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1. - I n t r o d u c t i o n  a n d  m o t i v a t i o n .  

Einstein 's  general theory  of re la t iv i ty  considered as the most  beaut i ful  
creation of a single mind is just  not only a beautiful  theory,  but  also has been 

vindicated as the most  viable theory  of astrophysics [1]. Though theoret ical  
astrophysics has been a subject  well pursued since the t ime of Jeans  and Ed- 
dington, it got a t remendous  imperils during the last  two decades af ter  the  

advances in radioas t ronomy.  :Thanks  to the  modern  developments  in space 
technology, today  wa are able to s tudy the Universe  through the entire electro- 

magnet ic  spectrum star t ing f rom radiowaves and going up to ~(-rays. The last  
few years have  seen the b i r th  of infra-red as t ronomy,  ul traviolet  a s t ronomy,  

X - r a y  as t ronomy and ,f-ray as t ronomy.  One of the fundamenta l  contr ibut ions 

of general re la t iv i ty  to astrophysics is the gravi ta t ional -wave a s t ronomy which 

is being pursued very  seriously. Excellent  review articles exist on the  s ta tus  

of these fields as of today  [2]. As a consequence of these developments  we 

are now aware of a mos t  as tounding Universe around us consisting of very-  

high-energy reservoirs like quasars and  X- ray  binaries, on the one hand,  and  
intriguing clocks like pulsars and perhaps  the black holes, on the other. I t  is 

a kind of feast  for theoretical  astrophysicists  to p lay  around with theories and 
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construct models for these high-energy sources. But so far no convincing the- 
ory has been proposed to explain the radiation from these sources. Though the 
definite mechanism has not been understood, it is generally believed that  the 
radiation emission could be due to plasma processes near compact objects 
like neutron stars and black holes [3]. Thus it becomes necessary to consider 
plasma processes in intense-gravitational-field backgrounds, as such compact 
objects would be massive enough to produce noticeable space-time curvature 
effects. There have been treatments wherein models do take into account grav- 
itational fields, but restrict themselves to a Newtonian formulation. Surely 
these treatments are not adequate enough if one is thinking of black holes as 
the source of gravitational field. Few models do take into account special- 
relativistic effects up to the extent of considering the charged particles to have 
very high velocities [4]. In our opinion the discussions of plasma processes 
in such situations, particularly those concerning accretion plasma disks, should 
be taken up on a curved-background geometry, as even a 1M o neutron star 
will have a very high gravitational field in its immediate vicinity and more so in 
the case of black holes. As ~ prelude to considering plasma processes on curved 
background (general-relativistic formulation), it is necessary to first consider 
single-particle dynamics, before going onto collective effects. This prompted 
us to review the state of the subject-particle orbit theory in general relativity, 
particularly concerning the characteristic trajectories of charged-particle motion 
in various background geometries with combined electromagnetic and grav- 
itational fields. 

In fact it is well known that  the best way to understand the structure of 
any field is to study the dynamics of test particles in that  field. In general 
relativity, wherein the gravitation is represented by the space-time curvature 
of the underlying manifold, the structure of the manifold can be completely 
studied through the geodesics of the manifold which represent the trajectories 
of test particles in the absence of any other external field [5]. Along with the 
gravitational field, if there are other fields present like u Coulomb field or a 
spin field, the particle trajectories will still be geodesics only if the gravita- 
tional field does not interact with these external fields. On the other hand, 
if the particle is charged or has spin, then the particle deviates from its 
geodesic motion and the study of such trajectories would reveal information 
about the influence of these interacting fields on the geometry and vice versa. 

Concerning the study of geodesics, there already exists a number of articles [6] 
and thus we restrict this review only to the motion of charged particles in 
combined gravitational and electromagnetic fields. 

The trajectories of ~ charged particle of charge e and rest mass M0 in an 
electromagnetic field in general relativity are given by the covariant Lorentz 
equations 

(1.1) u ~ y  -- (e/Mo)P'ju~, 
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wherein u ~ = dx~/ds is the four-velocity of the particle and F~j is the electro- 
magnetic-stress tensor. The semi-colon denotes the covariant derivative, taken 
with respect to the space-time metric associated with the background geometry 
as given by 

(1.2) ds 2 = g i j d x i d x  J . 

In general g , ,  the metric potentials, should be obtained as solutions of the com- 
bined set of Einstein-Maxwell equations in the usual notation 

(1.3) R i j -  ~l Rgi~ = - -  (87~G/e2) Ei~ 

wherein E , ,  the source term, is provided by the accompanying electromag- 
netic field 

(1.4) E i j  -ff i k ~ i  k 1 . ~ ]~kl --- __ ~y i i z ,  klz' 

with F ,  satisfying the covariant ~[axwell equations 

(1.5) FiJj  : J i ,  ~iJ,k -~ FJk,i  ~-  Fki ,  j : O ,  

J~ being the current vector. 
Thus, in principle, to get the trajectories of charged particles in a manifold 

with space-time curvature produced by certain electromagnetic fields, given 
by F , ,  satisfying (1.5), one should solve (1.3) for g , ,  using these F ,  and then 
integrate the orbit equations (1.1), using the g ,  so obtained. This is well said 
in principle, whereas in practice it is almost impossible to solve exactly the 
complete set of Einstein-Maxwell equations for arbitrary electromagnetic fields. 
Recently KIN:NERSLEY and CHITICE [7] have extended an earlier prescription 
of Kinnersley for generating space-time metrics for stationary axially sym- 
metric fields by using an infinite-parameter symmetry group of transfor- 
mations, a review of which may be found in [8]. However, the solutions so 
obtained would not all be physically plausible, as all the transformations in- 
volved do not preserve asymptotic flatness. There are quite many solutions 
with cylindrically symmetric electromagnetic fields [9], but these again are not 
all astrophysically significant. Our aim in this review being a study of charged- 
particle motion in astrophysical situations, we will consider only solutions of 
astrophysical interest. 

I t  is indeed remarkable that the only known class of solutions of astrophysical 
interest are the ones front the Kerr-Newman family [10] (which incidentally are 
exact solutions of the Einstein-Maxwell equations) which represent the geom- 
etry outside a black hole with three characteristics, the mass m, the charge Q 
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and the angular momentum a, given by  the live element:  

(1.6) 

wherein 

ds ~ : -- (LJ/Z)[dt -- a sin 2 0 dq~] ~ + (Z~zI) dr ~ + 

+ 2:(I0 ~ + (sin 20/Z)[(r ~ + a 2) dq~ - -  a 4 t ]  2 , 

gl : r 2 - 2 m r  + a 2 + Q2 , _F _~ r ~ + a 2 cos ~0. 

As is well known, this solution reduces to tha t  of Kerr  (Q ~ 0), Reissner- 
Iqordstr6m (a ~ 0) and Schwarzschild (a = 0, Q --  0). Because of the charge 

and ro ta t ion  there  is an induced magnetic-dipole field of moment  Qa. CXl~TE~ 
was the first to obtain the complete sot of integrals of motion for a charged 
particle in this geometry.  He  elegantly exploited the fact tha t  the charged 

Klein-Gordon equation in this field is separable, which in tu rn  ensured the 

separabil i ty of the Hamil ton-Jacobi  equation. A detailed review of this work 
ma y  be found in [11]. RUFFINI and his co-workers [12] have worked out the  

dynamics of charged particles in the Kerr -Newman and Reissner-:NordstrSm 
fields, whereas HoJlvrA~ and HOJM&N [13] have discussed the motion of spin- 
ning charged particles in the Kerr -Newman background. However,  in these 
classes of solutions the basic field associated with the central star is an electro- 
static field due to the charge~ apar t  from the gravitat ional  field. But  astro- 
physically more interesting are solutions having electromagnetic fields, as 
most  of the celestial bodies a re  endowed ,with magne t i c  f ie lds  ra ther  than  
net  charges, t tence  one should look for s:olutions of Einstein-Maxwell equations 
which are asymptotical ly flat and have nonzero dipole magnetic moment ,  even 
in the absence of rotation. These systems of equations are formidable to solve 
in general. However,  there are some solutions, obtained by per turbat ion  tech- 
niques under the assumption tha t  the electromagnetic field is weak compare'~l 
to the gravitat ional  field and t husd t  does not  affect the basic geometry.  This 

is achieved essentially by  solving the curved-space Maxwel l  equations on a 
given background. This assumption is not  bad, fo r  even the most  intense mag- 
netic field associated with pulsars of, s~y, about  10 ~2 G carries an energy which 

is very  small compared to the gravitat ional  potential  energy on the surface 
of a neutron star of 1M o. Thus it is quite reasonable to assume tha t  the mag- 

netic field would not  affect the space-time curvature,  b u t  the curvature  could 
affect:the magnetic field. With such an assumption GINZBU-~G and OZERNOI []4], 
PETTEr~SO~ ~ [15] and more recently BICAK and Dvo~AIC [16] have obtained 
solutions for a dipole magnetic field on Schwarzschild background,  whereas 
using a similar approach CHIT~E a n d  VISHVESHWAI~A [1 7 ] ,  PETTEI~SON [18] 
and KI~'~ e t  a l .  [19] have obtained solutions for s ta t ionary electromagnetic 
fields on  a Kerr  background. WXL~) [20] has obtained a solution for a uniform 
magnetic field on a Ke r r  background. Charged-particle dynamics in such electro- 
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magnetic  fields have  been extensively studied by  PlCASANi~A and VA~MA [21] 
for the Schwarzschild background and by  PI~ASA~A and VlSnVESHWAlCA [22] 
and PlCASA~A and C t t A K I C A B O I ~ T Y  [23] for the Kerr  background.  

We give in sect. 2 the basic approach in all these studies which is almost 
the  same (Lagrangian formulation) and in sect. 3 we consider the  trajectories 
in Reissner-Igordstrem and Ker rdqewmann geometries. In  sect. 4 we consider 

the  trajectories of a spinning charged particle and in sect. 5 particle dynamics 
in electromagnetic fields superposed on Schwarzschild and Ker r  background 
geometries. Section 6 deals with motion in Erns t  space-time and sect. 7 gives 

some discussions. 
The nota t ion adopted is more or less usual with Einstein 's  summation 

convention and the  differentiation with respect to the pa th  parameter  s 
being indicated by  an overhead dot. The physical parameters  tha t  appear  are 
normalized with respect to the particle rest mass Me and we use throughout  

spherical polar co-ordinates r, 0, ~v alongwith the natural  units G = 1, e = 1 

and the signature of the metric + 2. 

2 .  - B a s i c  a p p r o a c h .  

In  all the  cases tha t  we are going to consider the  gravitationM as well as 
the  electromagnetic fields are bo th  axisymmetric  or spherically symmetr ic  and 
s ta t ionary or static. These symmetries imply the  existence of two Killing 
vectors,  ~ the timelike Killing vector,  corresponding to the to ta l  energy of the 
part icle being a constant  of mot ion and ~i the spacelike one, corresponding to  
the canonical angular momen tum of the particle being a constant  of motion. 

In  the absence of interact ing external  fields the scalars ~ u ,  = -  E and 
~u~ = l are constants along the geodesics: 

(2.1) u ~ j u  s = O . 

On the  other hand, in the presence of external  electromagnetic fields, these 

scalars are generalized in a simple way as given by  

(2.2) 

and  

(2.3) 

(U i ~- e A i ) ~ i  : _ E 

(u~ -4- eA~)  ~ = 1,  

which are constants along the trajectories 

(2.4) u i u ~ ~ e-Ei~u j , ;J 
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if and only if the vector potential A~ satisfies the Lie transport equation 

(2.5) Ai:~K ~ + A~K~t ~-- O, 

wherein K ~ is any Killing vector and 

(2.6) Fij = Aj ,  i -  A i ,  j .  

:In the above treatment, the Killing vectors ~ and ~ are normalized and are 
given by 

(2.7) ~ =  6~, ~ =  ~ .  

These features may also be clearly brought out in a Lagrangian formalism 
(which is generally used) as follows. )'or a particle of rest mass Me and charge 
e moving in combined gravitational and electromagnetic fields represented 
by the potentials g ,  and A~, respectively, the Lagrangian of motion is 
given by 

(2.8) ~f  = l g ~ j ~  + e A ~ .  

If the fields a, re stationary (or static) and axisymmetric (or spherically sym- 
metric), then the Lagrangian is independent of the time co-ordinate t and 
the azimuthal co-ordinate ~. 

(2.9) 

and 

(2.10) 

This naturally gives two constants of motion: 

~ _ ~ l ~ t  = - E 

~ e / ~ e  = z. 

By identifying the four-vector u ~ as d # / d s ,  it may be easily seen that  (2.9) 
and (2.10) are the same as (2.2) and (2.3)7 as the most general class of metric 
that  we intend to use in our discussion is stationary and axisymmetric, viz~ 

(2.11) ds2 _~ g . d r  ~ ~ goodO 2 ~- gr162 ~ + 2gt~ dt dq0 + g,  dt ~ 

with g ,  being functions of r and 0 alone. 
The above two constants of motion may be written as 

(2.12) 

and 

(2.13) 

gt~u ~ ~- gtr162 ~ --  (E + eAt) 

gr t + gr162162 z l -- eAr  
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F r om these two equations we can s t ra ightaway obtain two first integrals of 
motion u t and ur as given by  

(2.14) 
--[gq~,~(E + eAt) ~- gtr 

U t = - _ _  

g r  g~r 

(2.15) u ~ =  
gtr -f- eAt) + gtt( l--eA,~) 

gr162 - -  g~,p 

As we will be interested only in considering trajectories of real particles (tar- 

dyons) the velocity four-vector  u ~ should be timelike, which for metric of sig- 
nature  Jr 2 is expressed as 

(2.16) gi~uiu j = --  1 ,  

which gives us one more first integral of motion. If  in part icular  one considers 
the  trajectories in the equatorial  plane of the central  source given by  0 ---- ~/2, 
u s = O, then  eqs. (2.14) to (2.16) will give all the  information about  the n~ture  

of the  orbits. In  this case u ~, the other  first integral, m ay  be obtained di- 

rect ly  by  using u ~ and u~ from (2.14), (2.15) in (2.16) as 

- - 1  
z - - - - o  (2.17) (u')2 g,.~D 

wherein 

�9 {D + gtt(1--eAq~)2+ g~q~(E ~- eAt)2~ - 2gt,~(E ~- eAt)(1--eAq~)},  

2 D ~- g~r --  g ~ .  

As u" gives the particle proper  velocity in the r-direction if one considers the 
equation u" = 0~ it gives the turning points for the particle in its orbit. Fur ther ,  
at  the points u" = 0 the particle is in equilibrium under  the interacting grav- 
itational,  electromagnetic and centrifugal forces and thus the energy of the 
particle ~ i n ,  calculated at  u" ---- 0, gives the (( effective potential  energy~ tha t  
it carries when subject to the balancing forces. Thus~ by  solving the equat ion 
u" = 0 for /~, one can compute  the (( effective potent ia l  ~>, often denoted by  
V , ,  for the particle in its r-motion. Then, by  studying the s t ructure  of V~ft, 
for different values of the constants 1 and E, one can get a complete picture of 
the nature  of orbits regarding their  boundedness and stability. This approach 

of analysing the  part icle orbits is well known and has been used earlier b y  
ma ny  authors  in connection with the s tudy of geodesics [6]. 

F rom (2.17), by  taking u ~ = 0, the effective potent ial  m ay  be obtained as 
given by  

(2.18) V,~ ~ E_+ = -- e A t -  (g,q~/gq:r eAq~)-4-(1/gr162162 ( l -  eAr ~ , 
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the  • indicating the positive- and negat ive-energy states for the particle, with 

obviously different domains of dependence. 

3. - Mot ion in Reissner-Nordstri im and Kerr -Newman geometries.  

As ment ioned  in the  introduction,  the  K e r r - N e w m a n  solution which in- 

cludes the  Reissner -~ords t rSm one has now been fully established as the  
unique solution of the  Einstein-Maxwell  equations representing the  external  field 

of a black hole with mass,  charge and  angular  m o m e n t u m .  The s tudy  of the 

charged-part ic le  mot ion  in these geometries has been considered by  m a n y  

authors  and we present ly  discuss the results of Ruffini and co-workers [24-26] 

for the  R:N geomet ry  and of H o j m a n  and H o j m a n  [13] for a charged spin- 

ning part icle in the K ~  geometry.  

The Reissner-Nords t r6m metr ic  

(3.1) ds ~ --~ - -  (1 --  2m/r -t- Q2/r~) dt 2 Jr- (1 --  2m/r ~- Q~/r~)-ldr 2 Jr- 

r ~ dO s + r 2 sin 20 d~'- 

represents  the  space-t ime exterior  to a self-gravitat ing charged mass,  wi th  
charge Q and mass  m (both expressed in length units), whose electrostat ic field 
is given b y  the  vector  potent ia l  

(3.2) A i = (0, O, O, - -  Q/r).  

I f  one considers a charged part icle in this space-t ime, with charge e and 
mass  M, t hen  in the  equatorial  plane of the  central  body  one can obta in  the 

effective potent ia l  for the r -mot ion of the  particle f rom (2.18) as given by  

r - T r / ~ / ]  " 

AS m e n t i o n e d  earlier, the  4- sign corresponds, respectively,  to the positive- 

and  negat ive-root  s ta tes  E+,  such t ha t  

(3.4) l im E+ : -[- M0 and lim E_ : - -  Me. 
r ~ o o  r---> r 

Figure  1 gives the  effective-potential  curves as obta ined  b y  RUFFI~I for dif- 
ferent  values of e, for a fixed 1 in the  case of the  ex t reme  Reissner-NordstrSm 
solution for Q : m. Depending on the  charge e, one would have  eQ > 0 or 

< 0, wherein for the case eQ < 0 negat ive-energy s tates  of posi t ive-root  so- 
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lut ion can exist in the region 

(3.5) m q- (m" -- Q 2 ) ~ < r < m  q- [m ~ --  05(1 - -  e2)]i, 

called the  (~ effective ergosphere )). 

9 

: r 

L u 3) 

,ol L 

F neg~lve-energy states 

stobte 
/ 

I ! 

-1.0 

10 15 ~o 

Fig. 1. - Effective potential Vr in an extreme Reissner-NordstrSm geometry ((2/m = 1) 
for a p~rticlc of charge e and rest mass ;If o [12]: l) e/Jlo= 2.0, 2) e / M o :  1.0, 
3) e/M o=0.0,  4) e/M 0 - - 1 . 0 ,  5) E / M  o - - 2 . 0 ,  U~uns tab le .  

DENARDO and RuvFI~*I [24] conclude tha t ,  as a consequence of such so- 
lutions~ it would be possible to ex t rac t  electrostatic energy f rom a Reissner- 

:NordstrSm black hole in the same sense as in Penrose process for Ker r  b lack 

holes, which is envisaged as follows: a particle Po coming f rom infinity enters 

the effective ergosphere, wherein it splits (decays) into two particles P1 and P2 

such tha t  the particle P1 with a charge opposite to t h a t  of the black hole is 

sui tably  projected inside the horizon, whereas P~ is pushed out with energy 

higher than  t ha t  of Po, the incident particle. I t  has been claimed [12] tha t ,  if 

an ex t reme l~eissner-NordstrSm solution is t ransformed into a Sehwarzschild 

solution by  reversible t ransformat ions ,  up to 50% of the to ta l  energy of the 

black hole can be extracted.  However ,  in our opinion~ this process of energy 

ext rac t ion  is ex t remely  unnatura l  for two reasons: i) i~ is highly improbable  

t ha t  black holes with net  charge (like the  I~N black hole) wilI s tay in equilib- 

r ium a t  sites where continuous pair  product ion could be  taking place~ ~nd 
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ii) as there are no magnetic fields associated with such black holes, the part icle 
decay mechanism cannot  be very  effective. 

F rom the effective-potential curves (fig. 1) it can be seen tha t  the charged 
part icle can have circular orbits corresponding to the  extrema of i~, ,  of which 

some are stable and others unstable. RUrFINI and ZERILLI [26] have analysed 

these circular orbits, the equations governing which are given by  

(3.6) (Ugo= ~ r - b  1 - - - - ~ - - ~ ( §  ' 

/m q2\ eQ I 
(3.7) (o: : [ ~ o - - ~ o ) - - ~ o / ( U  )o, 

eQ 
(3.s) E _1 --  + (u% 

= r o + ~  re ~ " 

Wherein  re denotes the radius of the orbit  and ~Oo = (dg/dt)ro the angular  ve- 
locity measured by  a distant  observer. These equations may  be obtained di- 

rect ly  f rom the general equations of sect. 2 for the metric (3.1) through the  
conditions defining a circular orbit given by  

(3.9) (ur) .... ~ O, (du' /dr)  ... .  ---- O, 

which give, respectively, 

( " 
Q2 

(3.10) 1 - - - - -  -}- (ut)g ---- 1 + r~wg(u*)o 
re 

and 

[ro rX ] (u')~~ = ~o (ut)~ + r~176 " 

As has been found by  RuFFI~TI and ZEI~ILLI, these circular orbits are stable if 

and only if eQ/m < 1. The radius and the binding energy of the t ight ly bound 

circular orbit  increases with the value of IeQ[. In  the limit ]eQ]-+ c~, they  
find the energy of the particle to go as 

(3.12) E ~. -- 2[(rein -- Q~)/(r~ - 3rare + 2Q~)](cQ/ro) - 

-- (r~ -- 2rare + Q2)/cQro + O(ro/eQ) ~ , 

whereas for the max imum bound orbit the radius and the energy are given by  

(3.13) r . ~  ~ (~/~ leQI) ~ 
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and 

(3.14) 
3 m  

Em~x ~'~ ~ (2/ leQ I) ~ , 

which in fac t  corresponds to  the  last  stable circular orbit.  On the  other  hand,  

the  s t ructure  of the effective potent ia l  shows tha t  it is possible to  have  few 

more  circular orbits which are bu t  unstable.  Of these orbits the  last  one occurs 

for  E -+ ~ and  thus  found to  be a t  

(3.15) r ---- r~,. ---- [3m -~ (9m 2 -  8Q2)�89 

I n  fact  i t  is interest ing to see t ha t  this last  unstable  circular orbit  occurs a t  

the  same value of r even in the  case of an uncharged particle [27]. 

Thus a charged part icle in the  vicini ty of a Re i ssner -~ords t r6m black hole 

can have  circular orbits which are unstable  in the  region 

r~i , < r < r~ 

and  stable for r > rm~ x. I n  general the pa ramete r s  of the last  s table circular 

orbi t  can be obta ined f rom the expression for the  effective potent ia l  b y  using 

the  criteria of s tabi l i ty  th rough  the  ex t r ema  of the effective potential .  RUFFI~r 

and  ZERILLI point  out t h a t  t he  binding energy of a part icle in the  last  s table 

orbi t  increases very  rapidly  with decreasing value of e and  the  particle velocity, 

say V,  tends towards  the  local l ight velocity V~, whereas in the  entire family  

of unstable  circular orbits for a fixed value of e the  rat io  V / V ~  increases mono- 
tonical ly for discreasing values of the  radius and  V -+ V as the  radius --> rmi . .  

While analysing these orbits, RUFFINI and co-workers have  also considered 

the  question of radia t ion emission and this we shall consider a t  a la ter  stage. 
As pointed out earlier, C~TE]~ has given a very  general  t r e a t m e n t  for the  

dynamics  of a charged part icle in the  vicini ty of a K e r r - N e w m a n  black hole, 

wherein he has obta ined the  complete  set of first integrals of the orbit  equa- 

t ion as 

X u  ~ =- R~ , X U ~ = O~ , 

(3.16) Z~u ~ -~ - -  a ( a E  sin s 0 - -  l) + (r 2 J r  a"-) P A - ' ,  

wherein 

Z u  ~ = - -  ( a E  - - / / s i n  2 0 ) +  a P A - ' ,  

(3.17) 

1 J =- E ( r  2 -}- a ~) - -  la  - -  e Q r ,  

/ ~ - - 2  5 - A ( r  ~ + K ) ,  

0 ~- K -  cos 2 0[a2(1 - -  E 2) + /~ / s in  z O ] -  ( 1 -  a E )  2 , 



12 A. R. PRASANNA 

K, E and 1 being constants of the motion along the t ra jec tory  of the particle 
and 2: and A, the metric coefficients us defined in (1.6). The effective potentials 
for the r-motion and 0-motion may  be obtained directly by  solving R ~ 0 
and O ~ 0, respectively. Some quali tat ive remarks concerning circular orbits  

m a y  be found in [28]. 

4. - M o t i o n  o f  a charged sp inning  particle.  

Apar t  f rom the charge, if the particle also possesses spin, then  there will 
be dynamical  effects because of either spin-orbit coupling or spin-spin coupling. 
In  the case of a spinning particle again the particle orbit will not  be geodesic. 
Though the general equations of motion of a spinning test  particle were first 
obtained by  MATHISON [29], the equations are known after PAPAPETlC0U, who 

derived them for the general pole-dipole particles [30], and are given by  

(4.1) 

and 

D S ~  (4.2) 
Ds 

DPu _ 1 Rup~au~S~a 
Ds 2 

wherein P# and S ~ are the c~nonical linear and angular momentum of the  
part icle connected through the relation 

(4.3) pu u~, -- pv uu __-- Su~ o',,Y -- o-uZ S~ 

with u~ and a,  ~ representing the particle four-velocity and the  angular velocity. 
D / D s  as usual represents the covariant  derivative and Rumba represents the  
space-time curvature  tensor of the underlying manifold. 

P~ASA~A and KUMA~ [31] have considered the motion of a spinning charged 

particle as governed by  eqs. (4.1) and (4.2) in an axial magnetic field as given 

by  Melvin's magnetic universe [32] 

(4.4) ds ~ : exp [2~o] (dr ~ -- dr ~ -- dz *) -- r ~ exp [-- 2y] d92 

with ~ 0 = l n  (1-}- ~B2r~), B being the magnetic-field intensity. In  the ap- 
proximat ion wherein they  neglected the spin-orbit coupling they  found tha t  
the  part icle in a circular orbit  will not  be disturbed very  much and tha t  the  
spin precession is affected very  little by  the gravitat ional  field due to the mag- 
netic energy. On the other hand, their  equations indicate that ,  if the spin-orbit 
coupling is not  neglected, then the particle seems to execute an oscillatory 



GENERAL-I~ELATIVISTIC ANALYSIS OF CHARGED-PARTICLE MOTION ETC. 13 

mot ion along the Z-axis, which perhaps will show some distinctive polarization 

of the emit ted characteristic radiation. 
I t  is na tura l  to expect  more interesting result if, instead of background 

geomet ry  like Melvin universe, one has the field of a black hole. This aspect 
h~s been fully discussed by  HOJ~AN and HOJM~tN, who h~ve considered the 
mot ion of a spinning charged particle in the Kerr -Newman geometry.  

Unlike in the case of a spinless particle, in the case of a spinning particle 
the  first thing to notice is tha t  the particle momen tum ~,  is not  nocessurily 

parallel to its four-velocity u~. As proved by  HA~SO~ and :REGGE for the  

case of pure gravitat ional  field and by  HOJMAS; and HOJMA~ for the  case of 
gravi tat ional  and electromagnetic fields, these two quantit ies are related through 

the  equation 

wherein 

~nd 

(4.7) g , ~  ~- - -  1 , 

(4.8) S ~ * ' S ~ ,  ~ 2 J  2 . 

With  this the generalized momentum P ,  is given by  

(4.9) P ~  - ~  7 ~  - -  e A ~ ,  

Az being the electromagnetic vector  potential,  and the Papape t rou  equations 
now read 

D ~  1 
D s  2 

( 4 . 1 0 )  

and  

DS~" 
(4.11) D s  - -  S"~.a~ ~ -  a ~ S ~  ~ ~ ~ u  ~ -  ~ u ~ .  

These equations are generally solved with the supplementary condition 

(4.12) S~7~, ~- 0 . 

The Kerr-5;ewman geometry as given in (1.6) has an electromagnetic field 
given by  

F~,  = QZ-~(~ '2 - a S e o s ~ 0 ) ,  

F~o = - -  2 Q Z - 2 a : r  sin0 cos0 ,  
(4.13) 

F , r  = Q Z - 2 a  sin20(H - a 2 cos: O), 

F o ~  = - 2 Q Z - 2 a r ( r  2 - ~  a 2) sinO cos O. 
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As the  fields are s ta t ionary  and axisymmetr ic ,  the two constants  of ,notion E 
and 1 are given b y  

1 ,, Su~ q- [eQrl(r 2 -}- a 2 cos 2 0)] = - -  E ,  (4.14) :rr~ - -  2 ~t,,~ 

(4.15) ~ r  l gcu,,Su" - -  [eQar sin~O/(r ~ q- a 2 cos2 0)] = 1. 

As the  general mot ion of the  spinning charged particle in this backgroun4  

is too complicated,  ]~OJMAN and ]:[0JMhN consider as usual the mot ion  in t he  

equator ia l  p lane with the  fur ther  assumpt ion  t ha t  the spin of the  particle is 

or thogonal  to this plane, after  establishing tha t  this mot ion exists. 

fect ive potent ia l  for the  r -mot ion in the equatorial  plane is given b y  

(4.16) 

wherein :k s tand for the same nota t ion  as in (2.18) and 

( 4 . 1 7 )  

(4.18) 

a = - -  k l ,  fl = - -  e k lQ / r  q- (1 - -  eaQ/r)  k 3 

e2Q 2 2eQ l - -  k 3 - -  l - -  k 2 +  62A , 
r - -  r~ k l J r - - r  

ki = A i J 2 / r  ~ q- B i J / r  q- Ci , 

A~,  B~, C~ being given by  

(4.19) 

The ef- 

f 1 
/ A1 = ~ [r~(r 4 - -  2 m r  a - -  2 m a  2 r - -  m2a  2) q- 

r 

q- Q'(r~ q - 2a~r2 q- 2 m a 2 r - - Q ~ a 2 ) ]  , 

1 
A~ = - - 7 ~ [ m 2 r ~  § Q~(Q=-- 2mr)]  , 

Aa = ~ [ m r 2 ( m  -}- r ) - - ? ' ( r  ~ + 2mr- -Q ' ) ]  , 

2a 
B1 = ~ [ m r ( a r 2 q  - a 2 ) - Q ' ( 2 r 2 q  - a2)],  

2a 
B2 = ~ ( m r - - Q  2) ,  

1 3 B 3 = ~ [ r ( r  - - 3 m r 2 - - 2 m a  2) q- 2Q~(r~q - a2)], 

1 
C1 = - - ~ [ r ( r  ~ q- a~r q- 2 m a  ~ ) - Q 2 a ~ ]  , 

C2 = l [ r ( r _  2m) q- Q2], 

C3 = ~ [ 2 m r - O 2 ]  , 

(~2 _ [1 - ( J ~ / m 2 r ~ ) ( m r - Q 2 ) ] 2 ,  
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J be ing  t h e  Scalar  a s soc i a t ed  w i th  t h e  t o t a l  a n g u l a r  m o n i e n t u n l  (4.8). HOJMAN 

a n d  HO.IMAN p a r t i c u l a r l y  cons ide r  c i r cu la r  o rb i t s  w i th  100 % b i n d i n g  in t h e  

hor i zon  of a m a x i m a l  K e r r - N e W m a n  b a c k g r o u n d  (a 2 + Q~ = 1). As  t h e  hor i zon  

in t h e  e q u a t o r i a l  plume for  such a b a c k g r o u n d  is g iven  b y  r = m, t h e  c o n d i t i o n s  

for  such o rb i t s  a re  

(~.20) (E) ..... = o ,  ~ r  . . . .  - -  o ,  

which  give,  r e spec t i ve ly ,  

(4 .2])  

a n d  

(4.22) 

la @ e(1 - -  a2) '-" = 0 ,  ( a J  - -  1 ) # 0 

a'2(a2J2 _ 1)2 
e2(1 -- a 2) = _ 

[(1 ~- a - - a ~ - ) J  - / 1  @ a ] [ ( 1 - - a - - a ~  @ a] 

fo r  a # 0. 

As  a ~ is neve r  g r e a t e r  t h a n  1, t h e  d e n o m i n a t o r  on the  r i g h t - h a n d  side can  neve r  

be  n e g a t i v e  e x c e p t  p e r h a p s  when  a~J  2 = 1. This  cond i t i on  w o u l d  g ive  a s t r o n g  

r e s t r i c t i o n  on t h e  va lues  of a a n d  J t h a t  g ive  r ise to  100 % b o u n d  c i rcu la r  o rb i t s .  

I n  t h e  case  of a spinless  p a r t i c l e  ( J  = 0) t h e  c r i t e r ion  o b t a i n e d  he re  is t he  s a m e  

as  t h a t  of [25] for  a -+ 1 a n d  e~(1 - -  a 2) ~+ ~ .  F i g u r e  2 r e p r e se n t s  t h e  cu rves  

(14-  a - -  a~- )J+ l @ a  = O, ( 1 - -  a - -  a2 )J  - ] @ a  = O, a J +  l -= O, which  i m p l y  

e ~ ~ a n d  e -+ 0, r e spec t ive ly .  I n  th is  f igure  t h e  on ly  p o i n t s  k n o w n  ear l i e r  

for  100 % b i n d i n g  o rb i t s  were  t hose  wi th  a =- I a n d  J = 0 (CrmISTODOULOU 

-2 

Q/m 

1.0 

• 
~1~ 

J/Mom 

1.o 

1 2 

Fig. 2. - The curves ( l + a - - a 2 ) J + l  ~a--O (1)), g (2)), ( 1 - - a - - a 2 ) J - - l + a + O  (3)) 
and a J +  1 =  0 (4)). The hatched regions represent the points tha t  give rise to 
real solutions for the charge e in eq. (4.22). Boundaries correspond to the l imit  e-+ c~. 
Thc curvc a J +  1 - - 0 ,  represented by the dashed line, is the locus of e =  0. The 
point J - - - - X / 2 ,  a =  1/~/2, where the three curves cross, is such that  any  e will 
satisfy eq. (4.22). The points J - - 0 ,  a 1 and J = - - l ,  a = 1 were obtained earlier ill 
r e f .  [2.~, 3a ]  ( [ 1 3 ] ) .  
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and RUFFI:NI) and J z -  1, 1-~ 0 [33]. However,  in this t rea tment ,  as the 
radius of the particle has an implicit restriction R>~J, it is safer to consider 
the  region Jim << 1 as physically relevant  as only then  the spin will be small 

and thus the  radius also snlall characterizing u test  particle. This restriction 

makes their  allowed region for 100 ~ binding to lie close to  Q ~ 0, and thus 
in spite of their  detailed t rea tment  physically the results seem to be similar 

to tha t  of Christodoulou and Ruffini and Ted  et al. On the other  hand,  the i r  

t r ea tmen t  gains superiority over others for the reason tha t  it shows the pos- 
sibility of the particle acquiring superluminM velocity (u~ can become space- 

like) for sufficiently large fields (gravitational and electromagnetic), a fact  which 
needs to be examined closely after  including higher multipoles and radiat ion 
in the analysis. 

5. - Motion in stationary electromagnetic  fields on a curved background.  

As pointed out in the introduction,  astrophysically more interesting dis- 

cussions are the ones wherein charged-particle dynamics is considered in a n  

electromagnetic field superposed on curved-background geometry.  As seen in 

the previous sections, the Ke r r -~ewman  solution represents electromagnetic 
fields of black holes with charge. But  in Nature  we are more likely to encounter  

situations wherein uncharged black holes could be immersed in external  mag- 
netic fields like the galactic magnetic field or have ring currents a round them 
which would produce electromagnetic fields. Such situations are not  covered by  
the  Kerr -Newman family of solutions. In  fact  the electromagnetic fields in such 
situations would be quite small compared with the gravitat ional  field asso- 
ciated with the black hole and thus would not  disturb the  background ge- 
ometry  of the space-time. On the other hand, the space-time curvature  af- 
fects the electromagnetic fields and thus to describe such fields one has to solve 
Muxwell's equations on the given background manifold. Such solutions, as 
ment ioned in the introduction,  have been obtained by  many  authors [14-20] 
by  using per turbat ion  techniques. We will presently consider in detail charged- 

particle trajectories in these fields as obtained by  P~ASA~NA and co- 
workers [21-23] for the Schwarzschild and Kerr  background.  

In  order to  obtain the s tructure of the electromagnetic field which is dipolar 
at  infinity, superposcd on the Schwarzshild geometry,  GINZ~U~G and OZEI~NOI 

solve the Maxwell equations (1.5) on the background manifold: 

(5.1) d s 2 =  - 1 - - ~ -  d t 2 +  1 - -  dr~+r2dO~@r2sin~Odq~, 

by assuming the local Lorentz components of the field to be of the fornl 

sin 0 (5.2) F(oq~) z 2/~ cos 0 f(r) F(~) ~/~ ~7-  g(r) 
r a , �9 
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others being zero. Here tt is the magnetic-dipole moment and ](r) and g(r) 
are arbitrary functions to be determined. Maxwell's equations (1.5) with J~, 
the current vector zero, give the two equations 

(5.3) 
I (d/dr)(//r) + (g/r2)(1 -- 2m/r)-i ---- 0 ,  

[ (d/dr)[(g/#)(1 -- 2m/r)i] + 2//r 3 = 0. 

Solving for ] and g, one can then get the two components F(,,) and F(o,) from 
which the components in the Schwarzschild frame may be obtained by using 
the relation 

(5.4) F~ : 2(% 2")~ F , , ,  

2(~)k being the orthonormal tetrad associated with the Schwarzschild manifold. 
Once we have obtained F , ,  it is a matter of simple integration to get the 
vector potential A~ through relation (2.6) and in the present case At turns 
out to be 

Ai = (0, O, A , ,  0) 

with 

(5.5) Ar = -- (3/t sin 20/8m3)[r 2 In (1 -- 2m/r) + 2m(r + m)]. 

P~ASA~A and VAR~A have used this solution for determining the orbits of 
charged particles in a dipole magnetic field on tho Schwarzschild manifold. 
The Lagrangian for the motion (2.8) is given by 

(5.6) .s : l { - - (1- -2-~) i~+(1- -2~m)- l~+r2O2-{-r2s in20r  

3eft sin20 ( 1 - - 2 r  ~b} 

The two constants of motion E and 1 are found to be 

(5.7) 

and 

(5.8) 

(  )dt 
1--  ~ = E  
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whereas the equations governing the r and 0 motion are given by 

(5.9) d~r m (  ~ ) - ~  t d r ~ 2  ( 2m~ ~{d0y Idol2 / 
ds 2 r ~ 1 - -  r 1 - -  + s i n  ~0 + \ d s l  r ] lk(ls] k ds] ] 

~- ~ ( 1 - - 2 7 ) ( d t ~  2 - 3e# sin20 r 

2d d0 sin0eos0(d    
ds - ~  -~ r ds ds \ ds] = 

_ 3e# sin 0 e~ [ ~  (1 ~- m) -~ In (1 - - ~ ) ]  d-~ 
4m ~ ds " 

Restricting the analysis to motion in the equatorial plane 0 ~-~/2, one can 
get the (( effective potential ~) for the r-motion to be 

(5.11) 

wherein dimensionless parameters have been used such that ~ = r/m L = 1/m, 
). ~ e#/m ~, (~ = s/m. By considering the limiting values of V f~, one finds that, 
as ~-~ c~, V~-+ 1, whereas, as e -+  2, V~u-+ 0. I t  is interesting to see that 
in spite of the logarithmic singularity in the vector potential at Q ~ 2, which 
makes the magnetic-field components grow very large, the effective potential 
tends to zero a.s e -~ 2 because of the 1 -- 2/~o term which dominates. This 
shows that at the event horizon the gravitational interaction (space-time 
curvature) dominates over all other interactions. 

Figures 3-5 give some typical plots of the effective potentia ! as a function 
of ~ for different values of L and 2. The logarithmic singularity in the vector 
potential reflects through the appearance of an inner maximum E~I ~ for v~ 
very near ~ ~ 2. Then the effective potential drops down to a sharp minimum 
still close to ~ = 2 and then rises to a second maximum E~, which is the cen- 
trifugal barrier (it increases with increasing L). After this maximum ~:~ again 
drops slowly towards the value 1. Very far from the source V f~ dips below 1, 
attains its flat minimum and then reaches 1 asymptotically. When L < 0, 
there is no centrifugal barrier and thus no potential well exists. Because of 
scaling difficulties, the plots do not show the inner maximum and the outer 
minimum. From the structure of the potential curves it may be seen that  
four different classes of orbits exist. 

i) Highly relativistic particles with E 2 greater than both the maxima 
coming from infinity would find no barrier and thus plunge straight into the 
black hole. 
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10 14 18 22 26 ~o 30 

Fig .  3. - P l o t s  of  Vef t vs. Q(= ~'1~) fo r  d i f f e r e n t  v,~lucs of  L ,  2 = 27 .5 :  

J5 = 17.6954,  - - - - - -  /~ ~ 24 .7736 ,  - - - - -  J5 = 34 .4136.  T h e  i n n e r  m ~ x i m u m  a n d  t h e  

o u t e r  m i n i m u m  a r e  o u t s i d e  t h e  l i m i t s  o f  s ca l i ng .  A s  ,~ i n c r e a s e s  t h e  p o t e n t i a l  we l l  

f l a t t e n s  for  a g i v e n  L [21]. 
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F ig .  4. - S a m e  as  fig.  3, b u t  fo r  2 ~  250.  
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ii) I f  E<E~,, but  greater  t han  E~, ,  then  the  particle will have  an un-  

bound parabol ic  orbit. As it comes f rom infinity very  near  to the  black hole, 

the  magnet ic  field would tu rn  it away  and the  particle will get  back  to infinity. 

30: 

20 

10 

I 

I 
I 
i 
I 
i 

~\ \ \~ \ \ \ . \ \  

\ " \  

I I I I I I I i I 
6 10 14 18 22 

Fig. 5. - Same as fig. 3, but for L =--34.4136 ( 
L = - -  17.6954 ( ). 

I I i 
26 o 30 

), L = - -  24.7736 (-- - -  --), 

iii) On the other hand,  if its energy is such t ha t  1 < E < EM, , then  it 
will have  four  turn ing  points,  as m a y  be seen f rom the curves. I f  the  par t ic le  

is coming f rom infinity, then  it is unbound  as the  centrifugal barr ier  would 

tu rn  it  away.  Ins tead ,  if the particle is inside the potent ia l  well, t hen  it  is bound  

in a s table  orbi t  with the  two turning points corresponding to the  inner  and  

outer  envelope of the  gyra t ing  orbit. As this potent ia l  well is created by  the  

magnet ic  field, the  particle executes La rmor  motion,  as one is familiar  with in 

the  fiat background.  However ,  the  impor t an t  difference one finds is t ha t  un- 

like the  case of fiat background,  wherein La rmor  mot ion  is circular (one ta lks  

of radius of gyrat ion),  here, as the magnet ic  field is modified b y  the  space- t ime 

curva tu re  (gravi tat ional  field), the La rm o r  circles are deformed into ellipses, 

as m a y  be seen f rom the  actual  orbits (fig. 6-9). I f  either the  seed magnet ic  

field ~ is large or the  particle is sufficiently away  f rom the event  hor izon  

(fig. 7, 8), gyra t ion  seems to be more  circular t han  in the  other  two cases 
wherein the  particle is closer to the  event  horizon and  the  magnet ic  field is 

weaker.  These orbits are all s table as the part icle is well inside the  poten-  

t ial  well and no pe r tu rba t ion  will make  them tunnel  out. 
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Fig. 6. - E q u a t o r i a l - p l a n e  v iew of t he  o rb i t s  of a pos i t ive ly  cha rged  par t i c le  in  a 
dipole  m a g n e t i c  field on t he  Schwarzsch i ld  b a c k g r o u n d .  The  phys i ca l  p a r a m e t e r s  
are E =  2, 2 = 30, ~o=  3, L----21.2345. T he  t u r n i n g  p o i n t s  wh ich  co r r e spond  to t h e  
enve lopes  of g y r a t i n g  o rb i t s  are  ~1 ~ 2.562, Q~ = 4.560 [21]. 

Fig.  7. - Same  as fig. 6, b u t  for  2 = 100, ~0 = 4, L = 40.8883, Q1 = 3.526, Q 2 : 4 . 9 8 7  21]. 
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[_ I ~ I I 

F ig .  8. - S a m e  as  fig. 6, b u t  for 2 = 100, g o =  3, L =  70.7816,  Q I =  2.834,  Q 2 = 3 . 2 2 0  [21].  

F ig .  9. - S a m e  ~s fig. 6, b u t  for E ~ 3, Qo ~ 2.1, L ~ 81 .2964,  ~ 1 -  2 .023,  ~2 = 2 .145  [21].  

iv) Finally, if the particle's parameters correspond to the extrema of 
the potential well, then the particle will execute circular orbits which are stable if 
they corresponds to the minima, but  unstable if they corresponds to the maxima. 
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The flat minimum which lies far  away is just  the Schwarzschild potential  
well and particles here are in a stable orbit  only if their  energies E i s  less than  1, 
as is well known. 

In  the case in which L < 0 there is no potential  well near the black 
hole and thus these particles either plunge into the  black hole if they  are 
highly relativistic E > Ema x or get scat tered away by the magnetic field 
otherwise. 

In  order to get the actual orbits, PRASA~A and VA]c~A have integrated 

the system of equations (5.7)-(5.9) after using the initial conditions 

and 

(5.12) 

Jr d0 
0 = -~, da 0 , qJo 0 , Q ~o 

/i= = ( E ~ - - I  + 2/qo)~. 

The results of this integration for different ~0, ~ and E are shown in 
fig. 6 to 9. The impor tan t  point  to notice is the existence of a bound stable 

orbit  very  close to the event  horizon (~o0 = 2.1), unlike the case of the 

pure Schwarzschild geometry,  wherein the  last stable orbit  exists for qo = 6. 
In  the ease of the Kerr  background geometry the method of approach used 

by most  of the authors (except WAH)) while solving Maxwell's equations is the 
same, wherein they begin with the lgewman-Penrose complex t e t rad  for- 
realism [34] and then use Teukolsky's  technique of separation of radial and 
angular functions [35]. CmTnE and VISI~VESI~WAUA [17] were among the first 
to discuss the electromagnetic field of a current  loop around a Kerr  black hole. 
As they  point  out, the presence of current  loops would produce in addition 
to the magnetic field an induced electric field due to the rota t ion of the black 
hole, which can lead to possible charge accretion. PETT~a~SO~ [18], on the other 
hand, generalizing his earlier studies of current  loops around a Schwarzschild 
black hole to tha t  of Kerr,  obtained the expressions for the components  of the 
vector  potential  in a relatively simple form of a combination of first derivatives 
of Legendre polynomials. As he points out, while in the Schwarzsehild case 

one could have considered the electric and magnetic fields separately, this 
cannot  be done on the Kerr  background as rota t ion mixes them up. He has 
fur ther  calculated the field of a loop carrying both  a current  and a net charge 
in the equatorial  plane and also the true minimum-energy configuration of the 

system in which the black hole and the current  loop have equal but  opposite 
net  charge rendering the total  configuration electrically neutral.  Such a 
neutra l i ty  would ensure the s ta t ionar i ty  with respect to charge accretion, as 
no charges will be drawn by the system from infinity. KING et al. [19] have 
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considered the possible s ta t ionary  ax i symmet r i c  electromagnet ic  fields in a 

v a c u u m  cavi ty  between an initially neutra l  black hole and a surrounding 
p lasma shell and conclude t ha t  the magnet ic  field mus t  be  uniform to a good 

approx imat ion  except  near  the shell where higher mult ipoles could bend the  

field lines. They find tha t  the  flux of magnet ic  field across one hemisphere of 

a neut ra l  b lack hole decreases monotonical ly  f rom a m a x i m u m  value at  a ~ 0 

to zero at  the ex t reme limit  la[---- m, and the hole tends to accrete charges 

selectively, like for posit ive charges over  the  upper  and lower par ts  of its sur- 

face and negat ive  charges in a compara t ive ly  narrow band  around the  equator.  

CRA~])~ASEX~AR [36] has given an explicit solution for the vector  potent ia l  

for a s ta t ionary  ax i symmet r ic  electromagnet ic  field around a Ke r r  black hole 
in te rms  of Teukolsky 's  radial  and angular  functions.  

W~LD [20], on the  other hand,  making  use of the fac t  tha t  a Killing vector  

in v a c u u m  space-t ime serves as a vector  potent ia l  for a Maxwell test  field, 

has derived the  solution for the deformed electromagnetic  field, when a Ker r  

b lack  hole is placed in an originally uniform magnet ic  field. Strangely he finds 

no enhancement  of the magnetic-field s t rength near  the black hole as one would 

have  expected  due to possible sucking in of lines of force by  the  black hole. 

However ,  similarly to the case of a general magnet ic  field, the  ro ta t ion  induces 

an electric field in the vicini ty of the black hole. 
P~ASA~A and VISHVESHWARA [22] have  studied in detail  the  trajectories 

of a charged test  particle in a dipole magnet ic  field superposed on a Ker r  back-  

ground, using the explicit solution of Pet terson,  and those in an uniform mag- 
netic field on a Ker r  background,  using Wald ' s  solution. We shall now con- 

sider these cases in the  following. 
B y  using the usual approach,  the  constants  of the  motion,  energy and 

canonical angular  m o m e n t u m  for a particle of charge e and mass Mo m a y  be 

obtained f rom (2.9) and  (2.10) as 

(5.13) ur -}- eAr z l, ut + eAt ---- -- E ,  

f rom which for the Ker r  metr ic  in Boyer-Lindquis t  co-ordinates 

( ~ )  4mrasin2Odtdq :~- d s 2 z -  1--2----r dt~_ ~, 

(5.14) ~- (Z/A) dr 2 + Z d 0  ~ -~ (A/X) sin 20 d~ ~ , 

Z ~ r  2 ~ a  ~cos ~0,  A z r  2~ a 2 - 2 m r ,  

A : ( r  ~ + a 2 )  ~ - A a  2sin s 0 ,  

the first integrals u ~ and u s m a y  be wri t ten as 

d~ 1 
(5.15) u ~ - -  

ds - -  A sin ~ 0 
2mra . 2 eA,)} - - { ( 1 - - ~ - ~ - ) ( l - - e A ~ )  + ~ s m  O(E + 
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und 

dt 1 
(5.16) u ~ ~ - -  = 

ds A sin 20 

@2 _1_ aS)2 _Aas  sinS0 
�9 2: sin 20(E + e A t ) - -  

~mra } 
~--  sin ~ O(l -- eAr . 

The equations governing the r- and 0-motion are given by the usual Lorentz  

equation,  which may  explicitly be wri t ten as 

(5.17) 
dSr m(rS--a scos~O)-ra~sin"O [d_r~2 rA [dO~ s 

ds s 2:A ~ds] T \dss] -- 

2a2sinOcosOdrdO mA (dt~ 2 Asin20 
Z ds ds @ -~(r2--a2c~ Z 3 

�9 {r 5 -1- 2r a a s cos s 0 - -  mr 2 a ~ sin s 0 -J- ra 4 cos 20 @ (m - -  r) a 4 sin ~ 0 cos s 0}. 

.ldq:~'22AmasinS d~odt eA{ ~ dr} 
\ds]  Z 3 0 ( rS_  a) c~ ds ds --  Z A~,, + A , , ~ s  s 

and 

(5.18) d~0ds --~ @ a~sinOc~ 

2tara s 
~ 8  

.d~ dt 
ds ds 

( dr~ s 2r dr dO a~sinO cosO [dO] s _  

ds] + 2 ds ds Z \ds] 
[dt~ s 4mra(r2 + a ~) 

- -  sin 0 cos 0 ~ds] -+- X ~ sin 0 cos 0" 

s inOcosO[ ( r2+  a2)3_@2+ a2 + Z)Aa ssin~O]. 
Z3 

= A~,,o + At 0 �9 \ ds ] ~ dss ' 

The general solution of Pet terson for the vector  potential  of the electromagnetic 

field outside the  sources is given by  

(5.19) 

and (*) 

(5.~0) 

z=1 -~rQ'(c~ c~ ~- 

a sin O ~_~ ] + --2--O,(u) (rfl~ + a eos0N) + ~ 

A _arqsin20 [ Ad(_~ 
Z, @ ~ asir~sO-~ Q~(cosO)(rfl~--acosOfl~) + 

1=1 

., r~ + a~ ~ . .  dq~ A sin o dO~ dO~] 
@ s i n u ~ ( ~ d u ) - - ~ - ( a c ~  l ( l @ l ) ~ [ d r  dO] q- c~ ' 

(*) In Petterson's paper in the expression for A~ ([18], p. 2222, eq. (29)) the A asso- 
ciated with the last term is nfissing. 
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wherein u ~- ( r -  m)/v/m'--~------a ~, Qz is the associated Legendre function and q 
is the electric charge on the black hole. P~ASANNA and VIS~VESHWARA have 
considered the  special case of a dipole (1 = 1) magnetic field and set q = 0 
(uncharged black hole). The constants ~ and ~r are also chosen to be zero, 

whereas fl~ and fl~ are chosen such tha t  the electric field is zero when a = 0 
giving fl~ ---- 0 and asymptot ical ly the magnetic field is Lorentzian,  which gives 
fl~---- =[: 3#/2(m ~ -  a2), # being the  magnetic-dipole moment .  

Wi th  these, the  components  of the vector  potential  take  the form 

(5.21) A~ --  

and 

- -  3 a #  

27: ~, 

-{ [ r ( r - -m)  § (a2_mr) cos20]~ln r-mr_m_7+7 ( r - -m  cos20)} 

(5.22) A~ -~ - -  
--  3# sin 2 0 { 

4722: (r-- m)a ~ cos:0 § r(r 2 § mr § 2a 2) -- 

1 I n r - - m §  --[r(r~--2ma2 § a2r) § ~la2c~ r - - m - - -  ' 

wherein 7 = V / ~ - - a  ~, and the dipole moment  is taken to be antiparallel 
to the rotat ion axis. 

The vector  potential  for the case of black hole in a uniform magnetic field 
as found by  WALD has the components 

(5.23) 

and 

A, ~ -- B0a[1 -- (rm/2:)(2- sin:0)] 

B0 sin 20 
(5.24) A~- -  22: [ ( r 2§  a2)2--Aa2sin:O--dma2r] ' 

wherein Be is the magnetic-field strength. 
As the discussion of general motion is complicated, following the usual 

practice, I~ and VISI-IVESHWAICA have considered the motion along 
the equatorial  plane 0 = zr/2. The effective potential  for tile r-motion in 

the equa.torial plane is given by  

(5.25) V f~ ~-  - -  A~  § K / R  

with 

(5.26) 
= o 3 § 2 4 7  : ,  z ~ = e : - - 2 ~ - ~  2, 
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wherein the dimensionless quanti t ies  ~, ~, L are used as defined earlier along- 

with ~ a/m, ~: = ct/m, A , =  eA , ,  Z + =  eAr Using =4+ and A ,  appropr ia te ly  

for the  two different cases, they  have  studied the na ture  of orbits  in detail. 
Figures 10-13 give the effective-potential  plots for the  case of the  dipole field 

for different values of the  parameters .  As in the Schwarzschild case also here 

150 

3 

L=IO00 

=500 

2 ~ 32.6 

Fig. 10. - Plots of V<~ as t~ function of Q for ~ =  0.1, ~ =  1000 for the case of 
a dipole magnetic field on a Kerr background [22]. 

there  are two m a x i m a  and two min ima  of which tile curves present  only the  

first m in imum  m and the  second m a x i m u m  Ms, due to scaling difficulties. 

Considering the  asympto t i c  behaviour  of Vo~, they  find tha t ,  as ~ --~ c~, Ve, --> 1, 
as 1 --  2/Q + o:~/~ ~, a bohaviour  which is just  similar to t ha t  of Ve~ in the  pure  

Ker r  geometry .  For  a given ~ and  4, as L increases, the  centrifugal barr ier  in- 

creases monotonical ly,  whereas the  inner m a x i m u m  M1 decreases for ~ up to 

0.45, bu t  it increases for ~ > 0 .45 .  On the  other hand,  when L is fixed, as 2 
increases, MI increases, whereas m and Ms keep decreasing monotonical ly  

irrespective of the  value of ~. I f  L and  fl are fixed, as ~ increases the  entire 

potent ia l  well moves  upwards  in energy and towards  the event  horizon. 
As ~ = 2 corresponds to the  ergosurface in the equatorial  plane, it foUows 

tha t  depending on the  physical  pa ramete r s  the  potent ia l  well s tays either 

completely  inside or completely  outside the  ergosurface and in few cases pa r t  

of it lies inside and pa r t  outside the  ergosurfaeo. 

In  the  case of the  uniform magnet ic  field the  effective potent ia l  asymp-  
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150 

L=IO00 

=500 
100 

=10 

1.9 8 32.5 

Fig .  11. - S a m e  as  fig. 10, b u t  fo r  e =  0.45 [22].  

150 

~ ,  ~ =5o0 i ~ 

. . . . .  A _ . ~  
!.45 co 32 

Fig .  12. - S a m e  as  fig. 10, b u t  fo r  ~ = 0 . 9 ,  2 = 1 5 0 1 2 2 ] .  
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tot ically goes as 

(5.27) 
V,~ ~ 1 § A:r -F O(e ') -~ constant 

i.e. as the square of the  distance for large ~. Unlike the case of dipole magnetic 
field, here V,~f has only one max imum and one minimum both in the vicini ty 
of the black hole, whereas far away from the black hole V~ increases without  

bound. Thus there always exists a potent ial  well which depending on ~, L and 
either lies completely outside the ergosurface or lies part ial ly inside the  ergo- 
s u r f a c e .  

150 

L:IOOO 

:500 

f ~ ~ ,  , ,} ,t-'- =1ool 
1,45 

8 32 

Fig. 13. - S~me as fig. 10, but for ~=  0.9 [22]. 

F rom the s t ructure  of the potential  curves the na ture  of the orbits are 

obtained as follows. In  the case of the dipole field there are i) plunge orbits 

for highly relativistic particles with E > M1, ii) unbound orbits for particles 
coming from infinity with E < M I  or M~, iii) stable bound gyrat ing orbits 
for p~rticles with E < M2 and initially located within the potential  well ~nd 
iv) finally circular orbits stable for E = (Ve~),~in and unstable for E = (V~ff)ma ~. 
On the other hand, in the case of a uniform magnetic field, the particle will 
plunge into the black hole if it is highly energetic, E >  (V~)~.,, whereas it 
will gyrate  in a bound stable orbit, if E < (Vf~)~. As is well known, it will 
have a circular orbit which is stable if E = (V~)~ and unstable if E -~  (V~tf)~ , .  
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In order to obtain the actual orbits, they integrate the set of equations 

(5.2s) 

(5.29) d~v 
da 

dz 
(5.30) d6 

1 d ~  
A~ do  "2 d~ 

2zr dcf dv 1 {dz~ 2 1 /d.4~ d~ dA~ dzl  
e' d~ do + ~ ~ 1  = ~ [ ~  d~ + ~ -  ~ j '  

--A ] - -  (L-2~)+ o 

] 

with initial conditions 

~o = 0 , ~ = #o, 

{( = ~= 1 + 0 - ~  + ~ - o  3 ] [ E - j -  (At)o] ~ -  - - ~  [L--(Ar ~ -  

Qo ~/J 
wherein (A~)o and (Ajo refer to values of zi~ and A~ at ~ ---- ~o- 

Figures 14a to c give the bound orbits for the case of the dipole magnetic 
field, whereas 15a to d give the orbits in the case of uniform magnetic field. 

Fig. 14a. - Orbits in the equatorial plane in the dipole magnetic field on a Kerr back- 
ground [22] for ~=0.99, ~=1000, L=500, E=30,  ~=3.51763, ~1=3.39123, ~=3.81977. 
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Fig. 14b. - Same as fig. 14a, b u t  for 2 =  50, E =  152, ~o= 1.36570, ~1= 1.35715, 
~ = 1.39003 [22]. 

Fig. 14c. - Same as fig. 14a, bu t  for ~ =  0.45, E =  158, ~o~  2.13311, ~1= 1.93331, 
o 2 ~ 3.11145 [22]. 
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[____--A ~ w J  

Fig.  14d. - Same as fig. 14a, b u t  for a = 0.45, ~ = 500, L =1000,  E = 100, ~o--- 2.13311, 

~1= 2.06173, ~2= 2.26142 [22]. 

Fig. 14e. - Same as fig. 14a, bu t  for ~ 0.45, 2 =  500, L =  1000, E = 7 2 ,  ~o= 2.13311, 
Q1 = 2.12822, ~2 = 2.13963 [22]. 
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Fig. 15a. - Orbits in the equatorial plane in a uniform magnetic field on a Kerr back- 
ground fora=0.99,  2=150, L=1000, E=350 ,  ~o--2.37979, ~1=1.72675, Q2=6.07672 [22]. 

Fig. 15b. - Same as fig. 15a, but  for 2 =  1000, 9o~ 1.54210, QI~ 1.48561, Q~= 1.60200 [22]. 
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I L % I ~  I I I I I I 

Fig. 15c. - Same as fig. 15a, bu t  for ~ 0 . 9 ,  2 ~ 5 0 ,  E ~ 3 2 0 ,  0o~  10, 01~ 1.90970, 
02 = 14.757 1 [22]. 

Fig.  1 5 d . -  Same as fig. 15a, bu t  for a =  0.9, E =  150, 0o=  3.65400, 01= 3.13043, 
0 ~  4.15418 [22]. 
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The striking features common to both  cases is t ha t  the particle executes Larmor  

motion (gyration) only if it is completely outside the ergosurface during its 

motion.  As P ] C A S A ~  and VISHVESHWA~A conclude, this is indeed the ef- 

fect of inertial  f rame dragging of Ker r  geometry.  Gyrat ion requires tha t  during 
every Larmor  circle the  part icle angular velocity dq~/da be prograde for one 
half and retrograde for the  other half with respect to the rota t ion of the  black 
hole. Since the ergosurface in the  Kerr  geometry is the static limit surface on 
and behind which no retrograde motion is possible, the particle can gyrate  
only outside the ergosurface. One can see this analytically as follows. If  the  
particle has to exhibit  gyration, it should satisfy two conditions: 

( ) idol dcf = 0 ,  \ d a ] o , >  O. 
-da o, 

These two conditions together  require 

( (5.32) 1 -  [E -[- (A,)q~o,]~ > 1 ,  

which can be true only for Q~ > 2, i.e. outside the ergosurface. The actual  
plots show tha t  when a and L are kept  constant  the change in orbits may  be 

brought  about  by changing either the magnetic field (,~) or the energy (E). 
In  fig. 14a when )~ ---- 1000 both the turning points of the orbit  lie outside 

~o = 2 and thus there is gyration, whereas as ~ is decreased to 150 (fig. 14b) 

both  the turning points are inside ~ = 2 and thus the particle does not  gyrate.  
On the other hand, in fig. ]4c and d ~, 25 and )~ are the same, bu t  E varies. 
When  E is large, the particle moves in and out of the ergosurface without  
gyrating, but,  as the energy is decreased, it is t rapped  in a region completely 
outside the ergosurface and thus it gyrates. As the energy is fur ther  decreased 
towards the minimum of V~f, the particle tends to execute an almost circular 
motion as shown in fig. 14c a.s at (V~f)mt~ the orbit should be perfectly circular. 
Figures 15a-d  depict similar features in the case of uniform magnetic field. 

The fact  tha t  the nongyrat ion of the particle inside ergosphere is an ef- 

fect of inertial frame dragging has been fur ther  conclusively verified by  P~A- 

SA~A and CHAK~ABORTY [23], who have discussed the particle orbits in the 

equatorial  plane of the Kerr  geometry  in a locally nonrotat ing frame (LNRF) 
for the same vector  potentials and the same physical parameters  as discus- 
sed in [22]. 

If  u ~ represents the velocity four-vector  in the LNt~F, it is related to the  
four-velocity u ~ in the ]~oyer-Linquist co-ordinate f rame through the relation 

(5.33) u ~ = e~u j , 
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wherein 

(5.3~) ~ = 

- ( X A / A ) ~  0 0 0 - 

o (X/A)~ o o 

0 0 X ~ 0 

2marsinO ( A )  ~* 
_ ZtA~ 0 0 ~ sin 0_ 

Using similar transformation for F ,  and Y~k, PR).SA~A and CHAKRAB01~TY 

obtain the complete set of equations for the motion in the equatorial plane in 
terms of Q, a, a, A~ and _4r as defined earlier, given by 

(3.35) {( Q d2~ 1 A~ 1 - -  + 3-[- - - -  
- B 

1 [ d~0 2 a -  dv dz} 1 {  + ~ ~.~,~ ~ + ~ A ~ , ~ +  B A ~  ---~ 

dcf = (L - -2~ ) /B t  , (5.36) da 

A ~da] J' 

(5.37) d r _  I [ B ( E _ [ _ A ~ ) _ 2 ~ ( L _ ~ r  
da BA~ 

with 

As the u ~ component differs from u e only by a nonzero factor, the effective 
potential  obtained from u ~ ---- 0 is the same as in the earlier case and thus the 
turning points for any orbit are the same as obtained earlier. Similarly as the 
effect of change in frame for the electromagnetic field was taken through F , ,  
the components of the vector potential  remain the same as iu (5.21)-(5.24), 
but  with 0 = ~/2. Considering the same parameters of bound orbits as in [22], 
P]~ASA~NA and (~HA_KI~ABOI~TY integrate the system (5.35) to (5.37) and have 
found tha t  the particle gyrates in all cases, whether it is inside or outside 
the ergosurface. Figures 16a-d show four typical plots of which fig. 16a 
and b refer to the dipole case, whereas fig. 16c and d refer to the uniform-field 
case. The physical parameters in the case of fig. 16a and d are same as those 
of fig. 14b and 15d, one depicting motion completely inside and the other com- 
pletely outside the ergosurface. 
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Fig. 16a. - Orbi ts  in dipole  and  un i fo rm magne t i c  fields on a K e r r  b a c k g r o u n d  
as v iewed f rom a locally n o n r o t a t i n g  f rame  for  ~ = 0.99, 2 = 50, L = 500, E = 152, 

~o= 1.36570, QI= 1.35715, Q2= 1.39003 [23]. 

Fig.  16b. - Same as fig. 16a, b u t  for ~ =  1000, E =  30, ~o= 3.51763, ~1=3.39123,  
~2 = 3.817 75 [23]. 
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Fig.  16c. - Same  as fig. 16a, b u t  for  2 : 1 0 0 0 ,  L :  1000, E = 3 5 0 , ~ o :  1.54210, Q I :  1.48561, 
~ 2 : 1 . 6 0 2  00 [23]. 

F ig .  16d. - S a m e  as fig. 16a, 
e l  = 3.13043, Q2 = 4.15248 [23]. 

b u t  for  a :  0.9, 2 :  150, E =  150, ~ o :  3.65400,  
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6. - Motion in  the static Ernst  space- t ime.  

ERNST [37] has shown tha t  the s ta t ionary axisymmetric  solution of the Ein- 
stein-Maxwell equations can be generated from a pair of complex potentials Z 
and  ~ satisfying the equations 

(6.1) 
(Re Z + I~1 ~) W Z = (Vz + 2 ~ ,  V~)"Vz, 

(Re Z + I~l ~) W,p = (Vz + 2 ~ ,  Vw).V~ 

and  subsequently KIN2NERSLEY identified an invariance group of these equa- 

tions which was later  extended by  KIN~ERSLEY and CmTRE [7] to which we 

referred in the introduct ion;  E ~ s T  [38] using this technique obtained some 
solutions representing black holes in a magnetic universe. Though these so- 

lutions of Erns t  have nonsingular event  horizons, they lack the very  impor tan t  

criterion of asymptot ic  flatness, as we mentioned earlier. However,  as the Uni- 
verse as a whole is considered to be homogeneous and isotropic, one is not  too 
wrong if one violates asymptot ic  flatness for reasonable physical solutions. 
DADHICH, HOENSELAElCS and VISHVESHWAEA have studied [39] the trajec- 

tories of charged particles in the static Erns t  space-time which is also con- 
sidered as a solution for a Sehwarzschild black hole immersed in Melvin's mag- 

netic universe. 
Erns t  space-time is given by  

(6.2) ds2: F~ [--(1--2--mr )dt2-[- (1--2~mr )-Idr~-~ r2dO2] ~ (r2sin20/F~)dq~ ~ 

with 1~ ~ 1 ~ B 2 r 2 sin S 0, B being the magnetic field along the axis. As may  

be easily seen, this metric reduces to tha t  of Schwarzschild for B = 0 and 
to tha t  of Melvin's magnetic universe for m = 0. When IBra I << 1, outside the 
horizon in the region 2m<< r<< B -1 the space is approximate ly  flat and the 
magnetic  field is approximately  uniform. However,  if the magnetic field is 
strong, say of the order 1/m, then  there  would be no region outside the event  

horizon where the magnetic field may  be considered uniform. 

DADIIICH et al. have obtained the charged-particle trajectories,  using the 

Hamil ton-Jaeobi  equation, as was done by  CA~TER for Kerr -Newman space- 
t ime and by  MELWN [32] for the ease of Melvin's magnetic universe. They  
obtain the energy and the axial angular momentum as given by  

(6.3) 

and 

(6.4) 

E = F2(1 -- 2m/r)u* 

l ~ r 2 sin 2 0 u  ~ ~- e r  
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wherein r is the electric potential with respect to the angular Killing vector 
~ given by 

(6.5) ~ = A , ~  ~ = B r  ~ sin~0/F, 

Ai being the vector potential. 
Though the general Hamilton-Jacobi equation is not separable fronl sym- 

metry considerations, they find that  for the motion confined to the equatorial 
plane the equation is separable and the Jacobi action is given by 

(6.6) S = S(r )  + lcf - E t  - -  �89 s ,  

wherein s represents the proper time and 

(6.7) S(r )  J 1 - -  2m/r d r .  

0 1 2 3 4  

5~-- 10 

v2 4 6 8 10 12 14 r 

Fig. 17.-  Effective-potential plot for static Ernst space-time with B =  0.l, e = l 
and for various values of 1 [39]. 
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F i g .  18. - A b o u n d  o r b i t  in  t i l e  E r n s t  f ie ld  w i t h  p a r a m e t e r s  l =  6, B =  0.1, e = 1, 

- E 2 =  1.881 [39]. 
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F i g .  19. - A c a p t u r e  o r b i t  i n  t h e  E r n s t  f ie ld  w i t h  p a r a m e t e r s  l =  6, B =  0.1, e = 1, 

E 2 = 1.9 [39]. 
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Here  R denotes the (( effective potential  ~> for the r-motion given by  

(6.8) R ~ ~2(1 _ 2re~r)[1 if- (F2/r2)(l --  e~b)2]. 

As S has to be real, (6.7) obviously implies E2>~R. The orbits themselves t h ey  

obtain by  quadratures,  as, for example, 

/" F q / - -  er 
(6.9) ~ :I:2(E2d'r - -  R)~ (tr.  

Figure 17 gives a plot of the effective potential  as a function of r. For  the  

parameters  used they find tha t  there are no potential  wells for l < 5 and thus 

these particles plunge into the black hole, whereas with I ~ 5  the well exists 
and deepens as l increases. As was found by  P~-SA~NA and VAR)~t for the  
dipole field on the Schwarzschild background, in this case too stable orbits 
exist  for r < 6m. Figures ]8 and 19 show two typical  plots of the orbits as 

obta ined by  DADHICH et al. As may  be seen from fig. 18, in the case o[ boun4  
orbit  the particle gyrates,  bu t  the Larmor  circle is as large as the orbit  itself. 

7. - D i s c u s s i o n  a n d  c o n c l u s i o n s .  

An impor tan t  feature associated with the particle mot ion is the possible 
radiat ion emission. In  fiat space-time a particle moving with relativistic speed 
(V ~ c) in circular orbits emits synchrotron radiation. I t  is possible tha t  curved 
background could modify such emissions. Fur ther ,  a charged particle moving 
in a combined gravitat ional  and electromagnetic field could possibly emit both  
gravitat ional  and electromagnetic radiat ion [40]. ]~UFFINI [4]] has given a 
relativistic t r ea tment  of the brehmsstrahlung radiation from a charged par- 

ticle moving in a static gravitat ional  field assuming tha t  the particle and the  

emit ted  radiation do not  change the background geometry and tha t  there is 

no radiat ion reaction. His main conclusions are the following. 

i) If  the background geometry is tha t  of Schwarzschild and if the freely 

falling particle has its initial energy equal to its rest mass, then 90 ~ o of the 
radiation is dipolar in nature,  while the contributions from higher nmltipoles 
are negligibly small. The total  umount  of radiation emit ted is AE ~ 2-10 -2 e2/m, 

with the peak of the spectrum at  eo ~ 0.2/m. If the initial energy is greater  
than  the rest mass energy, the amount  of energy radiated increases and the 
contributions from higher multipoles are not  negligible. For  E =  1.4m the  
to ta l  energy emit ted  is AE = 6.10-2c2/m and the quadrupole contr ibut ion is 
approximately  �89 of the dipole contribution. Consequently the peak of the dis- 
t r ibut ion shifts towards higher frequencies. 
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ii) I f  the  background  geomet ry  is t ha t  of Reissner-Nordst r6m,  for a 

charged particle with e < 0, the  amoun t  of energy radia ted  increases s u b -  

stantial ly compared  to the  other case and the  contr ibut ions f rom higher mult i -  

poles are predominant .  For  Q ---- 0.95m and e ---- 50, AE --~ e~/m, a, nd the  peak  

of the  spec t rum is largely displaced towards  higher frequencies. Figures 20 

and 21 show schematic  diagrams of the spec t rum for Schwarzschild and  Reissner- 

Nords t r6m geometries. 

0.12 

"~ 0.08 

0.04 

0.16 - -  

1) 

2) 

0.2 0.4 0.6 

Fig. 20. - Spectrum of the electromagnetic energy radiated by a particle falling into 
a Schwarzschild black hole for selected values of E~o for ~he dipole (1)-3)) and 
quadrupole (4)-6)) term of the radiation[41]: l) r =  1.4, 2) r 1.2, 3) r - -1 .0 ,  
4) r =  1.4, 5) r - -  1.2, 6) r =  1.0. 

RU]~FI~I and ZERILLI [26] have  considered the radiat ion emit ted by  part i-  

cles in ul tra-relat ivist ic  circular orbits in the Reissner-NordstrSm background.  

They  find t ha t  the spec t rum of the  radiat ion emit ted  rapidly recovers the  main  

features of synchrot ron  radia t ion in flat space as the orbits move  outwards  

with the  increase in the absolute value of the test  charge. When  the part icle 

is near  r~,in , the peak  of the  potent ia l  barrier,  the highest multipoles are max-  

imally affected and very  much  damped,  whereas damping  in the dipole t e rm  

is very  small. I n  their  opinion the reason for this anomalous  bohaviour  of the  

spec t rum of radia t ion for orbits near  rmi n is due to the fact  tha t  the radia t ion 
originates in a region very  near  the photon  circular orbit  which is also at  rm~,, 

and  t ha t  large amounts  of energy are lost to the black hole. Natura l ly  these 

effects diminish for orbits which are far  away  from the black hole (event horizon). 
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The analysis as made  by  RUFFI~I and co-workers for radia t ion  f rom charged 

particles in stat ic geometr ies  has not  ye t  been extended to the  case of charged- 

part icle  mot ion  in e lect romagnet ic  fields superposed on curved geometries. 

As far  as the  orbits are concerned, it has been found by  P~ASA~& et 

al. [21-23] t h a t  stable orbits exist for particles even very  close to the  event  

horizon if their  energy and angular  m o m e n t u m  are right. I n  these curved 

geometr ies  (Schwarzschild and  Kerr 's) ,  when there is no magnet ic  field, the  

0.4 

0.2 

I 
~ 

r~/pO~pol e 

0.2 0.4 0.6 0.8 
~,,/m 

I 
1.0 

Fig. 21. - Energy spectrum for a charge e = - - 5 0 ,  falling into an ahnost cxtreme 
Reissner-Nordstr6m geometry Q = 0.95 m for selected values of the multipoles [41]. 

part icle  will be in bound orbit  only if its energy is less than  its rest  mass (E ~ 1). 

But ,  as the superposit ion of a magnet ic  field changes the  s t ructure  of the po- 

tent ial  curve and introduces a potent ia l  well very  near  to the  event  horizon, 

particles can now be t r apped  in this well in bound orbits. As indicated earlier, 

the  two m a x i m a  tha t  occur for the <( effective potent ia l  ~> are, respectively,  due 

to the magnet ic  field and the  canonical angular  m o m e n t u m  (giving rise to cen- 

tr ifugal  barrier).  Figure 22 gives a typica l  plot  of the  two m a x i m a  and the 

inner m in imum  as a function of L for a given 2, in the case of a dipole field on 

a Schwarzschild background [21]. As m a y  be seen f rom this plot  for any  ~, 
there is always a value of L for which the two max ima  are equal, corresponding 

to which the  potent ia l  well is deepest, and in this potent ia l  well now particles 

wi th  energy much  greater  than  their  rest  mass can be t r apped  in the  barr ier  

created by  its angular  m o m e n t u m  and the magnet ic  field. 

PRASA~A and VARMA [21] have  also discussed the part icle  mot ion off the 

equator ia l  plane by  integrat ing (numerically) the complete  set of equat ions 
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Fig. 22. - Plots of V~ff maxima and minimum against L fox' the value 2=50 for the 
case of a charged particle in a dipole magnetic field superposed on a Sehwarzschild 
geometry [21]. 

(5.7)-(5.10) for the initial conditions 

(7.1) 

9 = Qo, Oo ~- zr/2 , ~Vo = O, 

2/d0V]P 
- , - ,   oo, 

do]0 < e-~ ~ eol e~' 

(dq~) = O = > L = d a o  --329~ 1 - 2 ) 8  +Oo--2(1+1) ]  

by  specifying 2, E, eo and (dO/da)o. A typical  plot of this motion is shown in 
fig. 23. If  the magnetic field is large, the motion looks similar to that  in the 
fiat geometry,  wherein the particle gyrates in a given tube  of lines reflecting 
between two mirror points located symmetrically with respect to the equa- 
torial plane. On the other hand, if the magnetic field is lower, then the par- 
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tiele oscillations up and down the equatorial  plane damp continuously as r 
decreases and eventual ly  the part icle gets sucked in by  the black hole. 

The review made above deals essentially with the mot ion of charged par- 

ticles in electromagnetic fields superposed on a curved background.  As main- 
ta ined in the introduct ion these electromagnetic fields do ~ot affect the under-  
lying geometry.  With  such an assumption the  question tha t  would arise is 
about  the origin of such fields. Basically there  could be three types of such 

I [ 

Fig. 23. - Projection of the (~, 0) oscillatory motion of a positively charged particle 
indicating reflection at mirror points[21], E = 2 ,  2 =  100, ~0=3, d0/da--0.3, 
L = 70.7816. 

fields: i) one tha t  arises due to ro ta t ion of the compact  object carrying ei ther  

charge or a dipole type  of magnetic field, ii) another  one due to current  
loops tha t  form in the vicinity of the black hole, due to motion of charged 

particles, and iii) the intergn.l~ctic and interstellar fields in which the black 

hole is assumed to be immersed. 
The Kerr -Newmann geometry essentially treats  the field due to a ro ta t ing  

charged body. On the other hand, RUFFI~TI and T•EVES [42] have considered 
the fields due to a magnetized rotat ing sphere. They show tha t  purely on 
energetic grounds a magnetized rotat ing object should indeed be expected to 
possess a nonzero net  charge. However,  due to the well-known <( no hair  
theorem ~) of black-hole physics, it  is clear tha t  a black hole cannot  possess a 
magnetic  field of its own and thus the t rea tment  of Ruffini and Trcves is more 

applicable to the field of a neutron star or a white dwarf. 
A black hole in a binary system is known to accrete plasma from either 
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the  companion star or f rom the interstellar mat te r  and this accretion of charged 
particles could endow the black hole with a net  charge. If  a charged black hole 

is rotating, then there will be an induced dipole magnetic field. Fur ther ,  these 

charged particles when they  are going around in stable orbits around a black 
hole would give rise to  current  loops which in tu rn  could produce magnetic 
fields. Such sources have been well described and discussed by  many  authors [15- 
18, 28]. On the other hand, in the case of single black holes the intergalactic 
or interstellar magnetic field which could be t rea ted  as uniform would be the 
superposed field. In  case the black hole is rotating, due to inertial frame drag- 
ging, the field lines get twisted and this could give rise to certain higher multi- 

poles very  near the horizon. 
DA)tou]~ et al. [43], H A s s I  [44] and Z>~AJEK [45] have discussed the nature  

of plasma inflow near about  a black hole and have shown the  existence of 

plasma horizon and magnetosphere for a black hole. DA~Iovr~ et al. have studied 
the  flow of plasma in regions of magnetic dominance by  using the  guiding- 

centre approximation,  as seen from the local Lorentz  frame. The flow lines 
thus determined are divided into two classes: those tha t  intersect the horizon 

and  those tha t  do not. If the flow lines intersect the horizon, then  the plasma 
fiowing along it either accrete to or get swept away from the black hole, de- 

a) b) 

Fig. 24. - a) The dashed and tile continuous lines represent the electric and magnetic 
lines of force, b) the open curves represent the plasma horizon correponding to asymp- 
totic magnetic-field strengths B ~ nQ/m 2. The circle represents the event horizon of 
a Kerr-Newlnann black hole with its magnetic-dipole moment parallel to asymp- 
toticMly uniform magnetic lines of force [44]. 
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pending on its charge. Whereas~ in the case when the flow lines do not intersect  

the  horizon, the  p lasma oscillates between two mirror  points similar to what  

has been shown in fig. 23 (ref. [21]) and a magnetosphere  can form in th is  

region. The flow line t ha t  divides these two classes m a y  have  a cusp~ unless 

the  electric field is everywhere  less t han  the  magnet ic  field. The surface of 

revolut ion generated by  this line defines the boundary  for the  magnetosphere .  

Figures 24 and 25 show the s t ructure  of electric and magnet ic  lines of force, 

as well as p lasma horizons for the case of a Kerr- :Ncwmann black hole embedded  

in an asympto t ica l ly  uniform magnet ic  field with the  dipole m o m e n t  of t h e  

black hole parallel and antiparallel  to the external  magnet ic  field. The plasmw 

horizon is defined by  

(7.2) F g ~ F  ~ u r ---- 0 ,  I~ V ~ = 0 and  V ~ ---- F ~ F ~ r ~  r , 

\ 
\ 

\ 

i 
/ 

/ 
/ 

i r 

/ 
/ 

\ 
\ 

\ 

Fig. 25. - Same as fig. 24 but with dipole moment ant iparallel to the cxtcrm,1 maguctic 
field [44]. 

wherein u s is the t imelikc four-velocity of the test  charge and  r f  is the four- 
veloci ty  of an observer at  rest  in the  local inertial f r ame  e~ defined by  (5.34). 

J 

As DAMOUR et al. point  out, in the  case when the  magnet ic  mome~lt of the b lack  

hole is aligned with the external  field the magnet ic  field in the equatorial  p lane  

is weaker  and  thus the suppor t  for a charged particle would be reduced. This  

would m a k e  the  p lasma horizon as well as cusped flow lines s tay  fa r ther  a w a y  

f rom the black hole than  in the  case when the magnet ic  m o m e n t  and the ex- 
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ternal  field are antiparallel. If there is no external  field, the flow lines are radial, 

as the induced magnetic field of an isolated black hole cannot  support  a mag- 

netosphere against its own electric field. As H A ~ I  has shown, this would mean 
V V ~ ~ 0 and thus there  is no plasma horizon for an isolated black hole. 

Apparent ly,  when the possibility of strong electromagnetic fields around 

an  acereting black hole was first proposed [12] by  considering the  dominance 
of the electric field and not  taking into account  the possible existence of the 
external  magnetic fields, it was thought  t ha t  the selective accretion of oppositely 
charged particles would neutralize the  charge of the black hole on a short 

t ime scale. Bu t  subsequent analysis of Damour  et al., as mentioned above, has 
shown the possibility of balancing the electric field of a charged black hole by  

asymptot ical ly  uniform weak magnetic fields, and thus demonstra te  the pos- 

sibility of t rapping charged particles in the magnetosphere of a black hole. 

Before concluding, it is perhaps useful to make some comments for astro- 

physical  situations as to when a single-particle approach as reviewed above is 

reasonable. In  the general t r ea tment  of a plasma in nonrelativistie physics 
one uses normally a kinetic approach or a fluid (MHD) approach depending 

upon the scale lengths and densities involved. But ,  if one considers a relativistic 

framework,  the only kinetic theory  tha t  one knows of is the special-relativistic 
kinetic theory  as developed by  ISRAEL, A:NDERSOST, STEWART ~nd EHLERS [46]. 

Though there are some a t tempts  to work out a generally covariant  kinetic 
theory,  this has not  been formulated completely as yet.  Thus, while t reat ing 
plasma in general relativity,  one confines most ly  to the  relativistic MHD equa- 

tions. 

B u t  either of these two approaches is required only when collective ef- 
fects of plasma are important .  There could be astrophysical  situations wherein 
collective effects may  not  be tha t  important .  The basic feature  as is normally 
used in (, flat space ~> t rea tments  is tha t  the collective effects are un impor tan t  
only when the collision f requency of the  particles is much less than  the gyro- 
frequency.  Using this criterion, one could directly get estimates on the density 
depending on the magnetic field ~nd the temperature ,  for which a single- 
part icle ~pproximation is valid. In  the case tha t  we are t reat ing here wherein 
there  are two fields, the electromagnetic and the gravitat ional  (gravitation being 

dominant) ,  there is no straightforward recipe to get estimates on the density. 

However,  in a limited sense, as the effects of the space-time curvature  are taken 
into the s t ructure  of  electromagnetic fields, one could make a very  rough esti- 

mate  again in terms of the mean free pa th  and the field gradient.  As the effects 

of space-time curvature  have been taken  into the s t ructure  of magnetic field 

through solving Muxwell's equations on curved space time, we shall consider 
the restriction as given by  taking the mean free pa th  1 greater t han  the ei- 
fective field variat ion scale length, 

(7.3) 1 > I B / ( d B / d r ) l  , 
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B being the effective magnetic field. Considering the general expression for 
the mean free path  of charged particles as given by 

(7.-1) 1 = 3.2. IO~/Z ~- n In A ,  

wherein A = 1.3.104n -i and n = .NIT 2, N being the particle density and T 
the plasma temperature,  from (7.3) and (7.4) we get 

3.2.10 G 1 dB] 
( 7 . 5 )  d r  i . 

As an example, if we consider the dipole magnetic field on a Schwarzschild 
geometry (sect. 5) with 

B : 4m 23~ [1 -~-(1-- 2-~) 1 -}- r ln ( 1 - -  ~ ) ]  /1 - 2m'~�89 

we get the condition for singly charged particles 

(7.6) 

wherein 

n lnA < - -  
6.4 "10 6 

- r / \  - r /  + ' 

A = l + m  1 - -  In 1 - -  , 

which for a 1Mo black hole at r = 3m gives the condition n In A < 52.345 or 
9 .5n--  (n/2) l n n <  52.345, i.e. n g  5.5. This in turn  gives the condition on 
particle density as 

(7.7) N <  5.5T ~ . 

This condition looks very reasonable, implying tha t  the density may  be higher 
if the plasma is sufficiently hot, as then the higher thermal  velocity will keep the 
particles quite apart,  reducing the interactions between one another. From (7.6) 
it is obvious tha t  the density has to decrease for a fixed mass as one moves 
away from the black hole, as also at a given point for the increase of mass of 
the black hole. The above estimate is a very rough estimate, as the val idi ty 
of the expression used for (~ mean free pa th  ~> may  not be rigorous for the case 
of curved geometry. In  any case, if the particle density is greater than  few 
times the square of the plasma temperature,  then the single-particle approach 
treated in the above review will not be sufficient to describe the physical 
situation. 

In  conclusion I would like to point out tha t  the s tudy of the eharged-parti- 
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cle motion in electromagnetic fields superposed on black-hole s pace-times is im- 

por tan t  from the point of view of accretion as well as radiation emission f rom 

high-energy sources. As such~ no rigorous t rea tment  exists for the s tudy of pur- 

ticle motion wi th  the r~diation reaction being included. The main difficulty 

in considering such a system is tha t  no Lagrangian formulation h~s yet  been 

possible for considering motion with radiation. This problem in our opinion 

is impor tant  and needs a detailed consideration. 
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Note added in proo]s. 

My attention was recently drawn to the fact that eq. (4.5) has been earlier 
derived by TeD, DE FELICE and CALVA~I (NUOVO Cimento B, ~4, 365 (1976)) in the 
pole-dipole approximation, who have also for the first time found the existence of 
superluminal velocities for the baricentre. Further EHLERS and RUDOLF (Gen. Rel. 
Gray., 8, 197 (1977)) have obtained the same equation (4.5) in general. 

The value of r as obtained in eq. (3.15) for the last unstable circular orbit is 
in fact the same as that for the innermost unstable circular photon orbit in the 
equatorial plane of the RN metric and thus it is not surprising that it holds indepen- 
dently of particle charge. 
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