reader
should refer to the extensive treatment of ref.[2] or fo [22].

8. — Regular dynamical systems and contact structure on E X T(M): Lagrangian
formalism.

Many of the previous considerations have been made for a general contact
structure on R X 8, where § is a symplectic but otherwise arbitrary manifold.
Thus the above study may be extended in principle to EX T(M). However,
the problem which immediately arises is that there is no canonical symplectic
structure on T(M). The situation is analogous to that of the « time-inde-
pendent » mechanics and may be solved in a similar fashion. Given a fune-
tion L on RxT(M) (locally L = L(i, ¢’, %)), the explicitly time-dependent
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Lagrangian function, we may define the Legendre transformation D, EX
X T(M) - RxT*(M) by trivially extending the definition given in subsect. 3a)
to the present situation to transport the Liouville form A and the symplectic
form from T*(M) to T(M). The closed two-form @&, = p*w, = p*(d[D}A])
will again require the regularity condition for L (nonzero Hessian) to define
a contact structure on R X T(M).

The reasoning now proceeds along lines similar to those of subsect. 3b).
Once the 1-form p*(D} A) defining the exact contact strncture has been ob-
tained, and given a function ¥ on RX T'(M), the Poincaré-Cartan 1-form may
be written as

(8.1) O, =p DAy — Edt
and a « Hamiltonian » field X, may be obtained whose trajectories on the base

manifold will be the Lagrange solutions associated with L if ¥ = A, — L,
where 4, is the action of L. In local co-ordinates on RXT(M)

s T ol
(8.2) pH(D;A) = a—q—' dg’,
oL _ . oL . oL
(8.3) A, = 3 dg’, = gqj(l — L(t, ¢', §°)

and the Poincaré-Cartan form is written as

o,
(8.4) 0, = %_0" + Lat,

s

where 0/ =dg? — ¢'dt is called structure form of the bundle RxXT(M)-—> R
(see appendix B.4).

To conclude this section we will just mention that the (regular) Hamil-
tonian H which defines a dynamical system with contact form @, and whose
trajectories correspond to those of the dynamical system defined by 6 is
related with F through the expression

(8.5) H= EoD;l

similar to (4.1).

9. — Symplectic structure on the manifold of solutions in the case of the
« time-dependent » mechanics.

a) Introduction. As has been pointed out at the beginning of this part,
the necessity of introducing the time variable in the definition of the base
manifold for (explicitly) time-dependent mechanical systems spoils the sym-
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plectic structure described in part I. The loss of this symplectic structure
also implies the absence of the Poisson brackets which might be relevant in
a possible quantization of the mechanical system. This fact alone is already
a sufficient motivation to look for a way of circumventing the diffieulty of the
odd dimensionality of the contact manifold to reintroduce a canonical struc-
ture into the theory. In fact, looking at the manifold of solutions of the me-
chanical system, one observes that such a manifold is even dimensional and
that, accordingly, it might possibly admit a symplectic structure. We devote
this section to showing that it is indeed possible to endow the manifold %,
of solutions s € %, c I'(Rx T*(M)) of the Hamiltonian system X, with such
a structure.

The most immediate problem in pursuing this task is the definition of the
tangent space in each point s € %,. In the present case of the classical me-
chanies there are no special difficulties, since %, is made up of solutions of an
ordinary differential equation determined by the vector field X, on the fibre
bundle RxT*(M) - R (or, when the Lagrangian description is used, on
RXT(M)). Because one is dealing with an ordinary differential equation, the
manifold of solutions may be characterized by the set of initial conditions.
By using canonical co-ordinates (g, p;,) for T*(M), the situation is intuitively
depicted by the following figure:

@’,p;)
‘r initial conditions )
for t, q'@)

pft)
trajectories

|l

The evolution space.

Given a dynamical system, the trajectory is uniquely determined by giving
(g% p;) at a certain time, and the trajectories do not intersect with each other;
the set of the initial conditions is thus in one-to-one correspondence with %, .
In the more general case of classical field theory, however, the solutions which
describe the behaviour of the physical system are obtained from a system of
partial derivative equations. Thus, to proceed in an analogous manner, the
space %, of solutions of the ficld equations would have to be characterized
by a space whose points (the initial conditions) would be submanifolds of
dimension m — 1 of the generalized « phase space », where m is the dimension
of the manifold which plays in the variational formalism a role similar to that
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of time in mechanics (in the applications considered in the next part, this
manifold is the Minkowski space .#; it is clear that the ¢(x) of field theory are
the analogous to the ¢ of mechanics). Thus, the process of endowing %, with
a canonical structure is clearly more difficult. We shall not consider it here (see
ref. [10, 11], the last given in [4], the first of [7], [33, 34] and references therein)
to treat instead the case of mechanies, whose precise formulation we shall
develop basing ourselves on an already existing work [10].

b) The tangent space to the manifold of solutions %,. The fibre space
E % B we are dealing with in this part is not necessarily a vector bundle (%)
and accordingly the structure of the space of cross-sections (see, e.g.,[35-37])
is complicated in general. Nevertheless, the set I'(E) of differentiable cross-
sections of £ may be endowed with a structure of a locally Banach manifold
upon which the tangent space may be defined (see, e.g.,[37]). We shall, how-
ever, define the tangent space to the manifold of solutions following a pro-
cedure which is specially suited for our purposes. The construction is based on
the following theorem [36] which is applicable to our case:

Let E-7~B be a (C%) differentiable fibre bundle over B. If s € I'(E), the
set of its (C*) differentiable cross-sections, the tangent space T,(I'(E)) at s
can be identified canonically with ['(s*T°(E)), where s*T"(E) -~ B is the
pull-back bundle (appendix A.1) of the vertical tangent bundle T°(K)->E
by s. This may be described by the following diagram:

J

S
s* 1"(B) ——> T"(K)

8\:'])11 lpv’
&

S
B — E

where s* T"(E) = {(¢, X?) € BX T"(E)/[s(x) = ¢ = p"(X,)} and S(x, X?) = X.. We
note that T°(E)->> E is the bundle tangent to the fibres of E-"> B, so that its
seetions are vector fields of the form

(9b.1) Xo= X(r,y) —

.
¢
ey’

X

where (x, y) is a local co-ordinate system for Z.

It is now clear that the cross-sections of s*T*(F) - B are in one-to-one
correspondence with the sections of T°(E) —~ E when one restricts oneself to
s(B)c E on which s is a bijection: given a section o.x € 8(B)c F -»>Xve T°(E),

(*) In the case of the time-dependent mechanics, =R x M —R is not necessarily
vectorial, since M is not necessarily a vector space. For the case of the critical cross-
sections (trajectories) obtained in a variational approach, R is restricted to the closed
(compact) time interval limited by the two fixed end points.
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the section ¢,.:x € B — (x, X*) € s* T*(E) is determined, and reciprocally. We
may thus identify in what follows the tangent space to I'(E) at s € I'(E) with
the set of vertical vector fields on F restricted to s(B).

The redefinition of T,(I'(E)) as ['(s*T*(E)) allows us to parallely redefine
the differential of the application

(95.2) (B, —T(B)

induced by a homeomorphism between two fibre bundles E, and ¥, over the
same base B in a form which will be specially adequate for our purposes. This
we shall do in several steps. First, given f:E, — E,, the application df (T(H) —
— T(E,) defines, when restricted to T°(E,), an application 8f:T*(E,) — T*(E,),
which is called vertical differential 3f = df |uw - Now, given s e I'(E,), df in-
duces an application 3,f;s* T*(E,) — (fos)* T*(E,) in the following natural way:

(96.3)  8,f:(x, X7,) = (2 B/ (X% o) » ¥ € B, X}y € To(BY)/pr(X],) = s(@).

3,f is called vertical differential of f along the section s. Finally, the differential
of f* at the point s is given by

(9b.4) (@), = 3. N",

i.e. by the application on the space of cross-sections I'(s* T”(El)) naturally
induced by the action of 8,f on s*T+(E,) (*). We may thus use the r.h.s. of
(9b.4) to compute the Lh.s. The following diagram may be helpful in con-
sidering the above definitions:

6 f )
s*TY(E) >(s0f)* T*(E,)

(*y T at s acts on T(I(E)) and (3,f/} on I'(s* T*(E)), spaces which are in a one-
to-one correspondence.
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Let us now return to the case of mechanics. In this case we have to con-
struct the tangent space 7,(%4) at s to the manifold of solutions %y of a Ha-
miltonian vector field X, on Rx T*(M) (or Rx T(M) in the dual situation).
This construction has to be compatible with the fact that %, is a submanifold
{although not an open submanifold) of I'(E), where now ¥ is the fibre bundle
E=RxXT*(M)—~>R. Thus we define T (%) as the vector subspace of
T,(I['(E)) made out of the cross-sections of T*(K)|,, (which may be identified
with those of s* T°(E)) which commute with X,.

It is not difficult to convince oneself of the consistency of this definition.
If #(%y) is the ring of functions on the manifold #,, T.(%yx) has to be the set
of the derivations of the functions fe #(%y) around s. Since %y = E/Z,
where Z is the equivalence relation which places in the same class all points
of E belonging to the same trajectory, & (%) may be obtained from the funec-
tions of #(E) which are constant over each one of the trajectories, i.e. such
that they are first integrals of X,, X, f = 0 (subsect. 7b)). Indeed, the re-
strietion of the function f on E (which we may take of class C%) to %y is pos-
sible, since % can be injected into E (¥4 = £[#) and f takes & constant value
on each trajectory (df is transverse to the flow of X, af Xy =X,f= 0) so
that the restriction defines a differentiable function on %,. Let us now im-
pose to Y e I'(x(E)) the condition of being a derivation of F(%y), i.e. a linear
application of F(%y) on F(Uy) satistying the product derivation law. Vfe
€ F(Uy), Y.f € F(Uy) clearly implies that [X, Y]= 0. However, Y, as such,
does not satisfy the condition Y.f = 0, Vf = ¥ = 0. This makes it necessary
to take the vertical part of Y, Y*("); accordingly Y is a vertical vector field
of TYE)|,m, 8 € Un.

¢) Symplectic form on Uy. Let Y!, Z be two elements of T',(%;) and
hence vertical, since it has been shown that all the fields tangent to %y at s
have to be vertical. The symplectic form o at the point s is defined by

(9¢.1) (), (Y7, Z7) = dO(Y?, Z)),

where d@ is locally given by dpiadg, — dH Adé. To see that (9¢.1) is a good
definition, we have to check a) that the r.h.s. is not an arbitrary function but
a constant for a given s and b) that o establishes a one-to-one correspondence
between Hamiltonian fields on %, and differentials ((9b.4)) of funections de-
fined on %,. Both conditions are fulfilled:

(*) Given se %y, there is a local co-ordinate system {i, 4*, ;} in which s is written
di= p,= 0. In such a system X =9/2f and X.f=0=f#f(I).
Thus ¥.j=0 VH{ Y = Y%2/01) + Yi(d/o4") + X[ (/dp;)) implies ¥ = 0 only if ¥ = ¥v,
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a) To see that d@(Y?, Z°) € R, i.e. that X.dG(Y?, 2°) = 0 (%), we write
for the vertical field Y? at s (= with support on the trajectory s defined by
si(t) and s¥(t))

U iy oty © s i oy ©
(9¢.2) Yy =Y, (1), si(t)) 57 + Y1, s7(2), 52 (D)) 3.’

since Y? is a function on R (the time) valued on the fibre of T7(F), and a similar
expression for Z,. Now

(9¢.3) AO(Y?, Z)) =i, i, A0 = Y} Z' - Y'Z},

so that

(9c4) X.40(T, Z7) = (9 Lxil g i) =YY g vz,

d
ot ¢’ L op; dt dat
Taking into account that [X, ¥?] = 0, one obtains the constraints on (9¢.2):

K AYi i * *
(9¢.5) ars Y oX Loyr 0X ay; o 0X]

dt og* ops dt — © gt

*
v OX]

* o

+ %

and similar ones for Z? (note that dY/d¢ corresponds to 0Y/ot + (0Y/ds)-
-(ds/dt) 4 (0X/0s*)(ds*/dt} if one keeps in mind the origin of the different
dependences on t). Using them now on (9¢.4), one gets X.d6OX( Y2, 2 =0,
since X'=0H/dp,;, X} == — 0H/dq¢" ((7b.1)).

b) In analogy with the situation on the symplectic mechanics where

LyA=0 = iyo =dfy, fy = A(Y) (subsect. 2¢)), the following theorem now
holds true:

Given a vertical field Y* on E = RXT*(M) such that L,, O = 0, its re-
striction Y? to a section s € %y belongs to T,(%y) and verifies that

{9¢.6) trrw = [d(i,.0)]0

where the subscript (s) on the r.h.s. means « with support on the section s »
(that is, the coefficients of the 1-form have support on s ((9b.4)); this should
not be confused with the restriction d(i,.@)|, which implies putting, e.g., dg'=
= (dg‘/dt)dt, ete., and which is zero for se %, ((70.3))).

To prove (9¢.6) we first find the conditions which L, ® = 0 imposes on an
arbitrary vector field (to find the corresponding ones for Y it is sufficient to

(*) Since X, moves along trajectories, this equality implies that d@( ) is a constant.
We shall omit the subscript H in X, henccforth.
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put Y°=0). These are, from the coefficients of df, dg?, dp,,

oH oH oH oY* oYe
Tk TR T 0 —py . HT
1 Era 1’°apk+y a ~ Py ot ’
¥ oY oYe
(9¢.7) Yitop ZH—HCQ =0,
oxt_ zo¥_,
piap" op* e

For a vertical veetor Y. e T (#%y) one finds

. e cH oH _,
{9¢.8) iro =Y d¢— Y dp,— (5({ Yi+ — ”1?@ L) ds

and
(9¢.9) [(iy O) ] = [dp: Y)]w =

oY oY oY’
3 ko ~ P, — -0 .
[pz a & dq + {Y T Pi- f\p }dpk ~ D at dt](«)

By using (9¢.7), (9¢.8) and (9¢.9) are seen to be equal (*).

The reciprocal theorem also holds true: Given a funetion f on %y, i.e. such
that as a function on B X.f = 0, there exists a unique vertical field Y; which
commutes with X (and thus ¥}, e T,(%,) and such that (ef. subscct. 2b))

(9¢.10) iyr,0 = df .

Indeed, it is trivial to find from (92.10) and the condition X.f = 0 that

) of
9e.11 Yi=
(8e.11) T ~ %

and to check that the vertical field Y7 thus determined satisfies the condition
[X Yil=o.

Note. In particular, the function f on %, might be f — i,60, where Z is a
vector field satisfying L,60 = 0 which, contrarily to (9¢.6), is not necessarily

(") Note that, strictly speaking, iy»o defined as I-form on 7'(%y) does not have
horizontal component (d¢ in (9¢.8)) and that, correspondingly, [diy.®],, has to be
restricted to be vertical {(and thus d¢ omitted in (9¢.9)). However, this precision is not
relevant for the calculation.
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vertical. In fact, one may check that X.(i,0) = 0 if L,0 = 0, so that f is
really a function on %y, and then evaluate from iy, w = d(i,0) the vertical
field associated with f, which turns out to be

(9¢.12) Y, = (20— 2°Xv),, .

It is interesting to observe that the invariant associated to Y; is again given
by f. This is easily seen, since Ly € results to be

(9¢.13) Ly, 0 = L,0 — d[Z"z'i,@] =d[Z2%p; X' — H)],
so that the Noether invariant associated with Y7 is (iy;. d@i, = 0)
(9¢.14) iy, 0 + 2°i.0,

which, since iyy @ = p,Y’, turns out to be p,Z'— HZ°=1i,0 =f The
Noether invariant is the same as for Z and this shows the consistency of the
definitions (*).

d) Potsson bracket. After having recuperated on %, the symplectic
correspondence between vector fields on %, and 1-forms, it is possible to define
the Poisson bracket between two arbitrary functions on %,. This is done in
the usual way (cfr. subsect. 2b)): given two functions f and g on the manifold
of solutions, the Poisson bracket is defined by

(9d.1) {fy g} = CU(Y?, Y;) .
In local co-ordinates (10.1) takes the form
(9d.2) gy =v3¥i—vyyj="20 95

where use has been made of (9¢.11).
In particular, if f =19,0, ¢ =1i,60 with L,0 = L,0 = 0 (Z not neces-
sarily vertical),

(9d.3) g =0}, Y)=40(1}, 7)),

(*) The fact that a nonvertical component Z° shows up in the expression of ¥?, is not
an inconvenience; the symmetries compatible with the fibration R x T*(M)— R will
not alter the form (9¢.11) (i.e. will not transform Z° into Z'°-- Z'*, for instance).
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which may be shown to be equal to
(9d.4) 460z, 2') = 0(2, Z')) =iy ,0,

which shows (cf. (2b.5)) that the algebra of the Noether invariants may be
identified with the Poisson algebra on %, [10].

e) A trivial example: equations of motion on the manifold of solutions of
the free particle. Let % now be the manifold of solutions of the equations of
motion for the free particle, of Hamiltonian H = p?/2m. It is obvious that
% may be parametrized by P, and K¢ Noether invariants associated with
the translations and boosts and which determine the initial momenta and
positions. In particular, as may be easily checked from the expression of the
Noether invariant associated with the Galilean boosts (z¢ — (pi/m) t), the sym-
plectic form may be written as

(9e.1) o — AKiNAP;,

where the P,, K’ themselves play the role of Darboux canonical co-ordinates;
K¢, P, are real functions on %. The function H on T#(M) X R is a first integral
of X and accordingly a function on #. Let us call H to H defined as a func-
tion on %.

Thus % is a symplectic manifold on which a Hamiltonian H has been given.
It is then clear that the equations of motion are given by

(9e.2) iy =dH
and, since A = (0H/0K?)dK‘ 4 (0H/2P,)dP;, we find

(9¢.3) x-—2 9

so that the equations of motion in terms of the parameter 4 read

dK: _pi AP,

(9e.4) o m a

:0,

i.e. Ki= (Pi{m)A -+ q. and P‘= pi, where ¢, and p, are constants. The re-
sult is not surprising: the trajectory for (9¢.2) goes through all the initial con-
ditions of the trajectories of the physical motion which correspond to the same
energy. Note that iz — dH implies that H is a constant of the motion on %.
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Parr 11T

The variational approach and field theory.

10. — Imntroduction (*).

The geometric formulation of field theory will be developed by using the
variational approach, in part due to the fact that this formalism has been
higtorically fruitful in the development of the basis of field theory and in part
because it is in field theory that this approach (together with the corresponding
boundary conditions) is more necessary from the physical point of view. We
shall give nevertheless a general formulation for the wvariational principles
and apply it to the case of mechanics to recover (sect. 12), as a particular case,
the equations of motion of the time-dependent mechanics which were consid-
ered in part II in connection with the contact structure.

The usual classical variational formalism tries to find the critical points
(eross-sections) of a real function (the action integral) defined on a differentiable
submanifold of I'(E), the space of cross-sections of a certain differentiable fibre
bundle (E,n, M), not necessarily a vector bundle. More precisely, given a
section s, € I'(E), one defines I,(E) as the submanifold of sections s € ['(F)cC
c I'(E) such that they coincide with s, on some subset V of the boundary oM
of M, i.e.

I'y(E)= {8 e ['(E)/[s = soiv} y

and applies the variational formalism to select among the cross-sections of
I'y(E) those which are critical.

This variational problem, which selects critical sections submitted to the
above type of boundary conditions, is called Dirichlet variational problem.
Nevertheless, one may consider other types of variational problems [36] as,
for instance, the following:

Free boundary problems. These arise when M is compact and without
boundary; in this case the critical sections are looked for among the whole I'(E).

End manifold problems. Given a closed differentiable subbundle ¥ of E|,,
(the restriction of the fibre bundle E to the boundary of M), I'x(E) is defined
as the set of cross-sections s of I'(E) such that s(dM)c F. In(E) is locally
a cloged linear subspace of I'(E) and thus a differentiable submanifold of I'(E),
and the critical sections are looked for among those of I'.(I).

(*) As mentioned in sect. 1, we deal in this part with classical (as opposed to quantized)
field theory.
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We shall restrict ourselves in our applications to field theory to the Di-
richlet variational problem considered above. In its more frequent formu-
lation (*), & is defined as a real function on the bundle JY(E) of the 1-jets
(appendix B) of the bundle E, and I is the functional on ['(¥#) given by

(10.1) I(s) = f Lo, sel(E),

its)an)

where j* is the 1-jet prolongation and  is the injection to J*(E) of the volume
form on M through the projection ='.JY(E)— M. The critical points are
obtained from the condition

(10.2) (@n,=o, s € Ty(B),

where d is defined as in subsect. 9b). The explicit expression of (10.2) in a
physical case determines the equations of motion of the system associated
with the funetion %, the Lagrangian; in field theory E will be a vector bundle
over the Minkowski space # and we shall take for s, the cross-section zero
at infinity (**).

The restriction to mechanics is slightly different as far as boundary con-
ditions are concerned. The bundle £ = RX M — R of mechanics is not neces-
sarily vectorial and thus there is no zero section. Moreover, the necessity of
taking zero boundary conditions at infinity is not relevant, since moving
particles may separate themselves arbitrarily from a given domain. As a con-
sequence, an arbitrary closed interval [, 1,] of R is used, and the cross-sections
are forced to take the value of a given section at its boundary. For the or-
dinary Hamilton variational principle this implies that the cross-sections
q(t) satisfy ¢(t) = ¢1, q(f,) = g, at the end points %, ?,.

11. - Variational principles on J(E) and J*(E) in field theory.
a) The Lagrangian approach to field theory. As is known (see, e.g.,[7, 10,

11, 18]) the formulation of the ordinary Hamilton principle starts from the
definition of a function .Z.JY(#) — R, the Lagrangian density, on the bundle

(*) Others will also be considered. For instance, the modified Hamilton principle
will eonsider the functional I' defined on I'(JY{(E)).

(**) The convenience is well known, however, of the use of cross-sections which do not
belong to I'y(E); this is the case of the plane-wave solution of the field equations (the
mathematical cross-section corresponds to the physical field, sect. 11). Strictly speaking,
these plane waves correspond to solutions to an « end manifold variational problem » for
which the physical space is reduced to a compact subset, and periodical conditions are
imposed at the boundary. This is the case of the « box normalization »; the resulting
discreteness of physical variables disappears when the size of the box goes to infinity.
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JUE) of the 1-jets of the vector bundle (H,n, #) with base the Minkowski
space 4 and fibre V~(R) or V~C)("). The solutions—« trajectories »—of
the variational problem constitute a subset of the modulus I'(E) of the eross-
sections of F which is composed by the solutions of the FEuler-Lagrange (EL)
equations (**). In this scheme, the physical fields defined by certain Lagran-
giang are simply cross-sections of E which satisfy the EL equations. As usual,
the cross-sections of I'y(¥) will be taken of class ¢ and vanishing at infinity;
nevertheless, this does not imply that other cross-sections of the EL equations,
such as plane waves, have to be necessarily discarded.

Let E = V*X.# be parametrized by the co-ordinate system (x#, y*)
(#=0,1,2,3; x=1,...,m); the bundle (JY(E),n,.#) will be parametrized
by (z#, y% y;) (appendix B.2). Given a Lagrangian density £ on J'(E), the
Hamilton functional on the space of cross-sections I'y(F) is defined by

(11a.1) I(y) = f Pt we I'(E),
)M

where ji(y)= ¢* is the 1-jet prolongation (appendix B) of the cross-section v,
o is the volume form on .#, o = da’ Adx' Adx2Ada® and again n*(w) the pro-
longation of @ into J(E) (which has the same expression, since 7'*(w) only has
components on .#).

Given the Hamilton functional I, the ordinary Hamilton principle (prin-
ciple I, PI) states that the action (11a.1) must be extremal, 7.e.

(11a.2) (3, I)(X) = f Lo Po) =0, VX e I'(«(H)),
N

where the Lie derivative is taken with respect to the 1-jet prolongation X!
of an arbitrary vector field on K, X = X#(0/dx#) 4 X*(0/cy>). The role of
the 1-jet prolongation is easily understood: for a section y*(x), the 1-jet pro-
longation is given by (y*(2), y5(x) = .y*(«)) (") and thus this formalism ac-
commodates the dependence of Z on the first derivatives of the field (a de-
pendence on higher-order derivatives will obviously require higher prolon-
gations [18]). As for the field X, the 1-jet prolongation X! is used to define

(*) E has the structure of direct product bundle, E= V x .#. This is not a limita-
tion: fibre bundles over the Minkowski space are trivial. For a classification of fibre
bundles see, e.g., [38].

(**) In the most typical cases (Maxwell, Klein-Gordon, Dirac, etc.), these fields provide
the support space for an unitary representation of the Poincaré group.

(***) For the sake of notational simplicity, y* and yj also denote the functions y*(x), y5(@)
which determine a certain cross-section yle I'(JY(E)). We also note that the relevant
vector fields in (11a.2) are vertical {{10.2), subsect. 9b)}; the horizontal component may
be kept nevertheless, since it does not produce any new condition.
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its action on J(F) and its expression is found from the condition (appendix B.3)
(11a.3) L; 6o = A307, 60 =dy~ — y; da*;

in this way Lg, maps cross-sections which are 1-jet prolongations into them-

selves.

The fact that only the vertical part of X is relevant in (11a.2) allows us
to write

= 0 oX oXe 0 0 0
1 Yo _ B I — XYoo [
(11a.4) X1=X e + (ax” + 0 y”) W X e + X3 v
and that
(11a.5) Lp(Zw) = (L L)w = X“%Lyiw + X 2;/?;(100 Abu,

since, with 0, = (—)#dax’A... AdzeA .. Ada3, da*AD, = w(S;. By using the de-
finition of X} and 6+ and that L, dyf = (0.X?/y*) dy* + (0.X#/dx#) dz#, (11a.5)
reads

(110.6)  Lz(Z0) =X {%i (2;?) Aeu}+

0. 8Xo 0.2
—|—d(a o= Xo 9,,) % 5 ae A6 .

If we take into account that the second term in (11«.6) will not contribute to
the integral, that the third is zero when restricting to 1-jet prolongation
cross-sections on account that 6« |¢l = 0 and that the second contribution to
the first is (d/dw*)(0 Z/0y;) w, (11a.2) will be fulfilled if

(A1a) d (af) 0.7

da \Oys) By
(11a.7) is the familiar EL equation; in it, y5(2) = d.y*(x). The space of its
solutions will be called % .

The ordinary Hamilton principle starts from a functional defined on I'(E)
((11a.1)). Let us now consider the modified Hamilton principle (principle 11,
PII) whose starting point is a functional I’ defined on I'(J*(E)). In complete

analogy with the case of mechanics (cf. (8. 4)) let us 1ntr0duee the Poincaré-
Cartan form @ as

(11a.8) 0=01+9, Q=%0, =070,

A
11a.9 Q.="20,.
( ) ay” I3
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Note that @ = Yw, but that, if we restrict ourselves to 1-jet prolongation
cross-sections (as in PI), O, = Lol,.
The modified Hamzlton functional I' on cross-sections of JY(F) is defined by

(11.10) I'(yY) = f 0, yie N(JY(E),

RO

and PII establishes that

(11a.11) (SaI) (XY = f 0 =0, VXie I(x(J(®)),
Y ()

which leads to the equation (%)
(11a.12) ind0), =0, VX,

frequently called Euler-Cartan equation.
Let us now evaluate (11¢.12) in local co-ordinates. © may be written as

0 o7
(11@.13) 6 —_ a_?/zdy /\0@ + (g—@y#) (43 3
expression from which d@ is found to be

(a14) 40— { a(ay) 0% ﬁa(ay

s \2yz) T oy Yraye oy

Jorses
0¥

0 0 [0¥
) avendunon+ 5 (5 )dymdmm inp (5x) no
v u

0 (0¥
* 2 o

oys \ 9y,

The expression for a general vector field of F(r(J 1(E))) is

) TR
(11a.15) =Xt Yoo X”m,

(*) In the above expressions we have not made explicit the fact that, in general, the
fibre will be of type ¥*(C) (the physical fields are complex in general), but this is straigth-
forward: if (a*, y%, Y,+, Y5> Yavu) is the system of local co-ordinates for J!(E)—the
asterisk denotes complex conjugate—it is sufficient to define now in (11a.8)

QD'=0"NQ,+ 0.0,
where
.7

aya‘y

(11a.8") = @Yo — Yo, da” % = uo

while leaving the rest of the expressions unaltered.
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so that (11a.12) is satisfied if the equations for eross-sections

d (0%\ 0¥
(11(1.16&) d—x—[t (é-?ji)— @& =
and
0 (0 LP\[dy»
(11a.16b) o (a—yz) [&—,;—y,l] =0,

which come from the coefficients of X~ and X?, are simultaneously fulfilled.
The coefficient of X# is zero if egs. (11a.16) are satisfied, so that the corre-
sponding component of X* might have been omitted from the beginning (ver-
ticality of X1).

We shall call %, the space of critical cross-sections for PII. Inspection
of the above equations shows that, in general, this space is different from % .
This was to be expected: no restriction to 1-jet prolongations was made in
(11¢.10)-(114.12). However, in the case of regularity of the Lagrangian density,
i.e. when the Hessian det (a:f/ay;ayf) # 0, (114.16b) gives the 1-jet prolon-
gation condition y;(») = 0,y*(») and (11a.16a) gives the EL equations; in
that case, ¥y = U'g.

b) Variational formalism on J¥™(E) and covariant Hamiltonian formalism.
The formalism on JY(E) based on 6, although Hamiltonian in form—the above
equations constitute formally a system of first-order differential equations—
does not have a Hamiltonian aspect. The typical Hamiltonian formalism
involves momenta so that the bundle JY(K) is inadequate for its formulation.
It may, however, be constructed on J*(&), the dual bundle of JY(E) — E:
such a formalism, based on the definition of a Lorentz scalar Hamiltonian
density s on J**(E), will lead to manifestly covariant Hamilton-type equa-
tions. In the case of regularity these equations will be equivalent to the EL
equations obtained through PI for the associated Lagrangian density. How-
ever, the formalism will not depend on the existence of a previous Lagrangian
density. As another additional advantage, the formulation on J¥(E) will
turn out specially suitable to characterize the symmetries of the Hamiltonian
problem in field theory.
Let (w#, y*, y «, 7", 7%"#) be a local parametrization of J1*(E). A Hamil-
tonian density is defined as a (Hermitian real) scalar function on J™*(E).
The Poincaré-Cartan form on J*(E) is now defined as (cf. (7a.2))

(116.1) O* = y*daf A0, + ¥ Ars" v N0y — Hw
and the modified Hamilton functional as

(110.2) Iy =[x, y* e T (B)).
¥ 4}
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The solutions of the variational problem are the cross-sections »** for which

(115.3) (350 I'*)(X1%) = f La0*=0, VX*cl(c(J*B)),
P A
where now
L — i & a a a 5 a
(11b'4) X _Xuawu+X a_y{x_}_Xlx‘a_“i—Xaa #_}_‘—X #é'no‘.u.

Equation (115.3) leads again to
(11b.5) i dO*| ;. =0, VX € T(v(J*(E))).

Let us evaluate (115.5) in local co-ordinates, which we shall do in the real case
to simplify the notation.
Here are two intermediate steps:

(116.6)  AO* = dn“Ady*ABu— (%}i 2 )/\w,

(112.7) iy 4O* = X5 Ay N\Ou— X* dmhA\bu + drbAdY* A ixp(Ou) —

oA 0K ., oH oH
(a “X —I—M‘:X“)w—}—(-é—dj ~}—a dna)/\zxnw

Restricting to cross-sections and using iu(w)= X*6, and
(115.8) Ar"N\ip(0) = X0, — 6, X°0,,
one finds that (115.5) is fulfilled when the coefficients of X% and X« are zero,

R
JQak~ omt’ Qs Qyx’

(115.9)

i.e. if the Hamilton-type equations (115.9) are satisfied (again the coefficient
of X« is zero in that case). The space of solutions of (115.9) will be called %:,?

The equivalence of (116.9) and (11a.7) for regular Lagrangians may now
be easily established. By defining the Legendre transformation in the usual
way, D,:et € JYE) —> D (et) = e'* € J*(B) (D, :J*(E) - JY(E)),

0

(11b.10) xH(et*) = xu(el) yo(e*) = y(er*), al(e¥) = ay“
»iet
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(and analogous expressions for those co-ordinates with *), then the scalar
function

(115.11) H = ey + 2 Y, — L

is defined on J¥(E). This definition for the Hamiltonian density associated
to & is consistent with (115.1), where y*daA6, is the equivalent to the Liou-
ville form of mechanics, and with (114.8), (11¢.9). One checks immediately
that the insertion of 5 in (115.9) reproduces (11a.7) plus the 1-jet prolongation
condition. Thus the regularity condition makes PII equivalent to PI by re-
stricting cross-sections yl'e ', to be of the 3! type (in the Hamiltonian-La-
grangian approach, PII on JY(E)) or by establishing a one-to-one correspondence
between cross-sections ¢ %, and ™ e %, (in the strictly Hamiltonian
formalism, PII on J*(E)). In this case there is a one-to-one correspondence
between % g, Uy, Usy-

12. - Variational approach to classical mechanics.

For the sake of brevity we restrict ourselves to PII in Hamiltonian form.
In that case, J™(E) is the bundle RXT*(M) — R, and, as mentioned in the
introduction to this part, I'y(J™(¥)) is the submanifold of cross-sections which
take fixed values at the boundary of the closed interval [¢,{,]. The differ-
ential 3,I' has now to be zero on the vector fields tangent to J(E) with
support on [#,,%]. Under these conditions, the eritical points (cross-sections)
of I'y(J™(H)) satisfy (cf. (115.3))

(12.1) f L..0=0, VX e P(c(Rx T*(M)))

si¥(7)

where @ = A — H d¢ (sect. 7). Due to the boundary conditions which impose
fixed values for the cross-sections at ¢, and ¢,, the vector fields of (12.1) are
zero at these points. Thus the term

(12.2) f dig.

s (1)

disappears after integration and the other contribution of L. gives
(12.3) Tg10 A0y = 0, VX,

The reader will recognize in (12.3) eq. (7¢.1) which determines the cross-
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sections which belong to %y (*). Indeed, since the radical of d@ is of dimension
one (@ is a contact form), (12.3) indicates that the trajectories of #; are in-
tegrals of X, the generator of the modulus rad (d0) (AO(X™*, X,) = 0, VX*),

13. — A first application to relativistic fields.

Let us now apply the previous formalisms to several simple examples ex-
tracted from the relativistic fieid theory of free elementary particles. We
recall that .# is the Minkowski space and a# = (2% @1, 22, 2%); it is clear that
the dimension m of the fibre space (indices «, j, ...) will depend on the spin
of the field. The transition to the usual physical notation is made by identi-
fying the cross-section of B with the definition of the field in each point of
the Minkowski space. Because of translation invariance, Lagrangian and
Hamiltonian densities will not depend on x«.

a) The Klein-Gordon field. The fibre space is of dimension one. The
usual KG Lagrangian density (o ¢*)(0,¢) — m2¢* ¢ is, in the formalism on
JYE), given by

(130;1) ﬂ'?il{(} — y;yvnuv__m2yky ,

where n# is the Minkowski metric tensor ( = diag (+, —, —, —)) and m
the mass of the field. PI leads to the familiar KG equation, (240, + m?)y(z) = 0.
It is clear that .# is regular; thus PII (egs. (11a.16)) gives

d
{(13a.2) a;‘?/u +mPy =0, yu=7uy,
u

which reproduce the equation of the KG field.
As & is regular, it is possible to define an equivalent invariant Hamil-
tonian formulation. From (13¢.1) and (115.11) one obtains

(13“.3) jf}l{:{} — n*uﬂyr]l“, + mgy*y

and now (115.9) gives the definition of the momenta (m# = ory*, 7% = ory)
and again (0 4 m2)y = 0.

As is well known, a certain amount of arbitrariness is involved in the de-
finition of Lagrangians, since the addition of a total derivative (d,F) does
not alter the EL equations of motion. It is not difficult to accommodate this.

(*y And again that the action of the horizontal component is trivial in the sense that
its coefficient is zero for critical sections (verticality of X'*).
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situation in the fibre bundle formulation. Consider, for instance, the Lagrangian
density on J(JY(E)) (the co-ordinates being in general (24, y% Y., Ui, Y,s,3
9% Garns o arn,)) for the KG field

(13a.4) Lria ==Y P u— 9y =Y Yu— Yy

Since substituting J1(I) for E amounts to increasing the number of variables,
PI clearly gives for Lagrangians on J!(J'(E))

(13a.5)

agm  d (axhl) . dzw 4 (azlsl)

g der\dg%n ) dyr  dar \ 3¢S,

(with the 1-jet prolongation conditions g¢%, = 9,9% ¢, , = ¢,¥,) plus the cor-
responding equations for (y,.,g,.,) and (¥,.,, g,+,,)- In the case of the La-
grangian (13a.4), (13a.5) gives g*”’# + m2y* = 0, y*# — ny* = (, which com-
bined reproduce the KG equation. Alternatively, one could have thought of
a Lagrangian on J2(E) (the bundle of the 2-jets of E of co-ordinates (z, y*,

ya" y;’ y(x‘y’ y2v7 yzx',uv)) as’ fOI' iHSta‘nce7
(13a.6) Lia = =N Yur + Yyl + Yuly) —MY*y .
In this case (11a.7) is no longer valid and it is necessary to substitute j2 (the

2-jet prolongation) for j* in the reasoning leading from PI to the EL equations.
For a Lagrangian on J*(E) these read

(134.7) dz (8,2”2) d (833) 632:0

dee dar \ 8ys,)  dae\ 3y dy
with the 2-jet prolongation conditions y,, = 2,4, ¥, = &y* Substituting
now (13a.6) into (13a.7), one obtains again the KG equation. It is to be noted
in passing that the Lagrangians (13¢.4) and (13a.6) provide an example of
equivalent formalisms on J'(JY(E)) and J*E), the equivalence being imple-
mented by identifying g,, g.,» with y,, y. [18].

b) The Proca field. In this case, the fibre index is also a L-rentz index.
To avoid confusion with the base indices we shall use brackets to indicate the
former. With (25 y*, 40,3 ¥*,, ¥,,) a8 co-ordinate system for J(E), &£ takes
the form

(13b.1) L =" — "y EOnue - mEyF Oy,

(

PI gives for (13b.1) the Proca equations (in (11a.7) y* = &,yw, ete.)

(13b.2) (D + m2) — 8,8, ]y = 0,
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which, because m % 0, already include the subsidiary condition &,y% =0
which eliminates the spin-zero part. As .# is regular, the same result is obtained
from PII and again a scalar Hamiltonan formulation becomes possible.
With (a#, yw, y*®@; 7y, 7*W) as a co-ordinate system for J¥(KH) we find
from (115.10)

(13b.3) W = gy Ly Yy = T gy pkw
and from (115.11)
(13b.4) HE = Jaef mpp— T Ty — MEYFO

The Hamilton-like equations (115.9) read in this case

GF 4 a oyw oA . Oy

amm" S’ ay‘l‘) oxr

(13b.5)

(and similar ones for z*, y*). It is now immediate to check that the first de-
fines the momenta in terms of y*w (cf. (13b.3)),

(13b.6) a”y(ﬂ) o %n*(l)lnuv_n*(u)v ,

and that combined with the second reproduces (13b.2).

As in the case of the KG field, it is also possible here to define Lagrangian
densities on J1(JYE)), J2(E) leading to (13b.2) through PI. We shall not con-
sider this nor the case of the Maxwell field, whose treatment, apart from the
fact that the subsidiary condition is not obtained from the Lagrangian (m = 0)
and the associated feature of gauge invariance, may be performed along similar
lines to that of the Proca field.

¢) The Dirac field. For the Dirac field E is the spinorial bundle asso-
ciated to the representation D*°@® D of the group SL,, of co-ordinates
(zuy y*, y,0), =1, 2, 3, 4. The simple Dirac Lagrangian on J*(E) is given by

(13¢.1) L = Y (Y y)5YP — MY (Y°)5YP 5

our y-matrices are such that y* = y**, ' = — »i*. PI and (13¢.1) immediately
give the Dirac equation. However, since .2 is not regular (the Hessian vanishes
identically), PII gives different results. From (11a.16a) and the corresponding
adjoint equation (coming from the coefficient of X .) we obtain

(13¢.2) myYp () -+ i0uyae YOy =0,  (iyrdp—m)fy’ =0,

t.e. the adjoint and the normal Dirac equation. The other two equations
((11a.16b) and its associated one) are identically, zero; accordingly, no con-
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straint is provided for the y~, and % gc%:g. Imposing on the y=, the con-
dition y~, = ¢, y* is equivalent to transforming PI into PI1I; when this is done,
U o= %:?. This picture is not altered when the full Dirac Lagrangian (Hermitian
and invariant under particle-antiparticle conjugation in quantum field theory)
is used instead of (13¢.2).

This result was to be expected. PII is of Hamiltonian type, i.e. leads to
first-order differential equations. However, as the Dirac equation is already
of first order, PII cannot simultaneously determine y* and y*,. Indeed, it is
not possible to construct directly from the Lagrangian .7 a scalar Hamil-
tonian formulation based on PII and leading to the Dirac equation. This
is because the Legendre transformation (115.10) is not a diffeomorphism for
#,; the variables in #(y*, y,., n*, x#*") are not all independent and there
is no equivalence between (115.9) and (11¢.7). In fact, this situation is already
present in the ordinary Hamiltonian formulation of the Dirac theory, where H
is the generator of the time translations and leads to the equations of motion.
Nevertheless, it is still possible to write a scalar Hamiltonian s# dealing with
all variables as independent and to use the Lagrange multipliers to impose
the required constraints. Indeed, the Hamiltonian density on J*(E)

i , . b N
(1303) o= polmy i - 2 (k= 07 0) 5 T (0 5 )

(whose first term is what would be obtained directly from %} through (115.11)
and whose second and third terms include the constraints on the momenta and
the Lagrange multipliers) leads through (115.9) to the Dirac equation. How-
ever, it i1s not clear what physical meaning—if any—could be associated to
the A’s.

d) The Rarita-Schwinger spin-3 field. JYE) will be now the veector-
spinor vector bundle of co-ordinates (x4, y“®, Yum*; Y42, Yuar); fibre indices
(u=20,1,2,3;¢=1, 2, 3, 4) are inside brackets. The simple Lagrangian on
JYUE) is given by
(13d.1) Frs = — Wiuar (POyO)5Y“Ps + MY uar (Y )5 y“P +

1 a, (B

B & @x 1: 1 1
+ 3 Your PN (Y 3y + (yo)§ Y] — gﬂ(m)*()’”)"’?“)ﬁ Yo — g?/wa)*(m)/” Y)Y ) -

PI leads to the Rarita-Schwinger equations (y®e), = g,yw)
(132) (= ipo8 + mI3yn 4§ (ipsdy + ipnd0)5yo0 —
-1 (yu(iyaaa + m)yv)%‘y(vﬁ) =0,

which include the subsidiary conditions ¢,y%® = 0, y,y%s — 0, which restrict
the vector part to spin one and the product with the spinor part to spin §.
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The equations for PII read in this case (coefficients of the components Xy
and Xuur»)

) o
(134.3) 0¥ d ( o )+ e ( 0.7 )[Cywm'—y@gm] .

e A2 \OYquarrs OYwmr» \OYcopres) | 0X°

e 8.Z \ [0yt
—ylen,| =
" S (ay“””a)[ T u] o

) o . A (08)
(13d.4) e} ( cZ ) [ay(gﬁ) . y(gﬂ)‘”:l + 0 (acg )[ay op _y(gﬂ)ﬂ] — 0.

SYwmyw \CYopyon) | OX* OYwarer \OYPy ) | O

Since the Hessian of £, is again identically zero and has analogous charac-
teristics as %, the remarks made in subsect. 13¢) also apply here. In par-
ticular, and as in the Dirac case, the above equations reproduce (13d.2) and
leave y'#», unconstrained. We shall not comment on this any further and shall
only mention that the case of spin ! 4 1 is easily incorporated into the scheme
by taking

(13d.5) Ls = '—i:’/(,ul,ug,..,u,a)‘('}/oyo)oﬂ‘y;’“mmﬂ) -+ m?/(ulu.ula)'(’)/o)zy(”""”’ﬁ) -+

—+ 3 ?f(wz,,,zz,a)[(y“)g?/;ﬁ Haguf) L (yu ) gyl reaB] —
z (Y299 vu)3 (u'uz--#zﬁ’)_-l (my#y )5 ('t @
-3 Yewry. VYoV )Y g?/um,...ula)‘ VeV )Y ;

which leads to an equation which is identical to (13d.2) but for the 7 —1
additional vector indices in the fibre part of the field; the irreducibility is ob-
tained because of the symmetry under permutations of the indices y,, ..., y;.

14. — Symmetries in the modified Hamilton formulation.

As has been mentioned in sect. 1, the use of the Cartan form is specially
useful in studying the symmetries of a system and in formulating the asso-
ciated Noether theorem [10, 11, 18]. In this section it is our intention to show
how this process, which leads to the Noether currents, may be performed for
the Hamiltonian-like formalism (PII).

Let us recall first the well-known Noether theorem for the ordinary Hamilton
variational problem (PI) defined by a Lagrangian #. A vector field X € I’(r(E))
is a symmetry of the system described by % if

(14.1a) Lo (Zw)— dd]z; =0, 2
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where A = A#§, is a three-form which does not depend on y#,. In particular,
A may be zero as is the case for the Poincaré generators. If we put A =0,
{14.1a) gives for a symmetry X

(14.1b) d(i2.0) 7. =0, VPieqd,,

note that in (14.1a) the restriction is made on cross-sections which are 1-jet
prolongations and that in (14.1b) on cross-sections which are also solutions of
the variational problem.

To extend the definition of a symmetry to PIT on JY(E), we make use of
the Cartan form ©. X'eI'(r(J'(E))) is a symmetry if

(14.2a) L.0 =0

(a more general definition as in (14.1a) is possible, but we shall not consider it).
This definition is consistent with the one given for PI; indeed, in the case of
regularity in which % ,= %, we have for fields on £ ((B.3.15)) whose action
on JUE) is defined through their 1-jet prolongation

(14.3) L0y = L.(Z0) |5,

which is easily checked by writing @ in terms of .#. Using the Cartan formula
for the Lie derivative and taking into account (11a.12), one obtains from (14.2a)

(14.2b) A(300) |y =0, V¥ ey,

from which the conservation of the current associated with X' may be derived:
on cross-sections of %'y and with j = % .0, we get 3j = 0, where % is the Hodge
operator and & the exterior codifferential. In terms of local co-ordinates, this
reads 04§, = 0 with

X% d
(14.2¢) —jo= LXu 4+ (X0—By* X7) = 4 (Xae— & Yor X?) -ff
OY*u OYaspe
07 0
-+ OpY* — y%y) X# ColYas— Yarr) XH# .
(Ory™— ™) 5 + (CrYar— Yarr) X o

In the case of regularity, the two last terms do not appear and the first line
of (14.2¢) reproduces the usual expression for the current (which may be di-
rectly obtained from (14.13)).

The elegance of this formulation lies in the fact that again the same de-
finition may be used for PII on J*(E): Xl*e]’(r(Jl*(E))) is a symmetry
when (cf. (7c.4))

(14.4a) Lp@* =0,
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where now @* is given by (115.1). This definition is consistent with those given
above, since for the case of regularity

(145) LXu@* {jl(lI/) = Lzl(fw) tjl(‘l’) y

which is obtained by writing @ in terms of % and taking into account that the
resulting expression is defined on J¥*(FE) despite the presence of £. We note
in passing that an expression similar to (14.5) also holds in the case of analytical
mechanics (*). From (14.4a) we get (cf. (7¢.5))

(14.4b) A(131.0%) | yre = 0, VPrEeqy,,

in this case

Al
.oy N AT
Ox? ox?

(14-16‘) ”L-Xu(")*[y/u = {(TE

+ nk (Xa_%XV) + (Xa‘_Cafl/;: Xf/) mm‘} O

and —j# is the term within curly brackets. When 5 comes from a regular
Lagrangian density (14.4¢) gives—as it should—the same current as (14.2¢),
where ¥ie #',, which is, in turn, the same result we would have obtained
from PI and definition (14.1a). The formalism presented here allows, however,
for a more general treatment of the definition of a symmetry when PII is
used for systems defined through densities on JYE) and J¥*(E).

The previous expressions (14.2¢) ((14.4¢)) for PII solve the problem of
finding the conserved current associated with the symmetry defined by a
certain field X* (X*) on JY(E) (J™*(E)). Note that, although only their com-
ponents on E are necessary in these expressions, the complete vector field
appears in (14.2a) ((14.4a)). In many cases the action of the transformation
which might generate a symmetry is only given on E. This is the case of the
generators of space-time symmetries which initially are only defined through
their action on the basis and on the fibre space and which will be considered in
the next section. As already mentioned, the canonical procedure for extending

(*} With the definition 6, =p,d¢! —Hd¢ (subseob. 7a)) and the prolongations of
X = X¥(0/2q¢") given by
,8+__8Xia ] eX’ 9
a¢ oy o g Vg o,
(see appendix A.4) the formula which corresponds to (14.5) reads

Tig»Op = Len(Ld) .
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their action to J1(F) is the 1-jet prolongation (appendix B); since the extended
vector fields transform 1-jet cross-sections onto themselves, this definition
includes the situation for PI ((14.1a), (14.1B)) as a particular case. In terms
of Xu(w, y8), X*(x, y8) the condition of stability of the Pfaffian system under
X1 gives for X% ((B.3.4))

o, OX= oX oX= oXe oXr oXv
(14.6) Xu ) —y* Fr + Yy~ qJB —Ypru ay yﬁua‘y;?/ V“?/ﬂ*/tayﬁ* Yy

and a parallel expression for Xas,.

For the symmetries of the system defined on J'*(FZ), the complete expres-
sion of the field on J'*(E) is required. This is because PII on J*(E) is a Hamil-
tonian principle in the sense that it leads to first-order equations in the fields
and the momenta; an analogous situation may appear when considering PII
on JYE). However, for a regular Hamiltonian on J¥(K) PII is equivalent
to PI when applied to the corresponding Lagrangian. In this cage the notion
of 1-jet prolongation may be transported from JYE) to J*(H) through the
Legendre transformation, the structure forms being now written as

(14.7) s = dy“—azdxﬂ
onh

and then (see appendix B.4) X* = X + X}7(9/onj), where

v 2 -t & 0 v o X
(14.8) XE"—[ ed ] (8X A 0Xr O 0Xe A X ayf)

 [onfonl| \owr Om) Ox¢  dml Oyr ok Oy’ Oml

15. — Application: space-time symmetries and Noether currents.

We now apply the theory of the previous section to exhibit the well-known
relativistic invariance of the systems of sect. 13. Since the final results—the
Poincaré generators—are quite familiar, we shall restrict ourselves to giving
the more relevant formulae to illustrate how the theory works.

a) Klein-Gordon field. The vector fields on the bundle E of the Poincaré
group 2! are given by
(15a.1)  Pu= 8.4, My = 8500,0, Oy = My — Mo -

On JYE), P, is given by the same expression, but M, is now written as

~
ee ©

,uvo'a

(15a.2) My = 6552,05 + 05 uyea +y:0
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where the last two terms correspond to XU ((14.6)). It is now a simple task
to prove that LP Lo =0 :L}ﬂ on cross-sections 1 so that the currents
are given by (14.2¢), where the fibre components X%, X,+ are absent since the
group acts trivially on the fibre part. Thus for the conserved current asso-
ciated with P, and M, we obtain, respectively,

(15a.3)  jho == Wy —my*y) + YL+ Yy,
(13ad)  fiw = — 0w (ysy" —m*y*y) + Ghayey™ + Siwysys

(in fact, jfm is the energy-momentum tensor), which lead to the usual expres-
siong for the charge densities (£=10) in terms of the KG field by putting y = ¢,
Yy, = 0,¢. For instance the Hamiltonian density is given by the familiar ex-
pression

(15a.5) H = ¢*d + Vg* -V - m2g* ¢

and, in terms of j7,, (15a.4) reads ji,,, = 2,1, — #, 500

The invariance of the KG system when formulated on J1*(E) now follows
from the fact that L;..@* = 0, and the currents from the scalar Hamiltonian
may be obtained from (14.4¢). However, because the system satisfies the reg-
ularity condition, both formalisms are equivalent and the same currents are
obtained. We remark that, although the sealar s#* cannot be identified with
the energy, the usual Hamiltonian (15a.5) is, of course, obtained as the generator
of time displacements.

Before concluding with the KG field, let us make a few comments on the
other two formalisms which were mentioned in sect. 13. It is simple to show
that the Lagrangian (13a.4) which led through PI to the KG equation also
leads, as it should, to the appropriate Poincaré currents. Being defined on
J(JY(H)) it is clear that the Noehter currents are given in this formalism by
the expression (cf. (14.2¢))

&
(15a.6) —ji= XrP 4 (X~x— g% Xo) 9

o, + (Xae—gae 0 X°)

o7
+ (X)—gy,X°) 3.
vt

whieh is particularized to the KG case by putting X= = 0 and X, instead of X7;
it may be checked that (154.6) and (13a¢.4) give again (15a.3) and (15a.4).
Analogous considerations may be carried out for the Lagrangian (13e.6) on

J(E). It may be shown [18] that in that formalism the ecurrent is given by the
general formula

. 2 & o Y 8,‘?2 d agz Yo x yo ag?
(18a.7) —jr=Xr P (Xo—y2X") [a_y;_am_" ayuu] + (X — 9. X°) a:’/;':v
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on the solutions of (132.7); note that the 1-jet prolongation of the field X now
enters into the expression for j«. Again, by using (14.6) and restricting (15a4.7)
to the KG case, the Poincaré generators are recovered.

b) The Proca field. On E, Pt = yw 3, as before and

2
(15b.1) Mw = ¢ 32°0: + "5y & g + Y 6H" iy 3
Yo

If we start from the Lagrangian (13b.1) on JY(E), the expression of the currents
is given by (14.2¢), where the fibre index « has been replaced by (o). The trans-
lation current is then given by

(156.2) JUE = — e P — yEEy gk s

(the terms y** 7™y, * and y* % y*, do not contribute) and the Lorentz

current by
(155.3) Jns = i jONs — gy JwE— y & S(Xur)a yl© Ly (27, y @

with (2w), = 647, The same results are obtained from the scalar Hamil-
tonian density 5 of (13b.4) and (14.4¢); in particular, the usual Hamiltonian

(15b.4) H =—[(Vp,)) (V") + (000))(0op”) + m2g?py]

may be recovered from j®° by identifying y*(x) with the Proca field ¢#(x).

¢) The Dirac field. The action of @l on the Dirae bundle F is given by
(2w = (ifa)(p, ), 2% = 3 )

Pu = g3, ,
i:éﬂcsa . N8 4 . i\ B .7:12 ]...
(1501) J eama +’L(Z )ﬂy a:l/"‘ 1Y p (2 )aq ., 1, ], k£ y ’3 cyclic ,
laY:; 0 .
“aya

o
= 0%a°0° TZ(Z‘“)ﬁyﬂé— + iy pe(Z%)

The 1-jet extensions, with the additional components

Tt ik v . JE\O a
Jl [6 ,:H'y ”__1/(2 k)ﬂyﬁ”] a a, '——[:‘/op‘r 3”. +@3/ﬂ‘/t( ) ] ay“"u

Nil — . [6013”.?/ — ,L(Zoi)g]

[?/a'ré : -ﬁyﬁ'u(zm)ﬂ]

ay a Yaru
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for the vector fields of the rotations and the boosts (T’; = P,), act on JIE).
The invariance of the Lagrangian (13c¢.1) may now be verified by evaluating
L;(%w)lz.. As in the previous cases, this is done from L,(%w) = (Lgz £)-
o+ L(Lg0); Ly Llp=0, as seen by direct computation, and Lz w =
= (0*X,)w = 0, since 0* X, is zero for all Poincaré generators (in evaluating
L, 2 the relation y°*”,7 = $[y#y7, y°] is useful). The currents are then given
by (PI)

s == yyae(y° &x ok P
(1503) {J Yar(yp8)50 9"

48 = {igar{y®y*)gH— Uy + 647 30" oyB)

which take the customary form by putting y*(») = Y(x). PII leads to the
currents of (14.2¢). However, these are not the usual eurrents because %'y # % .
Nevertheless, when y*—unconstrained by the EL equations for PII—is re-
stricted to y* = ¢,y*, the formulae (15¢.3) are recovered.

d) Rarita-Schwinger field. The same remarks made for the Dirac case
apply also here. We shall only give the formulae for the sake of completeness:
on E,

Y O, .& a v G, (€ a . o 8
(A5d1) M= 0 Tat o 4 SR o USR5,

plus conjugate terms, and the analogous to (15¢.3) are

529 L (A T L
BBL2) | joms — —figaom(y P20 gy 00 — 8729190 — (2™

where we have omitted the conjugate terms. As usual, ¢ may be written
in the form

(15d.3) Jung = puj®é g jws 1 ﬂfﬂm(zw)gsy(ﬁw A+ 7y (— iZ’”)ﬁy"’“) ,

where 7y, =— 1, (y"7'); and the two Z’s have been defined in subsect. 15b)
and 15¢).

e) Conformal symmetry of a massless fermion field. As we have seen
previously, all Poincaré generators have in common the fact that the com-
ponent acting on the fibre, X*(9/0y~), does not depend on ar (X= £ Xa(xw)).
As a final illustration of the theory we shall now consider an example which
is free of such a restriction, namely the conformal invariance of & massless
fermion field. The vector fields of z(E) associated with the conformal group
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are written in the form [39]

, 0
Pu =0 oxv’

&c a : -3 a y a
-MMV = (S,“, Ea p + ?/(Zluv)ﬂyﬁay“_lytx (2;1)0‘8./ .

(15e.1) K, = (2w,ar—2?9}) aix” + 2[ia(Zw)5y" 4 lwuy“]ﬁ +

+ 2[— w”yﬁ*(z D5 1uYas] aja‘ )

°
OYar’

where 7 is the dimension of the field in terms of powers of length (— $ in this
case). (15e.1) shows that the components on y* of the vector fields corresponding
to the conformal transformations depend on «#; in addition, we have now
04X, #0 for K, and D. The 1-jet prolongations are determined by (14.6)
with the result

P,]; :P'u,

] o
D ’\J)V—-}_ :l/‘x'a—*—}—l’lat

M,}w = Muw + [i(zﬂ”)oﬁ‘yﬂg ,uv ;SJO‘S}

, w; O
—[%yﬁ*o’(z ) "}‘?/a‘sé”vg- ayT‘;’

= Ky + 2{(Zw)5y" + Wusy® + (060}, — 246} — 2" Yus [y +

=i

T~

' d
(15¢.2) + [ (Zw)j + Landf) 90} 5.

+ 2{— iy pe(Z1)E -+ WusYar + Yaur[6 0] — T ) — 2 us] +
. 0
+ Ypeo|— i (ZL)E - Ly dha—
Yaro

0 0
Xy — D yar .
Yy ° 5 + (I—1y .

The conformal invariance of the «fermion field » determined (PI) by the
Lagrangian density

(15¢.3) & = iya(y"y")3y8

D' =D+ (1-—1)

is checked by calculating (14.3) and noting that now the term Z(L; w) con-
tributes due to the faet that 0,X7, ,= 8z, and 9,X(, =4. The currents are
obtained from the first three terms of (14.2¢) (PI); explicitly (and on Ple # )
the conformal and dilatation currents are given by

{]w = iy y Ve Qaua? — 120}) 0, — 2(ia* Ty + lzu)}y*

15¢.4
(15e-4) & = ypy*y )elimed.—il}y*,

the Poincaré currents again having the form (15¢.3).
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In concluding we could mention that on some occasions it may be inter-
esting to diseuss the invariance of a system by considering the current which
—congserved or not—may be defined from d(i;:®)|,:, since the other term
coming from L..0 is zero on account of the EL equations. In this way one
may, for instance, discuss the relative implications of conformal and dilatation
invariance of a given Lagrangian along the lines of the ﬁrstf two references
of [39].

o

The authors would like to acknowledge their Salamanca colleagues, and
particularly L. J. Bova and P. L. GAgrcia, for enjoyable and stimulating con-
versations during the past few years.

APPENDIX A

Vector bundles.

In this appendix we restrict ourselves fo introducing the most relevant
concepts concerning vector bundles which are necessary for the main text.
A more systematic study of fibre bundles may be found in ref. [37, 38, 40, 41]
and, in the context of their applications to physical problems, in ref. [2, 7,
19, 42-44, 48).

A, Locally trivial fibre bundles. — Let E, F, M be topological spaces.
A locally trivial fibre bundle of fibre F and base M is a triplet = (E, =, M)
(frequently denoted E5 M), where 7 is a continuous application of E onto M
(the projection), which satisfies the following condition:

For every 2 € M, there exists an open set U e M including # and a
homeomorphism @ .7 (U) ~ U X F such that po® = m, where p is the pro-
jection of UX¥# onto U. E is called the total space of the fibre bundle #;
a~Yx) is the fibre over x, and n~Y(zn(e)), e € B, the fibre through the point e.

The pair (U, @) is called a local chart of 5 and constitutes a trivialization
of the restriction 75|;. Given two local charts (U, @), (V,¥) such that
UnV {0}, one has for xe UnV, feF, Pod Yz, f) = (, g(»)f), where ¢
is an application of U n V into the group of homeomorphisms of F. (See the
figure where both the fibre and base spaces have been taken of dimension one.)

The simplest example of fibre bundle is the Cartesian product (M X F,n, M),
where m is the canonical projection. Such a bundle is called #rivial and admits
a global chart (global co-ordinate system). Any bundle isomorphic (see below)
to a direet-produet bundle is also trivial.

A cross-section W of E Z-M over Nc M is a continuous application
¥.N — E such that mo¥ is the identity on N¥. The set of cross-sections will
be denoted by I'(N).

Let y = (B, =, M) and o' = (E', #', M') be two locally trivial fibre bundles
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with fibres F and F'. A homomorphism of 7 into %’ is a pair of continuous
maps (H,h), H:E - E', h:M — M’ such that the diagram

L m

nl h lnl

M—>M

is commutative. The local representation of (H, h) is obtained by taking
local charts (U, ¢) [pa(U) - UXF, UcM] of », (U, ¢')¢" :a-Y(U') —
— U'XF', U cM] of 5 such that MU)n U’ {#}. Then, for (x,f)e
e(Un bY(U"))XF,

o' Hop™'i(x, f) = (Ma), Uz)f) ,

where I(z) (with 2 e U n h~Y(U’)) is a continuous application of the fibre
F on F'. Two bundles are isomorphic when the horizontal arrows of the
above diagram may be inverted.

Let 4 = (B', 'y M') be a locally trivial vector bundle and ¢ a continuous
application of the manifold M over M'. Then there is a fibre bundle
n = (B, m, M) called reciprocal image of # (also called pull-back or induced
bundle) and an homomorphism H which makes the following diagram com-
mutative:

H

B ——F

nl g ln

M ——— M

The construction is simple: it is sufficient to define F as the subset of M X E'
composed by the pairs (z, ¢'), v € M, ¢ € ', such that g(z) ==a'(¢’) and H
as the application H:(z, ¢') e B —¢'. E is frequently noted M X, E’ (which
indicates that it is the part of the direct produet compatible with the con-
dition imposed by the existence of the homomorphism g and the application
' over M') and = is called the pull-back of =’ by g¢.
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A.2, Vector bundles. — The vector bundle structure is obtained by impos-
ing to the fibre F the condition of being a vector space V*(R) (or V*(C))
of dimension #. Then the functions g which determine the change of local
charts take their values g(x) on the linear gromp of the fibre space, GL(n).
Thus, a vector bundle is essentially a manifold with a vector space attached
to each of its points. More precisely, a vector bundle is defined as follows:

Let n = (E, n, M) be a locally trivial fibre bundle of fibre given by a
vector space F of dimension n. A structure of vector bundle is determined
on 5 by a family o/ = {(Ua, @a)} of local eharts which satisfy the following
conditions:

a) {Ua} is an open cover of M.

b) For every pair («, ) for which Us o Us# {0},

Ps9x (@, f) = (i, gpa(@) ) [(x, ) € (Uan Up) X F],

where gsx is a continuous application of Usn Us on GL(n), i.e. gpei is a
local vector bundle isomorphism.

¢) The family o is maximal, i.e., if o/’ is a family of charts of 4 which
satisfies a), b) and includes 7, then &/’ = /. & is called the atlas of 7

(which is sometimes written as u = (¥, z, M; MA)) and its elements are the
vector charts of 7.

The functions g¢s» determine the changes of charts and are accordingly
called transition funections; they satisfy the compatibility condition

(A.2.1) Jra(2)gpa(2) = gyalr) Vee Usn Ugn Uy .

In other words, (Us, gss) is a cocycle on M with values in GL(n) subordinated
to {Ua}. Reciprocally, it can be shown that, if {Us} is an open covering
of M, F a vector space of finite dimension and gsx:Us0 Us— GL(F) 2
family of continuous mappings on Us n U, satisfying (A.2.1), there exists a
vector bundle of fibre F, 5 = (¥, =, M), for which the g¢’s are transition
functions. Moreover, # is unique but for equivalences (*).

All the other properties of fibre bundles are easily transported to vector
bundles. In particular, a differentiable vector bundle structure is obtained
when the base M is a differentiable manifold and the changes of charts are
given by differentiable transition functions. As a final comment, let us say
that the zero section of E is the base M ; the name is given because z € M i3
the zero element of the vector space m'(x) (the fibre over z).

A vector bundle with a one-dimensional vector space as fibre is called
line bundle.

A.3. Tangent [T(M)] and cotangent [T*(M)] space of a manifold M. The
tangent (differential) application. — Let M be a differentiable manifold of di-

(*} Two locally trivial fibre bundles 4= (E, n, M) and #'= (&', =, M) with the same
base M are said to be equivalent if there exists an isomorphism (H, h): 77—’ for which
h is the identity on M.



GEOMETRIC FORMULATION OF CLASSICAL MECHANICS AND FIELD THEORY 55

mension m and let & be a point of M. A (differentiable) curve ¢ at x e M
is a (differentiable) application ¢:I — M, I c R with 0 e I and ¢(0) = «.

Let ¢, and ¢, be two curves at « and let (U, ¢) be a local chart with
xe U. ¢ and ¢, are said to be tangent at x if and only if goc, and goc, are
tangent at ¢(z) e B™ (in the usual sense of tangency in E™). It is simple to
see that the notion of tangency does not depend on the chosen local chart,
provided they are compatible as charts of a differentiable manifold. In the
same form it is clear that the tangency is preserved by a differentiable appli-
cation f of M into another differentiable manifold N: if ¢; and ¢, are tangent
at 2 € M, f(e,) and f(c,) are also tangent at f(z)e N.

It is evident that the tangency at & € M is an equivalence relation among
the curves passing through x. The tangent space T,(M) is the space of the
equivalence classes {c}x T.M), endowed with the structure of vector space
through the usual vector structure on K=, is then called tangent vector space
to M at x. The tangent space to M is defined as T(M) = J T.(M). By taking

xeEM

the dual of T.(M), the ecotangent vector space Ti(M) at x is obtained; the
cotangent space T#(M) is defined analogously as T*(M) = |J T5(M). Both

xEM
manifolds T(M) and T*(M) have dimension 2m if M has dimension m.

Let f:M — N be a differentiable application and {c}, a class of tangent
curves at x € M. The tangent application to f is the application fT:T(M)—
— T(N) defined by

(A.3.1) fmi{et. — {foelu -

The definition is obviously class independent (see above). If g is another
application ¢:N — K,

(A.3.2) (gof)" = g*ofT

(functorial property) and if f is a diffeomorphism, (f~1)T = (fT)-1. The appli-
cation f* dual of f* (or pull-back of fT) is called the cotangent application.

Local representation. Let (U, ¢) be a local chart of M, xe Uc M. A class
{e}. of local curves at « is written in R™ as {poc},.,. The line in R™ (po¢)y, ==
= @(x) + et, 1 €(0,1), where e is the m-dimensional vector D{goc)(t =0)-1
(1 is the natural basis in R), may be taken as a representative of the class
{poc},m. Dl(poc) is the usual Jacobian matrix; given a co-ordinate system
q' =wxiop on M, i=1,..,m,

d Z
D(gioc)(0)-1 :J—gi“-)) f :

=0

Now let f: M — N be a differentiable application and (V, ) a local chart
around f(z). The local representation of f* is now given by

(A3.3)  f"ir, X,) = (f(x), D(yofoe)(0)-1) = (f(x), (Df)(x)- X.) ,
since, by the chain rule,

D(yofoc)(0)-1 = D(yofog~logoc)(0)-1 =
= [D(yofop~1)](poc)(0)-D(poc)(0)-1 = (Df)(x)- X, .
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The second component of the tangent application, D(f)(x}-X, defines the
differential of { through df(X,) = (Df)(x}-X,, where X, is a vector field
(appendix A.4) at x (*). The above relations are shown pictorially in the
following diagram:

R™ RS

( )e . (¥oroc)0)
plx V% 3 -
s AL I D{¥ofop ")-e

local representation of f'
[+ Y,

o} p; ) | drix)

The two components of the tangent application.

((wdwp*):Rm — R*). By taking co-ordinates yofop~! — fi(¢?), i =1, ..., m;

j=1,..,s and Df is the Jacobian of the transformation, of//cq’.

A.4. Tangent and ecolangent vector bundles. Tangent and cotangent groups. —
The triplet (M) = (T(M), ny, M), where the projection m,:17(M)— M
is defined by z({c},) = «, together with the atlas . = {T(U.), 3}, where
{(Us, @a)} gives a differentiable structure to M, has the structure of a dif-
ferentiable vector bundle with fibre RB». Thus (M) is a vector bundle called
tangent bundle to M. Substituting T*(M) for T(M) and ¢; for ¢, one obtains
the cotangent bundle to M, (M) = (T*(M), Ay, M).

It is clear that the changes of charts of 1(M) are given by the differential
(in the usual sense in E») of the changes of eharts (psog.') of the manifold M.
This allows for the following equivalent definition of 7(M): let M be a differ-

entiable manifold of dimension m defined by its maximal atlas o = {Ua, @a)}.
7{M) is the differentiable vector bundle of base M and fibre R™ defined by
the cocyele (Ux, D(pgogy.!)).

A wector field X on a differentiable manifold M is a differentiable cross-
section of t(M); a field of 1-forms on M is a differentiable cross-section of
T*(M).

Local co-ordinates. Let (U, ¢) be a local chart of M and let {x%}, i=1,...,m,
be a co-ordinate system on R™. The set of functions {¢° = x’op} constitutes

(*) When f is an application of M™ on R, df is the ordinary exterior derivative of the
function f. Strictly speaking, in the above paragraph the tangent vector X, should
be replaced by its representation e in B™; we have kept X following a common practice.
The same can be said of the local representations of x and f(z), which more precisely
should be written as ¢(z), fuu(@(®)).
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a co-ordinate system for U c M. A chart of 7(3) on the open set U will be
given by {T(U), ¢"} and thus a co-ordinate system on T(U) will be given by
{¢""} = {¢’, dg*}; the applications dg’ are also frequently denoted by ¢°. In the
cotangent space T*(U) we shall take as a co-ordinate system {¢‘, p, = ¢/d¢’},
where 0/dq* is the dual system of d¢?’; the notation ¢/0¢* corresponds to the
fact that the set of fields on U is in one-to-one correspondence with the set
of derivations of the algebra of the local differentiable functions on U.

A vector field [1-form] on U will be locally written as X = Xi(¢?)(¢/cq?)
[0 = a;(¢?) dg?], where X‘a,] are m differentiable functions on U c M.

Tangent and cotangent groups. Many of the group of transformations which
are relevant in mechanics are defined only on the base space M (through their
action on the co-ordinates ¢?) and not on the co-ordinates and velocities or
on the co-ordinates and momenta which are usually the (configuration and
phase) spaces of definition of physical quantities. Thus the problem arises
of extending the action of a group on M to T(M) or T*(M) in a natural
way. The solution is simple: if @,: M — M, t € R, is a one-parameter group
of diffeomorphisms of M with parameter ¢, the tangent application @7 for
each t is a one-parameter group of diffeomorphisms of 7' (M) whose restric-
tion to M is @,. Thus we may extend to 7(M) the vector field X which gen-
erates @,.

Let X = Xi(¢g’)(¢/0¢’) be the restriction of an arbitrary vector field on M
to UcM. In U, X give rise to a one-parameter group, @, M —- M, @,z —
— @Dy(x), Dy(x) = x, of which X is the infinitesimal generator, i.e.

- . d— P ;
(A.4.1) Xi= T Di(x)

=0
The tangent application @] defines the following action on T(U) (eq. (A.3.3)):

od,
(A42) B, X,) > (D), D(D,)(2)- X,) = (@(x) 2. mw)) :

y
g

where (¢% ¢7) is the co-ordinate system of 7'(U) and X, an arbitrary vector
of T.(U). Now the generator of @], or prolongated vector field X*, is given by

d d . dod;] cX?
T __ (T — [t —Ztgi . Ty
= dt o {t=0 (dt 2 dt og’ q) t=0 (A e )

cq’
- B OO o
(A.4.3) =X g a0 A=A

and thus

To prolongate a vector field X on M to T*(M), one proceeds in an analo-
gous way by constructing the one-parameter cotangent group @; to evaluate
the generator as before. The result is

Gl oX’ 9
-~

Add Xr=xi L _p O

’
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as was derived by using the Liouville form in subsect. 2¢) {eq. {2¢.10)). Both
procedures for obtaining X* are equivalent, since, given a one-parameter group @,
of diffeomorphisms of M, the cotangent group @; preserves the Liouville form,
DA =A.

APPENDIX B

Jet bundles J'(E).

We develop in this appendix the notions of the jet bundles required for
the main text. The concept of jet bundles was introduced by EHRESMANN [45];
the interested reader may also consult, e.g., ref. [7] to which we conform here
most of our notation, and ref. [36, 46]. We shall consider only trivial bundles
when dealing with jet bundles to avoid introducing a connection [7, 10, 11]
on the fibre space E which would complicate unnecessarily the notation. Inthe
general case, we should say (see below) « that ¥ and all covariant derivatives
vanish » instead of simply saying « derivatives». Because of these simplifying
reasons, most of that follows will be written in local co-ordinates.

Despite the fact that only first-order jets are used in most of the main
text, we shall here define the r-jets with generality, since this does not offer
additional difficulties. 7-th order jets are used in the context of generalized
field theory, where Lagrangian densities depend on higher-order derivatives;
see, e.g., [18].

In what follows, the fibre of the bundle—which will be a vector space—
will be on the real field R. The generalization to the complex field is trivial
and directly taken care of in the main text.

B.1. The bundle J'(E) of the r-jets of the fibre space = (B, =, M). — Let
n = (B, n, M) be a differentiable vector bundle on M with fibre V*(R). E will
denote henceforth both the total space and the fibre bundle itself. Let I'(E)
be the set of all differentiable cross-sections ¥ of the fibre E (we shall take ¥
of class C*). I'(E) has a structure of #(M)—modulus on the algebra (M) of
the (0®) differentiable functions on M. F will be assumed to be a trivial
vector bundle (B = M X R»; it will be parametrized by the co-ordinate system
fwr, yo}, p=1,..,m, a=1,..,m), so that I'(E) will always admit a basis
and consequently will be a free modulus of dimension m.

Let z be an arbitrary point of M and r a positive integer. Let I; be the
submodulus of I'(E) composed by the ecross-sections ¥ which are zero at x
up to the r-th order derivative, i.e. such that ¢, , ¥(x) =0 for ¢ =0,1,..., 7.
The quotient

124

(B.1.1) I'(B)[I';=JiE),

whose elements are the classes composed by cross-sections which take them-
selves and their derivatives up to order » the same values at x, is a vector
space over R. The equivalence class of a certain crogs-section ¥ is called the
r-jet of ¥ at @; the point x is ealled the source of the jet and the point ¥(z)e B
the target of the jet. Intuitively one may describe an equivalence class as
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including all the functions ¥: M — E whose Taylor development coincides up
to the r-th term. The union

(B.1.2) U JaE) =J"(B),

with the target projection n".J"(E) — M defined by a7.J(E) — i, has a vector
bundle structure over M, and will be called the vector bundle (J"(E), n", M)
of the r-jets of E. As a particular case, J(H) = L.

For convenience, we give now another definition of the bundle J7(E) which
is more general, since it does not require a vector structure for E [7]. Let
(E, m, M) be a differentiable fibre bundle over M and I'(E) the space of its
differentiable cross-sections. On I'(E) X M we may define the following equiv-
alence relation:

(B.1.3) V@, Wel(B), Vo,oelM &, 0)Z ', 2,
if

b) ¥ coincides with ¥’ up to order 7,

Oy, Pl2) = Cpsg P (20 g=0,1,..,7.

The quotient set, I'(E)X M|/# = J'(E), is the space of the r-jets of E.
The projection (¥, x) —x of I'(E)XxM — M goes to the quotient and thus
defines a projection x7.J7(F) — M which gives to J7(E) the structure of fibre
bundle over M. The fibre over x, (z')"'(2), may be identified with the space
J(E) previously defined in the case that E be a vector bundle. Note finally
that, since two cross-sections coinciding up to order r also coincide for »' <,
one may define the map

(B.1.4) ar J(E) - J7(B),

which intuitively corresponds to retaining the first »' terms of the Taylor
development initially given up to order r.

Given a section ¥ e I'(E) and a point x € M, the pair (W, 2)c I'E)x M
belongs to one of the classes of I'(E)X M/%, precisely the one characterized
by the # first derivatives of the section ¥ taken at x. The application

(B.1.3) LB = T(J(®),  j - =7,

where j7(¥)(x) is the class defined by the first » derivatives of ¥ at z, is called
r-jet prolongation (or extension) of ¥ and is written as j7(¥) or simply ¥* (in
general, jet prolongations will be denoted by a bar).

As a particularly simple example of a 1-jet bundle, let us congider now
the ease for which F = EX M -Z- R, where M is a differentiable manifold.
I(E) is then the set of curves of the manifold M, and the equivalence rela-
tion (B.1.3) for » = 1 is written as (with ¥ =¢, te R)

(e, h Z (¢/, 1) Ve, e'(E) and t,t'€ R,
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if @) t =1 and b) de/dt = dc'[dt’, i.e. #' places in the same class all the
curves with the same tangent at f. The tangent thus characterizes the equiv-
alence class, and I'(F) X R/#" is nothing but the vertical tangent space to E,
T°(E) = Rx T(M), where T(M) is defined as in appendix A.3. We then have
JYE) = RXT(M), and this will be the space of definition of (time dependent)
Lagrangians (sect. 8).

B.2. Co-ordinate system on J'(H). — Let Uc M, a(U) ~ UXR™ and let
{x#, y*} be a co-ordinate system for z~(U)c E. For the set of local sections
I'(z=(U)) the equivalence relation (B.1.3) may be expressed in the form

(B.2.1) (&) Z (P, ')
if x =2 and

y*() (@) = y(¥') (),
(B.2.2) Ouy*(PHw) = Cuy(¥')x),

Oyt Y EN@) = 0y, y* (V') ()
The functions on I'(z~3(U))x U defined by

y* (¥, z) —y¥(¥)(=),

(B.2.3) {/Z 2.(31", fff) o aﬂe{a(}ff)(x') ,

."/;:b..y,. : (Wy m) - am”,y“(y/)(“') ?

are stable through the equivalence relation and define on the quotient set
functions on J7(#*(U)). Thus the set of functions {&*, ¥ Yn., Yniues -y Yonsin}s
symmetric in the lower indices, constitutes a co-ordinate system on J(z~%(U))
(as customary, we will not often distinguish between y=, y*(¥) or ¥=; no
confusion should arise from that). In this co-ordinate system the projection
(B.1.4) is written as

(B.2.4) ﬂr’r,:(x#9 ?}a’ 3[,313 ey yﬁl...y,) - (‘T‘u: 3!“9 ?fzn seey ?}'z,.“p,')
and the jet prolongation (B.1.5)
(B.2.5) JP*) = (4% 0¥ ovy Cppn¥™) -

Note that not all sections ¥ e I'(J7(E)) are r-jet prolongations of some sec-
tion ¥We I'(F) and that, in general, yy . # 04 .. ¥% In contrast, given a
point (z*, ¥% Y., -y Yp,.u,) € J7(H), there is always a local section ¥ such that,
at z,

(B.2.6) Yirnd®) = Oy (F)() q=0,1,..57,

as may be verified by writing ¥ as a formal Taylor series around x with coef-
ficients (¥% 5., .-y Yioon) (@) [46, 47].
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It is simple, from (B.2.6), to characterize the r-jet prolongation of e l'(E).
Let us consider the set of structure 1-forms on J7(¥ {6,,1 w0 =1, ., m,
s =01, ..,+—1, defined by the following local expressmn

(BQT} ﬂ;jrulls = dyzlmﬂs - yzx-»-ﬂaﬂ da# .

Then the 7-jet extension j*(¥) = ¥ of ¥ e I'(E) is the only cross-seetion of
J7(E) such that j is an injection of I'(E) into [I'(J7(E)) and

(B.2.8) 0. us'w' =0.

Thus j7(I'(E)) appears as a relative integral of the noncompletely integrable
Pfaffian system {05 .} We shall see in the next section that this charac-
terization is specially useful in defining the jet prolongation of vector fields.

B.3. The r-jet prolongation to I'(1(J7(K))) of a vector field of I'(7(E)). — The
r-jet prolongation j7(X)= X" of a vector field X on ¥ may be obtained by
considering its action as a one-parameter group on K (and on M in partlcular)
and on I'(E). Given the action of the group on I'(E)x M and by taking the
quotient by £, the generator of the group on J"(E) is j(X). However, we
may take advantage of (B.2.8) and define X* ag follows.

‘Given a vector field X on E, its r-jet prolongation by j" is the only Vector
field on J7(E) such that X~ is an infinitesimal contact transformation (i.c.t.),
such that

(B.3.1) 0% s = z AGre 08 Ly s =0,1,..,r—1.

s'<Cs

In this way, the stability of the Pfaffian system {65 ,} under X+ guarantees
that r-jet prolongations are mapped onto r-jet prolongations.

Condition (B.3.1) allows us to calculate explicitly X+ as well as AZx 7.
For instance, for the 1-jet prolongation we write

c B - 2
2 4' = v BY e (v BY — 1 3
(B32) X = Xaryyh) g+ X izs, D=X+ Kigs
and obtain
. OXo oX»
{B.3.3) A5 = —817_87/5‘% ,
v, 0Xe  0X aX“ g CX”
B34 i = G ¥ g Vs YR 0
For the 2-jet prolongation we put
5 5. ©

{B.3.5 X=X 1L X Xe =
{B.3.3) + X3 qyz + oy

and similarly obtain [18], besides (B.3.3) and (B.3.4),

. X« N oXxn . oXe
(B.3.6) A= Ggs Vs A= Wa" ;
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together with

- T aX“ & C_(Y]
(B.3.7) Xiv= 5 — Vi 5,y + A5u¥s + A5ly0,

The above procedures of evaluating the jet prolongation are not the only
ones. For example, one may take advantage of the duality existing between
the Pfaff systems and the associated differential systems. For instance, the
system of fields P+ orthogonal to the Pfaffian system P = {f» = dy>— y5 da#}
is clearly generated by the fields Y, and Z; given by

. 0 5 © . 0
(B.3.8) }M:m+y”@’ 75 =

since (A Y, + A4528) = 0. Thus, as it is evident that [X?, Z]e P+ (X# and
X* do not depend on y;), the 1-jet prolongation is given by the condition

(B.3.9) (XY, Y] = ALY, + P2 —— 5

Indeed, (B.3.9) is sufficient to determine, besides A} and Fj,, the expressions

(B.3.2)-(B.3.4) for X'. That this should be the case is easily shown:
(B.3.10) (L) (Y,) = A8*( X2, Yu) -+ (dig*)(Y ) -

By using the identity

(B.3.11) A2(X, Y) = Ly Q(Y)— Ly 2(X)— Q([X, Y]),

valid for any 1-form £, the first term of the r.h.s. of (B.3.10) gives
(B.3.12) 495X, ¥,) = — X5 —0+([ X1, Y1)

and, since the second is X%, we get

(B.3.13) (Lgpf*)(Yu) = —0~([ X7, ¥..])

and thus Ly = A308 and (B.3.9) imply each other.

The abm e procedure% of introducing the 1-jet prolongation of vector fields
on I are of mathematical character. We can give, in addition, one more way
of defining X! which is directly relevant to the symmetry problem considered
in sect. 14. Consider the Lie derivative of the Poincaré-Cartan form (11a.8)
and (11a.9):

0¥
oy

0¥
(B.3.14) L0 = (I/Xx )0“/\% + == e (LPG“)/\O” -+

0¥

~|— a a@ A(LXIG,,) —i—Lxl(yO))
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When the Lagrangian density is regular, both formalism on J(#) (PI for %,
PII for @) give the same results (subsect. 11a)). It is then natural to require

(B.3.13) L3085 = (L) p

for the 1-jet prolongation X! on J(E) of vector fields X on E. In fact, it is
clear, by using (B.3.2), that the second term on the r.h.s. of (B.3.14)—which
has to be zero, since the first and the third do not contribute to (B.3.15) because
of (B.2.8)—again reproduces (B.3.4).

As a final remark on j', we note that j' is an isomorphism between the
algebras defined by the fields on ¥ and their images on J(E), since j! is an
injection and

(B.3.16) JHIX, Y]) = [*(X), 4T,

as may be checked by direct computation. This important property guarantees
that the structural relations between generators on F are not lost in the
process of extending their action to J(E).

Ag an application of the above general procedure let us consider as in
appendix B.1 the particular case for which K is the trivial bundle B = M X
X I -~ R, where M is a differentiable manifold of dimension n. A vector
field on F is written as

0 0 .
(B.3.17) X:X,aJera—qi, i=1,..,n.
The Pfaffian system is defined by (6], = 0 =>¢* = dq’/dt)
(B.3.18) P—{pi =adg'—giat}, i=1,..,n,

and the 1-jet prolongation of X is given by (cf. (B.3.4))

a T m

(B.3.19) X=X+ ( p O o ) ¢

When the field X is a vertical field (X, = 0) and «independent of time»
(which is the case of the mechanies «independent of time», sect. 2 and 3)
X1 coincides with the generator (A.4.3) of the tangent group on T(M) asso-
ciated with the group on M generated by X.

As an example, we may evaluate the expression on R X T(M) of the Galilei
boosts. This is obtained by applying (B.3.19) to their expression on RX M

. 0
(B.3.20) Xy = 100y a_q] ’

which leads immediately to the result

— .0 .0
(B.3.21) iy = 1ol 305 + oz
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B.4. The prolongation to I'(1(J*(E))) of a vector field of I'(7(E)). — On J'*(E)
there is no canonical way of establishing a notion equivalent to the 1-jet
prolongation on JY¥). However, once a diffeomorphism between both spaces
is established, we may associate to ¥, — J.y* the corresponding one in J*(kK).
For regular Lagrangians, the Legendre transformation is such a bijection and
it is possible to associate to 0,y* the corresponding momentum s ((11b.1())).
Thus it is natural to define as the j** prolongation of the field X of (B.3.2)
the vector field on J'*(KE)

(B.4.1) Xy xm o

b
* ot

which is determined by the condition

(B.4.2) Ll = A30%

where the (% are defined by (14.7). As was to be expected, A3 is given by

oXe* o cX

(B.4.3) Ay —— =

and

(B.4.4) Xiv =

oyP  Oat dyb

A [eXs_eor QX | oof (002 o
dyidyi|ous ~ omy dwe " g \Oy?  omj oy’ )]’

i.e. the field on J'*(E) is defined as the field transformed by the derivative
of the application D, (which acts trivially on the components X» and AX'¢).
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