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1. — Introduction and motivation.

Einstein’s general theory of relativity considered as the most beautiful
creation of a single mind is just not only a beautiful theory, but also has been
vindicated as the most viable theory of astrophysics [1]1. Though theoretical
astrophysics has been a subject well pursued since the time of Jeans and Ed-
dington, it got a tremendons impetus during the last two decades after the
advances in radioastronomy. “Thanks to the modern developments in space
technology, today wa are able to study the Universe through the entire electro-
magnetic spectrum starting from radiowaves and going up to y-rays. The last
few years have seen the birth of infra-red astronomy, ultraviolet astronomy,
X-ray astronomy and y-ray astronomy. One of the fundamental contributions
of general relativity to astrophysies is the gravitational-wave astronomy which
is being pursued very seriously. Excellent review articles exist on the status
of these fields as of today [2]. As a consequence of these developments we
are now aware of a most astounding Universe around us consisting of very-
high-energy reservoirs like quasars and X-ray binaries, on the one hand, and
intriguing clocks like pulsars and perhaps the black holes, on the other. It is
a kind of feast for theoretical astrophysicists to play around with theories and
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construct models for these high-energy sources. But so far no convincing the-
ory has been proposed to explain the radiation from these sources. Though the
definite mechanism has not been understood, it is generally believed that the
radiation emission could be due to plasma processes near compact objects
like neutron stars and black holes [3]. Thus it becomes necessary to consider
plasma processes in intense-gravitational-field backgrounds, as such compact
objects would be massive enough to produce noticeable space-time curvature
effects. There have been treatments wherein models do take into account grav-
itational fields, but restrict themselves to a Newtonian formulation. Surely
these treatments are not adequate enough if one is thinking of black holes as
the source of gravitational field. Few models do take into account special-
relativistic effects up to the extent of considering the charged particles to have
very high velocities [4]. In our opinion the discussions of plasma processes
in such situations, particularly those concerning aceretion plasma disks, should
be taken up on a curved-background geometry, as even a 1M, neutron star
will have a very high gravitational field in its immediate vicinity and more so in
the case of black holes. As a prelude to considering plasma processes on curved
background (general-relativistic formulation), it is necessary to first consider
single-particle dynamics, before going onto collective effects. This prompted
us to review the state of the subject-particle orbit theory in general relativity,
particularly concerning the characteristic trajectories of charged-particle motion
in various background geometries with combined electromagnetic and grav-
itational fields.

In fact it is well known that the best way to understand the structure of
any field is to study the dynamies of test particles in that field. In general
relativity, wherein the gravitation is represented by the space-time curvature
of the underlying manifold, the structure of the manifold can be completely
studied through the geodesics of the manifold which represent the trajectories
of test particles in the absence of any other external field [5]. Along with the
gravitational field, if there are other fields present like a Coulomb field or a
spin field, the particle trajectories will still be geodesics only if the gravita-
tional field does not interact with these external fields. On the other hand,
if the particle is charged or has spin, then the particle deviates from its
geodesic motion and the study of such trajectories would reveal information
about the influence of these interacting fields on the geometry and vice versa.
Concerning the study of geodesics, there already exists a number of articles [6]
and thus we restrict this review only to the motion of charged particles in
combined gravitational and electromagnetic fields.

The trajectories of a charged particle of charge ¢ and rest mass M, in an
electromagnetic field in general relativity are given by the covariant Lorentz
equations

(1.1) uw’ = (e/Mo) F'ju!,
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wherein %! = d#‘/ds is the four-velocity of the particle and F"; is the electro-
magnetic-stress tensor. The semi-colon denotes the covariant derivative, taken

with respect to the space-time metric associated with the background geometry
as given by

(1.2) dszzgi,-d{vidwj.

In general g,;, the metric potentials, should be obtained as solutions of the com-
bined set of Einstein-Maxwell equations in the usual notation

(1.3) R;;— L1 Rg;; = — (8aG/[c*) E;,

wherein E,;, the source term, is provided by the accompanying electromag-
netic field

(1.4) E;;= Fiijk - %gﬁszF“
with F,; satisfying the covariant Maxwell equations
(1.5) Fi;jsziy Fii,k+Fik,i+Fki,j:07

J! being the current vector.

Thus, in principle, to get the trajectories of charged particles in a manifold
with space-time curvature produced by certain electromagnetic fields, given
by F;, satisfying (1.5), one should solve (1.3) for g,;, using these F,; and then
integrate the orbit equations (1.1), using the g,; so obtained. This is well said
in principle, whereas in practice it is almost impossible to solve exactly the
complete set of Einstein-Maxwell equations for arbitrary electromagnetic fields.
Recently KINNERSLEY and CHITRE [7] have extended an earlier preseription
of Kinnersley for generating space-time metrics for stationary axially sym-
metric fields by using an infinite-parameter symmetry group of transfor-
mations, a review of which may be found in [8]. However, the solutions so
obtained would not all be physically plausible, as all the transformations in-
volved do not preserve asymptotic flatness. There are quite many solutions
with cylindrically symmetric electromagnetic fields [9], but these again are not
all astrophysically significant. Our aim in this review being a study of charged-
particle motion in astrophysical situations, we will congider only solutions of
astrophysical interest.

It is indeed remarkable that the only known class of solutions of astrophysical
interest are the ones from the Kerr-Newman family [10] (which incidentally are
exact solutions of the Einstein-Maxwell equations) which represent the geom-
etry outside a black hole with three characteristics, the mass m, the charge @
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and the angular momentum @, given by the live element:

(1.6) ds? = — (4/2)[dt — asin?f de]® 4 (X/4) dr® +
-+ 2 agr 4 (sinz6/2)[(r2 + a¥ydp — adi]?,

wherein

A=17r*—2mr+ a® -+ Q2, 2 =124 a?cos?0.

As is well known, this solution reduces to that of Kerr (¢ = 0), Reissner-
Nordstrom (a = 0) and Schwarzschild (¢ = 0, ¢ = 0). Because of the charge
and rotation there is an induced magnetic-dipole field of moment Qa. CARTER
was the first to obtain the complete set of integrals of motion for a charged
particle in this geometry. He elegantly exploited the fact that the charged
Klein-Gordon equation in this field is separable, which in turn ensured the
separability of the Hamilton-Jacobi equation. A detailed review of this work
may be found in [11]. RUFFINI and his co-workers [12] have worked out the
dynamics of charged particles in the Kerr-Newman and Reissner-Nordstrom
fields, whereas HoJMAN and HosmaN [13] have discussed the motion of spin-
ning charged particles in the Kerr-Newman background. However, in these
classes of solutions the basie field associated with the central star is an electro-
static fleld due to the charge, apart from the gravitational field. But astro-
physically more interesting are solutions having electromagnetic - fields, as
most of the celestial bodies are endowed with .magnetic fields rather than
net charges. Henee one should look for solutions of Einstein-Maxwell equations
which are asymptotically flat and have nonzero dipole magnetic moment, even
in the absence of rotation. These systems of equations are formidable to solve
in general. However, there are some solutions. obtained by perturbation tech-
niques under the assumption that the electromagnetic field is weak comparedl
to the gravitational field and thus.it does not affect the basic geometry. This
is achieved essentially by solving the curved-space Maxwell equations on a
given background. This assumption is not bad, for even the most intense mag-
netie field associated with pulsars of, say, about 102G carries. an energy which
is very small compared to the gravitational potential energy on the surface
of a neutron star of 1M,. Thus it is quite reasonable to assume that the mag-
netic field would not affect the space-time: curvature, but the curvature could
affect.the magnetic field. With such an assumption GINZBURG and OZERNOI [14],
PETITERSON [15] and more recently BIcAK and DvoRAK [16] have obtained
solutions for a dipole magnetfic field on Schwarzschild background, whereas
using a similar approach CHITRE and VISHVESHWARA [17], PETTERSON [18]
and KING ef al. [19] have obtained solutions for stationary electromagnetic
fields on a Kerr background. WaLD {20] has obtained a solution for a uniform
magnetic field on a Xerr background. Charged-particle dynamics in such electro-
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magnetic fields have been extensively studied by PRASANNA and VARMA [21]
for the Schwarzschild background and by PRASANNA and VISHVESHWARA [22]
and PRASANNA and CHAKRABORTY [23] for the Kerr background.

We give in sect. 2 the basic approach in all these studies which is almost
the same (Lagrangian formulation) and in sect. 3 we consider the trajectories
in Reissner-Nordstrom and Kerr-Newmann geometries. In sect. 4 we consider
the trajectories of a spinning charged particle and in sect. 5 particle dynamies
in electromagnetic fields superposed on Schwarzschild and Kerr background
geometries, Section 6 deals with motion in Ernst space-time and sect. 7 gives
some discussions.

The notation adopted is more or less usual with Einstein’s summation
convention and the differentiation with respeet to the path parameter s
being indicated by an overhead dot. The physical parameters that appear are
normalized with respect to the particle rest mass M, and we use throughout
spherical polar co-ordinates », 0, ¢ alongwith the natural units G =1,¢=1
and the signature of the metric 4 2.

2. — Basic approach.

In all the ecases that we are going to consider the gravitational as well as
the electromagnetic fields are both axisymmetric or spherically symmetric and
stationary or static. These symmetries imply the existence of two Killing
vectors, & the timelike Killing vector, corresponding to the total energy of the
particle being a constant of motion and £’ the spacelike one, corresponding to
the canonical angular momentum of the particle being a constant of motion.

In the absence of interacting external fields the scalars &u;, = — E and
liu; =1 are constants along the geodesics:

2.1) w,w =0.

On the other hand, in the presence of external electromagnetic fields, these
scalars are generalized in a simple way as given by

(2.2) (u; 4 ed)é'=—E
and
(2.3) (4 ed) =1,

which are constants along the trajectories

(2.4) wl W = elF'ul,
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if and only if the vector potential A4, satisfies the Lie transport equation
{2.5) Ay K+ A K, =0,

wherein K¢ is any Killing vector and

(2.6) Fy=A4,,—4,;.

In the above treatment, the Killing vectors & and (’ are normalized and are
given by

(2.7) = 4§, fi= 0.

These features may also be clearly brought out in a Lagrangian formalism
(which is generally used) as follows. For a particle of rest mass M, and charge
¢ moving in combined gravitational and electromagnetic fields represented
by the potentials g, and A,, respectively, the Lagrangian of motion is
given by

(2.8) L =1%g,;80  ed, it
If the fields are stationary {or static) and axisymmetric (or spherically sym-

metric), then the Lagrangian is independent of the time co-ordinate ¢ and
the azimuthal co-ordinate . This naturally gives two constants of motion:

(2.9) ag/at' =K
and
(2.10) oZjcg =1.

By identifying the four-vector »* as da?/ds, it may be easily seen that (2.9)
and (2.10) are the same as (2.2) and (2.3), as the most general class of metric
that we intend to use in our discussion is stationary and axisymmetrie, viz.

(2.11) ds? = g,, dr® -} gos 402 + gop dg® + 2g,, At de + ¢, dt?

with g,; being functions of » and 6 alone.
The above two constants of motion may be written as

(2.12) gt -+ gou? = — (B + ed))

and

(2.13) Jo ¥t 4 Joou? = | — edy.
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From these two equations we can straightaway obtain two first integrals of
motion »! and u® as given by

(2.14) Wt — T_[ME,,,+ eA )+ Gl — 0:14"’)]
Jopdu— G ’

gwwgtt—Q?W

As we will be interested only in considering trajectories of real particles (tar-
dyons) the velocity four-vector «¢ should be timelike, which for metric of sig-
nature 4 2 is expressed as

(2.16) gou'w =—1,

which gives us one more first integral of motion. If in particular one considers
the trajectories in the equatorial plane of the central source given by 0 = n/2,
u® = 0, then eqs. (2.14) to (2.16) will give all the information about the nature
of the orbits. In this case w7, the other first integral, may be obtained di-
rectly by using «! and «® from (2.14), (2.15) in (2.16) as

217 = =

AD + gull —eAo)® + goo(B + e4)* + 29.0(E - ed)(1—edy)}

wherein

D = g — 9,2¢ .

As u” gives the particle proper velocity in the r-direction if one considers the
equation u” = 0, it gives the turning points for the particle in its orbit. Further,
at the points u* = 0 the particle is in equilibrium under the interacting grav-
itational, electromagnetic and centrifugal forces and thus the energy of the
particle E_,_, calculated at w" = 0, gives the «effective potential energy» that
it carries when subject to the balancing forces. Thus, by solving the equation
u* =0 for E, one can compute the «effective potential », often denoted by
V., for the particle in its r-motion. Then, by studying the structure of V,,
for different values of the constants ! and FE, one can get a complete picture of
the nature of orbits regarding their boundedness and stability. This approach
of analysing the partiele orbits is well known and has been used earlier by
many authors in connection with the study of geodesics [6)].

From (2.17), by taking #" = 0, the effective potential may be obtained as
given by

(218) V,=E,= — ¢d,— (§ip/goo)(l — ¢Ay) £ (l/gw){_ D(gee+ (I — 0Aw)2]}* y
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the 4 indicating the positive- and negative-energy states for the particle, with
obviously different domains of dependence.

3. — Motion in Reissner-Nordstrom and Kerr-Newman geometries.

As mentioned in the introduction, the Kerr-Newman solution which in-
cludes the Reissner-Nordstrom one has now been fully established as the
unique solution of the Einstein-Maxwell equations representing the external field
of a black hole with mass, charge and angular momentum. The study of the
charged-particle motion in these geometries has been considered by many
authors and we presently discuss the results of Ruffini and co-workers [24-26]
for the RN geometry and of Hojman and Hojman [13] for a charged spin-
ning particle in the KN geometry.

The Reissner-Nordstrém metric

(3.1) ds? = — (1 — 2m/r + @2/r2)dt® + (1 — 2m/[r 4 Q2/r*)~tdr? +
+ r2d62 4 r2 8in20 dg?®
represents the space-time exterior to a self-gravitating charged mass, with

charge @ and mass m (both expressed in length units), whose electrostatic field
is given by the vector potential

(3.2 A, =(0,0,0,—Qfr).

If one considers a charged particle in this space-time, with charge ¢ and
mass M, then in the equatorial plane of the central body one can obtain the
effective potential for the r-motion of the particle from (2.18) as given by

_eQ 2m  Q? I\t
(3-3) Veﬁ_ 7 :{: [(l““jr_ + 972) (1 —I_ ,;2')] .

As mentioned earlier, the -+ sign corresponds, respectively, to the positive-
and negative-root states E., such that

(3.4) lim .=+ M, and 11_1)130 E=—M,.

Figure 1 gives the effective-potential curves as obtained by RUFFINI for. dif-
ferent values of ¢, for a fixed I in the case of the extreme Reissner-Nordstrom
solution for ¢ = m. Depending on the charge ¢, one would have e¢Q) >0 or
< 0, wherein for the case e << 0 negative-energy states of positive-root so-
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lution can exist in the region

(3.5) m -+ (m*— @ <r<m 4 [m?— Q1 — ¢?)]},

called the «effective ergosphere ».

stable

N

15 o

negative-energy states

Fig. 1. — Effective potential ¥, in an extreme Reissner-Nordstrém geometry (Q/m = 1)
for a particle of charge e and rest mass My [12]: 1) e/My=2.0, 2) e¢/M,= 1.0,
3) e/ My=10.0, 4) ¢/My=—1.0, 5) E/M,=—2.0, U= unstable.

DENARDO and RUFFINI [24] conclude that, as a consequence of such so-
lutions, it would be possible to extract clectrostatic energy from a Reissner-
Nordstrém black hole in the same sense as in Penrose process for Kerr black
holes, which is envisaged as follows: a particle P, coming from infinity enters
the effective ergosphere, wherein it splits (decays) into two particles P, and P,
such that the particle P, with a charge opposite to that of the black hole is
suitably projected inside the horizon, whereas P, is pushed out with energy
higher than that of P,, the incident particle. It has been claimed [12] that, if
an extreme Reissner-Nordstrom solution is transformed into a Schwarzschild
solution by reversible transformations, up to 509, of the total energy of the
black hole can be extracted. However, in our opinion, this process of energy
extraction is extremely unnatural for two reasons: 1) it is highly improbable
that black holes with net charge (like the RN black hole) will stay in equilib-
rium at sites where continuous pair production could be taking place, and
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ii) as there are no magnetie fields associated with such black holes, the particle
decay mechanism cannot be very effective.

From the effective-potential curves (fig. 1) it can be seen that the charged
particle can have circular orbits corresponding to the extrema of V,, of which
some are stable and others unstable. RUrrint and ZERILLI [26] have analysed
these circular orbits, the equations governing which are given by

I Y 3m | 2Q Q2ex\t]
. e O A I
o = m—iQ—z _@ t
(37) Wy = (7’3 7'3) 7'3 (ut), ,
_ e 2m Q2 )

Wherein 7, denotes the radius of the orbit and w, = (d¢/d?), the angular ve-
locity measured by a distant observer. These equations may be obtained di-
rectly from the general equations of sect. 2 for the metric (3.1) through the
conditions defining a circular orbit given by

(3.9) @), =0,  (dw/dr),_, =0,

which give, respectively,

oM 2
(3.10) (1 e %)(u’)é — 14 el
0 0
and
M 2 eQ) R
(3.11) (F—%)<ut>3 = (ot rooi(at}
(1] Q 0

As hag been found by RUFFINI and ZERILLI, these circular orbits are stable if
and only if eQ/m < 1. The radius and the binding energy of the tightly bound
circular orbit increases with the value of |eQ|. In the limit |[¢@]| — co, they
find the energy of the particle to go as

(3.12)  E~—2[(rym — @*)/(r; — 3mr, + 2Q°))(eQ/ro) —

- (7’3 — 2mry |- Q) [cQr, + O(rofeQ)?,
whereas for the maximum bound orbit the radius and the energy are given by

(3.13) 7o & (V2 ]€Q))F

max
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and

(3.14) Brux ~ %@ (2/]eQ 1))},

which in fact eorresponds to the last stable circular orbit. On the other hand,
the structure of the effective potential shows that it is possible to have few
more circular orbits which are but unstable. Of these orbits the last one occurs
for ¥ — oo and thus found to be at

(3.13) P = T, = [3m - (9m? — 8Q)3])2.

In fact it is interesting to see that this last unstable circular orbit occurs at
the same value of r even in the case of an uncharged particle [27].

Thus a charged particle in the vicinity of a Reissner-Nordstrom black hole
can have cireular orbits which are unstable in the region

yo.oo<<r<<r

min max

and stable for r > r_ . In general the parameters of the last stable circular
orbit can be obtained from the expression for the effective potential by using
the criteria of stability through the extrema of the effective potential. RUFFINI
and ZERILLI point out that the binding energy of a particle in the last stable
orbit increases very rapidly with decreasing value of ¢ and the particle velocity,
say V, tends towards the local light velocity V,, whereas in the entire family
of unstable circular orbits for a fixed value of ¢ the ratio V_/V, increases mono-
tonieally for discreasing values of the radius and V, — ¥V, as the radius —7_,..

While analysing these orbits, RUFFINI and co-workers have also considered
the question of radiation emission and this we shall consider at a later stage.

As pointed out earlier, CARTER has given a very general treatment for the
dynamics of a charged particle in the vicinity of a Kerr-Newman black hole,
wherein he has obtained the complete set of first integrals of the orbit equa-

tion as

(3.16) 2wt = — a(aB sin2 — 1) + (r2 4 ax) P41,
2u? = — (al — lfsin20) + aPA?,
wherein
P=E@r*+ a*)— la— eQr,
(3.17) R=P*— Ap2+ K),
0 = K — cos?0[a*(1 — E?) + 1*/sin20] — (I — aE)?,
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K, E and ! being constants of the motion along the trajectory of the particle
and X and A, the metric coefficients as defined in (1.6). The effective potentials
for the r-motion and 0-motion may be obtained directly by solving R =0
and @ = 0, respeetively. Some qualitative remarks concerning circular orbits
may be found in [28].

4. — Motion of a charged spinning particle.

Apart from the charge, if the particle also possesses spin, then there will
be dynamical effects because of either spin-orbit coupling or spin-spin coupling.
In the case of a spinning particle again the particle orbit will not be geodesic.
Though the general equations of motion of a spinning test particle were first
obtained by MATHISON [29], the equations are known after PAPAPETROU, who
derived them for the general pole-dipole particles [30], and are given by

DPu 1
(4.1) E« :__ERumBquaﬁ
and
Ji2
(4.2) D]:‘)SS = Sﬂl O'lll —_ O’”)‘S; ,

wherein P+ and S*f are the canonical linear and angular momentum of the
particle connected through the relation

(4.3) Poyy — Pryr = Sehgyy — gir Sy

with u# and o#* representing the particle four-velocity and the angular velocity.
D/Ds as usual represents the covariant derivative and Rk, represents the
space-time curvature tensor of the underlying manifold.

PrASANNA and KUMAR [31] have considered the motion of a spinning charged
particle as governed by eqs. (4.1) and (4.2) in an axial magnetic field as given
by Melvin’s magnetic universe [32]

(4.4) ds® = exp [2¢] (dt? — dr? — de?) — 72 exp [— 29] dg?

with v =1n (1 + zB?r?), B being the magnetic-field intensity. In the ap-
proximation wherein they neglected the spin-orbit coupling they found that
the particle in a circular orbit will not be disturbed very much and that the
spin precession is affected very little by the gravitational field due to the mag-
netic energy. On the other hand, their equations indicate that, if the spin-orbit
coupling is not neglected, then the particle seems to execute an oscillatory
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motion along the Z-axis, which perhaps will show some distinctive polarization
of the emitted characteristic radiation.

It is natural to expect more interesting result if, instead of background
geometry like Melvin universe, one hag the field of a black heole. This aspect
has been fully discussed by HosmaN and HoJmAN, who have considered the
motion of a spinning charged particle in the Kerr-Newman geometry.

Unlike in the case of a spinless particle, in the case of a spinning particle
the first thing to notice is that the particle momentum z# is not necessarily
parallel to its four-velocity u#. As proved by HANSoN and REGGE for the
case of pure gravitational field and by HosMAN and HoJMAN for the case of
gravitational and electromagnetic fields, these two quantities are related through
the equation

(4.5) Uk = T U™ {nﬂ + %} )
wherein

(4.6) fro = — 3 BapurS¥ — eFop
and

4.7) Gt = —1,

(4.8) 8ur 8y = 2J2 .

‘With this the generalized momentum P is given by
4.9) Pr—= qpgr — ¢An,

Au being the eleetromagnetic vector potential, and the Papapetrou equations
now read

I
(410) I%% — ——%RﬂvaﬁuVSaﬁ_gFuvuv
and
1wy
(4.11) DS = S#dgy — ght S,V == qhu? — Uk,

Ds
These equations are generally solved with the supplementary condition
(4.12) S, =0 .
The Kerr-Newman geometry as given in (1.6) has an electromagnetic field
given by

F,. = QX ¥r:— a? costf),
F,=—2QX2a%rsinf cosf
(4.13) 0 ‘ ’
.= 0Q22asin20(r* — a? cos®0),

Fop = — 2Q52ar(rt + a?) sinf cos § .
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As the fields are stationary and axisymmetrie, the two constants of motion E
and ! are given by

(4.14) T — §6,,,8" + [eQr|(r® + a® cos?0)] = — E,
(4.15) g — % Youy S — [eQar sin®0/(r* -+ a® cos?0)] = 1.

As the general motion of the spinning charged particle in this background
is too complicated, HosMAN and HoJMAN consider as usual the motion in the
equatorial plane with the further assumption that the spin of the particle is
orthogonal to this plane, after establishing that this motion exists. The ef-
fective potential for the r-motion in the equatorial plane is given by

(4.16) V,=E,=[§+ (8°— or)]fe,
wherein + stand for the same notation as in (2.18) and

(4.17) a=—k, P=—ekQr+ (1—ecaQr)k,

r=— 6292 +239( mQ)k —(zJ—‘fQ)lnLaz

k,= A,-J2/r2 + B, Jjr+ C,,

(4.18)

A,, B,;, U, being given by

4, = —1~[r2 —2mrd —2ma®r —m2a?) +

7'4
+ Q%(rt + 2a2r® + 2ma’r —Qa?)],
1
Ay = — S [mrt 4 QX(Q* — 2mn)]

Ay = Z[mrd(m 4 1) — Q2 + 2mr — Q)]

By= 20 3 - at)—Qu2r 4 )],

2
w19) | Be=T5 e,
By = LIrtro—8mrt—2mat) + 220+ @)1,

O = — L[+ atr + 2mat) — Q2]
O = Lirtr—2m) + @],

a
03 = F[er—ﬁ,ﬂ] 9

[ 02 = [1— (J*fmert)(mr —Q*)12,
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J being the scalar associated with the total angular momentum (4.8). HOIJMAN
and HoJMAN particularly consider circular orbits with 100 % binding in the
horizon of a maximal Kerr-Newman background (a® 4+ @2 = 1). As the horizon
in the equatorial plane for such a background is given by » = m, the conditions
for sueh orbits are

4k
(4:20) Ba=0, (F)_ =0,

which give, respectively,
(4.21) la+e(l—a*)=0, (@ —1) £ 0
and

o 2] —gf) e N et A
@22) O = T 1 all(d —a—atT— 1T a)

for a = 0.

As a? is never greater than 1, the denominator on the right-hand side can never
be negative except perhaps when a?J2 = 1. This condition would give a strong
restrietion on the values of ¢ and J that give rise to 100 9%, bound circular orbits.
In the case of a spinless particle (J = 0) the criterion obtained here is the same
as that of {25] for ¢ —1 and e*1 — a®) — co. Figure 2 represents the curves
1+a—a>)J+14+a=0, (1 —a—a*)J —14+a=0,aJ-+1 =0, which imply
¢ — oo and ¢ — 0, respectively. In this figure the only points known earlier
for 100 9%, binding orbits were those with ¢ =1 and J = 0 (CHRISTODOULOU

hajm
1.0 1.0
%) 2)
_______ W2 5-1p
| %
/%: // -
-2 V2 -] 0 1 2 e
J/Mom

Fig. 2. — The curves (1+a—a*)J+1+a=0 (1)), ¢ (2)), 1—a—a®)J—14a+0 (3))
and aJ +1=0 (4)). The hatched regions represent the points that give rise to
real solutions for the charge ¢ in eq. (4.22). Boundaries correspond to the limit e — co.
The curve aJ + 1==0, represented by the dashed line, is the locus of e= 0. The
point J=—+v2, a=1/v2, where the three curves cross, is such that any e will
satisfy eq. (4.22). The points J =0, a=1 and J = —1, a =1 were obtained earlier in
ref. [25, 33] ([13]).
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and RUFFINI) and J = — 1, | = 0[33]. However, in this treatment, as the
radius of the particle has an implicit restriction R J, it is safer to consider
the region J/m<« 1 as physically relevant as only then the spin will be small
and thus the radius also small characterizing a test particle. This restriction
makes their allowed region for 100 9, binding to lie close to ¢ = 0, and thus
in spite of their detailed treatment physically the results seem to be similar
to that of Christodoulou and Ruffini and Tod et al. On the other hand, their
treatment gains superiority over others for the reason that it shows the pos-
sibility of the particle acquiring superluminal velocity (u# can become space-
like) for sufficiently large fields (gravitational and electromagnetic), a fact which
needs to be examined closely after including higher multipoles and radiation
in the analysis.

5. — Motion in stationary electromagnetic fields on a curved background.

As pointed out in the introduction, astrophysically more interesting dis-
cussions are the ones wherein charged-particle dynamics is considered in an.
electromagnetic field superposed on curved-background geometry. As seen in
the previous sections, the Kerr-Newman solution represents electromagnetic
fields of black holes with charge. But in Nature we are more likely to encounter
situations wherein uncharged black holes could be immersed in external mag-
netic fields like the galactic magnetic field or have ring currents around them
which would produce electromagnetic fields. Such situations are not covered by
the Kerr-Newman family of solutions. In fact the electromagnetic fields in such
situations would be quite small compared with the gravitational field asso-
ciated with the black hole and thus would not disturb the background ge-
ometry of the space-time. On the other hand, the space-time curvature af-
fects the electromagnetic fields and thus to describe such fields one has to solve
Maxwell’s equations on the given background manifold. Such solutions, as
mentioned in the introduction, have been obtained by many authors [14-20]
by using perturbation techniques. We will presently consider in detail charged-
particle trajectories in these fields as obtained by PRASANNA and co-
workers [21-23] for the Schwarzschild and Kerr background.

In order to obtain the structure of the electromagnetic field which is dipolar
at infinity, superposed on the Schwarzshild geometry, GINZBURG and OZERNOI
solve the Maxwell equations (1.5) on the background manifold:

2m

5 —1
(6.1) ds? = —(1 — T) dez + (1 _2Tm) drz 4 r2d0? - r25in® 0 de?,

by assuming the local Lorentz components of the field to be of the form

cos 0 sin
(5.2) F(am)=2,u7f(r), F(rpr):;u_/ra—-g(r)7
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others being zero. Here u is the magnetic-dipole moment and f(r) and g(r)
are arbitrary functions to be determined. Maxwell’s equations (1.5) with J?,
the current vector zero, give the two equations

j (@/dr)(ffr) + (g/r)1 — 2mjr)+ =0,

(5.3) 1
| (d/dr)[(g/r2) (1 — 2m[r)t] 4 2ffrs =0 .

Solving for f and ¢, one can then get the two components F., and F g, from

which the components in the Schwarzschild frame may be obtained by using
the relation

(5.4) Fyy = 4929 Fyy,

A9, being the orthonormal tetrad associated with the Schwarzschild manifold.
Once we have obtained F;, it is a matter of simple integration to get the
vector potential A, through relation (2.6) and in the present case A, turns
out to be

Ai == (O, O, Aq}, O)
with

(5.5) Ay = — (3u 8in20/8m*)[r* In (1 — 2m/r) + 2m(r 4- m)].

PrASANNA and VARMA have used this solution for determining the orbits of
charged particles in a dipole magnetic field on the Schwarzschild manifold.
The Lagrangian for the motion (2.8) is given by

(5.6) L= %{-(1-?)5% (1*277”)~1r'2+ 7262 4 r25in?f g2 —

Seusin?f [ | 2m .
— = [r ln(1~— " )+2m(r+m)]<p}.

The two constants of motion E and I are found to be

2m\ d¢
(5.7) (1——;—)&::1‘}
and

(5.8) rzsinzﬁ%—w[ln(l—?;—n)+2—m—(1 +7_n)]=l,

&m? 7
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whereas the equations governing the » and 6 motion are given by

I BT B
R - -2 Gl

ax  2drdbd . de)?
(510) *d—s2‘ ;-ga;—smﬂ OOSH(&) =

_ Se,usmﬁeosﬁ[%n(l_i_ )+11(]_~)]_d£

4m?

Restricting the analysis to motion in the equatorial plane ( = z/2, one can
get the «effective potential » for the r-motion to be

(611) V= (1—5){1 = 02[ +38){ (1_%) +§(l %)M’

wherein dimensionless parameters have been used such that ¢ = r/m L = 1/m,
A = eu/m?, ¢ = s/m. By considering the limiting values of V_,, one finds that,
as ¢ - oo, V. — 1, whereas, as o -2, V,, — 0. It is interesting to see that
in spite of the logarithmic singularity in the vector potential at ¢ = 2, which
makes the magnetic-field components grow very large, the effective potential
tends to zero as p -2 because of the 1. — 2/o term which dominates. This
shows that at the event horizon the gravitational interaction (space-time
curvature) dominates over all other interactions.

Figures 3-5 give some typical plots of the effective potential as a function
of p for different values of L and A. The logarithmic singularity in the vector
potential reflects through the appearance of an inner maximum Ey for V,
very near ¢ = 2. Then the effective potential drops down to a sharp minimum
still close to 9 = 2 and then rises to a second maximum E, which is the cen-
trifugal barrier (it increases with increasing L). After this maximum V, again
drops slowly towards the value 1. Very far from the source V,, dips below 1,
attaing its flat minimum and then reaches 1 asymptotically. When L <0,
there is no centrifugal barrier and thus no potential well exists. Because of
scaling difficulties, the plots do not show the inner maximum and the outer
minimum. From the structure of the potential curves it may be seen that
four different classes of orbits exist.

i) Highly relativistic particles with E? greater than both the maxima
coming from infinity would find no barrier and thus plunge straight into the
black hole.
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30

20

Fig. 3. — Plots of V,,, vs. o(=r/m) for different values of L, 1= 27.5: —-.

L=17.6954, ——— L =24.7736,

19

——— I, = 34.4136. The inner maximum and the

outer minimum are outside the limits of scaling. As 1 increases the potential well

flattens for a given I [21].
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Fig. 4. — Same as fig. 3, but for 1= 250.
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ii) If E<E, , but greater than E, , then the particle will have an un-
bound parabolic orbit. As it comes from infinity very near to the black hole,

the magnetic field would turn it away and the particle will get back to infinity.

30

20

3
10
0 ) I T | [ |
2 6 10 14 18 22 26 e 30
Fig. 5. — Same as fig. 3, but for L =—34.4136 (—--—:-—), L=—24.7736 (— —-),
L=—17.6954 ( ).

iii) On the other hand, if its energy is such that 1 < E < E, , then it
will have four turning points, as may be seen from the curves. If the particle
is coming from infinity, then it is unbound as the centrifugal barrier would
turn it away. Instead, if the particle is inside the potential well, then it is bound
in a stable orbit with the two turning points corresponding to the inner and
outer envelope of the gyrating orbit. As this potential well is created by the
magnetic field, the particle executes Larmor motion, as one is familiar with in
the flat background. However, the important difference one finds is that un-
like the case of flat background, wherein Larmor motion is circular {(one talks
of radius of gyration), here, as the magnetic field is modified by the space-time
curvature (gravitational field), the Larmor circles are deformed into ellipses,
as may be seen from the actual orbits (fig. 6-9). If either the seed magnetic
field A is large or the particle is sufficiently away from the event horizon
{fig. 7, 8), gyration seems to be more circular than in the other two cases
wherein the particle is eloser to the event horizon and the magnetic field is
weaker. These orbits are all stable as the particle is well inside the poten-
tial well and no perturbation will make them tunnel out.
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] |

Fig. 6. — Equatorial-plane view of the orbits of a positively charged particle in a
dipole magnetic field on the Schwarzschild background. The physical parameters
are B =2, A= 30, gy=3, L= 21.2345. The turning points which correspond to the
euvelopes of gyrating orbits are o, = 2.562, g, = 4.560 [21].

L

Tig. 7. — Same as fig. 6, but for 1 =100, g, = 4, L = 40.8883, ¢, = 3.526, g, =4.987 21].
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Fig. 9. - Same as fig. 6, but for £ =3, g, = 2.1, L = 81.2964, ¢, = 2.023, g, = 2.145[21].

iv) Finally, if the particle’s parameters correspond to the extrema of
the potential well, then the particle will execute circular orbits which are stable if
they corresponds to the minima, but unstable if they corresponds to the maxima.
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The flat minimum which lies far away is just the Schwarzschild potential
well and particles here are in a stable orbit only if their energies ¥ is less than 1,
as is well known.

In the case in which I < 0 there is no potential well near the black
hole and thus these particles either plunge into the black hole if they are
highly relativistic E > E_,_  or get scattered away by the magnetic field
otherwise.

In order to get the actual orbits, PRASANNA and VARMA have integrated
the system of equations (5.7)-(5.9) after using the initial conditions

7 a6
635’ d-O':O’ 990:0; 0 = Os
and
2 2 :
L:—-:ﬁ—@{ln(l—z)—{—~(l +l)},
(5.12) ® S &

dg\ o, ;
(), = @ =1+ 2.

The results of this integration for different o,, 4 and E are shown in
fig. 6 to 9. The important point to notice is the existence of a bound stable
orbit very close to the event horizon (g, = 2.1), unlike the case of the
pure Schwarzschild geometry, wherein the last stable orbit exists for g, = 6.
In the case of the Kerr background geometry the method of approach used
by most of the authors (except WALD) while solving Maxwell’s equations is the
same, wherein they Dbegin with the Newman-Penrose complex tetrad for-
malism [34] and then use Teukolsky’s technique of separation of radial and
angular functions [35]. CHITRE and VISHVESHWARA [17] were among the first
to discuss the electromagnetic field of a current loop around a Kerr black hole.
As they point out, the presence of current loops would produce in addition
to the magnetic field an induced electric field due to the rotation of the black
hole, which can lead to possible charge accretion. PETTERSON [18], on the other
hand, generalizing his earlier studies of current loops around a Schwarzschild
black hole to that of Kerr, obtained the expressions for the components of the
vector potential in a relatively simple form of a combination of first derivatives
of Legendre polynomials. As he points out, while in the Schwarzschild case
one could have considered the electric and magnetic fields separately, this
cannot be done on the Kerr background as rotation mixes them up. He has
further calculated the field of a loop carrying both a current and a net charge
in the equatorial plane and also the true minimum-energy configuration of the
system in which the black hole and the current loop have equal but opposite
net charge rendering the total configuration electrically neutral. Such a
neutrality would ensure the stationarity with respeet to charge accretion, as
no charges will be drawn by the system from infinity. Kine et al. [19] have
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congidered the possible stationary axisymmetric electromagnetic fields in a
vacuum cavity between an initially neutral black hole and a surrounding
plasma shell and conelude that the magnetic field must be uniform to a good
approximation except near the shell where higher multipoles could bend the
field lines. They find that the flux of magnetic field across one hemisphere of
a neutral black hole decreases monotonically from a maximum value at ¢ = 0
to zero at the extreme limit |a| = m, and the hole tends to accrete charges
selectively, like for positive charges over the upper and lower parts of its sur-
face and negative charges in a comparatively narrow band around the equator.
CHANDRASEKHAR [36] has given an explicit solution for the vector potential
for a stationary axisymmetric electromagnetic field around a Kerr black hole
in terms of Teukolsky’s radial and angular functions.

WALD [20], on the other hand, making use of the fact that a Killing vector
in vacuum space-time serves as a vector potential for a Maxwell test field,
has derived the solution for the deformed electromagnetic field, when a Kerr
black hole is placed in an originally nniform magnetic field. Strangely he finds
no enhancement of the magnetic-field strength near the black hole as one would
have expected due to possible sucking in of lines of force by the black hole.
However, similarly to the case of a general magnetic field, the rotation induces
an electric field in the vicinity of the black hole.

PrASANNA and VISHVESHWARA [22] have studied in detail the trajectories
of a charged test particle in a dipole magnetic field superposed on a Kerr back-
ground, using the explicit solution of Petterson, and those in an uniform mag-
netic field on a Kerr background, using Wald’s solution. We shall now con-
sider these cases in the following.

By using the usual approach, the constants of the motion, energy and
canonical angular momentum for a particle of charge ¢ and mass M, may be
obtained from (2.9) and (2.10) as

(5.13) up+edo=1, u,+ed,=—1FE,

from which for the Kerr metric in Boyer-Lindquist co-ordinates

2mr imra .
2 — 2_ 2
ds _—(1 Z)dt 5 sin 6dtde +

+ (X/Aydr? -+ Xd6® - (A)2)sin? 0 de?,
2 =124 atcos?f, A4 =rt-L a*—2mr,

(5.14)

A = (r2 -+ a?)*— Aa®sin?f ,

the first integrals «® and «' may be written as

_dp 1 2mr 2mra .
(5.15) uv = s = Tsinid {(1——2—)(l—eAw) + 5 sin20(E + eA,)}
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and
de 1
= = —
(6.16) W= ="y
2 2)2 — Aa?gin?
.{(7. + a?) ZAa sin 0s11126(E+ eAt)__Z_ﬁf_asinZ@(l—eAw)}.

The equations governing the »- and 0-motion are given by the usual Lorentz
equation, which may explicitly be written as

(5.17) d’r  m(r*—a® cos?l) —ra*sin®0 (dry* rd (d6\?
h ds? 2 ds T \ds
_ 2a? sinf cosf dr df mA( *_ 4% 0os?f ary A sin®6
T dGsds ' 2® “ Nw) — =
A{rs ++ 2r3a’ cos?0 — mr2a? sin?0 + ra* cos*0 - (m—r) a*sin@ cos*6} -
(do\*  24Amasinz o dpdi ed de de
(ﬁ_g) B 28 (r*—a* cos 0)—d—sds I R PRI
and
d2f  a?sinfcosd fdr\2  2¢r dr A0 ae?sinf cosf (dF\?
G T I (E) Tasas X (@) -
_ 2mra® 4mm£r2—{— a®) . . )
5 sn@cos()( ) W sin { cos 6
‘3—"8’%—@—?0—36[( 1+ a2y — (12 f at 4+ Z)Aa®sin26]-

dpy: e dt
(E;) o Z{A‘”’B a5 T 4w ds}

The general solution of Petterson for the vector potential of the electromagnetic
field outside the sources is given by

(65.19) — —}—E[A 49, Q. (cos 6)(rf;— a cos H8;) +
~|—a51;0()l dQl (rBi + a cos6p;) ]—}—oc,
and (%)
{5.20) A@_mg%m 0 E[aunzeé(&.g} (cos 0)(rf; —a cos08;) +
. 9 d@, d
£ osing L ® E,“ Q) d% (a cosOB; + rfi)— A5 b d‘f d%]+ v

(*) 1In Petterson’s paper in the expression for 4, ([18], p. 2222, eq. (29)) the 4 asso-
ciated with the last term is missing.
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wherein u = (r — m)/Vm* —a?, @, is the associated Legendre function and ¢
is the electric charge on the black hole. PRASANNA and VISHVESHWARA have
considered the special case of a dipole (I = 1) magnetic field and set ¢ = 0
(uncharged black hole). The constants «, and «, are also chosen to be zero,
whereas f; and ] are chosen such that the electric field is zero when a = 0
giving f; = 0 and asymptotically the magnetic field is Lorentzian, which gives
B = F 3u/2(m? — a?), u being the magnetic-dipole moment.
With these, the components of the vector potential take the form

—3au

R — .

(5.21) A, s
. _ _ Lgpr=mty :
{[r(r m) -+ (a? — mr) cos2 0] lenr p— (r —m cos 0)}

and

5.22) Ap= —Susint0 sin? (r—m)a? cos20 -+ r(r2 + mr + 2a?) —

( . @ 4)}22 ) X + :

. 1 r—m-4y
— 3___ v 2 2 ,2 2 —_
[r(r*—2ma® + a®r) + Aa® cos?0] % lnr y}’

wherein y = v/m?®—a? and the dipole moment is taken to be antiparallel
to the rotation axis.

The vector potential for the case of black hole in a uniform magnetic field
as found by WarLDp has the components

(5.23) A, = — Bya[l — (rm/Z)(2 — sin26)]
and
in2
(5.24) Ay B0 o gt sin?f — dmatr]

2%

wherein B, is the magnetic-field strength.

As the discussion of general motion is complicated, following the usual
practice, PRASANNA and VISHVESHWARA have considered the motion along
the equatorial plane 6 = n/2. The effective potential for the r-motion in
the equatorial plane is given by
(5.25) V,=—A + KR

eff
with
K = 20(L — A,) + A{o(L — A,)* + oR},

(5.26)
B = ¢+ a*g+ 207, A=9*— 20+ a?,



GENERAL-RELATIVISTIC ANALYSIS OF CHARGED-PARTICLE MOTION ETC. 27

wherein the dimensionless quantities g, o, L are used as defined earlier along-
with ac=a/m, 1=ct/m, A;=eA:, Ag=eAy/m. Using 4, and A. appropriately
for the two different cases, they have studied the nature of orbits in detail.
Figures 10-13 give the effective-potential plots for the case of the dipole field
for different values of the parameters. As in the Schwarzschild case also here

Fig. 10. — Plots of V,;; as a funetion of ¢ for = 0.1, =1000 for the case of
a dipole magnetic field on a Kerr background [22].

there are two maxima and two minima of which the curves present only the
first minimum m and the second maximum M,, due to scaling difficulties.
Considering the asymptotic behaviour of V_,,, they find that, as ¢ — oo, V,,, —1,
as 1 — 2/o + a?/p? a behaviour which is just similar to that of V_,, in the pure
Kerr geometry. For a given « and 1, as L increases, the centrifugal barrier in-
creases monotonically, whereas the inner maximum M, decreases for a up to
~ 0.45, but it increases for a>>0.45. On the other hand, when L is fixed, as 4
increases, M, increases, whereas m and M, keep decreasing monotonically
irrespective of the value of a. If L and f§ are fixed, as « increases the entire
potential well moves upwards in energy and towards the event horizon.
Ag p = 2 corresponds to the ergosurface in the equatorial plane, it follows
that depending on the physical parameters the potential well stays either
completely inside or completely outside the ergosurface and in few cases part
of it lies inside and part outside the ergosurface.

In the case of the uniform magnetic field the effective potential asymp-



28 A. R. PRASANNA

150~

Fig. 11. — Same as fig. 10, but for « = 0.45[22].
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Fig. 12. — Same as fig. 10, but for « = 0.9, 1 =150 [22].
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totically goes as

Vaff =1 + l“ —I— (Zw)z/Qz - (ZwL)/Q7

{6.27)
V.~ 14 Az 6{g?) + constant

i.e. as the square of the distance for large p. Unlike the case of dipole magnetic
field, here V,, has only one maximum and one minimum both in the vicinity
of the black hole, whereas far away from the black hole V_, increases without
bound. Thus there always exists a potential well which depending on «, L and A
either lies completely outside the ergosurface or lies partially inside the ergo-
surface.

150

0
145

Fig. 13. — Same as fig. 10, but for o= 0.9 [22].

From the structure of the potential curves the nature of the orbits are
obtained as follows. In the case of the dipole field there are i) plunge orbits
for highly relativistic particles with E > M,, ii) unbound orbits for particles
coming from infinity with £ <M, or M,, iii) stable bound gyrating orbits
for particles with E < M, and initially located within the potential well and
iv) finally circular orbits stable for B = (V) .. and unstable for E = (V) .
On the other hand, in the case of a uniform magnetic field, the particle will
plunge into the black hole if it is highly energetic, B > (V)..., whereas it
will gyrate in a bound stable orbit, if E < (V) .. As is well known, it will

have a circular orbit which is stable if = (V. and unstable if F=(V,

eif)min eff)max ‘
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In order to obtain the actual orbits, they integrate the set of equations

Ldie 1 () @) (dey _(L_=)(d
62 4 & Az(l )(da) (@ 9)((10)
otdods ' g*\do _g ‘do do ' dg dof’
dp 1 20
(5.29) %_Z{(l—é)(ll A)+~@—(E+Ar)},

dt

(3:30) o=l + o+ 2ee)(E+ ) — (2oL — )

with initial conditions
Po=10, 0= 00
o).~ {5+ (g
5.31 — t (S — S [L— (Ag)o]r—
oo () = {05+ %) + od— (G- 2) -
- 2 a?\]*
— —g[E + (42)o][L— (4o)e] — (1 ——+ —5)} ’
Qo % Qo
wherein (A4,), and (A4:), refer to values of 4, and A, at 0 = Op-

Figures 14a to ¢ give the bound orbits for the case of the dipole magnetic
field, whereas 15a to d give the orbits in the case of uniform maguetic field.

1 1 | | 5

Fig. 14a. — Orbits in the equatorial plane in the dipole magnetic field on a Kerr back-
ground [22] for «=0.99, 1=1000, L=500, E=30, g,=3.51763, p,=3.39123, ¢,=3.81977.
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Fig. 14b. — Same as fig. 144, but for 1=150, E= 152, ¢,= 1.36570, o, = 1.35715,
0, = 1.39003 [22].

1 ! 1 — 1

Fig. 14c. — Same as fig. 14a, but for a= 0.45, £ =158, o= 2.13311, o, = 1.93331,
0, = 3.11145 [22].
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1 L

Fig. 14d. — Same as fig. 14a, but for « = 0.45, 4 = 500, L =1000, E = 100, g, = 2.13311,
0, = 2.06173, o, = 2.26142 [22].

1 1 | -

Fig. 14e. — Same as fig. 14a, but for « = 0.45, 2= 500, L= 1000, F =72, g,= 2.13311,
0 = 2.12822, g, = 2.13963 [22].
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Fig. 15a¢. — Orbits in the equatorial plane in a uniform magnetic field on a Kerr back-
ground fora=0.99, 1=150, L=1000, K'=350, 9,=2.37979, p,=1.72675, 0,—6.07672[22].

Fig. 15b. — Same as fig. 15a, but for 1=1000, g,=1.54210, o, =1.48561, p,= 1.60200[22].
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\
N\

Fig. 15¢. ~ Same as fig. 15a, but for « = 0.9, 1= 50, E = 320, g,= 10, ¢, = 1.90970,
0= 14.7571 [22].

Fig. 15d. — Same as fig. 15a, but for «= 0.9, = 150, g,= 3.65400, g, = 3.13043,
0, = 4.15418 [22].



GENERAL-RELATIVISTIC ANALYSIS OF CHARGED-PARTICLE MOTION ETC. 35

The striking features common to both cases is that the particle executes Larmor
motion (gyration) only if it is completely outside the ergosurface during its
motion. As PRASANNA and VISHVESHWARA conclude, this is indeed the ef-
fect of inertial frame dragging of Kerr geometry. Gyration requires that during
every Larmor circle the particle angular velocity dg/do be prograde for one
half and retrograde for the other half with respect to the rotation of the black
hole. Since the ergosurface in the Kerr geometry is the static limit surface on
and behind which no retrograde motion is possible, the particle can gyrate
only outside the ergosurface. One can see this analytically as follows. If the
particle has to exhibit gyration, it should satisfy two conditions:

dg dey®
—) =0 — 0.
(dg)gn ’ (dG)Qv -
These two conditions together require

2\—1
(5.32) (1 — —) [E + (Ar)gmp, > 1,

g

whieh can be true only for g, > 2, i.e. outside the ergosurface. The actual
plots show that when o and L are kept constant the change in orbits may be
brought about by changing either the magnetic field (4) or the energy (E).
In fig. 14a when 4 = 1000 both the turning points of the orbit lie outside
o = 2 and thus there is gyration, whereas as 4 is decreased to 150 (fig. 14b)
both the furning points are inside ¢ = 2 and thus the particle does not gyrate,
On the other hand, in fig. 14¢ and d «, L and A are the same, but E varies.
When FE is large, the particle moves in and out of the ergosurface without
gyrating, but, as the energy is decreased, it is trapped in a region completely
outside the ergosurface and thus it gyrates. As the energy is further decreased
towards the minimum of V,, the particle tends to execute an almost circular
motion as shown in fig. 14¢ as at (V,,), . the orbit should be perfectly circualar.
Figures 15a-d depiet similar features in the case of uniform magnetic field.

The fact that the nongyration of the particle inside ergosphere is an ef-
fect of inertial frame dragging has been further conclusively verified by Pra-
SANNA and CHAKRABORTY [23], who have discussed the partiele orbits in the
equatorial plane of the Kerr geometry in a locally nonrotating frame (LNRF)
for the same vector potentials and the same physical parameters as discus-
sed in [22].

If u* represents the velocity four-vector in the LNRF, it is related to the
four-velocity «¢ in the Boyer-Linquist co-ordinate frame through the relation

(5.33) w = e,
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wherein
[~ (XA4/4% 0 0 0 ]
0 (ZiMHt 0 0
(5.34) 6= 0 0 P 0
2mar sin 6 AN
_'— m%— 0 0 (Z,) Sin 0_

Using similar transformation for F;; and I, PRASANNA and CHAXRABORTY
obtain the complete set of equations for the motion in the equatorial plane in
terms of g, a, 0, A; and Ay as defined earlier, given by

e e L[ o) p\ 2w o) dpdr
s BE- e

Aide: B 0°) \do 0 o
— @alA% [(0* + «)* —dag] (3_2)2} +
T A e e ]}
(5.36) ‘;—i = (L—A4,)/B},
(5.37) g—; = E-lﬁ [B(E + 4-) —29—“(1‘/—1»)]
with

B = p*+ o® 4 2a?/0, A=p*— 20+ a%.

As the u? component differs from u? only by a nonzero factor, the effective
potential obtained from u? = 0 is the same as in the earlier case and thus the
turning points for any orbit are the same as obtained earlier. Similarly as the
effect of change in frame for the electromagnetic field was taken through F;,
the components of the vector potential remain the same ag in (5.21)-(5.24),
but with § = /2. Considering the same parameters of bound orbits as in [22],
PrASANNA and CHAKRABORTY integrate the system (5.35) to (5.37) and have
found that the particle gyrates in all cases, whether it is inside or outside
the ergosurface. TFigures 16a-d show four typical plots of which fig. 16a
and b refer to the dipole case, whereas fig. 16¢ and d refer to the uniform-field
case. The physical parameters in the case of fig. 164 and d are same as those
of fig. 14b and 15d, one depicting motion completely inside and the other com-
pletely outside the ergosurface.
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1 |

Fig. 16a. — Orbits in dipole and uniform magnetic fields on a Kerr background
as viewed from a locally nonrotating frame for «= 0.99, 1= 50, L= 500, F = 152,
g, = 1.36570, ¢, = 1.35715, g, = 1.39003 [23].

S 2

Fig. 16b. — Same as fig. 164, but for A= 1000, E = 30, g,= 3.51763, o, =3.39123,

0, = 3.81775 [23].
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S22

Fig. 16¢c. — Same as fig. 16a, but for 1=1000, L=1000, E=350,p,=1.54210, ¢,=1.48561,
0,=1.60200[23].

Fig. 16d. ~ Same as fig. 16a, but for «=0.9, 1= 150, EF= 150, g,= 3.65400,
01 = 3.13043, 9, — 4.15248 [23].



GENERAL-RELATIVISTIC ANALYSIS OF CHARGED-PARTICLE MOTION ETC. 39

6. — Motion in the static Ernst space-time.

ERNST [37] has shown that the stationary axisymmetric solution of the Ein-
stein-Maxwell equations can be generated from a pair of complex potentials y
and v satisfying the equations

(Re g + [w) V2 x = (Vg + 29 = Vy)-Vy,

6.1
. (Re x + {y[?) Viyp = (Vy + 2y % Vy)-Vy
and subsequently KINNERSLEY identified an invariance group of these equa-
tions which was later extended by KINNERSLEY and CHITRE [7] to which we
referred in the introduction; ERNsT [38] using this technique obtained some
solutions representing black holes in a magnetic universe. Though these so-
lutions of Ernst have nonsingular event horizons, they lack the very important
criterion of asymptotic flatness, as we mentioned earlier. However, as the Uni-
verse as a whole is considered to be homogeneous and isotropic, one is not too
wrong if one violates asymptotic flatness for reasonable physical solutions.
DapHicH, HOENSELAERS and VISHVESHWARA have studied [39] the trajec-
tories of charged particles in the static Ernst space-time which is also con-
sidered as a solution for a Schwarzschild black hole immersed in Melvin’s mag-
netic universe.

Ernst space-time is given by

(6.2) ds*= F? [— (1 —27m) e + (1 —%@>_1 dre 2 d02] + (2 5in20/F2) dg?

with # =1 4 B2r?sin20, B being the magnetic field along the axis. As may
be easily seen, this metric reduces to that of Schwarzschild for B = 0 and
to that of Melvin’s magnetic universe for m = 0. When |Bm|<« 1, outside the
horizon in the region 2m <« r< B~' the space is approximately flat and the
magnetic field is approximately uniform. However, if the magnetic field is
strong, say of the order 1/m, then there would be no region outside the event
horizon where the magnetic field may be considered uniform.

DADHICH ef al. have obtained the charged-particle trajectories, using the
Hamilton-Jacobi equation, as was done by CARTER for Kerr-Newman space-
time and by M=eLvin [32] for the case of Melvin’s magnetic universe. They
obtain the energy and the axial angular momentum as given by

(6.3) E = F*1 — 2m/r)u’
and

(6.4) l=r2gin?0u? + e®,



40 A. R. PRASANNA
wherein @ is the electric potential with respect to the angular Killing vector
{¢ given by
(6.5) &= A,['= Brsin?0/F,
A; being the vector potential. ‘

Though the general Hamilton-Jacobi equation is not separable from sym-

metry considerations, they find that for the motion confined to the equatorial
plane the equation is separable and the Jacobi action is given by

(6.6) 8=8(r)+lp— Bt— s,

wherein s represents the proper time and

B R)!
(6.7) 8(r) :f(T—z”m‘/); ar.

012 3 4

% r

Fig. 17. — Effective-potential plot for static Ernst space-time with B=0.1, e=1
and for various values of [ [39].
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Fig. 18. —~ A bound orbit in the Ernst field with parameters =6, B= 0.1, e= 1,
E? —1.881 [39].

Fig. 19. — A capture orbit in the Ernst field with parameters [=6, B=0.1, e= 1,
E?=1.9[39].
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Here R denotes the «effective potential » for the r-motion given by
(6.8) R=F(1 — 2m/[r)[1 4 (Fr*)(1 — eD)?].

As S has to be real, (6.7) obviously implies E?> R. The orbits themselves they
obtain by quadratures, as, for example,

Py l——e@
(6.9) =

Figure 17 gives a plot of the effective potential as a function of ». For the
parameters used they find that there are no potential wells for ! < 5 and thus
these particles plunge into the black hole, whereas with 1>5 the well exists
and deepens as [ increases. As was found by PRASANNA and VArMmA for the
dipole field on the Schwarzschild background, in this case too stable orbits
exist for » < 6m. Figures 18 and 19 show two typical plots of the orbits as
obtained by DADHICH ¢t al. As may be seen from fig. 18, in the case of bound
orbit the particle gyrates, but the Larmor circle is as large as the orbit itself.

7. — Discussion and conclusions.

An important feature associated with the particle motion is the possible
radiation emission. In flat space-time a particle moving with relativistic speed
(V ~ ¢) in circular orbits emits synchrotron radiation. It is possible that curved
background could modify such emissions. Further, a charged particle moving
in a combined gravitational and electromagnetic field could possibly emit both
gravitational and electromagnetic radiation [40]. RUFFINI[41] has given a
relativistic treatment of the brehmsstrahlung radiation from a charged par-
ticle moving in a static gravitational field assuming that the particle and the
emitted radiation do not change the background geometry and that there is
no radiation reaction. His main conclusions are the following.

i) If the background geometry is that of Sehwarzschild and if the freely
falling particle has its initial energy equal to its rest mass, then 90 % of the
radiation is dipolar in nature, while the contributions from higher multipoles
are negligibly small. The total amount of radiation emitted is AL ~ 2-10-2¢*/m,
with the peak of the spectrum at o = 0.2/m. If the initial energy is greater
than the rest mass energy, the amount of energy radiated increases and the
contributions from higher multipoles are not negligible. For E=1.4m the
total energy emitted is AE = 6-107%¢?/m and the guadrupole contribution is
approximately 1 of the dipole contribution. Consequently the peak of the dis-
tribution shifts towards higher frequencies.
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ii) If the background geometry is that of Reissner-Nordstrom, for a
charged particle with ¢ << 0, the amount of energy radiated increases sub-
stantially compared to the other case and the contributions from higher multi-
poles are predominant. For @ = 0.95m and ¢ = 50, AE = ¢*/m, and the peak
of the spectrum is largely displaced towards higher frequencies. Figures 20
and 21 show schematic diagrams of the spectrum for Schwarzschild and Reissner-
Nordstrom geometries.

0.16—

0.12

(oL Efaw)/(eim)®
2

3)
0.04}—
4\ —
——————— \\
S\ (SR N
—m T TR N =2 N o
—_——T i 1 e N
0 02 04 0.6

Fig. 20. — Spectrum of the clectromagnetic energy radiated by a particle falling into
a Schwarzschild black hole for selected values of K, for the dipole (1)-3)) and
quadrupole (4)-6)) term of the radiation [41]: 1) »r=14, 2) *= 1.2, 3) »r= L0,
4) v=14, 5) r=12, 6) r= L.0.

RurrFINT and ZErIiLiI [26] have considered the radiation emitted by parti-
cles in ultra-relativistic ecircular orbits in the Reissner-Nordstrom background.
They find that the spectrum of the radiation emitted rapidly recovers the main
features of synchrotron radiation in flat space as the orbits move outwards
with the increase in the absolute value of the test charge. When the particle
is near r_,_ , the peak of the potential barrier, the highest multipoles are max-
imally affected and very much damped, whereas damping in the dipole term
is very small. In their opinion the reason for this anomalous behaviour of the
spectrum of radiation for orbits near r, is due to the fact that the radiation

originates in a region very near the photon circular orbit which is also at »

min

and that large amounts of energy are lost to the black hole. Naturally these
effects diminish for orbits which are far away from the black hole (event horizon).
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The analysis as made by RUFFINI and co-workers for radiation from charged
particles in static geometries has not yet been extended to the case of charged-
particle motion in electromagnetic fields superposed on curved geometries.
As far as the orbits are concerned, it has been found by PRASANNA et
al. [21-23] that stable orbits exist for particles even very close to the event
horizon if their energy and angular momentum are right. In these curved
geometries (Schwarzschild and Kerr’s), when there is no magnetic field, the

06—

0.4—

(AE[dw)feim)*
T
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guadrupole
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1 | | ! | 1 |
0 0.2 0.4 06 08 1.0
wfm
Fig. 21. — Energy spectrum for a charge e =— 50, falling into an almost cxtreme

Reissner-Nordstrom geometry @ = 0.95m for selected values of the multipoles [41].

particle will be in bound orbit only if its energy is less than its rest mass (£ < 1).
But, as the superposition of a magnetic field changes the structure of the po-
tential curve and introduces a potential well very near to the event horizon,
particles can now be trapped in this well in bound orbits. As indicated earlier,
the two maxima that occur for the « effective potential » are, respectively, due
to the magnetic field and the canonical angular momentum (giving rise to cen-
trifugal barrier). Figure 22 gives a typical plot of the two maxima and the
inner minimum as a funetion of L for a given 4, in the case of a dipole field on
a Sehwarzschild background [21]. As may be seen from this plot for any 2,
there is always a value of L for which the two maxima are equal, corresponding
to which the potential well is deepest, and in this potential well now particles
with energy much greater than their rest mass can be trapped in the barrier
created by its angular momentum and the magnetic field.

PrasanNNA and VARMA [21] have also discussed the particle motion off the
equatorial plane by integrating (numerically) the complete set of equations
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Fig. 22. — Plots of V,;, maxima and minimum against L for the value 1==50 for the
case of a charged particle in a dipole magnetic field superposed on a Schwarzschild
geometry [21].

(5.7)-(5.10) for the initial conditions

dg) . 2 2 (4OV]]}
()= =)+l
2 2 —1
(7.1) (d—e) <=3 -2
do/, Qo Qo Qo

2.2 s
(d_(p) =0=IL = _§ﬂ [111(1__2_)+2(]_ _|_l)]
do/, 8 Qo 0o Qo

by specifying 4, E, g, and (d8/do),. A typical plot of this motion is shown in
fig. 23. If the magnetic field is large, the motion looks similar to that in the
flat geometry, wherein the particle gyrates in a given tube of lines reflecting
between two mirror points located symmetrically with respect to the equa-
torial plane. On the other hand, if the magnetic field is lower, then the par-
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ticle oscillations up and down the equatorial plane damp continuously as #
decreases and eventually the particle gets sucked in by the black hole.

The review made above deals essentially with the motion of charged par-
ticles in electromagnetic fields superposed on a curved background. As main-
tained in the introduction these electromagnetic fields do not affect the under-
lying geometry. With such an assumption the question that would arise is
about the origin of such fields. Basically there could be three types of such

)

1 1 1 1 !

Fig. 23. — Projection of the (g, 8) oscillatory motion of a positively charged particle
indicating reflection at mirror points [21], E=2, 1=100, g,=3, df/de= 0.3,
L =170.7816.

fields: i) one that arises due to rotation of the compact object carrying either
charge or a dipole type of magnetic field, ii) another one due to current
loops that form in the vicinity of the black hole, due to motion of charged
particles, and iii) the intergalactic and interstellar fields in which the black
hole is assumed to be immersed.

The Kerr-Newmann geometry essentially treats the field due to a rotating
charged body. On the other hand, RurFinT and TREVES [42] have considered
the fields due to a magnetized rotating sphere. They show that purely on
energetic grounds a magnetized rotating object should indeed be expected to
possess a nonzero net charge. However, due to the well-known «no hair
theorem» of black-hole physics, it is clear that a black hole cannot possess a
magnetic field of its own and thus the treatment of Ruffini and Treves is more
applicable to the field of a neutron star or a white dwarf.

A black hole in a binary system is known to accrete plasma from either



GENERAL-RELATIVISTIC ANALYSIS OF CHARGED-PARTICLE MOTION ETC. 47

the companion star or from the interstellar matter and this aceretion of charged
particles could endow the black hole with a net charge. If a charged black hole
is rotating, then there will be an induced dipole magnetic field. Further, these
charged particles when they are going around in stable orbits around a black
hole would give rise to current loops which in turn could produce magnetie
fields. Such sources have been well described and discussed by many authors [15-
18, 28]. On the other hand, in the case of single black holes the intergalactic
or interstellar magnetic field which could be treated as uniform would be the
superposed field. In case the black hole is rotating, due to inertial frame drag-
ging, the field lines get twisted and this could give rise to certain higher multi-
poles very near the horizon.

DAMOUR et al. [43], HANNI [44] and ZNAJEK [45] have discussed the nature
of plasma inflow near about a black hole and have shown the existence of
plasma horizon and magnetosphere for a black hole. DAMOUR ¢t al. have studied
the flow of plasma in regions of magnetic dominance by using the guiding-
centre approximation, as seen from the local Lorentz frame. The flow lines
thus determined are divided into two classes: those that intersect the horizon
and those that do not. If the flow lines intersect the horizon, then the plasma
flowing along it either accrete to or get swept away from the black hole, de-

a) b)

Fig. 24. — a) The dashed and the continuous lines represent the electric and magnetie
lines of force, ) the open eurves represent the plasma horizon correponding to asymp-
totic magnetic-field strengths B = n¢)/m?. The circle represents the event horizon of
a Kerr-Newmann black hole with its magnetic-dipole moment parallel to asymp-
totically uniform magnetic lines of force [44).
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pending on its charge. Whereas, in the case when the flow lines do not intersect
the horizon, the plasma oscillates between two mirror points similar to what
has been shown in fig. 23 (ref.[21]) and a magnetosphere can form in this
region. The flow line that divides these two classes may have a cusp, unless
the electric field is everywhere less than the magnetic field. The surface of
revolution generated by this line defines the boundary for the magnetosphere.
Figures 24 and 25 show the structure of electric and magnetic lines of force,
as well as plasma horizons for the case of 2 Kerr-Newmann black hole embedded
in an asymptotically uniform magnetic field with the dipole moment of the
black hole parallel and antiparallel to the external magnetic field. The plasma
horizon is defined by

(7.2) FPF7u,=0, V,V*=0 and V'=F"F, i,

b)

Fig. 25. — Same as fig. 24 but with dipole moment antiparallel to the external magnetic
field [44].

wherein w,, is the timelike four-velocity of the test charge and 7 is the four-
velocity of an observer at rest in the local inertial frame e‘} defined by (5.34).
As DAMOUR et al. point out, in the case when the magnetic moment of the black
hole is aligned with the external field the magnetic field in the equatorial plane
is weaker and thus the support for a charged particle would be reduced. This
would make the plasma horizon as well as cusped flow lines stay farther away
from the black hole than in the case when the magnetic moment and the ex-
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ternal field are antiparallel. If there is no external field, the flow lines are radial,
as the induced magnetic field of an isolated black hole cannot support a mag-
netosphere against its own electric field. As HANNI has shown, this would mean
V_ V*< 0 and thus there is no plasma horizon for an isolated black hole.

Apparently, when the possibility of strong electromagnetic fields around
an accreting black hole was first proposed [12] by considering the dominance
of the electric field and not taking into account the possible existence of the
external magnetie fields, it was thought that the selective accretion of oppositely
charged particles would neutralize the charge of the black hole on a short
time scale. But subsequent analysis of Damour et al., as mentioned above, has
shown the possibility of balancing the electric field of a charged black hole by
asymptotically uniform weak magnetic fields, and thus demonstrate the pos-
sibility of trapping charged particles in the magnetosphere of a black hole.

Before concluding, it is perhaps useful to make some comments for astro-
physical situations as to when a single-particle approach as reviewed above is
reasonable. In the general treatment of a plasma in nonrelativistic physics
one uses normally a kinetic approach or a fluid (MHD) approach depending
upon the scale lengths and densities involved. But, if one considers a relativistic
framework, the only kinetic theory that one knows of is the special-relativistic
kinetic theory as developed by ISRAEL, ANDERSON, STEWART and EBLERS [46].
Though there are some attempts to work out a generally covariant kinetic
theory, this has not been formulated completely as yet. Thus, while treating
plasma in general relativity, one confines mostly to the relativistic MHD equa-
tions.

But either of these two approaches is required only when collective ef-
feets of plasma are important. There could be astrophysical situations wherein
collective effects may not be that important. The basic feature as is normally
used in «flat space » treatments is that the collective effects are unimportant
only when the collision frequency of the particles is much less than the gyro-
frequency. Using this criterion, one could directly get estimates on the density
depending on the magnetic field and the temperature, for which a single-
particle approximation is valid. In the case that we are treating here wherein
there are two fields, the electromagnetic and the gravitational (gravitation being
dominant), there is no straightforward recipe to get estimates on the density.
However, in a limited sense, as the effects of the space-time curvature are taken
into the structure of electromagnetic fields, one could make a very rough esti-
mate again in terms of the mean free path and the field gradient. As the effects
of space-time curvature have been taken into the structure of magnetic field
through solving Maxwell’s equations on curved space time, we shall consider
the restriction as given by taking the mean free path I greater than the ei-
fective field variation scale length,

(7.3) I > |B/(AB/dr)|,
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B being the effective magnetic field. Considering the general expression for
the mean free path of charged particles as given by

(7.4) 1=3.2-106/ZnIn A,

wherein A4 =1.3-10*n"% and » = N/T?, N being the particle density and T
the plasma temperature, from (7.3) and (7.4) we get

3.2-10¢ _B|
ar |’

nhn A< g

,-\
-1
=i

1
B

As an example, if we consider the dipole magnetic field on a Schwarzschild
geometry (sect. 3) with

_ ¢ I T =2 (=2
e e B o (G

we get the condition for singly charged particles
—1 - /

1 _m 1_2_m A —mjr ’
T r)] A4 mjr

2
A:1+%O—$%4Lﬁﬁ,

which for a 1M, black hole at » = 3m gives the condition = In A < 52.345 or
9.5n — (n)2) Inn < 52.345, i.e. n<5.5. This in turn gives the condition on
particle density as

6.4-10¢

(7.6) nlnd<

wherein

(1.7) N < 55T,

This condition looks very reasonable, implying that the density may be higher
if the plasma is sufficiently hot, as then the higher thermal velocity will keep the
particles quite apart, reducing the interactions between one another. From (7.6)
it is obvious that the density has to decrease for a fixed mass as one moves
away from the black hole, as also at a given point for the increase of mass of
the black hole. The above estimate is a very rough estimate, as the validity
of the expression used for « mean free path » may not be rigorous for the case
of curved geometry. In any case, if the particle density is greater than few
times the square of the plasma temperature, then the single-particle approach
treated in the above review will not be sufficient to describe the physical
situation.

In conclusion I would like to point out that the study of the charged-parti-
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cle motion in electromagnetic fields superposed on black-hole space-times is im-
portant from the point of view of accretion as well as radiation emission from
high-energy sources. As such, no rigorous treatment exists for the study of par-
ticle motion with the radiation reaction being included. The main difficulty
in considering such a system is that no Lagrangian formulation has yet been
possible for considering motion with radiation. This problem in our opinion
is important and needs a detailed congideration.

It is a pleasure to thank B. BERTOTTI, R. BREUER, B. CARTER, D. K. CHA-
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E.P.J. VAN DEN HEUVEL, R. K. VArRMA, C. V. VISHVESHWARA, M. WALKER,
D. Wiking and R. ZNAJEK with whom I had useful conversations on various
aspects of topics covered in the review. In particular I wish to acknowledge
the valuable collaboration I have had with D. K. CHAXRABORTY, R. K. VARMA
and C. V. VISHVESHWARA concerning the study of charged-particle trajeectories.
I thank the referee for some useful suggestions.

Note added in proofs.

My attention was recently drawn to the fact that eq. (4.5) has been earlier
derived by Top, pE FELICE and CALVANI (Nuovo Cimenlo B, 34, 365 (1976)) in the
pole-dipole approximation, who have also for the first time found the existence of
superluminal velocities for the baricentre. Further ERLERS and RupoLr (Gen. Rel.
Grav., 8, 197 (1977)) have obtained the same equation (4.5) in general.

The value of r as obtained in eq. (3.15) for the last unstable circular orbit is
in fact the same as that for the innermost unstable circular photon orbit in the
equatorial plane of the RN metric and thus it is not surprising that it holds indepen-
dently of particle charge.
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