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Summary

This paper describes in detail a general framew ork for the cofinuum modelling and n umerical sim ulation
of internal damage in finitely deformed solids. The dev elopmen t of constitutive models for material deteri-
oration is addressed within the context of Cotinuum Damage Mebanics. Links between micromec hanical
aspects of damage and phenomenological modelling within cdinuum thermodynamics are discussed and

a brief historical review of Continuum Damage Mechanicsis presented. On the computational side, an
up-to-date approach to the finite elemen t solution of large strain problems in volving dissipative materials is
adopted. It relies on an implicit finite elemen t discretization set on the spatial configuration in conjuction
with the full Newton-Raphson sc hemefor the iterative solution of the corresponding non-linear systems of
equations. Issues related to the numerical in tegration of the path dependent damage constitutiw equa-
tions are discussed in detail and particular emphasis is placed on the consisten t linearization of associated
algorithms. A model for elastic damage in polymers and finite strain extensions to Lemaitre’s and Gur-
son’s models for ductile damage in metals are formulated within the described framework. The adequacy
of the constitutive-numerical framework for the simulation of damage in large scale industrial problems is
demonstrated by means of numerical examples.

1 IN TRDUCTION

T e diniques for numerical simulationof the behaviour of solids, mostlybased on the finite
elemen t method, are toda y becoming routinely usedyban ever increasing num ber of design
engineers. In man y areas, suh techniques have reached a high degree of predictiv e capability
and comprise an essen tial componen t of the design process.

During early dev elopmen ts of computer codes for stress analysis, the constitutevde-
scription of the response of materials had been mostly dominated by the classical and
mathematically well established theories of elasticity and elasto-plasticity O er the years,
following the increasing industrial demandfor accurate predictive tools, the finite element
procedures originally based on such material modelshave been continuously modified and
adapted to cope with morecomplex deformation processes involving large deflections, finite
strains, viscous effects, etc.

Despite the great ac hievemen ts realised regarding the sim ulation of man y materials
under a wide v ariety of circumstances, the description of the general non-linear belwiour
of solids undergoing large deformations is far fronsettled. For man y industrial applications,
the description of the mec hanical response by means of standard elastic or elasto-plastic
models can lead to v ery poor representations of the real processes. Of particular importance
are situations in which internal damaging of the material in the form of griwth of cracks and
microca vities plays an essential role in the overall constitutio behaviour. As poin ted out by
Kraj¢inovié [49], in spite of the fundamen tal differences betw een the microscopicnature of
damage mechanisms and elastoplastic processes, the classical theory of plasticity has been
frequently stretched beyond its limits of applicabilit y and used to describe materials whose
behaviour is dominated by internal damage ev olution. In suh cases, the development and

©1998 by CIMNE, Barcelona (Spain). ISSN: 1134 3060 Received: December 1996



312 E.A. de Souza Neto, D. Peri¢ and D.R.J. Owen

computational implementation of new and morerefined constitutive models deserv es careful
consideration.

This paper describes a general framework for the development of continuum models
along with the appropriate computational algorithms for numerical simulation of internal
damage in finitely deformed solids.

The developmen t of constitutive models is addressed within the cotiext of Continuum
Damage Mechanics [10, 55]. Inaugurated by K ahanov [44] in 1958, this new branch of
continuum mec hanics has since been attracting increasing atten tion within the applied
mec hanics comm unity.Based on a solid mathematical and thermodynamical foundation,
acquired over the last tw o decades or so of its development, Con tinuum Damage Mehanics
is today recognised as an effective tool of mathematical modelling, which can help bridge
the gap betw een the microscopic analysis of the in ternal deterioration of materials and
engineering models suitable to design work.

On the computationalside, an up-to-date approach to the implicitfinite element solution
of finite strain problems in volving dissipative materials is described. It pruides an efficient
tool for sim ulation of damage in large scale industrial problems. Its basic ingredients
comprise: the developmen t of algorithms for n umerical in tegration of the path dependen t
constitutive equations, leading to incremen tal versions of the original constitutie laws; a
finite elemen t discretization of the corresponding (equilibrium) incremental boundary value
problem set on the spatial configuration and; the use of the full Newton-Raphson scheme
for the iterative solution of the resulting non-linear system of equations. Due to the use
of the Newton method, particular emphasis is placed on the derivation of exact tangent
moduli.

Specific examples of application of the described framework are given with the form u-
lation of three distinct damage models:

1. A model for finite strain elastic damage capable of describing the Mullins effe ct[67]
in filled rubbery polymers.

2. A finite strain extension to Lemaitre’s elasto-plastic damage model [57]. Lemaitre’s
theory includes damage ev olution as w ell as non-linear isotropic and kinematichard-
ening in the description of the beha viour of ductile metals.

3. A finite strain extension to Gurson’s [32] voids growth theory, also applicable to the
description of ductile damage in metals.

The extensions to Lemaitre’s and Gurson’s theories are based on the framework for mul-
tiplicative hyperelastic-based finite elasto-plasticity described in references [25 84, 85, 95,
98, 118]. Among other advantages, this approach allows the form ulation of itegration
algorithms for the constitutiv e equations that, essentially, preserer the format of the now
classical return mapping sc hemes of infinitesimal elasto-plasticiy. In addition, a relatively
simple structure for the associated consisten t spatial tangent moduluscan be deriv ed, mak-
ing the resulting form ulation particularly attractive for computational implemen tation.
This article is divided in to eight sections. After this in troductory one, Section 2 sets
out some basic concepts of con tinuum mecanics and thermodynamicswhich formthe basis
for constitutive modelling of damage described in subsequent sections. Section 3 reviews
some micromechanical aspects related to internal damage in solids and Section 4 presen ts
a brief historical review of the dev elopment of Continuum Damage Mechanics. Section 5
describes a general framew ork for the implicit finite elemeh simulation of finite strain
problems in volving dissipative materials. It provides a common basis for the numerical
simulation of the damage models presented in Sections 6 and 7. In Section 6, a damage
model for finitely strained filled polymersis described, along with all relevant aspects related
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to the numerical in tegration of the constitutive equations and corresponding consisten t
linearization. Numerical examples show the effectiv eness of the numerical model. A t its
outset, Section 7 describes in detail a general framework for the treatmen t of finite elasto-
plasticity which, subsequently, is applied to the finite strain form ulation of Lemaitre’s and
Gurson’s ductile damage models. Issues related to the integration of constitutive equations

and corresponding consistent linearization are addressed. Numerical examples, including

an industrial metal forming problem, are provided to demonstrate the adequacy of the

adopted constitutive-numerical framew ork for the efficieh numerical simulation of ductile

damage at finite strains. Finally , concluding remarks are presen ted in Section 8.

2 CONTINUUM CONSTITUTIVE MODELLING

Some basic concepts of thermodynamics of continuous media are briefly reviewed in this
section. The materialpresented here is standard and w ell established in the cdinuum me-
chanics literature [112, 33]. Nev ertheless, its inclusion at this poihis convenient for later
discussion. By emphasizing the link betw een micromec hanical processes and their mathe-
matical represen tation within the framework of continuumthermodynamics with internal
variables, the purpose of the present section is to establish a clear logical sequence in the
development of continuum constitutiv e models of general dissipativ e materials. Application
of the fundamen tal principles review ed to the constitutive description of materialdamage
is discussed in Sections 4, 6 and 7.

2.1 F undamenal La ws of Thermodynamics

Consider a generic con tinuumbody % whic h occupies a region €, with boundard(?, of the

three-dimensional Euclidean space &% in its reference configuration. Let 48 be subjected
to a motion @ so that for each time ¢, the deformation

p(-,1): & — =63

maps eac h material particlep of % into the place @ it occupies at time ¢t. In order to
state the fundamen tal laws of thermodynamics, it is cowenient to introduce the scalar
fields 8(x,t), e(a,t ), s(x,t) and r(a,t) defined over the deformed configuration @(t) of
% whic h represent, respectively, thetemp erature specific internal enemy, specific entropy
and the density of heat production. In addition, the tensor field o{@ ,t) will denote the
Cauchy stress and the vector fields b(ax,¢) and g(a, ¢ ) will denote, respectively, the body
force and heat flux.

Conservation of mass

The postulate of conserv ation of mass requires that:

p+ pdiviv] =0, | (1)

where p is the mass density field, v is the spatial velocity and div|:] denotes the spatial
divergence of [-].
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Momentum balance

In its local form, the momentum balance can be expressed b y the equations

divfjg] +p b = pv

} in 4Q)

f=on in {0 Q)

where m is the outw ard normal v ector to the deformed boundarydd Q) of %, f is the
boundary traction vector field and ¥ stands for the acceleration field. Equation (2)2, which
expresses the balance of angular momentum, is restricted to nonpolar media, i.e., stress
couples are assumed absent.

The first principle

The first principle of thermodynamics, which postulates the conservation of energy, is ex-
plicitly expressed by the equation

pé = o:D+pr—divg, | (3)

where

D= %(VU + W T)
is the rate of deformation or stretching tensor, with M-) denoting the spatial gradient of
(')a
The second principle

The second principle of thermodynamicspostulates the irreversibility of entropy production.
It is expressed by means of the inequality:

ps'—l—div[%} - % > 0. (4)

The Clausius-Duhem inequality

By com bination of the first and second principles stated abo vepne easily obtains the
fundamen tal inequality:

ps+ div[g} - %(pé—a’:D—f—div[qD > 0.

The introduction of the specific free energy ¢ (also known as the Helmholtz fr ee energy
per unit masy defined by

Y =e—0s, (5)
along with the iden tity
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into the fundamen tal inequaliy above results in the Clausius-Duhem inequality:

U:D—p(¢+sé)—%q'g > 0, (6)

where g := M is the temperature gradient.

2.2 Constitutive Axioms

The balance principles presented so far are valid for any continuum body. In order to
distinguish betw een differert types of material, a constitutiv e model must be introduced.
This section presen ts three axioms whic h form the basis for the dev elopmen t of a rather
general class of constitutive models of continua. In the present context, the principles laid
down by those axioms must be follow ed regardless of the particular kind of materialto be
modelled.

Before going further, it is con venient to introduce the definitions of thermokinetic and
calorodynamic processes (see T ruesdell [111]). Athermokinetic pr ocessof 98 is the pair of

fields
Ap ,t) and  O(xt)

A calorodynamic pr ocessis defined by the set

{o(zt ), e(mt), s(xt), r(x 1), b(mt), g(zt)}

of fields over % such that the balance of momentum, the first and the second principles of
thermodynamics are satisfied.

Thermo dynamic determinism

The principle of thermo dynamially comp atible determinism{111] postulates that “the his-
tory of the thermokinetic process to which a neighborhood of a point p of % has been
subjected determines a calorodynamic process for Z at p’. For a simple material the
local history of F', # and g suffices to determine the history of the thermokinetic process
for constitutive purposes. In that case, regarding the body force b and heat supply r as
delivered, respectively, by the linear momentum balance (2); and conservation of energy
(3) and introducing the specific free energy, the principle of thermodynamic determinism
implies the existence of functionals §, & $ and J such that, for a point p,

o) = F(F'.¢.g"
W) = &F4.g" ™
s(t)y = H(F'.¥,g)
qt) = J(F'.¢,g"

and the Clausius-Duhem inequality (6) holds for every thermokinetic process of %8 The
dependency on p is understood on both sides of (7) and ()" on the right hand sides denotes
the history of (-) at p up to the present timet.

Material obje ctivity

Another important axiom of the constitutive theory is the principle of material obje ctivity
It states that “the material response is independen t of the observer”.The motion ¢* is
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related to the motion ¢ by a change in observer if

P (pt) = yb)+ Qt) p(pt) (8)

where y(t) is a point and Q(t) an orthogonal tensor. This relation corresponds to a rigid rel-
ative m arement betw een the differen t observers and the deformationgradien t corresponding
to ™ is given by

F'=QF (9)
Scalar fields (such as 6, ¢ and s) are unaffected by a change in observer but the Cauc hy

stress oft), heat flux q(t) and the temperature gradien tg(t) transform according to the

rules
o - 50t =QaoQt

g ——q=Qq (10)
g ——9=Qg

The principle of material objectivity places restrictions on the constitutive functionals
(7). Formally , it requires that§, & $ and J satisfy

o*(t) = F(F".4,g%)
u(t) = §F".4,g)
sty = S(F".¢,g)
g(t) = J(F".d,g%)

(11)

for any transformation of the form (9,10).

Material symmetry

The symmetry group of a material is the set of densit y preserving changes of reference
configuration under whic h the materialresponse functionals§, & $ and J are not affected.
The symmetry group of a solid material is a subset of the orthogonal group & A subgroup
& of O is said to be the symmetry group of the material defined by the constitutive
functionals §, & $ and J if the relations

§(F'.d.g) = FIFQY.4.g)
& (F.f.g) = &(FQ.¢.g 12)
H(F'.d,g) = H(FQY.4,g"
J(F'.d.g) = J(FQL.4.g)

hold for any time indep endent Q € .. A solid is said to be isotropic if its symmetry
group is the entire orthogonal group & In the development of any constitutive model, the
constitutive functionals m ust comply with the restrictions imposed ly the symmetries of
the material in question.

2.3 Thermodynamics with Internal V ariables

The constitutiv e equations (7) written in terms of functionals of the history of F', # and
g, in that format, are far too general to ha ve practical utility in modelling real materials
undergoing real a thermodynamical process. This is specially true if one has in mind the
experimen tal identification of the constitutive functions and the solution of the correspond-
ing boundary value problems. Therefore, it is imperativ e that simplifyingassumptions are
added to the general forms of the constitutiv e relations stated above.
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An effectiv e alternative to the general description based on history functionals is the
adoption of the so called thermo dynamicswith internal variables The starting poin t of the
thermodynamics with internal variables is the hypothesis that at any instant of a thermo-
dynamical process the thermodynamic state (defined by &, ¥, s and q) at a given point p
can be completely determined by the knowledge of a finite n unber of state variables. The
thermodynamic state depends only on the instantaneous value of the state variables and
not on their past history. T his wery hypothesis is intimately connected with the assumption
of existence of a (fictitious) state of thermodynamic equilibrium known as the local accom-
panying state [46] described by the currert value of the state variables. In other w ords,
every process is considered to be a succession of equilibrium states’.

From the mathematical point of view, the state variables can be seen as parameterizing
the history of thermokinetic processes and replacing the complex constitutive description in
terms of history functionals b y an approximation in volving a finite num ber of parameters.
For the applications with which we are mostly concerned, it will be convenient to assume
that at a certain time ¢, the thermodynamic state at a point is determined b y the set

{F7 97 g’ @

of state variables where F', 6 and g are the instantaneous values of deformation gradien t,
temperature and the temperature gradient and a is a set:

o = {Oél,Oég,...,Oék},

of k internal variables associated with dissipativ e mec hanisms.Each elemen to; € @ ma y
be, in general, an entity of scalar, vectorial or tensorial nature.
Following the h ypothesis above, the specific free energy is assumed to haevthe form?

v =y(F, 0, o (13)
so that its rate of change is given by
AL L R L Y
V=or Pt 0t pa 8 (14)

In the last term on the r.h.s. of the expression above, the following con vention has been
adopted:

oY -
—a = — &
« ; Hay
with the appropriate product implied. By introducing the connection:

ooD=LP.F, (15)
Po

where P := det[F' | o F" is the first Piola-Kir chhoffstress tensor and py is the density in
the reference configuration, one obtains for the Clausius-Duhem inequality:

(P-mon): F - o (s+g—g)e—m§—§a——quo. (16)

TDespite the success of the in ternal variable approadi in numerous fields of continnum physics, phenomena
induced by very fast external actions (at time scales compared to atomic vibrations) which involve states
far from thermodynamic equilibrium are excluded from representation by internal variable theories.

iThe dependency of ¢ on the temperature gradien t is disregarded since it contradicts the second principle
of thermodynamics (see reference [15]).
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Since this inequality must hold for any thermokinetical process, a standard argumen t leads
to the w ell known expressions:

I _ %
P—,O[) 3F’ s = 897 (]‘7)

for the first Piola-Kirc hhoff stress,? a nd entropy, s.
Then, by defining
o, OV
= pPo 90,

as the thermo dynamial force conjugate to each internal variable o; € & the Clausius-
Duhem inequality can be rewritten as:

A;

(18)

Aid; — —q-g > 0, (19)

with summation over ¢ implied. F or convenience, w e shall define the set
A={A1,As, ..., Ay}

of thermodynamical forces.

In order to completely ¢ haracterize a constitutive model, complemenary laws associated
with the dissipativ e mec hanisms are required. Namelyequations for the flux variables %q
and & m ust be derived. Recalling the principle of thermodynamic compatible determinism,
the Clausius-Duhem inequality, now expressed by (19), m ust hold and that will evidetly
place restrictions on the possible constitutive relations. An effective way of ensuring that
(19) is satisfied consists in postulating the existence of a scalar valued dissipation (pseudo)
potential of the form

v = (A, g (20)

possibly having the state variables as parameters, whic h is assumed to be con vex with
respect to each A; and g and zero valued at the origin {A, g} = {0,0}. In addition, the
hypothesis of normal dissip ativityis introduced, i.e, the flux variables are assumed to be
determined by the laws

. ov 1 ov (21)
G — — g = ——
PT Tar 89 = " og
It should be noted that the constitutive description by means of conax potentials as

described above is not a consequence of thermodynamics but, rather, a tool for formulat-
ing constitutive equations without violating thermodynamics. Indeed, it is obvious that
a constitutive model defined b y (13), (17) and (21) satisfies “a priori” the dissipation in-
equality. Some examples of constitutive models supported b y experimen tal evidence whic h
do not admit represen tation by means of dissipation poten tials are discussedybOnat and

Leckie [79.
2.3.1 The Phenomenological approach

Undoubtedly , the success of a constitutive model in tended to describe the behaviour of a
particular material lies in the ¢ hoice of an appropriate set of internal variables.Since no
plausible model will be general enough to describe the response of a material under all
processes, the definition of the internal variables must be guided not only P the specific
material in question but, rather, b y the combined consideration of the materiadnd the
range of processes under whic h it will be analysed. In general, due to the difficgltinvolved
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in the identification of the underlying dissipatie m ehanisms, the choice of the appropriate
set of internal variables is somewhat subtle and will obviously be biased by the preference
of the investigator.

Basically , constitutive modelling by means of internal variables relies either on a mi-
cromec hanical or on a phenomenological approach. The micromechanical approach in-
volves the determination of mechanisms and related v ariables at the atomic, molecular or
crystalline levels. In general, these variables are discrete quantities and their continuum
(macroscopic) coun terparts are determined b y means of homogenization témiques. The
phenomenological approac h, on the other hand, bypasses the need for measurements of mi-
croscopic quantities. It is based on the study of the response of the representative volume
element, i.e., the elemen t of matter large enough to be regarded as a con timm. The
internal variables in this case will be directly associated withthe dissipative behaviour ob-
served at the macroscopic level in terms of con tinuum quan tities (such as strain, stress,
temperature, etc.). Despite the macroscopic nature of theories derived on the basis of the
phenomenological methodology, it should be expected that “good” phenomenological inter-
nal variables will be someho w related to the underlying microscopicdissipation mehanisms.

The phenomenological approach to irreversible thermodynamics has been particularly
successful in the field of solid mec hanics. Numerous well established modelsof solids, suc h
as classical elastoplasticity [39], have been developed on a purely phenomenological basis
providing evidence of how p av erful such an approach to irreversible thermodynamicscan be
when the major concern is the description of the essentially macroscopic beha viour. Direct
application of phenomenological thermodynamics with internal variables will be discussed
in Sections 6 and 7, where the formulation of continuum models for internal damage in
rubbers and metals undergoing finite strains is addressed.

3 PHYSICAL ASPECTS OF INTERNAL DAMAGE IN SOLIDS

Basically ,internal damage can be defined b y the presence and evolution of craks and
cavities at the microscopic lev el whih m @, eventually, lead to a complete loss of load
carrying capability of the material. The ¢ haracterization of internal damage as w ell as the
scale at whic h it occurs in commonengineering materials depend crucially upon the specific
type of material considered. In addition, for the same material, damage evolution may take
place triggered by very different physical mec hanisms whic h depend fundamen tally on the
type, rate of loading, temperature as well as environmen tal factors such as exposure to
corrosive substances or nuclear radiation. Therefore, rather than the material alone, the
material-process-en vironmen t triad m ust be considered in the study of internal damage.
T o illustrate the diversity of phenomenawhih m & be involved in the process of internal
degradation of solids, some basic ph ysical mec hanisms underlying damage ev olution in
metals and rubbery polymers are outlined below.

3.1 Metals

In metals, the primary mec hanisms whic h characterize the phenomenon of mec hanical
degradation ma y be divided into tw o distinct classesbrittle and ductile damage. Brittle
damaging occurs mainly in the form of cleavage of crystallographic planes in the presence
of negligible inelastic deformations. This behaviour is obsered for many metallic materials
usually at low temperatures. A t high temperatures, brittle damage can also be obserwed
associated with creep processes. In that case, the decohesion of in teratomidonds is concen-
trated at grain boundaries. At low stresses they are accompaniedby relatively small strains.
Ductile damage, on the other hand, is normally associated with the presence of large plastic
deformations in the neigh bourhood of crystalline defects. The decohesion of in teratomic
bonds is initiated at the boundary in terface of inclusions, precipitates and particles of alloy
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nucleation of microscopic growth, coalescence

virgin material cracks and voids

and macroscopic fracturing
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Figure 1. Ductile damage in metals.Sc hematic illustration

elemen ts leading to the formation of microscopic craks and cavities. Further evolution
of local plastic deformation may cause the cavities to coalesce resulting in final rupture.
This mec hanism is sc hematically illustrated in Figure 1For most metallic materials, the
damage beha viour is a com bination of brittle and ductile response and the con tribution of
each mode is, to a significan t extent, dependent on the temperature,loading rate, etc.
Another important mode of material deterioration in metals is fatigue damage. It is
normally observed in mechanical componen ts subjected to a large mmber of load and/or
temperature cycles. Although fatigue damage occurs at overall stress amplitudes belo w
the plastic yield limit, the n ucleation of microcrac ks is attributed to the accum ulation of
dislocations observed in connection with cyclic plastic deformationdue to stress concentra-
tion near microscopic defects. A large number of complex in teractie physical mec hanisms
take place from the n ucleation of cracks to the complete failure of the material and the
understanding of fatigue degradation processes in metalsremains a challenging issue in the

field of materials science. Some of the most important m ehanisms of material damage are
described by Engel and Klingele[24].

3.2 Rubbery Polymers

Rubbery polymersare widely employedin engineering applications. Essen tially, these mate-
rials are made of long cross-link ed molecular ¢ hains whic h differ radically fromthe structure
of crystalline metals [2]. Although rubbery polymers exhibit a behaviour whic h, under a
variety of circumstances, may be regarded as purely elastic, damaging does tak e place due
to straining and/or thermal activ ation. The internal degradation in this case is mainly
characterized by the rupture of molecular bonds concen trated in regions containing impuri-
ties and defects. In general, the damage response of suc h materials is predominatly brittle
(in the sense that permanen t deformations are small).

Filled rubbers are particularly susceptible to in ternal damaging. Those materials are
obtained by addition of a filler in order to enhance the strength properties of the original
rubber. In that case, even at very small o verall straining, damage can occur in the form
of progressive breakage of shorter polymer ¢ hains attached betw een filler particles. This
phenomenon, as described by B uede [7], is schematically illustrated in Figure 2.

4 CONTINUUM DAMAGE MECHANICS

Since the pioneering w ork p K ahanov [44], a considerable body of the literature on applied
mec hanics has been devoted to the formulation of constitutive models to describe in ternal
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Figure 2. Damage in filled rubbery polymers. Sc hematic represen tation

degradation of solids within the framework of continuum mechanics. After o ver tw o decades
of uninterrupted developmen t, significant progress has been achiesd and such theories have
merged in to what is curren tly knwn as Continuum Damage Mechanics (CDM for short).
The concepts underlying the dev elopmet of CDM models along with a brief historical
review of this new branch of continuum mechanics are presented below.

In the previous section, some basic microscopic mechanisms associated with internal
damage ev olution in solids have been review ed. It is clear that the underlying phenomena
which characterize damage are essen tially different from those ¢ haracterizing deformation.
While damage manifests itself in the form of irreversible rupture of atomic bonds, defor-
mation can be associated with reversible variations of interatomicspacing (in purely elastic
processes) and mo vemen t and accum ulation of dislocations (in permanen t deformations of
metals). Therefore, it should be expected that in order to describe the internal degradation
of solids within the framework of the continuum mec hanics theory, newv ariables intrinsi-
cally connected with the in ternal damage process will hare to be introduced in addition
to the standard variables (such as the strain tensor, plastic strain, etc.) emplogd in the
description of deformation. In this context, w e shall refer to as aContinuum Damage
Me chanics Mo dehny continuum constitutiv e model whic h features special internal vari-
ables representing, directly or indirectly, the density and/or distribution of the microscopic
defects that characterize damage.

4.1 Original Development. Creep-damage

The first continuum damage mechanics model w as proposed p K ahanov [44] in 1958.
Without a clear physical meaning for damage, Kachanov introduced a scalar internal vari-
able to model the creep failure of metals under uniazial loads. A ph ysical significance for
the damage v ariable w as given later by Rabotno v [86] whoproposed the reduction of the
cross-sectional area due to microcrac king as a suitable measure of the state of in ternal dam-
age. In this context, denoting respectiwely by A and Ay the effective load bearing areas of
the virgin and damaged materials, the damage variable D was introduced as

A Ay
A

D (22)

with D= 0 corresponding to the virgin materialand D= 1 represen ting the total loss of load
bearing capacity’. In order to describe the strain rate increase whid characterizes tertiary

#Kac hanov has in fact used the material continuityor integrity, Q=1—D , as the variable associated
with the internal deterioration process.
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creep, Kac hanov has replaced the observed uniaxial stress with the effective stess

o = (23)

in the standard Norton Law.

Since Kac hanov-Rabotno v’s original developmen ts, it did not take long before the con-
cept of internal damage v ariable w as extended to three-dimensional situations  a number
of authors. Leckie and Ha yhurst [51] have exploited the idea of the effective load bearing
area reduction as a scalar measure of material deterioration to define a model for creep-
rupture under m ultiaxial stresses. The theories deriv ed later by Chaboche [9, 10, 11] and
Murak ami and Ohno [71] desere special men tion. Based on rigorous thermodynamic foun-
dations, Chaboc he has proposed a phenomenological theory for creep-damage in whid,
as a consequence of the hypothesis of strain equivalence, the damage v ariable appears as
a fourth order non-symmetric tensor in the most general anisotropic case. In the theory
derived by Murak ami and Ohno, the anisotropic damage wriable is represented by a sec-
ond rank symmetric tensor. In that case, the definition of the damage v ariable follows
from the extension of the effectiv e stress concept to three dimensions b y means of the h y-
pothesis of the existence of a mec hanically equivalentfictitious undamaged configuration.
Murak ami’s fictitious undamaged configuration concept was later extended to describe gen-
eral anisotropic states of internal damage in solids with particular reference to the analysis
of elastic-brittle materials [69 |. Still within the con text of creep-rupture, Saanounét al. [91]
have used a non-local form ulation to predict the nucleation and gmeth of cracks.

4.2 Other Theories

Despite its origin in the description of creep rupture, Cortinuum Damage Mechanics w as
shown to provide an effective tool to describe the phenomenon of in ternal degradation in
other areas of solid mec hanics.

Within the theory of elastoplasticity, Gurson [32] has proposed a model for ductile
damage where the (scalar) damage variable is obtained from the consideration of micro-
scopic spherical voids em bedded in an elastoplastic matrix. Gurson’s v oid gravth theory
w as shown to be particularly suitable for the represen tation of the behaviour of porous
materials. A scalar damage variable w as also considered by Lemaitre[54 | in the definition
of a purely phenomenological model for ductile isotropic damage in metals. By appealing
to the hypothesis of strain equivalence, whic h states that “the deformation behaviour of
the damage d materialis r epresentéd by the constitutive laws of the vir gin material with the
true stress replaced by the effective stress”, the standard definition of damage in terms of
reduction of the (neither w ell defined nor easily measurable)load carrying area is replaced
in Lemaitre’s model by the reduction of the Y oung’s modulusin the ideally isotropic case.
Th us, withEy and E denoting respectively the Y oung’s moduliof the virgin and damaged
materials, the damage variable (22) is redefined as:

E - E,

D =
E

(24)

Lemaitre’s ductile damage theory was further elaborated in references [56, 57 and ageing
effects w ere later incorporated by Marquisand Lemaitre [63]. Based on the the concept of
energy equivalence (as opposed to Lemaitre’s strain equiv alence) another model for elasto-
plastic damage w orth men tioning w as proposed by Cordebois and Sidoroff [19]. The damage
variable in this case takes the form of a second order tensor under general anisotrop yA lso
within the theory of elastoplasticit y, Simo and Ju [97] proposed a framewrk for the de-
velopmen t of (generally anisotropic) strain- and stress-based damage models. In this case,
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Lemaitre’s h ypothesis of strain equivalence and its duahypothesis of stress equivalence are
used, respectively, in the form ulation of models in stress and strain spaces. Application of
the proposed framework w as madein the description of brittle damage in concrete.

A somewhat different approach was follow ed ly K rafinovi¢ and Fonseka [50] (see also
Fonseka and Kraj¢inovié [26]) in the derivation of a continuum damage theory for brittle ma-
terials. Assuming that damage in this case is characterized mainly by planar penny-shaped
microcracks, a vectorial variable w as proposed as the local measureof in ternal deteriora-
tion. Later, in reference [47], the model w as endow ed with a thermodynamical structure
and extended to account for ductile damage. F urther developmén were introduced in ref-
erence [48] with the distinction bet w een active and passive systemsof microcraks. Other
vectorial models are described b y Kac hanov [45] and Mitchell [65].

Con tinuum damage mechanics has also been applied to the description of fatigue pro-
cesses. Janson [43] developed a continuum theory to model fatigue crack propagation whic h
show ed good agreement with simple uniaxial experimerts. Ageneral form ulation incorpo-
rating low and high-cycle fatigue as w ell as creep-fatigue interaction at arbitrary stress
states is presented by Lemaitre [58]. Further discussion on these models is pro vided by
Chaboc he [12] and Lemaitreand Chaboche [60]. In order to model the effects of fatigue,
the evolution law for the damage v ariable is usually form ulated in terms of a differéial
equation whic h relates damagegro wth with the mean stress, maximunstress and n unher
of cycles.

4.3 Remarks on the Nature of the Damage V ariable

As pointed out in Section 2.3.1, the appropriate definition of in ternal variables associated
with a specific phenomenon is one of the most important factors determining the success
or failure of the continuum model intended for its description.

Due to the div ersity of formsin whih internal damage manifests itself at the microscopic
level, the definition of adequate damage v ariables is certainly not an easy task. During the
development of CDM, briefly reviewed above, variables of different mathematical nature
(scalars, vectors, tensors) possessing different physical meaning (reduction of load bearing
area, loss of stiffness, distribution of voids) have been employed in the description of damage
under various circumstances.

4.3.1 Physic al signific ance

With regard to the physical significance of damagev ariables, it is convenient to separate the
CDM theories into tw o main categories: micr ome chamicand phenomenolo gial models.

In micromechanical models, the damage internal variable m ust represent some a verage
of the microscopic defects which characterize the state of internal deterioration. Despite the
physical appeal of internal variables such as the reduction of load bearing area, as suggested
by Rabotno v [86], or distribution of microcrac ks, as adopted by Kraj ¢inovid7, 48] in
his vectorial model, the enormous amount of bookkeeping required in conjunction with
the serious difficulties in volved in the experimen tal identification of damaged states and
evolution laws preclude mostmicromechanical theories from practical applications. This is
especially true if the final objective is the analysis of large scale problems for engineering
design purposes.

Phenomenological damage variables, on the other hand, can be defined on the basis
of the influence that internal degradation exerts on the macroscopicproperties of the ma-
terial. In particular, properties such as the elastic moduli [18, 42], yield stress, densit y
and electric resistance can be strongly affected by the presence of damagein the form of
microscopic ca vities. Needless to say, the measuremen t of such quantities is in general far
easier than the determination of the geometry or distribution of micro-defects. Based on
such concepts and supported by experimental evidence, the class of models presen ted by
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Lemaitre and Chaboche [60] rely mostly on the use of the degradation of the elastic moduli
as the macroscopic measure of damage. In its simplest form, i.e., under ideally isotropic
conditions, the damage v ariable is the scalar defined by expression (24). A similardefinition
for the damage v ariable is emplo yed by Cordebois and Sidoroff [19].A model relying on
the volume ¢ hanges due to void growth as a measure of in ternal degradation is described
by Gelin and Mrichcha [28].

Curren t methodsof experimental identification of damagecomprising direct as well as
indirect techniques, are described in detail by Lemaitreand Dufailly [61]. Suh techniques
range from the direct observ ation of microscopic pictures to the measuremen of the degra-
dation of the elastic moduli b y means of ultrasonic emissions and micro-hardness tests. The
potentialities and limitations of both micromechanical and phenomenological approac hes to
damage mechanics are discussed by Basista et al. [3]. In the present state of development
of CDM it has been verified that, in general, the loss of microscopic information resulting
from a phenomenological approach is compensated b y the gain in analytical, experimetal
and computational tractabilit y of the model.

4.83.2 Mathematical representation

In view of the man y possibilities with regard to the c¢ hoice of the damage tarnal variable,
Leckie and Onat [52] ha ve shown that the distribution of v oids on the grain boundaries can
be mathematically represented by a sequence of even rank irreducible tensors. Although
this result has been obtained in the con text of creep-damage theories, Onat [78] has later
shown that the same phenomenological representation for the damage v ariable applies to
general micro-crac ked continua regardless of the underlying deformation processes.

The conclusions dra wn by Onatw ere based on the use of averaging techniques to trans-
form the distribution of micro-defectsinto a mathematically well defined continuummeasure
of damage. In spite of the micromechanic nature of Onat’s argument, it is desirable that,
in purely phenomenological theories, suc h restriction on the mathematical represehation
of the internal variables related to damage be also satisfied. This is obviously an expression
of the requiremen t, stated in Section 2.3.1, that “good” phenomenological in ternalavi-
ables be someho w connected to the underlying plisical mechanisms they are in tended to
represent.

5 THE NUMERICAL SIMULATION OF FINITE STRAIN PROBLEMS

Let us assume that a particular material model has been defined within the framework of
continuum thermodynamics with internal variables. The next step to w ards the prediction
of the behaviour of this material in situations of practical in terest is the establishmen t
of the corresponding mathematical problem along with a numerical framework capable of
producing accurate solutions over a wide range of conditions. In this section, a general
framew ork for the efficien tmplicit finite element simulation of large strain problems in-
volving dissipative materials is described. Its basic ingredien ts comprise:

e An algorithm for numerical in tegration of the rate constitutive equations, leading to
an incremen tal version of the original constitutie law;

e A finite elementdiscretization of the corresponding incremen tal (equilibrium) bound-
ary value problem stated in the spatial configuration; and

e Use of the full Newton-Raphson scheme for iterativ e solution of the resulting non-
linear algebraic systems of equations to be solv ed at each incremet.
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5.1 Numerical Integration Algorithm. The Incremental Constitutive L aw

Given a generic dissipative material model, the solution of the evolution problem defined b y
the corresponding rate constitutive equations and a set of initial conditions (initial mlues
for the internal variables) is usually not known for complex deformation (and temperature)
paths. Therefore, the use of an appropriate n umerical algorithm for imegration of the rate
constitutive equations is an essential requiremert in the numerical simulation of problems
of interest. The choice of a particular technique for integration of a constitutivlaw w ill be
obviously dependent on the characteristics of the model considered. In general, algorithms
for integration of rate constitutive equations are obtained by adopting somekind of time (or
pseudo-time) discretization along with some hypothesis on the deformation path bet w een
adjacent time stations. Within the context of the purely mec hanical theory, considering the
time increment [t,,t,+1] and given the set e, of internal variables at t,, the deformation
gradient F',, ;1 at time #,;1 m ust determine the stress@,y1 uniquely through the inte-
gration algorithm. One may regard this requiremen t as the numerical coun terpart of the
principle of thermodynamic determinism stated in Section 2.2. Such an algorithm defines
an (approximate) incremen tal constitutive functional,o , for the stress tensor:

O,+1 = d- (a'n,, F'n,+1) 5 (25)

which is path-independent within one increment and whose outcome &,,+1 m ust tend to
the exact solution to the actual evolution problem with vanishingly small deformation
increments. Equiv alently, an algorithmic functional, 7 for the Kirc hhoff stress;, can be

defined:

Tot1 = T (Qy, Fpy1) = det|F 41] 60 (an, Frya). (26)

Within the small strain elasto-plasticity theory, procedures such as the classical return
mappings [80, 96] provide concrete examples of n umerical in tegration schemes for path-
dependent constitutive laws.

Another important aspect concerning integration algorithms for general dissipative m a-
terials is the requirement of incremental obje ctivity A s a mimerical version of the principle
of material objectivit y stated in Section 2.2, incremen tal objectivity demands that the al-
gorithmic constitutive law b e imvariant with respect to rigid rotations. If this principle
is violated, an undesirable dependency of stresses on rotations exits and meaningless re-
sults ma y be obtained with the application of the in tegration algorithm.In cases sub as
hypo-elastic form ulations (including hypo-elastic based finite elasto-plasticity), incremental
objectivity m @ not be easily imposed [90 | and, in some instances, its enforcemen m g
result in rather cum bersome algorithms. We remark, ho ewer, that since the finite strain
damage models described in this paper are based on hyperelasticity, i.e., the stress tensor
is the derivative of a (history dependent) free energy potential, incremental objectivig can
be trivially ensured.

5.2 The Incremental Boundary V alue Problem.Finite Element Discretization

The strong form of the momentum balance has been stated in Section 2 b y expression (2).
Its w eak counterpart, theprinciple of virtual work, is the starting point of displacemen t
based finite elemen t solution procedures [4, 75, 120121]. Consider the body £ subjected
to body forces in its interior 2 and surface tractions prescribed on the portionds of its
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boundary 9. In addition, let the motion be prescribed by a given function ¢ on the
remaining portion 9¢, of 9Q:

Lpf(p) = gof(p) v p € aQu:

so that at a time ¢ the set of kinematic ally admissibledeformations of % (often referred to
as the trial solution set) is defined by:

H={p() [ p=¢ on I},

where, for simplicit y, the notationp,(:) = /-,¢ ) has been used.
The principle of virtual w ork, in itsspatial version, states that & is in equilibrium at ¢
if and only if its Cauc hy stress field,o; satisfies the variational equation:

q¢,n);=/ (a:Vn—b-n)dv—/ fnpda=0 V¥me¥, (27)

S, () S (082f)

where b and f are respectively the body force and surface traction fields referred to the
current configuration and #'is the space of virtual displacemen ts of%

V={n:9, Q)= n=0 on 0Q,}.

With the introduction of the algorithmic constitutiv e functiono in the weak form of
the equilibrium, the incremental boundary value problem can be stated as follo ws: “Gien
the set a,, of internal variables at time ¢, and given the body forces and surface traction
fields at t,41, find a kinematically admissible configuration ¢, () such that

[ @ b do— | fopr-mda=0 Vme?  (28)
Pnt1(£2) Jpny1(09y)

holds”. Note that due to the in troduction off , the constitutive relations are satisfied only
approximately .

Appro ximationsto the incremental boundary value problemabo ve can be obtained by
replacing the functional sets ¥ and J# with discrete subsets generated through a finite
elemen t discretization on the configuratione,, ;(€2) (references [4, 75, 120, 121] provide
a detailed account of the finite element method). Th us, the discrete counterpart of (28)
reads: Find a vector U,4+1 of global nodal displacements at ¢, such that the following
non-linear algebraic system:

RU,p1) = FNT = F™" = ¢ (29)

is satisfied, where [FLN+F1 and ["_2\4-11 are, respectively, internal and external global force vectors

resulting from the assemblage of the element vectors

FivT o / BT {oun}de
(Q¢) (30)

Fr = / NT B,y do+ / N £, da
P(Q27) (09° [ 894)

with B and N being, respectively, the standard discrete symmetric gradient operator and
the interpolation matrix of the element e in the configuration defined b yU,41 and {041}
is the vector containing the Cauc hy stress components deliered by the algorithmic function

(25).
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5.3 The Newton-Raphson Scheme. Linearization

An effectiv e and efficiehway to find a solution U,, 41 to the non-linear system abo @ is to use
the standard Newton-Raphson iterative procedure, obtained from the exact linearization of
(29). During a t ypical Newton-Raphson iteration ), the following linear system is solved

for the iterative displacement AU®).

KUE) [aU™] =-RU ), (31)
and the new guess for the solution U, 1 is updated as:

U = Ul au®, (32)

The tangent stiffness K is defined by the directional derivatie formula:

KU[AY = 5—5 RU +eA) . (33)

e=0

If the external loads are assumed independent of U then the elemen t tangent stiffness is
given by the formula:

K, = / G” [a] G dv (34)
Jp(S2e)

where G is the standard discrete spatial gradient operator and [a] denotes the matrix form
of the spatial elasticity tensor given, in cartesian componen ts, by:

1 Omy

- Ey, — o3 6: 35
7 9F, i1 Oji; (35)

Akl =

Note that, since the Kirc hhoff stress tensor is the outcome of the algorithmic function
(26), its derivative appearing in the expression above is, in fact, the derivative

or
6F ap, F "

n+1

of the incremental (rather than the actual) constitutive functional. The need for such a
consistency betw een the tangent stiffness and the local algorithm for in tegration of the
rate constitutive equations w as first addressed by Nagtegaal[72], in the comext of hypo-
elastic based finite strain plasticity, and later formalised b y Simo and T aylor [99] who,
within the con text of infinitesimal.J> elastoplasticity, derived a closed formula for the so-
called consistent tangent operators associated to classical return mapping sc hemes. It is
worth mentioning here that whenev er morecomplex itegration algorithms and/or material
models (particularly in the finite strain range) are in olved, consistent tangent operators
may not be easily derived. Issues associated with consisten t linearization aspects in finite
m ultiplicative plasticity are discussed in detail by Simo[95] and Cuiti no and Ortiz[21]. &V
remark that, within the present framew ork, consistent linearization is regarded as a crucial
aspect of the form ulations presented and will receiv e particular attention in Sections 6 and
7 where models for elastic and elasto-plastic damage are described. The asymptotically
quadratic rates of convergence resulting from the exact linearization of the field equations
more than justify the importance given to such an issue in this paper.



328 E.A. de Souza Neto, D. Rri¢ and D.R.J. Owen

6 FINITE STRAIN ELASTIC DAMAGE: FILLED POLYMERS

One of the main drawbacks of hyperelastic material models [77] in the description of the
behaviour of filled polymers arises from the fact that such theories are not able to predict
the strain induced loss of stiffness to which these materials are subject. This dissipativ e
phenomenon, known as the Mullins effe cforiginates from in ternal damage in the form of
debonding of polymer ¢ hains attahed betw een filler particles as alluded to in Section 3. In a
uniaxial cyclic extension experimen t, the Mullins effect is phenomenologically haracterized
by the degradation of the elastic properties at strain levels belov the maximum strain
attained in the history of deformation [67, 108 ]. This fact is sc hematically illustrated in
Figure 3. During a t ypical (quasi-static) uniaxial experimen t with a filled polymer, the
initial stretching up toe; follows the stress-strain path A with unloading from €1 via curve
B. A subsequert stretching up to o will follow p ath BC'. Then, unloading will follov ¢ urwe
D with a third stretc h occurring viaD E and so on. It is obvious that a hyperelastic theory
cannot represent such a behaviour.

»
>

€

Figure 3. Mullins effect. Sc hematic represen tation

The microscopicmechanisms which give rise to the Mullins effect ha ve long been the sub-
ject of intensive research by a number of authors [7, 8, 67]. Nevertheless, only few attempts
seem to ha ve been made to formulate continuum models suitable for incorporation into
numerical procedures for simulation of large scale problems. As a pioneering developmen t
in this direction, w e cite Simo[94 ] who, in voking the principle of strain equivalence [§O
introduced continuous damage in a three-dimensional model for finite-strain viscoelasticity.
More recen tly G ovindjee and Simo [30] derived a continuum rate-independen t theory for
carbon black-filled rubbers based on micromec hanical considerations. Thmodel was later
extended to account for viscous effects [31].

In this section, a simple three-dimensional rate-independent continuum damage model
for highly filled polymers is described. The model has been recently proposed by de Souza
Neto et al. [105] and provides an effective framew ork for the sim ulation of the Mullins effect
in large scale problems. Based on thermodynamicswith internal variables, it generalizes to
three dimensions the 1-D phenomenological theory proposed by Gurtin and F rancis [3J4to
describe internal damage in highly filled solid propellan ts. Viscous effects are not accotad
for so that the applicability of the model is limited to very slow and wry fast processes —
conditions met in a v ast num ber of engineering applications.

From the experimen tal standpoint,the theory is relatively simple. Since it relies on
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purely phenomenological considerations, the iden tification of the material parameters does
not require the measurement of any microscopic quan tities. Indeed, the behaviour of the
material at damaged states is characterized by one single curve determined from load-
ing/unloading experimen ts.

On the computational side, due to the particular features of the model, the algorithm
for integration of the constitutive equations assumes an extremely simple format allowing
for a straightforw ard computationalimplemen tation.

6.1 The Gurtin and Francis 1-DModel

Focusing attention on uniaxial tension experimerts with highly filled solid propellan ts,
Gurtin and Francis [34] proposed a simple unidimensional theory in which the current state
of internal damage is characterized by the maxim unnxial strain, €™, attained up to the
present time ¢

e™(t) = max {e(s
(t) OSSSt{()} (36)

In their model, Gurtin and Francis adopted a constitutive equation expressing the uni-
axial stress, o, as a function of the current strain and damage:

o=f(¢)g(em), (37)
where g is called the virgin curve and ( is the relative strain

¢:= £ (38)

67",

The function f(¢), named the master damage curve, defines the loss of stiffness experienced
by highly filled polymers at strain lev els below the maximmm previously attained strain ™.
It satisfies

) =1, (39)

so that when the maximum strain occurs at the current tim e €™ = ¢), the uniaxial stress
is given by
o=g("), (40)

that is, the function g defines the uniaxial stress-strain curve obtained froman experiment
with monotonically increasing/decreasing strain. In Figure 3, the function g is identified
with the path ACE.

T o completelyc haracterize the material parameters for this model, one needs, in addition
to the virgin curve, to determine the master damage curve f(¢). This curve is obtained
from loading/unloading experiments [34].

6.2 The 3-D Rate-independent Model for Elastic Damage

Based on similar concepts employed by Gurtin and Francis in the definition of their uni-
dimensional theory , the finite strain elastic damage model proposed in reference [105] is
applicable to general three-dimensional situations. The 3-D model is described below in
detail.

Let us consider a general isotropic h yperelastic material go verned by the free energy
Y described as a function of the principal stretdies {A1), A2)» A@)} [77]. The principal
Kirc hhoff stresses are expressed as

= A 81#“ =:qg;(A A A 41
(i) = (i)a)\—m—~gz( (1)> M(2)» (3))- ( )
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The crucial idea in the definition of the 3-D modelfor elastic damage, is to assume that
the constitutive equation (41) abow is valid only upon loading. In addition, similarly to
(37), a general stress constitutive function of the form:

) = (&) 9i( A1) A2) A3)) (42)

is postulated. Analogously to its one-dimensional counterpart f, the function f : [0,1] —
[0,1] is expressed in terms of a, as y et not defined, three-dimensional measure of relatie
strain £. It also satisfies

f)=1. (43)
6.2.1 The damage variable — damage evolution

Generalizing the notion of maximum attained strain used by Francis and Gurtin [see ex-
pression (36)], the new in ternal variable,D, is defined as a history recording parameter for
the phenomenon of material damage in general 3-D situations:

D(t) = max {¢'(s)}, (44)

0<s<t

and the uniaxial relative strain, ¢, defined in (38) may be immediately generalized as:

w()

=7 (45)

REMARK 6.1 By its very definition, the damage v ariableD can only increase whenev er
there is damage ev olution. Therefore, the phenomenon of reco veryof elastic modulus
observed when filled rubbers are exposed to higher temperatures is excluded from repre-
sentation by the present model. 0

Following the definition (44) for the damage internal variable, a straightforw ard anal-
ogy betw een classical elastoplasticity and the present modelfor elastic damage my be
established by introducing the damage surfac e(cf. yield surface) in the space of principal
stretches:

B\ (1), A2)s A3)> D) =% "(A\(1), A2y, A3)) — D = 0. (46)

For a fixed D, the damage surface delimits the region of the principal stretches space in
which the behaviour of the material is purely elastic without evolution of damage. Corre-
spondingly, the criterion for damage ev olution (loading/unloading) can be characterized by
means of the complementarity law

d<0 D>0 D® =0 (47)
For convenience, the three-dimensional constitutiv e model for elastic damage is sum-
marized in Box 6.1.

6.2.2 Thermo dynamic al aspects

Alternativ ely to the arguments above, the present theory for damage in filled polymers can
be obtained by postulating the existence of a specific free energy of the form

w0

0 v K
V(A1) A2),A3), D) = (7 (A1), A2), \3)), D) = /0 f(ﬁ) dr (48)
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(i) Damage v ariable

D(t) = max {%(s)}
0<s<t i
(i1) Stress constitutive relation

0

iy = (&) A gﬁ—f)

of%

£ =

(ii1)) Damage surface
DA (1), A2), A3). D) =¥ (A1) A2). Az) — D =0
(iv) Loading/unloading criterion

d <0 D >0 D® =0

Box 6.1 3-D constitutive model for damage in highly filled polymers

recalling that " is the free energy of the hypothetical hyperelastic (non-damageable)rubber
which governs the behaviour of the material upon loading and f is the master damage
function. Indeed, with the free energy defined b y (48), the principal Kirchhoff stresses are
given by

e ey 0
T = Mo gag =7 (%) 2o P (49)

which is precisely the constitutive function (42). Note that within the elastic domain, i.e.,
in the region of the principal stretches space delimited b y the damage surface (with fixed
D), the expression above defines an essentially hyperelastic behaviour characterized by the

strain energy function .

REMARK 6.2 A definition similar to (44) for the damage variable in conjunction with
the concept of equivalent stress described in Section 4.1 has been emploed by Simo [94 ]
in the derivation of a three-dimensional model for viscoelastic damage. In the present
theory, the damage in ternal variable,DD, represents the maximum energy supplied to the
material during the en tire history of deformation. P art of this energy has been stored in the
form of elastic poten tial energy,y, and will be reco vered during elastic unloading following
constitutive relation (42). The remaining energy has been consumed by micromechanisms
related to the internal degradation of the material. 0

REMARK 6.3 With the free energy defined by (48) and disregarding effects of thermal
dissipation, the Clausius-Duhem inequality (19) reads:

oy
-—— D > 0. 50
oD - (50)
It has been shown in reference [105 | that a sufficien t condition for (50) to hold is thatf be
a differentiable and non-decreasing function of€. 0

REMARK 6.4 If 4 is convex in A(i), some restrictions on the master damage function
f can guarantee that this convexity is transferred to the potentialy. Indeed, it has been
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proved in reference [105] that if the master damage function f(£) is a non-negative and
non-decreasing function of £, then the free energy v is also convex in ;). 0

6.3 In tegration Algorithm

The damage v ariable for the present model has been ¢ hosen as the maxinumv alue of
wUO\u),)\(z),)\(g)) recorded during the history of deformation. This choice allows the for-
m ulation of an extremely simple algorithm for mimerical in tegration of the constitutive
equations of the model based solely on a h ypothesis on the deformation path bet w een
adjacent time stations. The algorithm is described in the following.

Assume that within a generic (pseudo) time increment [t,,t,+1] the evolution of the
deformation is suc h that the value ofp? is either monotonically increasing or monotonically
decreasing. Under suc h conditions, the update formula fab is immediately given as follows:

1. Given the damage v ariableD),, at ¢, and the stretches )\(1-)“4_1 at time t,,41, compute
0 .0 '
¢"/+1 T w ()\(1)’",-1—1’ A(2)111,+1’ )\(3)71,-1—1)'

2. If 1&2_‘_1 > D, then there is damage ev olution andD is updated as Dyy1 = ¢2/+1.
Otherwise, no damage evolution takes place within the increment and D, 41 := D,,.

With the current value, D, 1, of the damage in ternal variable at hand, the principal
Kirc hhoff stresses are updated as:

oY
. = n A — , 51
T(l,)n—|—1 f(g +1) ( )n+1 8)\(2) - ( )
with the relativ e strain&,+1 computed as:
Uit
bl = ——— . 52
Ent1 Doyey (52)

The Kirc hhoff stress tensor can then be asserbled by referring to the spectral decomposition
form ula:

3
T+l = Z () pt1 M(z‘)n,+1 ’ (53)
=1
where, due to the assumed material isotropy, the eigenprojection tensors, M(i)n+1’ of 7,41
coincide with the eigenprojections of the curren tleft Cauchy-Gr eenstrain tensor:
3
Bn+]‘ = Z b(i’)n—l—l M(i)'n+1 ’ (54)
=1
whose eigen valuesb;) i1 AT€ given by:
_ 12
D) g1 = )‘(i)n,+1 : (55)

The overall integration algorithm for the elastic damage constitutive equations is con-
veniently described in Bo x 6.2 wherethe t ypical time iterval [t,,?,41] is considered. It
defines an incremen tal constitutive rule that can be written in the form:

Th+1 — %(D'n,,B'n,+1(F'n,+1)) - 'f'(D”, F'n,-i—l) y (56)
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(i) Giv en the deformation gradien tF',, 1, compute

T
B.n+1 = F‘n+1Fn+1

(ii) Perform the spectral decomposition of B, ; (using closed formulae
given in the appendix)

Mdim

B, ., = Z biyin ]\4(7:)71+1
=1

compute principal stretc hes

)\(i)n+1 = V b(i)n—}-l

Pog1 = 'l/’O(A(l)nJrl'/>‘(2‘>n+1ﬂ)‘(3)n+1)

and

(i) Check evolution of damage and update D
IF @il =42, — D, <0 THEN
no damage evolution = D,, 1 := D,
ELSE

damage evolution = Dy, 41 =40
ENDIF

(iv) Update principal Kirc hhoff stresses

0
€ — ¢n+1
> Dy
0

o A Ja
T yg1 = f6) )‘(i)n+1 M)

n+1
(v) Compute the Kirc hhoff stress tensor
Ndim
Tht1 1= Z T(4) g1 M(i)n+1
i=1

Bo x 6.2 Algorithm for in tegration of elastic damage constitutiv e equations

i.e, it is a particular case of the general algorithmic functional (26).

REMARK 6.5 In contrast to integration procedures usually emplo yed in classical elasto-
plasticity the algorithm described in Box 6.2 is exact, independen tly of the increment size,
provided that in the actual deformation path, the material is being loaded or unloaded
monotonically bet w een times, and ¢,41. 0

REMARK 6.6 Note that, effectiv ely, only the principal stresses are updated ¥ the al-
gorithm of Box 6.2. The eigenprojections of the Kirc hhoff stress tensor coincide with the
eigenprojections of B and do not depend on damageev olution so that, from (56), w m &
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write:

T(Dn,B) =Y ;) M;y(B . (57)
=1
where, for each principal directioni, the corresponding principal Kirc hhofl stress,r(;, is

obtained from an algorithmic (scalar) function:

i) = F(Dnybgy, by by (58)
= T(Dns Ay Ay Ay) = FEDn, A1)s A2), A3)) 9i(A)s Az)s As))

with (4,7, k) being cyclic perm utations of (12,3). Expressions (57,58) define an isotropic
tensor-valued function of B —a member of the class of general isotropic functions described
in Section A.1 of the Appendix. The computation of 7,41 in the integration algorithm
of Bo x 6.2 corresponds to a specialization of the general procedure of Box A.1, in whic h

Y=7,y=7and X =B 0

6.4 The Spatial Tangen t Modulus

Having defined the continuum constitutiwv law for finite elastic damage along with an
appropriate numerical in tegration algorithm, the incorporation of the model within the
numerical framework of Section 5 is accomplished with the derivation of a closed form ula
for the consistent spatial tangent modulus given by expression (35). In the present context,

the expression:
1 oT
il = = |2 | = B — Tk, 59
Aijkl 7 ( [aB]ijm l Til ]k) (59)

is found more con venient for derivation of the closed form of the tangen t modulus. It can
be obtained from (35) b y a straightforw ard manipulation. F or notational convenience, the
subscript n + 1, where applicable, is ommited in (59) and in what follows.

Since, as pointed out in Remark 6.6, T belongs to the class of isotropic functions dis-
cussed in Section A.1, the deriv atived7T /OB can be computed in closed form by following
the procedure described in Bo x A.3.In this case, the partial derivatives d7;)/0b(;), that
will take part in the assem blage oD7T /0B [refer to item (ii) of Bo x A.3], are gien by:

Note that if f and g in expression (42) are differentiable and the strain state is inside
the elastic domain, i.e., ¥ < D, then the algorithmic function 7 is differentiable. On
the other hand, if the strain state lies on the damage surface (defined by " = D) then
loading whic h rejoins the virgin curwe as well as unloading via the softer stress-strain path
are possible and 7 is not differentiable in general. In this case, the term d7(;)/9b) above
is rather a one-sided derivative [89]. Therefore, 7;)/0b;) will be computed as follows:

e If the strain state is inside the elastic domain or if it lies on the damage surface and
unloading is assumed to occur, then

0g; of
dby 2 lf(g) g ! 5“(1)]
1 dgi [ g? ]

(61)
T 22 [f@ Ny D Ay
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Figure 4. Square perforated sheet. Geometry and boundary conditions

'

e Otherwise, damage evolution occurs and f(§) =1 and % =0 so that

Oty _ 1 392'. (62)

Finally, with 87/9 B at hand, the spatial tangent m odulusa is computed exactly from
expression (59).

6.5 Numerical Examples

EXAMPLE 6.1 Square perforated sheet subjected to cyclic stretching. The problemcon-
sists of a square sheet containing a circular hole subjected to cyclic stretching. The geometry
and the boundary conditions are shownin Figure 4. The particular form of the function
¥" emplo yed to describe the stress-strain behaviour during loading [see expressions (41,42)]
corresponds to a neo-hookean material, i.e,

P = OOy + Moy + A3y — 3) (63)

with the constan tC chosen as
C =135 psi .

The master damage curve adopted is plotted in Figure 5. Thenon-dimensional load factor

v is defined as
U
7=

and the cyclic load with increasing amplitude shown in Figure 6.a is applied to the sheet.
Due to the symmetry of the problem, only one quarter of the sheet is considered in the
finite element simulation. A mesh of 660 three-noded triangular membrane elemen ts is
used to discretize the sheet. As a result of the plane stress assumption associated with the
membrane elemen ts, incompressibilit y can be enforced in a trivial manner b y the appropri-
ate update of the membrane thickness as described in reference [106]. The finite element
meshes corresponding to the initial configuration (y = 0) and to the configuration defined
by v = 1 are shown in Figure 7.

The reaction force R on the restrained edge of the sheet obtained in the computations
is plotted in Figure 6.b. It sho ws the influence of the Mullingffect on the global behaviour
of the structure. In an uniaxial cyclic test (see reference [105]), the material parameters
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Figure 6. Square perforated sheet. (a) Load history, and (b) Reaction on re-
strained edge

chosen in this example produce a good qualitativ e agreement with the experiménw ith
a highly filled solid propellant (TP-H1011-86% solids) reported by Gurtin and F rancis
[34]. As far as the specific material tested by Gurtin and Francis [34] is concerned, the
strain levels attained in this sim ulation are unrealistic (the specimen tested b y Gurtin and
Francis debonded at 11.22% of axial strain). Nevertheless, the present example serv es
as an illustration of the effectiveness of the adopted framew ork in simmlating the Mullins
effect in large scale problems. Due to the use of the exact tangen t modulus, shevn in
Section 6.4, asymptotically quadratic rates of con vergence are achieved in the Newton-
Raphson procedure employed to solve the implicit incremental boundary value problem.
This fact is illustrated in Figure 8. Figure 8.a showsthe con vergence table of the Newton-
Raphson algorithm during a typical load step. In the graph of Figure 8.b we plot, for tw o
typical load incremen ts, the residual norm||r.||, of iteration k, against the residual norm
||rk+1]| of the subsequent iteration k& + 1. Note that the slope 2:1 indicated in the graph
corresponds to quadratic convergence. W e remark that, considering the case of monotonic
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Figure 8. Square perforated sheet. Newton-Raphson beha viour. (a) Convergence
table: ||r%|| — norm of residual at iterationk. (b) Graph of con vergence

loading and starting from the initial configuration with the virgin sheet, the configuration
defined byy =1 m w be reached in 2 load incremen ts only.

EXAMPLE 6.2 Inflation and deflation of a damageable rubber balloon. In this problem,
w e consider the simulation of a spherical membrane madef a damageable rubber inflated
and deflated under internal pressure. Amesh of 675 isoparametric three-noded mem brane
elements, shown in Figure 11.a, discretizes one octan t of the sphere with symmetrybound-
ary conditions imposed along the edges. The functiont" is chosen as the three-term Ogden
strain energy function [76, 77], i.e.,

t

3
YAy AepAe) = > 2 -

| o O+ + AT - 9), (64)
p:
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Figure 9. Rubber balloon. Master damage curv e

where the material constants are taken as:

a1 = 1.3 Qo = 5.0 a3 = —2.0
p1 =63 gy =0012  pg=-0.1kg/em?*.

The master damage curve adopted is shown in Figure 9.

Within the context of hyperelasticity, the stability in this problem is kno wn to be cru-
cially dependent on the specific strain energy function adopted [76, 5]. Pressure instabilit y
is detected, in particular, for the three-term Ogden function, ¢*, with the constaits chosen
above which describes the behaviour of the materialupon con tinuous loading. dt this rea-
son, the arc-length metho d[20] will be emplo yed in conjunction with the Newton-Raphson
algorithm to allo w equilibrium to be found beypnd the instability point. For convenience,
w e define the normalizedin ternal pressure,

o= P
2ty
and the expansion ratio of the balloon,
r
A=—,
To

where r and rg are, respectively, the current and initial radii of the balloon, ¢y is the initial
thickness of the rubber membrane and p is the current internal pressure. By means of
arc-length control, starting from the initial configuration (A =1), the in ternal pressure is
applied gradually and the membrane is inflated until the configuration defined b 7 =5.182
(point A of Figure 11.b) is reached. A t this stage, the load is reversed and the balloon is
deflated returning to its initial configuration. Figure 10 shows the con vergence behaviour
of the Newton-Raphson scheme during a t ypical incremen t.As in the previous example,
a quadratic rate of convergence is observed. The pressure-expansion curv e obtained in
the sim ulation is presented in Figure 11.b. Since inflation occurs under monotonically in-
creasing circumferen tial stretching, the inflation branch of the pressure-expansion diagram
corresponds to the behaviour governed by the strain energy functiom)?. Indeed, it matches
nearly exactly the analytical hyperelastic solution obtained by Ogden [76, 77]. The defla-
tion branch of the curwe shows clearly the softening effect of materialdamage at the global
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Figure 11. Rubber balloon. (a) Finite elemen t mesh, and (b) Pressure-Expansion

diagram

level. Interestingly, the pressure-expansion curve obtained in the present simulation has a
good qualitative agreemen t with the balloon inflation experiment discussed by Beaft [5]
whic h, obviously, can not be reproduced p hyperelastic theories. In the experiment stud-
ied by Beatty [5], a residual circumferen tial strain w as observed after complete deflation
of the balloon (null pressure). Incorporation of this effect w ould require the consideration
of additional internal variables leading to a theory whid allows for description of irre-
versible deformations with possible inclusion of viscous effects. The representation of such

a phenomenon is outside the scope of the presen t model.

7 FINITE ELASTO-PLASTIC DAMAGE: DUCTILE METALS

Over the past fifteen years or so, considerable effort has been concen trated on modellingthe
gradual internal deterioration whic h frequently precipitates the occurence of macroscopic
failure in ductile metals undergoing plastic deformations.

Early attempts to describe this phenomenon have been mainly restricted to microme-
chanical analysis (see references [64] and [88]) and the inherent complexit yof such an
approach has prevented the inclusion of the effect of internal damagein the analysis of
large scale problems of industrial in terest. More recen tlyas pointed out in Section 4, with
the rapid progress of continuum damage mechanics, several continuumdamage models to
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Figure 12. Ductile damage in metals.Phenomenological effects

describe internal degradation in ductile materialsha ve been desloped [19, 27, 28, 32, 56,
97, 109, 119].

Such interest in the development of continuum theories for ductile damage may be
attributed in part to the increasing industrial requirement for models capable of simulating
the behaviour of metals under conditions in whid internal deterioration plays a significant
role. A typical situation in whic h the effects of internal damageare not negligible occurs
frequently in metal forming processes [54, 74]. As experimen tally obsered for many ductile
metals [56, 57], the nucleation and grow th of wids and microcrac ks whic h accompany large
plastic flow causes considerable reduction of the elastic modulusas well as materialsoftening
and is highly influenced by the triaxiality of the stress state (a schematic illustration of
typical uniaxial tests with ductile metals is shown in Figure 12). Close to material failure,
such m ehanisms ha ve a dominan t effect on the behaviour of metals and classical elasto-
plasticity theories frequently fail to predict forminglimits with reasonable accuracy Also, in
man y circumstances, due to the strong coupling bet w een internal damageand macroscopic
material properties, it is w ell accepted that “a posteriori” damage calculations based on
the assumption of damage localization (as described by Lemaitre in reference [59]) would
lead to inaccurate results. In such cases, the form ulation of finite strain coupled elasto-
plasticity-damage models seems to be an essential step tow ards moreaccurate predictions
of failure in industrial forming operations.

This section describes in detail the extension, to the finite strain range, of t w well
known (small strain) ductile damage theories: The model proposed by Lemaitre [57] and
the model in troduced ly G urson [32. Despite their original formulation within the realm
of infinitesimal deformations, importan t phenomena suc h as the loss of elastic stiffness
predicted by Lemaitre’s theory , the increasing plastic compressibilit y predicted by Gurson’s
model and the general material softening predicted by both theories as a result of damage
growth, are also experimen tally observed in the finite strain range. This males extensions of
these theories strong candidates for the phenomenological description of ductile damage at
large strains. Ob viously, it is desirable that the most important features of the infinitesimal
models be preserv ed by their finite strain extensions.

The extensions to Lemaitre’sand Gurson’s damage models described in this section have
been introduced, respectively by de Souza Neto et al. [103, 104, 100] and Steinmann et
al. [107]. They rely on a general framework for the treatment of multiplicative large strain
elasto-plasticity based on the hyperelastic description of the reversible behaviour and the
use of a logarithmic strain measure. This framework has been successfully emplo wd by a
num ber of authors [25, 84, 85, 95, 98, 118 in the formulation of finite strain elasto-plasticity
models and has been enjo ying growing acceptance within the computational medanics
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community over the last few y ears. Some features of the presen t approach to large strain
plasticity are particularly important. For instance, it carries over exactly, to the finite range,
the (in)compressiblit y of the plastic flow associated with pressure (in)sensitiv e criteria in
small strain theory . In addition, by employing an exponential map in the discretization of
the plastic flow rule, an algorithmfor integration of the constitutive equations is obtained in
whic h the essential stress updating procedure retains the samdormat of the classical return
mapping algorithms of the infinitesimal theory with all finite strain effects appearing only
at the kinematic lev el. The general form of the resulting spatial consistert tangent m oduli
is particularly simple and allo ws a relatively straightforw ard computationaimplemertation
within the con text of the implicit finite element scheme described in Section 5. Another
importan t property is that, due to the hyperelastic description of reversible phenomena,
the algorithm satisfies trivially the requirement of incremen tal objectivity.

7.1 Hyperelastic Based Finite Strain Elasto-plasticity
7.1.1 Multiplic ative elasto-plasticity kinematics

The mainh ypothesis underlying the present approach to finite strain elasto-plastic damage
is the multiplic ative splitof the deformation gradien t,F', into elastic and plastic parts
[63, 73]:

F=F'F". (65)

This assumption, firstly introduced by Lee [53], admitsthe existence of a local unstressed
interme diate configurationobtained from the curren t configuration by a purely elastic un-
loading of the neighbourhood of a material point as schematically sho wn in Figure 13. Due
to its suitability for the computational treatment of finite strain elasto-plasticity, the hy-
pothesis of multiplicative decomposition is curren tly widely emplo yed in the computational
mec hanics literature [21, 25, 66, 85, 93, 95].

Following the multiplicative split of F', the velocity gradient, L = F F_l, can be
decomposed additiv ely as:

L=1L+1I°, (66)

initial
configuration

current
configuration

Lo ! local
~ _ -~ intermediate
configuration

Figure 13. Multiplicativ e decomposition of the deformation gradien t
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where L and L? are, respectively, the elastic and plastic contributions [73] defined by

1

L =FF", L’ =FF'F''F°". (67)

Similarly , thestretching (or rate of deformation) tensor, D=sym]lJ, can be decomposed
as:

D = D+ D", (68)
with the elastic and plastic stretchings given by
D¢ :=sym[L “, D? :=sym[L?] . (69)

It will be comwenient to introduce the modified plastic contribution, to the velocity
gradient!: )
L’ = F'F"™, (70)
along with the mo dified plastic stretching

D? .= sym[Lp} . (71)

Note that D” measures the rate of plastic deformation on the interme diate configuration.
Since the spatial configuration will be used to formulate constitutive equations in the fol-
lowing sections, the rotation of D”, defined by:

D" .— R°D” R — R sym [Fpr‘l} R (72)

will be adopted in the definition of the plastic flo wrule.The elastic rotation, R°, results
from the polar decomposition of F*:

F'=RU =V°R", (73)
where U® and V¢ denote, respectively, the right and left stretch tensors.

7.1.2 The lo garithmic str ain me asure

Eulerian (or spatial) elastic strain measures can be defined by using V. The use of the
logarithmic (or natural) strain measure is particularly con venient for the description of the
elastic behaviour. In addition to its physical appeal, the use of logarithmicstrains results,
as we shall see in what follo ws, in substan tial simplifications in the stress in tegration algo-
rithm and allo ws a natural extension, to the finite strain range, of the no wclassical return
mapping algorithms of infinitesimal elasto-plasticity. The Eulerian logarithmiclastic strain
is defined by:

e =V =1 B, (74)

. 3 T . .
where Inf] a bove denotes the tensor logarithm of (-) and B® = F*F* = V% is the elastic
left Cauc hy-Green strain tensor.

The deviatoric/v olumetric split of the elastic logarithmic strain gies:

e =g+, (75)

fIn [53], Lee has regarded L” as the velocity gradient of the purely plastic deformation and concluded
that the additive decomposition (66) w as valid only if the elastic strains were infinitesimal. This conclusion
has been later contested by Nemat-Nasser [73] who sho wed that (6'%)is an equally acceptable definition for
the plastic contribution to the velocity gradient.
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where
gg=¢e° —tr[e’] I, (76)

and the volumetric elastic strain is giv en by

gy i=tr[e] =1nJ*, (77)

v

with J¢ = det[F]. (78)

Note that, due to the properties of the logarithmic strain measure, as in the infinitesimal
theory, a traceless €° corresponds to a volume preserving elastic deformation.

7.1.3 General hyperelastic based elasto-plastic constitutive madel

Following the formalism of thermodynamics with internal variables described in Section 2
and restricted to isothermal processes, a rather general class of isotropic h yperelastic-based
finite strain elasto-plastic constitutive models, formulated in the spatial configuration, can
be defined by postulating:

1. The existence of a free energy potential:
(e a), (79)

expressed as a function of the elastic logarithmic strain and a generic set a= {1, a9,
-+, o} of k internal variables.

2. A yield function ®(T,A o that, for fixed o defines the elastic domain, where
only reversible phenomena tak e place, as the set of all points{T, 4 in the space of
thermodynamical forces for which

36, A ) <0. (30)
The yield surface is defined by ® (1, 4 @=0 .

3. A dissipation potential V@, A ), from which the evolution laws for the plastic flow
and internal variables are derived, respectively, as:

0
=i Lur Ao (s1)
and 5

where the plastic multiplier 4 satisfies the loading/unloading criterion:

<0 ¥2>0 ¥® =0. (83)

The dissip ation inequality
Following assumption (79), the time derivative of the free energy reads:

. oy . 1 }
= e+ — A 84
where the notation: .
Aa=> Ad,

=1



344 E.A. de Souza Neto, D. Peri¢ and D.R.J. Owen

with the appropriate product implied, has been adopted. Equiv alently by applying the
chain rule to the definition (74) ofe®,

. 1oy 9(nB) . 1 .
=— ————— B+ —Aa
178y 8(In BY) a1,
= - : —~—— > B°| : B° B° —Ac.
2 |Oee o0B° + £0 @

It should be noted that in the expression abo ve, the tensorse®, B® and 9 /de ¢ share the
same principal axes. Also, the tensor logarithm is a member of the class of isotropic tensor
functions discussed in Section A of the appendix. These observ ations in conjunction with
the particularization of the form ulae given in item (iii) of Bo x A.4 of the appendix to the

derivative 9(In B®)/0B° lead to the identity:

o 9(ln B°) B - O

de¢ " OB° - Qee’ (86)
and (85) can be re-written as:
1oy - 4 1
== : B B° —Aco. 87
v 2 Oee * Po o (87)

By definition, B*:=F“F°" | or, in view of the m ultiplicative elasto-plastic decomposition

assumption, B = F (F")™L(F")"TF" . Time differentiation of this last expression and
substitution in (87) result, after some straigh tforw ard manipulations,in:

¢: 8¢ {D‘l‘% |:FHFP(FP—1)-F€T+F6(FP—T).FPTFe—li|}+iAd
Oee® 20 (88)

0 — — _ 1 i
X DR [+ | RV + - Aa,
Oe¢ PO
where use has been madeof the relations: Fp(Fp_1 )= _F'F" ' = _I* and (FP_T )'FPT
= -F p_T(FpT)' = :—EPT, obtained, respectively, with time differentiation of the identi-
ties: FYFP ™ =T and F* TP —T.
Finally, with the in troduction of definition (72) of the spatial modifiedlastic strething

tensor, D?, and by taking into account the elastic isotropy the rate of change of free energy
can be expressed as:

% (pop) e oAg
1/;_86@.(1) Dp)+pUAa. (89)

Restricted to isothermal processes, the Clausius-Duhem inequality (6) can be expressed
as:

T:D_p(]¢20) (90)

so that by introducing (89) one obtains:

9 o - .
(T—poai):D—{—poai:Dp—Aazo. (91)
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From a standard argumen t, the inequaliy above implies the follo wing constitutis equa-
tion for the Kirc hhoff stress:

oY
T=py) =— 92
PO Ha (92)
and the non-negative dissipation requirement is reduced to:
D’ - A&a>0. (93)

The overall finite strain elasto-plastic constitutive model is summarized in Ba 7.1.

(i) Multiplicativ e decomposition of the deformation gradiem
F =F°F"

(ii) Hyperelastic law
a,lp(sej @

T=p0 — (.

Oe¢
(iii) Evolution equations for F'¥ and other internal variables @={on, ..., o, }
DP— Rsym [Fpr—l} R — 5 g_‘f_
dzz—ﬁgi (i=1,...,k)
(iv) Loading/unloading criterion
& <0 4> 0 40 =0

Box 7.1 General finite strain elasto-plastic model

REMARK 7.1 Expressions (92) and (93) as w ell as the adopted plastic flow rule (81) are
completely analogous to their small strain counterparts. In the small strain limit, € and

D? correspond, respectively, to the standard infinitesimal elastic strain tensor and plastic
strain rate. Th us, the present approde allows a natural extension, to the finite strain range,
of general isotropic infinitesimal elasto-plastic constitutiv e models. Ageneric small strain
model defined b y an elastic potentiak),, a yield function ®, and a dissipation potential
W, can be extended to finite strains by adopting, in the constitutive equations abaey 1/, ®
and ¥ with the same functional format as the respective small strain coun terparts. This
procedure will be used later in this section to formulate models for large strain ductile
damage. 0

REMARK 7.2 With J?:= det[F'"] we define the plastic volumetric strain as:

el :=InJ? =1 HN()” )\I(J2) )\1(”3)] =1\ +1 n)\fm +1 nkz(g) = tr[V?] (94)
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where )\ﬁ) are the principal plastic stretches, i.e., the eigenvalues of the plastic left Cauc hy-

Green strain tensor, V? := FPF*". For volume preserving F'*,
det[F']=1 «=¢e?=0. (95)

It can be easily shown that the plastic flo w rule (81) implies that
, ov
& = 4 tr[—} : (96)

so that, as in the infinitesimal theory , dissipation potentials whose deriatives with respect
to T are traceless (such as the classical V on Misesand Tresca functions) produceisochoric
plastic flow. 0

REMARK 7.3 Analogously to the small strain theory, if & is taken as the dissipation
potential, then the w ell knownprinciple of mazimum plastic dissipation [39] is extended to
the finite strain range. In that case, the loading/unloading criterion (83) corresponds to
the Kuhn-T ucker optimalit y condition for the L.h.s. of (93) to reach a maximunsubject to
the plastic admissibilit y constraii & <0. 0

7.1.4 Gener al stess integration procedure. The exp onential map algorithm

In the present context, knowing Fﬁ and the set o, of internal variables at time ¢, and
given the deformation gradien tF',, 11 at time t,41, the numerical in tegration of the consti-
tutive equations of Bo x 7.1 must determiner,, 11, Fi+1 and the updated set v, 41 at the
subsequent time #,1.

Due to the underlying additiv e structure of infinitesimal plasticit ygperator split algo-
rithms are especially suitable for the n umerical in tegration of small strain elasto-plastic con-
stitutive equations and have been widely used in the computationaliterature [81, 85, 95, 96].
These methods consist of splitting the problem into two parts: an elastic predictor, where
the problem is assumed to be purely elastic (no plastic flow or irternal variable evolution),
and a plastic corrector, in whih a discrete system of equations comprising the elasticity
law, plastic consistency , plastic flov and internal variables evolution is solved, taking the
results of the elastic predictor stage as initial conditions. In the presen t framew ork for ml-
tiplicative finite strain plasticity an operator split algorithm will be adopted to integrate
the constitutive equations of Bo x 7.1. The general algorithmcomprises the follaving steps:

1. Firstly, it is assumed that the pseudo-time increment [t,,t,+1] is purely elastic (no
plastic yielding). The elastic trial state at t,41 is, then, defined by the elastic trial
deformation gradien t:

F "= F o F7 (97)
with F'* and o frozen at t,:
Fi =F) (98)
and
o = o (99)

The elastic trial Kirc hhoff stress, corresponding to such assumption,is gien by:

rial __
7-:;1—{—1 - 866 Efl_ti_r{al . (100)
ol
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2. If @(Tfffll, a';l“f}) <0, then the incremen t is indeed purely elastic and w e update:
(D1 = ()1 - (101)

3. Otherwise, plastic yielding occurs and the plastic flow rule (81) is discretized l means
of a backward ezponential approzimation (see W eber and Anand [118 ], Etero vic and
Bathe [25] and Cuiti™no and Ortig21 ), leading to the following discrete ev olution law
for F'*:

— o
Fn+1 = exp [AY Rn+1 7 | a1

Rn+1:| Fp
(102)
= Rifl exp [Ay %—q_; 7L+1:| R,  F.

In addition, a standard backward Euler scheme is used to in tegrate the rate evolution
equation (82) for the internal variables:

ov

Apy1 = Oy — AY (9—A (103)

n+1

The incremen tal plastic m ultiplier, 4 satisfies the discrete counterpart of (83):
$,11 <0 Ay >0 Ay &,.1=0. (104)

Conse quences of the exponential approximation. The small stnin return map
Some crucially important properties result from the use of the exponen tial map in the dis-
cretization the plastic flow rule. Firstly , the incompressibiljtof the plastic flow for pressure
insensitive yield criteria is carried over exactly to the incremen tal rule (102). Indeed, for
a traceless flow direction tensor, OW/9 T, detlexp[ly O WO 7]] = 1 which ensures that the
updating form ula (102) is volume preserving. In addition, under isotropic conditions, the
essential stress updating procedure can be written in the samedormat as the classical return
mapping sc hemes of infinitesimal elasto-plasticiy, with all large strain related operations
restricted to the kinematical lev el. This propert y is demonstrated in what follws.
Inversion of both sides of (102) follow ed by their pre-multiplication by, 41 and use
of relation (65), gives:

ov

e e trial
Foo=F. "R ex P[ A

] e (105)
n+1

P ost-m ultiplication of both sides of (105) byRCZH results in:

trial o
Vi =F R |- 2] (106
or, equivalently,
P c trial
Vi1 exp [Ay 5, +1] —F, "R, (107)

Then, a further post-multiplication of each side by its transpose gives:

n

€ e trial
Vi ew|2ay 8 | Vi = (Vi) (108
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(i) Giv en incr.displ. 2, update the deformation gradien t

F,=1+¢G ra,(%on[m@, F,,=F,F,
(i1) Compute elastic trial state
e trial Dy _1
F'n,+1 = F”L"‘l(Fn)
e trial e trial e trial T
Bn+1 = Fn+1 (Fn+1 )
e trial ¢ trial 1 e trial
Rn+1 = (Vn+1 ) Fn+1
trial L etrial, 1 e trial
eni” = 1“[‘/"“ | = B} ln[Bn+1 ]
afrial = a,

(iii)) GOTO BOX 7.3 small strain algorithm (update 7, €¢ and «)

(iv) Update F? and Cauc ly stress.

Vi = exple]

B, - R

FZ+1 = (RZ+1)T(W+1)71F71,+1
T1 = det[Fn+1]71 Thn+1

Box 7.2 General integration algorithm for finite m ultiplicative elastoplasticity

Due to the assumed elastic isotropy, V° and 7T commute. If the potential ¥ is assumed
to be an isotropic function of T, then 7 and W/ T have the same principal directions so
that all terms on the L.h.s. of the above expression commute. Under suc h assumptions,
expression (108) leads to the simpler update formula in terms of the logarithmic eulerian
strain tensor:

o

— 1

] trial
€yl = Enfl — Ly
whic h has the sameformat of the update formula for the elastic strains of the standard
return mapping algorithms of the infinitesimal theory. For the elastic rotation, the following
expression is obtained:

e e trial
w1 = R (110)

The resulting algorithm for integration of the large strain elasto-plastic constitutive equa-
tions is summarized in Boxes 7.2 and 7.3.

REMARK 7.4 The operations carried out in Bo x 7.2 are related exclusively to the kine-
matics of finite strains. Due to the use of logarithmic strains to describe elasticity along
with the exponen tial approximation (102) to the plastic flo w rule, the essen tial material
related stress updating procedure, shown in Bo x 7.3, preserves the small strain format.
It corresponds to the w ell established return mappingprocedures of infinitesimal elasto-
plasticity. 0
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(1) Elastic predictor

e Evaluate trial elastic stress

Ttrial _ 8'(/’ )
LT gge | e i
trial
n+1

o Chec k plastic consistency condition
P e i) <0
THEN
Set  (-)n+1 = () and RETURN
ELSE go to (ii)

(ii) Plastic corrector (solve the algebraic system for Ay, €5, and ay,41)

D(Ty1,0pt1) 0
€ — € Ay 2 0=V 0
Qn1 — @y + Ay 55|, 0
where
o _ e
oege 1

(iii) RETURN

Box 7.3 General stress updating procedure SMALL STRAINS

7.1.5 The sp atial tangent mo dulus

The next step to w ards the completeincorporation of the preseh m odel ito the numerical
framew ork of Section 5 is the derivation of a closed form ula for the spatial tangém odulus
a, whose general expression is given by (35), consistent with the in tegration algorithm
described above.

In the small strain return mapping of Box 7.3, the updated stress 7,41 is obtained as
a function of a,, and the elastic trial logarithmic strain, so that this procedure can be
regarded as an incremen tal constitutive functional of the form:

Tt = T (an, €51 . (111)

In the general procedure of Bo x 7.2g%1" is computed as a function of B;_:iial which,
in turn, is a function of FZ and F, 1. With E;fﬁal at hand, the Kirc hhoff stress is
then updated by means of the incremen tal functionalT (small strain algorithm). Th us,
the overall procedure defines a function 7, for the Kirc hhoff stress, that can be generally
expressed as:

- ~ > tri > trial

T(anaFn+1) = T(anaszfﬁal(BIf+?a (Fp Fn+1))) : (112)

7 n?

Clearly ,7 is a particular case of the general algorithmic constitutiv e functional (26).
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Application of the ¢ hain rule to (112) gives:

or  9F  oestid 9B 113)
aF'rH-l 65%_?}8‘1 ‘ 6B;_:iial ' a-F‘I'n,+1

Substitution of this expression into (35) results, after straightforw ard manipulations,n the
following closed form ula for the componen ts of the spatial tangent modulus consisten t with
the present integration algorithm:

1 ~
qjrl = 55 [h:m: bl — oq 6, (114)

where his the small str ain elasto-plastic consistent tangent op eator, associated exclusively
with the return map algorithm of Box 7.3:

H or
O B -
The fourth order tensor nis defined as:
6 ID[B e tliia.l]
n=_——"t - (116)

9B
i.e., it is the derivative of the tensor logarithm function at B;_lt_lfdl The tensor logarithm
is a member of the class of isotropic tensor functions described in Section A. It is obtained
by setting, in expression (176), y(-)=In(-) and X =B ™. Tlus, the actual computation
of m follows the procedure described in Bo x A.4 in the appendix. Finally, the cartesian
components of b are defined by:

bijir = & (BL™) j1 + 85 (B2 - (117)

REMARK 7.5 Note thath is the only material related con tribution to the spatial modulus
a. All other termstaking part in its assemblage in (114) are related to the geometry of finite
deformations and do not depend on the particular material model adopted. Therefore, as
far as consistent linearization is concerned, only the derivation of the smallstrain elasto-
plastic consistent tangent operator will be addressed in the follo wing sections. The tensor

h is obtained from the linearization of the algorithm of Box 7.3 by following the classical
procedure introduced by Simoand T yor [99]. 0

7.2 Finite Strain Extension of Lemaitre’s Ductile Damage Model

The constitutiv e equations for elastoplasticity coupled with damagadopted here hare been
originally proposed by Lemaitre [56, 57] in the context of the infinitesimal strain theory .
Based on the concept ofeffective stressand the hypothesis of strain equivalence Lemaitre’s
model includes ev olution of internal damage as w ell as non-linear isotropic and kinematic
hardening in the description of the beha viour of ductile metals. Within the framework
for large strain m ultiplicative elastoplasticity described above, the extension of Lemaitre’s
form ulation to the finite strain range is presented in the following.
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7.2.1 State variables

The starting poin t of the theory is the assumption that the free energy at a material poirt
can be completely determined by the set {€®, R , X, D} of state variables, i.e.,

Y =9, R.XD ) (118)

where €€ is the logarithmic elastic strain tensor defined in the previous section and R and
D are the scalar internal variables associated respectively with isotropic hardening and
isotropic damage. The second order tensor X is the internal variable related to kinematic
hardening.

From a micromec hanical viewpoity R is intrinsically connected with the density of dis-
locations in the atomic structure which cause an isotropic increase in resistance to plastic
flow. The internal variable X is related to self-equilibrated residual stresses whic h remain
after elastic unloading. These stresses may increase or decrease resistance to slip deforma-
tion according to the direction considered. The con tinuumdamage uriable D, as discussed
in Section 4, can be interpreted as an indirect measure of densit y of micro voids and mi-
crocracks [52]. Such microscopic defects are assumed isotropically distributed and in the
present context they will be phenomenologically reflected by the degradation of the elastic
modulus. A critical value for D (as an experimen tally determined parameter) will define
the onset of material instabilities which induce initiation of a macrocrac k, i.e., the rupture
of a representative volume element [60].

Under the h ypothesis of decoupling betw een elasticity-damageand plastic hardening,
the specific free energy is assumed to be giv en by the sum

Y =9, D)+ yP (R, X (119)

where ¢ and ¢?(R, X are, respectively, the elastic-damage and plastic con tribution to
the free energy.

7.2.2 The elastic-damage p otential. Elasticity-damage eupling

Exploiting the kinematical properties of the logarithmic strain in the formulation of finite
m ultiplicative elastoplasticity, P eri¢ et al. [85] have emplo yed the Hencky strain energy
function [37] to describe the elastic response,

oo 9° O, A5, 0) = [(n X9+ (I5)2 4+ (IAg)?] + ] 792 (120)
where 1 and A are positive material constants, A{ are the principal elastic stretches and
J¢ = A{A5A5. In the present finite strain extension of Lemaitre’s damage model, the
hypothesis of strain equivalence [60] is introduced in the stored energy function abo e and

the potential 1°¢, written as a function of elastic stretc hes and damage, is assumed to have
the particular form:

po UG A8, 08, D) = (1= D) {1 [(InA9)% + (N A5)2 + (In X§)%] + Sa(n Jo)2} - (121)
or, equivalently, in terms of the logarithmic elastic strain &€,
po ¥4 e, D) =1 e : (1-D)h:e", (122)

where h is the fourth order isotropic tensor represented as:

h=2ul+\I®I), (123)
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with I denoting the identity tensor and I defined by the cartesian componen ts/ijkl =
%(57;;“(%1 + 6;10,1). For this particular potential, the elasticiy law is given by:

o
aee

e 2L (1- )b et (124)

In this case, the thermodynamical force conjugate to the damage internal variable is given
by:
Yi=pp——==—5€":h:¢e° 125
Po oD B} s ( )

or, using the inverse of the elastic stress/strain law,
—1 -
Y= —F5T1: T
2(1—-D)?

, (126)

—q 2 G (P)?
- SET— D7 §(1+V)+3(1—21/)(5)],

where F and v are, respectively, the Y oung’s modulusand Poisson ratio associated with
and A. The h ydrostatic Kirchhoff pressure, p, is given by:

p =3 tr[7], (127)

and ¢ is the Von Mises equiv alent stress defined as:

g =351 = /3 dev[r] : dev[r],

with dev|] standing for the deviatoric part of [].

Commonly known as the damage ener gy release rate =Y corresponds to the variation
of internal energy density due to damage gro wth at constan t stress.It is the continuum
damage analogue of the J integral used in fracture mec hanics [87]. The product—Y D rep-
resents the pow er dissipated by the process of internal deterioration (mainlyas decohesion
of interatomic bonds).

REMARK 7.6 The stress-strain rule (124) has v ery important experimen tal consequences.
Indeed, with the elasticit y-damage coupling in troduced via the hypothesis of strain equiv-
alence (stated in Section 4.2), the effective elastic modulus of the material, which can be
measured from experiments, is given by

b = (1—- D)h (128)

where the damage v ariable assumes v alues within the in terval,[}]. In the absence of
damage (D= 0), the effectiv e moduluscorresponds to the modulush of the virgin material.
For a completely damaged state (D = 1), hg = 0 corresponding to a total loss of load
bearing capacity of the volume element. The iden tification of a generic damaged state,
with D €0, 1], is then restricted to measurement of the degradation of the current effective
elastic modulus with respect to the virgin state (D = 0) as described b y Lemaitre [5¢ and
Lemaitre and Chaboche [60]. 0
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7.2.83 The plastic p otential
The plastic con tributiony?(R, X to the free energy is chosen as:

v’ (R X =y BB+ 5 X:X (129)

where a is a material constan t and the isotropic hardening con tribution,)®(R), is an
arbitrary function of the single argumen tR The thermodynamical force associated to
isotropic hardening is, then, defined as:

R
P, S N

K =
OR OR

(R . (130)

From the plastic poten tial (129), it follows that the thermodynamic force associated with
kinematic hardening, denoted (3 is given by:

9
B := po aX—aX (131)

7.2.4 Yield function and dissip ation potential. Internal variables evolution

For theyield function ® the follo wing form is adopted:

@(T,K,B,D):\/S'f(_—Tl;m—K—ryo (132)

where the material parameter 7, is the uniaxial yield stress of the undamaged material and
the spatial quantity 3 is the rotation of the backstress tensor 3 to the spatial configuration:

B =R BRT. (133)
In addition, the dissipation potential is assumed to be giv en by:

b

U=
+2a

_ _ P Y s+1
'B'B+(1—D)(s+1)<r) ’ (134)
where a, b, r and s are material constants. The damage ev olution constats r and s can
be identified by integrating the damage ev olution law for particular cases of (constan t)
stress triaxiality rate as described in Section 7.4 of Lemaitre and Chaboche [60]. The
constants a and b, associated with kinematic hardening, are obtained from cyclic loading
experimen ts [60].

The con vexity of the dissipation potential ¥ with respect to the thermodynamicdbrces
for positive constants a, b, r and s ensures that the dissipation inequalit y is satisfieda priori
by the present constitutive model.

The finite strain extension of Lemaitre’sductile damage model is summarized in Box 7.4.

7.2.5 Integration algorithm

Within the present framew ork, the general algorithm of Bo x 7.2 is independtmwf the par-
ticular material model adopted. Therefore, only the small strain return mapping algorithm
associated with Lemaitre’s ductile damage model is addressed below. The algorithm is
summarized in Box 7.5. It corresponds to the algorithmoriginally proposed b y Benallakt
al. [6] in the context of the infinitesimal theory .
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(i) Multiplicativ e decomposition of the deformation gradiet
F =F°‘F”"

(ii) Elasticity law
T=(1-D)h:e°

(iii) Yield function

where 8 = R°BR‘".
(iv) Plastic flow and ev olution equations forR, 3 and D

ﬁp _ =z 3 (l(:v[‘r—ﬁ] _
72 45D) Vah(rh)

dev[r—/3] b B R

3 — 4 ReT _
s v (1-D) /3 J2(m—B)

3
a3

with Y given by (126).

Box 7.4 Finite strain extension of Lemaitre’s ductile damage model

It should be noted that, due to the presence of the tensorial kinematichardening vari-
able, the potential ¥ abo e is not an isotropic function of 7= This is in con tradiction
with the isotropy hypothesis, made in the previous section, that rendered expression (109)
and, consequently, allow ed the use of materialrelated in tegration algorithms with the same
format as the infinitesimal return mappings. Nevertheless, it can be shown that, in the
present case, (109) approximates (108) to second order in elastic strains. Therefore, the
neat structure of the stress integration algorithm described in Boxes 7.2 and 7.3 can be
recovered so long as the elastic strains remain small. It is emphasized that this condition
is, indeed, satisfied in metal plasticit y.In the absence of kinematic hardening, Lemaitre’s
ductile damage model fits exactly within this framework independen tly of the magnitude
of the elastic strain.

REMARK 7.7 A study of accuracy and stabilit y properties of the return mapping proce-
dure of Bo x 7.5 has been carried out in reference [104]. Con vergence of the Newton-Raphson
scheme used to solv e the system of non-linear equations of the plastic corrector stage (item
(ii)) has been found to depend crucially on the initial guess supplied, particularly at highly
damaged states. Within the finite element context, failure of the return mapping to con-
verge for a single integration point requires that the global incremen tation procedure be
re-started from the beginning of the curren t increment with a reduced load step. Thisnya
incur a dramatic increase in computational costs, specially for large problems. T o tackle
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(1) Elastic predictor
e Evaluate trial elastic stress

T = (1- D) h: el

e Chec k plastic consistency
. J2 trial
IF  trial .— \/3 (rn+1 -B,) - K(R,) — 1, <0 THEN
Set (Jng1 = ()%rfll and RETURN
ELSE go to (ii)

(i) Plastic corrector (solve the system for Ty1. B, 1, Dny1 and Ay )

: le(jg:;ﬂmr” - K(R, +Ay) - Ty, 0
Ty — (11— Dn+1) h:(e;5" ~& Nuyy) | _ ) 0
ﬂn+1 /8 n nt1 — b B71,+1) 0
Do = D - g (Y—) Ay [ o)

dev["'n+1*g n+1}
(1-Dyt1) \/3 T2 (Trp1 =B, 11)

2 e eT
where B, =R, 8,R,., and N, = %
(iii) Update €, R and 3
Rn+1 = Rn + A’y . ESH— = Ezfial Ay Nn+1

eT e
6n+1 = Rn+1 n+1Rn+1
(iv) RETURN

Box 7.5 Small strain return mapping algorithm for Lemaitre’s model

this problem, the follo wing strategy w as proposed in reference [104]:

e Firstly, the Newton-Raphson scheme is applied taking T,, B,, D, and &y =0 as
initial guesses for the system v ariables.

e If convergence is not achieved, the N-R sc heme is restarted. The initial guess nw is
™1 B, D, and &y =0. T heprojected stress TP is obtained by solving, for A\
the scalar equation:

®(devr ij], R,, dev[B,,L], D,)=0,

with o
dev[rrroi) = il ey, ),

IRRVEVNY
and corresponds to the projection of T, t“al onto the frozen yield surface of time ¢,,.

This procedure w as found to effectively stabilize the local Newton-Raphson algorithm as-
suring convergence at any stage of damage ev olution. 0
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7.2.6 The small str ain elasto-plastic consistent tangent opador

If the outcame {Ty41, Rut1, B,41, Dut1} of the integration algorithm of Bo x 7.5 lies inside
the elastic domain (®,4+1 < 0) then the corresponding algorithmic constitutiv e functional
for stress,

+(R”UB7L7‘D’"/?E'(rzb-ff’-r]i.al) ? (135)

is differentiable and the consistent tangent operator is simplygiv en ¥

h = (1-D,i1)h. (136)

How ever, if the converged state is on the yield surface (§41 = 0), then plastic loading as
w ell as elastic unloading are possible. Hence, the algorithmic function isnot differentiable

and M is a one sided derivative of . If unloading is assumed to occur, then (136) remains
valid. Otherwise, 7,41 is delivered as the solution of the non-linear system of the plastic
corrector stage (item (ii)). In this case, the non-linear system is differen tiated leading to
the linear form:

_ Air Aip Ainy Aig 11 dT41 _ _ 0 _
Asr Asp Asny Asp dD, 11 _ (1=-Dy,41)h: dsz_t'_rial (137)
Az, Azp Ajp Agﬂ dAy 0

| Aar Asp Agny 0 ]| dB 11 || 0 |

where the coefficierts A4 ;, A1 p,... are the partial derivatives of the left hand sides of item
(ii) with respect to the system v ariables computed at the con verged solution of the non-
linear system of equations of the plastic corrector procedure. Note that the samecoefficients
matrix is computed for each trial solution obtained during the Newton-Raphsoniterations
of the plastic corrector stage. Inversion of (137) gives the tangent relations betw een the
system v ariables (41, Dnt1, Ay and 3,,,,) and sfl‘j_"li“l:

( dTn41 Cn G GGz Cu ( 0
dDjp41 Cop Cap Caz Cy (1=Dy 1) b : det tridl
- ) (138)
dAy C31 C3 Cz3 Oy 0
L dB, 41 1| Cy @G @3 Cy | L 0 |
In particular, for the elasto-plastic consistent tangent operator, one has:
/i” . dTn-l—l h
= dEetrial = (1—Dn+1) GQ : - (139)

n+1
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A closed form ula for the small strain consisten t tangent operator, whic h does not require
inversion of the linear system, has been recen tly derived by Doghri [2Rfor a variant of the
present version of Lemaitre’s ductile damage model.

REMARK 7.8 The tangent operator i above is generally unsymmetric so that, within
the context of finite elemen t computations, an unsymmetric soler is required for solution
of the linear system (31) at eac h iteration of the global Newton-Raphson procedure. Suh
unsymmetry, however, is immaterial in many situations of industrial interest. In the simu-
lation of metal forming problems, for instance, frictional contact, whic h inevitably results in
unsymmetric tangent stiffnesses, usually plays an essential role and an unsymmetric solver
is required regardless of the material model adopted. 0

7.3 Finite Strain Extension of Gurson’s V oidsGrowth Model

The constitutiv e equations presented here have been originally proposed  Gurson [32] to

describe the mec hanism of in ternal damaging in the form ofcids growth in porous metals.
The starting poin t of Gurson’s theory is the microscopic idealization of porous metals as
aggregates containing voids of simple geometric shapes em bedded in a metallic matrix

whose beha viour is governed by a rigid-plastic V on Misesconstitutier law. Appro ximate
functional forms for the corresponding macroscopic yield functions are derived based on
the analysis of single void cells and use of the upper bound plasticiy theorem. In contrast

to Lemaitre’s damage model, the evolution the damage v ariable of Gurson’s model isnot

associated with a dissipativ e mec hanism.The damage v ariableD in this case is the void

volume fraction, i.e., the local fraction of volume occupied by voids and its evolution law
follows as a direct consequence of the requirement for mass conserv ation.

7.3.1 The fr e energy potential

In the original version of Gurson’s ductile damage model [32], the matrix material was
assumed incompressible rigid-perfectly plastic and the resulting macroscopic model was
compressible rigid-plastic with hardening and softening associated, respectiwly, with heal-
ing and growth of voids. Here, (hyper-) elasticity as well as the possibility of additional
isotropic hardening/softening due to straining of the matrix material are introduced and
the free energy potential is assumed to be giv en §:

Y =1(e R) =4 “(e°) + ¢¥"(R . (140)

The elastic con tribution)® is taken as the Hencky strain-energy function (120), which, in
terms of the logarithmic strain €°, reads:

pop(e) =3%eh:e, (141)
The constitutiv e equation for the Kirc hhoff stress follows as:

T:pgg;/}e:h:é:e. (142)

As in Lemaitre’s model, the isotropic hardening contribution is left as an arbitrary function
of a single argumen t, so that the thermodynamic force K associated with R is given by:

Ki:ﬂu?—}é:m%:K(ﬂj- (143)

Note that, under the present hypothesis, damage does not affect the elastic behaviour.
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7.3.2 The yield function and dissip ation potential

The yield function of Gurson’s theory is expressed by:
SrK D) = Jo(r) — {1+ D?—2D coshl ;2N (K47, (144)

where D is the damage v ariable,,, and K+7,, are, respectively, the initial and current
Kirc hhoff uniaxial yield stress of thematriz material and p is the Kirc hhoff pressure. Recall
that the damage v ariable D above is the void volume fr action i.e., the void volume per
unit volume. As in Lemaitre’s model the damage variable is allow ed to range betw een 0
and 1, with D= 0 corresponding to the sound (undamaged)material and D= 1 to the fully
damaged state with complete loss of load carrying capacity. Also damage gro wth induces
softening. The function ® reco vers the standard V on Misesyield function fo) = 0 and
becomes pressure sensitive in the presence of internal voids (D # 0).

Following the principle of maximum dissipation, the yield function is tak en as the dis-
sipation potential in Gurson’s model, ¥ = &, resulting in the follo wing plastic rule and
evolution law for the hardening v ariableR

- . o0d . 1 . 3p
D" =45 5. =7 {deV[T] + 3D (K+7y,) Smh{z(KwyO)}I} (145)
and
. od
R=—%—
oK 3 \ (146)
2 2 i
3 {1 =+ D—2D COSh|:2(K—_nyO)i| (K+Ty0)} +pDS1nh|:2(Tp,’_yn)i|

=7 1-D

REMARK 7.9 Use of property (96) leads to the following expression for the v olumetric
plastic strain rate in Gurson’s damage model:

£ = 4 D (K+Ty,) sinh{Q(—ngr%O)} . (147)
This implies that Gurson’s material is plastically compressible in the presence of voids
and predicts plastic dilatancy/compression under tensile/compressive pressures. This phe-
nomenon can not be captured b y Lemaitre’s theory in whik damage evolution can cause
softening but does not change the original (pressure insensitive) V on Misesshape of the
yield surface. 0

7.3.83 Damage evolution

Since the present material is assumed to be an aggregate of voids em bedded in a solid
matrix, the determinant J of the deformation gradien t can be split additively as:

J =0, + vy, (148)

where v,, and v, are, respectively, the current matrix and v oids volume per unit reference
volume. By definition, Gurson’s damage variable is the current volume of voids per unit
current volume, i.e,

D:= =, (149)
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so that the damage rate can be obtained b y a direct application of the product rule:

L, J
D=—-D-—. 150
7 7 (150)
By assumption, the matrix material is plastically incompressible (Von Misest ype).
Hence, if elastic v olumetric strains are neglected, the follo wing appro ximation can be made:

B = 0. (151)

It should be noted that in the original deriv ation of Gurson’s model, the matrix material is
assumed rigid-plastic and the abo ve identity holds exactly.From (148) and (151), it then
follows that )

J =0y + 0y = 0y, (152)

i.e., the macroscopic rate of v olume ¢ hange equals the rate of change of voids volume.
A t the macroscopiclev el, the hypothesis of negligible volumetric elastic strains allo ws the
approximation: ) )

J=JP; J=JP, (153)

where J?:= det[F'"]. Substitution of (152) and (153) into (150) results in

. Jp
— _ — _ =P
D = (1 D)Jp—(l D) P, (154)
where use has been made of the identity:
Jr
_ = &P
o = er, (155)

which follows straigh tforw ardly from the time differemiation of the volumetric plastic strain
defined by expression (94). Finally, in view of the constitutiv e equation (147) for the
volumetric plastic flo w, the evolution law for the damage v ariable is obtained as:

D =4 (D~ D?) (K+1y,) sinb| 7722—] (156)

The finite strain extension of Gurson’s ductile damage model is summarized in Box 7.6.

7.83.4 Integration algorithm

With the particular definition (145) for the plastic flow rule, if plastic yielding occurs within
the time in terval of interest, the general expression (109) results, after deviatoric/volumetric
decomposition of the elastic strain, in the follo wing update fornmla:

e __ metrial _
Edn—}—l - Edn+1 A}f Tdn+1 >

(157)
e _ petrial _ . 3 n+
8'””""1 - SUI:Jrll A)/ {Dln'_H [K(Rn'+1)+7-y0] Slnh{Q (K(Rr[z)-&-l)l‘l-Tyo)} } ’

where subscripts d and v denote, respectively, deviatoric and volumetric components. Use
of the elastic law in the above expression gives:

T _ 2G e trial
dn+1 = T¥Ay 2G “dnt1

s B
Pn+1 = /{Ev§+11 A}/ R {D'n,-l-l [K(Rw,+1)+‘7'y()] SIllIll:Q(K(Rf+l)l+ry0):|} .

(158)
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(i) Multiplicativ e decomposition of the deformation gradiet
F =F°F?

(ii) Elasticity law

T="h:e°
(iii) Yield function
o, K, D) = Jr(1) — {1+ D~ 2D cosh 72—} (K +7,)°

(iv) Plastic flow and ev olution equations forR and D

DY = {dev[T] + 1D (K+7y,) smh[m}I}
h_ ; %{1—1—1) _2DCOSh[W}_([;—FTyU)}—FPDSmh[m}
D = 4 (D-D?) (K+7,,) sinh[z(g—jjw]

where K := K(R is a given hardening function.

Box 7.6 Finite strain extension of Gurson’s ductile damage model

With in troduction of the above update formula for the deviatoric Kirc hhoff stresgarthe
definition (144) of Gurson’s model yield function, the following algorithmic counterpart of
® is obtained:

. 2
S (pns1, Roy1y Dng1, &y ) = (%) Jz(ez,f;‘;’l) — L a [K(Rnt1)+7 )2, (159)

with a defined as:

_ 2 Spn
0= 14D 21 —=2Dpcosh| srplti—| .

Thus, for the present material model, the plastic corrector stage comprises the require-
men t of plastic consistency by means of the algorithmic yield function abwe, the pressure
update (158)2 and the backw ard Euler discrete coun terparts of the evolution equations (146)
and (156). The return mapping algorithm is summarized in Box 7.7. Note that, here, a set
of only four coupled non-linear equations has to be solv ed in the plastic corrector phase for
any stress state. In contrast, Lemaitre’s model requires, in the simplest case (plane stress
state), that eight equations be solved sim ultaneously. In the most general situation (3-D
analysis) the num ber of non-linear equations reaches fourteen.It is emphasized, ho w ever,
that in the absence of kinematic hardening, the non-linear system can be reduced to only
two coupled equations for any stress state. In the simplified v ersion of Lemaitre’s the-
ory implemented by Steinmann et al. [107], whic h excludes kinematichardening and does
not account for the effect of stress triaxiality on damage ev olution, the plastic corrector
comprises t w o scalar equations.
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(i) Elastic predictor

e Evaluate trial elastic stress
= e
e Chec k plastic consistency
Diriali= Ty (7475 = 1{14D 2 = 2D pcosh| sz i | } [K () 47,

IF @il <0 THEN
Set ()ut1 = ()M and RETURN
ELSE go to (ii)

(i) Plastic corrector (solve the system for the scalars ppi1, Rut1, Dnt1 and Ay)

9 ) \
(2857 ) (i) = L [K Ry K
Pry1 — K'E'Lc’jflal +AyRb [K(R7,,+1)+’Ty0] = 0
Dpi1 = Dp— Ay b (Dpta _D727,+1) [K(RnJrl)_H-yn] 0

L Rot1— Ry — Ly 1—5—"“ {%a [K(Rnt1)+7 o] +bp npr Dn+1} ) 0

where a = 1+D ‘31+1_2D”+1C0S11[W'S+7y0] and b= Sinh[WM} .

(iii) Update €€ and 7T

e o 1 e trial Pnti
EYL+1 142G Ay Edn+1 + K I
. 2G e trial .

Tntl °= 193G Ay Ednsr T P+l I

(iv) RETURN

Bo x 7.7Small strain return mapping algorithm for Gurson’s model

It is remark ed that, as in Lemaitre’s model, instabilities have been detected in the
Newton-Raphson scheme adopted to solv e the equations of the plastic corrector phase of
Box 7.7. To im proe the Newton method convergence behaviour, a line search procedure
(as suggested by Steinmann et al. [107]) has been added to the standard Newtonalgorithm.

7.3.5 The small strain consistent tangent op erator

If the current state lies in the elastic domain or it is on the yield surface and elastic
unloading is assumed to occur, the tangen t operator consistent with the algorithmic stress
update function:

7 (Rn, D, ettty (160)
defined by Ba 7.7, is simply the standard small strain elasticity tensor:
h = h. (161)

If, on the other hand, plastic loading is assumed to occur, the procedure described for
Lemaitre’s model is follow ed. The system of equations of the plastic corrector phase is
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differentiated at the converged state resulting in the iden tity:

. e trial
( Aipny A1y, Aip Aigp ( d Ay —A Leg b tdeg i
A AN AQ A D A g d +1 _A ~€ trial dEe trial
27 i P 27 2R pﬂ+ = 2’61)"’"“11 Untt 9 (162)
Asny Azp Aszp Asgr dDy41 0
| Avsy Asp Asp Asp | | dRus 0
where A1 Ay, A1p,... denote the derivatives of the plastic corrector system components.
Inversion of the above expression then leads to:
dAy Cnn Ciz Ciz3 Cus ( —A Leg i :d isz:?l
d C C C C A 5 iria de€ trial
P+l _ 21 22 23 24 2,e5 trial Eont1 ’ (163)
dDp41 C31 Oz Cs3 Oz 0
dRy+1 Cyn Cyo Cuz Cug L 0

which provides the tangent relations betw een the systemv ariables (4, p, D and R and

e trial

the system input €}, 1{*. Note that, since the stress tensor is one of the system variables

in Lemaitre’s model, the tangent operator h in that case is obtained directly from the
inversion of the system deriv atie. Here, the consisten t tangent operator can be obtained
by differentiating the stress update formula of item (iii) of Bo x 7.7, whicgives:

2G

e trial
T55G &y 9€ -

dn+1 + dp’n,-‘rl I

2
_ 2G - e trial
ATpi1 = (—1+2G m) doy 5 (164)

Then, substitution of dA and dp,+1 by the relations given in (163) and use of the iden tities:

e trial
5 Af) ce trial = —K,

2
Ay oo = (725 ) e
Leg, 1+2G Ay dnt1 25,00

results, after some straigh tforw ard manipulations, in the follo wing expression for the elasto-
plastic consistent tangent operator:

h = %ﬁ—ﬁ =g[l-3I0I]+g%ei™" @[Crig> ey — Crar I (165)
—I® [021 92 E;;T?l — (9o /{I] s
where
_ 2G
g9 = (1+2GA7) :

Note that, as in Lemaitre’s model, the resulting tangent operator h is generally unsymmet-
ric.
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Figure 14. The model problem.Geometry and loading

o

IL

r —

1P -

7.4 Numerical Examples

EXAMPLE 7.1 The model problem. The finite element analysis of a uniaxially stressed
bar subjected to cyclic loading is carried out in this example. This problem serv es to
highlight the fundamen tal differences that exist betw een the tw o ductile damagemodels
described above. The dimensions of the bar and the boundary conditions are shown in
Figure 14. The load consists of ten compression/extension cycles obtained by imposing,
at one end of the bar, the displacemen t functionu illustrated in the graph of Figure 14.
The extreme displacements during each cycle correspond to +10% and —10% straining of
the bar. The boundary conditions ensure that the bar is subjected to a uniformstate of
uniaxial stress. The sim ulation is executed with Lemaitre’s and Gurson’s damage models.
The material parameters are:

£ =210000; v =0.3; Tyo = 5 20,
with the follo wing damage gro wth constan ts required by Lemaitre’s model:
r=1.0; s=3.5.
For the Gurson model simulation, an initial voids fraction:
Dy =0.05,
is assumed. No hardening is taken into accoum in the present simulations so that, for both

models,
K(R =0,

and, in addition, the constarts a and b of Lemaitre’s model are set to zero. Two three-noded
triangular elemen ts of unit thickness (under plane stress) are used along the longitudinal
axis of the bar in the sim ulation with Lemaitre’s model. For the Gurson model, a single
eight node tri-linear brick is em plged to discretize the bar. If a full 3-D discretization
of the bar with a sufficiently fine mesh w ere adopted, issues such as strain localization
w ould arise. Nevetheless, the coarse meshes adopted here are adequate for the purpose of
the present analysis, whose objectiv e is to study the behaviour of the tw o modelsunder
uniform uniaxial stress states.

The axial reaction force f obtained in the sim ulations is plotted in Figure 15 against the
imposed displacement u. Figures 15.a and b sho w,respectiv ely, the results for Lemaitre’s
and Gurson’s model. For Lemaitre’s model simulation, the reaction force is progressively
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Figure 15. The model problem. Cyclic extension/compression without hardening.
Force-displacement curves obtained for: (a) Lemaitre’s model and; (b)
Gurson’s model

Lemaitre Gurson
cycle =04 w=—0.4 u =04 u=—0.4
1 0.0171 0.0531 0.0535 0.0464
2 0.0890 0.1250 0.0535 0.0464
3 0.1610 0.1970 0.0535 0.0464
4 0.2330 0.2690 0.0536 0.0464
5 0.3050 0.3410 0.0536 0.0465
6 0.3770 0.4130 0.0536 0.0465
7 0.4490 0.4850 0.0536 0.0465
8 0.5210 0.5570 0.0536 0.0465
9 0.5930 0.6290 0.0536 0.0465
10 0.6650 0.7010 0.0536 0.0465

Table 7.1 The model problem. Cyclic extension/compression without hardening.
Damage v ariable evolution

decreasing over the cycles. This is a direct result of damage accumulation and consequent
material softening. Also as a result of damage accumulation, the progressive degradation
of the elastic modulus makes the slope of the f—u curve smaller when the load is reversed
after each cycle. This is particularly eviden t during the elastic unloading after the end of
the last cycle. In contrast, the reaction forces obtained with Gurson’s model are practi-
cally constant over the cycles. Indeed, for this model, damage growth resulting from the
extension of the bar is compensated b y damage healing that occurs during compression.
Essen tially, in this case, no cumulative damage occurs and the damage ariable returns to
its initial value after each cycle. This does not correspond to the experimental observation
of progressive damaging in cyclic tests with ductile metals. The use of Gurson’s model
under such a condition w ould lead to erroneous predictions. Thevalues of the damage
variable obtained at the extreme displacements for each cycle are shown in Table 7.1 for
both material models. Note that only a very small v ariation of damage occurs bet w een
the states of maximum extension and maximum compression for the present simulation
with Gurson’s model. Th us, the corresponding softening/hardening of the material has
little influence on the overall response of the bar and the apparent softening/hardening
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Figure 16. The model problem. Cyclic extension/compression with Lemaitre’s
model including damage, isotropic and kinematic hardening. Force-
displacemen t curve

observed during extension/compression in Figure 15.b is mostly due the geometrical effect
of reduction/increase of the cross section of the bar.

T o illustrate the generality of Lemaitre’smodel, a similar simulation including isotropic
and kinematic hardening ev olution is also carried out. In this case, the same material
parameters employed in the sim ulation above with Lemaitre’s model are used, except that
the hypothesis of perfect plasticity is replaced by the saturation hardening lw:

K(R = Rx[l —exp(=y R)],
with Ro = 4305 andy=0.2, and the kinematic hardening ev olution constants are taken as:
a=2500; b=20.

These constan ts (withE, 7,,, R, a and s measured in MPa) have been used by Benallal et
al. [6] in small strain simulations. Figure 16 sho wsthe force-displacement curve obtained.
The in teraction of complex phenomena sud as damage gro wth and non-linear isotropic
and kinematic hardening in the finite strain range is clearly illustrated. In this case, due
to the rapid evolution of damage, the sim ulation is terminatedbefore the third load cycle
is completed. In the last elastic unloading, the damage variable is approximately 92% and
failure is imminent.

EXAMPLE 7.2 Stretching of a thin perforated rectangular plate. This examplepresents
the numerical simulation of a thin perforated plate subjected to stretching along its lon-
gitudinal axis. Asin the previous example, both Lemaitre’s and Gurson’s model are used
for comparison. The geometry, boundary conditions and material parameters are shown in
Figure 17. In the sim ulation with Lemaitre’smodel, a mesh cotaining 576 three-node con-
stant strain triangular plane stress elemen ts w as used in the finite element approximation.
In Gurson’s model simulation, a mesh of 288 eight-node F-bar brick elemen ts is emploed
(refer to [102] for a full description of this elemen t). Figures 18 and 19 shw the meshes in
their initial configuration as w ell as in their final deformedconfigurations withUs = 2.65.
In both figures, the damage v ariable field obtained at the end of the sim ulation is plotted
on the deformed mesh. In both cases it can be seen that, due to strain localization, the
plastic-damage process is confined to a band along the narrow est section of the plate and
maximum damage is observed near its internal boundary. The peak values of the damage
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prescribed

displacement Geometry:
IIIIIII U, 1 =36.0

w=20.0
d=10.0
thickness = 1.0

Material Properties:
E=70.0
v=02
Ty = 0.243
K(R) =02R
Lemaitre’s model:
a=b=0
X r=45x10"
2 d/2 Sx
s=1.0
X4 sym Gurson’s model:
D,=0.05 (init. voids fraction)

sym

1/2

o
w/2 |

Figure 17. Perforated plate. Geometry and material parameters

(b)

0.956945
0.733184
0.666531
0.599878
0.533225
0.466572
0.399918
0.333265
— 0.266612
—  0.199959
—  0.133306
—  0.066653
—— 0.000000

Figure 18. Perforated plate. Finite elemen t meshes for Lemaitre’s model simu-
lation. (a) Initial configuration; and (b) Damage con tour plot on de-
formed configuration at U; = 2.65

variable are approximately 96% and 34%, respectively, for the sim ulations with Lemaitre’s
and Gurson’s model.
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Figure 19. Perforated plate. Finite elemen t meshes for Gurson’s model simulation.
(a) Initial configuration. Frontal view; and (b) Damage con tour plot
on deformed configuration at U, = 2.65
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Figure 20. Perforated plate. Reaction-displacement curves

The reaction forces obtained on the restrained edge during the loading process in eac h
simulation are compared with the result presented in [82] where the purely elasto-plastic
model w as used (this result is reproduced here by setting = co in Lemaitre’s model or
Dy= 0 in Gurson’smodel, i.e, no damage evolution). The reaction-displacement curves are
plotted in Figure 20. The influence of damage in the global behaviour of the structure is
clearly shown. Both damage models predict a drop in reaction forces when compared to
the purely plastic theory. This is an ob vious consequence of material softening induced b y
damage gro wth at the local level. The low er force corresponding to plastic yielding obselv
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in the sim ulation with Gurson’s theory is due to the initial wlue of the damage v ariable,
set to Dy =5 % . Recall that, since no mechanism of v oids nucleation is incorporated in
this theory, a non-zero initial voids volume ratio is required to produce damage evolution.
Inclusion of a voids nucleation contribution to damagegro wth (such as the nucleation laws
emplo yed ly Twergaard [114] and Tv ergaard and Needleman [116) would allow damage
growth with zero initial v oids ratio. Also, it should be noted that, as a result of the rela¢ly
slow damage gro wth predictedb y Gurson’s theory ,the final reaction force obtained is
higher than that predicted by Lemaitre’s model. Acceleration of damage gro wth could
be easily incorporated by modifying Gurson’s macroscopic yield criterion as suggested by
Tv ergaard [113 114, 115].

To reach the end of the loading process (Uy = 2.65), 24 incremen ts w ere applied in both
simulations. The tolerance for con vergence in the overall Newton-Raphson procedure was
1075 in the euclidean norm of residual forces normalized by the external forces. In both
cases, an average of about 5 iterations per increment was necessary for convergence. T a-
ble 7.2 shows the residuals during global Newton-Raphson iterations for typical incremen ts
at different stages of the process. The high rates of con vergence ahieved by means of the
consistent linearization of the incremen tal boundary value problem are significan t.

Lemaitre Gurson
iteration incr. 6 incr. 18 incr. 6 incr. 18
1 0.131046E-01 0.881843E-01 | 0.325069E+01 0.405738E+02
2 0.329877E-02 0.746851E+00 | 0.239389E400 0.254875E+01
3 0.381935E-03  0.414897E-02 | 0.118506E-01  0.502956E-01
4 0.397149E-06 0.515920E-04 | 0.100894E-05 0.682371E-04
5 0.102422E-09 0.964154E-08 | 0.628288E-10  0.348303E-09

Table 7.2 Perforated plate. Residuals norm ratio

EXAMPLE 7.3 Thin sheet metal forming application. This example considers the sim-
ulation of a thin sheet metal forming process, in which Lemaitre’s model is employed to
account for damage ev olution. The problem consists of a thin circular sheet stretched by
a rigid spherical punch. The sheet lies on a rigid cylindrical die and its edge is assumed
clamped. The geometry and material parameters (with exception of the damage evolution
parameter r) are shown in Figure 21. Due to the symmetrypf the problem, only one quarter
of the domain is considered in the finite element sim ulation. A mesh with 736 three-noded
membrane elemen ts is used in the discretization of the sheet. The algorithm described in
[83] is emplo yed in the treatmen t of the frictional contact betw een the sheet, pinand
die. The surfaces of the punc h and the die are discretized respectively by 2145 and 612 flat
triangular elemen ts. Figure 22 shows the finite elemert meshesused.

Four different damage ev olution parameters are considered:r = oo r = 10,5 and
2.5N/mm?. The results for r = co correspond to the original elastoplastic model (with
no damage ev olution) and w ere taken fromreference [84].Figure 23.a shows the uniaxial
stress-strain curves for each r. The corresponding punc h reaction forces obtained in the
simulations are presented in Figure 23.b. The maximum value of the punch reaction w as
obtained at d, = 3 55, 32.5, 29.5 and 26.5mm respectively for r = op 10, 5 and 2.5N/mm?.
As expected, the use of softer materials (low er values ofr) reduces the maximum punc h
reaction attained during the process.
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Geometry:
R,= 50.8 mm
= 6.35
punch R, Ry i
X R,= 59.18 mm
3
¢ l to = 1.0 mm
0
— [ — ] Material P .
T R sheet X] Rq aterial Properties:
die E= 69004 N/mm?
v= 03
| ‘ a= b = 0
\ 2R, \ s=10

Tyo= 80.559 N/mm’
K(R)=1[589 (10" +R) " - 80.559 ] N/mm>

Figure 21. Thin sheet metal forming. Tool/workpiece configuration
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Figure 22. Thin sheet metal forming. (a) Finite element discretization of the sheet,
die and punch; and, (b) Finite element mesh and boundary couditions
for the sheet

Figure 24 shows the distribution of radial thickness along the sheet radius obtained for
each damage parameter r considered. The results are plotted for 10, 20, 30 and 40mm of
punch displacement (d,). With 7 = 2.5N/mm?, the numerical limit of the damage variable
(99.99%) was reached for d, = 3 009mm when the computations were stopped. Thus, in
this case, results are shown only for d, = 10, 20 and 30mm

In the present computations, the convergence tolerance for the global Newton-Raphson
scheme was 107 in the euclidean norm of residual forces normalized by the external forces.
For the local N-R procedure (plastic corrector phase of the stress integration algorithm)
the convergence tolerance used was 1071V in the residual vector norm. The total number
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Figure 23. Thin sheet metal forming. (a) Uniaxial stress strain curves; and (b)
Reaction forces on punch

of incremen ts and global Newton-Raphson iterations required to reah the final deformed
configuration (d, = 4 Ontha s well as the number of increments to attain the maximum
punch reaction are shown in Table 7.3 for each parameter r.

Damage parameter 7 I o0? 10 5 2.5
Total num ber of load incremets 183 161 181 98°
Total num ber of global N-R iterations 973 961 999 530°
Num ber of incremen ts to attain max.re-| 147 108 96 63
action on punch

“original elasto-plastic model
bresults up to d, = 30.09mm

Table 7.3Iucremen ts and Newton-Raphsoniterations

It is noted that the inclusion of fully coupled elasto-plastic damage constitutive equa-
tions did not affect the performance of the original model. For all cases the results vere
obtained in a reasonable number of increments.

T able 7.4 presents the residuals during the global Newton-Raphsoniterations for typical
incremen ts at different values of punch displacemen t. It corresponds to the sim ulation with
r = 5N/mm?. As in the previous example, high rates of convergence are observed as a
result of the consistent linearization of the incremen tal boundary value problem.

It can be seen in Figures 24 that the softening effect of damagegrowth triggered strain
localization at low er values of punch displacemen It also moved the strain localization
point tow ards the centre of the sheet.
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Figure 24. Thin sheet metal forming. Thickness distributions plotted owr the

initial configuration. Damage p arameters: (a) r = 2.5;: (b) r =

r = 10; and (d) No damage

5;

(c)

dp = 20mm

d, = 30mm

d, = 40mm

Titer d, = 10mm
1 0.475099E-01
2 0.473760E-01
3 0.114935E-01
4 0.210567E-02
5 0.163940E-04
6 0.607955E-08

0.446032E-01
0.574047E-01
0.147966E-01
0.727378E-02
0.673537E-03
0.779331E-05

0.415027E-01
0.558268E-01
0.147191E-01
0.529641E-01
0.604233E-03
0.114828E-05

0.347834E+00
0.145966E+00
0.142490E-01
0.453278E-03
0.139017E-04
0.435165E-08

Table 7.4 Thin sheet metal forming. Residuals norm ratio
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8 SUMMARY AND CONCLUSIONS

Based on Continuum Damage Mechanics and on a fully implicit finite element scheme set
on the spatial configuration, a general framework for constitutive modelling and n umerical
simulation of internal damage in finitely deformed solids has been described. Aspectsof the
micromechanical characterization of damage and its represen tation within the con text of
continuum thermodynanics have been discussed and a brief historical review of Continuum
Damage Mechanics has been presented. On the numerical side, a general procedure for
the sim ulation of finite strain problemsin volving dissipative material has been described in
detail. In this context, issues related to the derivation of algorithmsfor in tegration of path
dependent constitutive equations have been discussed and particular attention has been
focused on the derivation of the corresponding consistent tangent operators — essential for
the overall efficiency of the Newton-Raphson procedure for solution of the implicit finite
elemen t equations.

Within the described framework, three particular models ha ve been form ulated:A
model for elastic damage in highly filled polymers and finite strain extensions to Lemaitre’s
and Gurson’s ductile damage theories. Numerical examples have demonstrated the effi-
ciency of the adopted scheme in the sim ulation of complexphenomena such as the Mullin’s
effect in rubbery polymersor combined effects of damage ev olution, isotropic and kinematic
hardening in ductile metalsin the finite strain range.

Good qualitativ e agreemen t has been found betw een the numericalresults prested
and the actual behaviour of damaging materials under finite strain conditions. This, in
conjunction with the o verall efficiency of the computational sheme, indicates the presen t
constitutive-numerical framew ork to be an attractive alternative for incorporation of mate-
rial deterioration effects into the simulation of large scale finite strain industrial problems.
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A COMPUTA TION OF ISOTROPIC TENSOR FUNCTIONS OF A TENSOR
AND THEIR DERIVA TIVES

A.1 General Isotropic Tensor-valued F unctions of a dnsor

Consider a generic real symmetric second order tensor X in three-dimensional space. Its
spectral decomposition giv es:

3
X=) wexe (166)

1=1

where z; are the eigenvalues of X and e; are corresponding unit eigenvectors. Alternativ ely,
with p < 3 defined as the number of distinct eigenvalues of X one may write:

p
X=> u E,. (167)
=1
where the eigenprojection tensor F; is the orthogonal projection operator on the charac-

teristic space of X associated with z;, i.e, the space containing all vectors v that satisfy:

Xv=uzv. (168)

The eigenprojections ha ve the propery:

I= ij E;, (169)

=1
and, if an eigenvalue ; is not repeated, then
E =¢e,®e€; (no sum). (170)
W e are concerned in this section with general isotropic tensor-v alued functions of one

tensor constructed as follows. Given the generic tensor X and a scalar function y : R? — R
the tensor function Yis defined by:

Y(X: = Z vi E; (171)

where the eigen valuesy; of Y are obtained from the eigen valueszr; of X as:

y1 = y(z1,22,23)
Yo := y(x2,x3,21) (172)
Y3 == y(x3ax17aj2) s
and the isotropy of Y requires that
y(a,b,c) = y(a,c,b) (173)

for arbitrary a, b and c.
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REMARK A.1 Tt should be noted that any isotropic tensor-valued function of one tensor
can be expressed in the above form. A simple example is given by the deviatoric projection
of a symmetric tensor, defined as:

YX: :Xd:X—%tr[X I.
Is this case, the function y, in 3-D, reads:
y(zi,zj,21) =2, — 3 (2, + 2 + ).

For functions such as the one above, in whic hYis expressed as a function of X in a tensorial
compact form, Y can be computed directly from its definition. Compact representation,
how ever, is usually not possible and the computation of Y{ X)) requires, in general, the use
of the procedure described in the sequel. 0

A.1.1 F unction computation

The computational procedure for evaluation of the general tensor functions of the above
class is carried out based on closed form expressions for eigenvalues and eigenprojections
of a tensor. It is summarized in Box A.1.

(i) Given X, compute its eigenvalues, z,;, and eigenprojections, K,

(GOTO Box A .2).

(ii) Compute the eigenvalues of Y as:

y1 = y(x1, T2, x3)
Yo = y(x2,23,1)
y3 == y(x3,21,2)

(iii) Assemble Y~

where p is the num ber of distinct eigenvalues.

Box A .1 Computation of general isotropic tensor functions of a tensor

REMARK A.2 In practical computations, the signs = and #, that decide which formula
is to be used in Bo xes A.2and A.3, as vell as in w hat follows, are replaced by a check that
takes into account the numerical precision of the machine used. F or generic eigenulues z;
and z; w e proceed as follows:

< tol, then assume z;==x;.

It ‘x

Otherwise, assume x; # ;. Where tol is a machine dependent numerical tolerance. 0
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(i) Given X compute its principal in variants:

Ix =trX= x4+ z9+ 3
Iy = H{(tr X 2 - tr[ X7} = @1 20 + o w3 + @1 3
ix =detX=z 1223

(ii) Compute the eigenvalues of X :

R— —2 1549 Tx ITx—27 I
- 54

6 = cos™! [L]

g = —2 \/7(505[ 32”}—1—%‘
z3 = 2 /Q cos [9_32”]—}—%(

(iii) Compute eigenprojections of X :

o If ©;#x2#x3, then fori=1,2,3,

E; = [)(2—(15(—937;))@r L |

T

T;

e Else, if x; # x; =, then compute E; using the expression
above and

E,=1-FE,

Ei=1

Box A.2 Computation of eigen values and eigenprojections

A.1.2 Computation of the function derivative

As in the function ev aluation described in Bo x A.1, closed form expressions are also used
to compute the function deriv ative. The deriv ation of the adopted closed form ulae for the
general isotropic function derivative is described in detail in reference [101].

The computationalprocedure for computation of d¥/d X is described in Bo x A.3 wheré
denotes the fourth order tensor defined by the cartesian componentd;;;; = %(52';65]'1—}—5”5]»;9),

dXz/dX is the derivative of the square of a tensor with cartesian components given by:

dx? 1
[ﬁ} =3 (8 X1j + 6 Xy + 60 Xar, + 0n; Xar) (174)
i
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and the scalars s1, s3,..., s¢ have been defined as:

_ _Ya—Yc 1 0ye _ Oy
1= + T (amb am,;)

(‘J,’a_-'l»'c)z Ca—T ¢

Yao—Y« Ta+T o
To—T)? To—7Tc

9 = 2&?(3(

(
( ’ ’ (175)
(
(

a—Yc 1
33 = 2 (y Y 3 + (I,L—E(,)z

Tq _fEr:)

Sq4 = 2.73(: (ya_yc 3 + 1 - -

Tu—T ) Loy —Te

Wa _ Oye _we _(OYa y Oye Oya  Oyc
Te ) + ( (6:1:C + Ot q D g O

Tg—T r:)2

_ < Ya—Ye 1 dye _ 9y e Oa | Oye  Oya _ Oye
55 = ZJ:C ( 7+ Ozq 8:1:[,) + (xg—2)2 (O:I:C +8:1:g Oxq Oz

Te—T ) Ta—1Tc
— 2 _Ya=Ye LTaglc % Fyc _ 1‘3 3Ya ai _ xgtT. %
86 = 2$C (xg—2c)3 (rg—2)2 (89;6 Oz 4 (xa—2c)%2 \ Oz + Oz, Ta—Tc Ozy

The subscripts @, b,c¢) above and in Bo x A.4are cyclic perm utations of (1,2,3).

A.2 A Particular Class of Isotropic T ensor F unctions

Assume no w thag is a function of a single argument. Given y : R — R an isotropic tensor
function of X can be constructed as:

Y(X)= Y (o) B, (176)

1=1

REMARK A.3 Functions expressed as such define an important class of isotropic tensor
valued functions of a tensor and are, ob viously, particular cases of the general form(171).

Note that the function giv en as example in Remark A.1 doesmnot admit represen tation by
means of (176). The tensor logarithm:

Y(X) = 1nfX],

is a particularly importan t mem ber of this class of functions.Is this case, the function vy,
in 3-D, reads:

y(z;) =1nax;.
Functions such as the tensor square root and the tensor exponen tial can also be expressed

in the format (176) b y settingy(z;) =/%; and y(z;) =expf ;), respectively. 0O

Since (176) is a particular case of (171), the computational procedures for ev aluation of
Y(X ) and its derivative are entirely analogous to the procedures described in the previous
section. The computationof the function value, Y{X'), follows exactly the steps of Box A.1
except that, in item (ii), the function eigen values are computed as:

vi = y(a;), (177)

for i = 1,2,3. The computation of the derivative d¥/d X is summarized in Box A.4where
the scalars si,...,5¢ are now defined b y:
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(i) Given X, compute its eigenvalues, z;, and eigenprojections, F;
(GOTO Box A .2).
(ii) Compute the eigenvalues y; of Y and their derivatives dy,;/0z; for
1,7=1,2,3
(iii) Assem ble the derlvatlveﬁ
3 2
Ya dX
Z(In,_mb)(ma_mn) { d_X - (mb+$p) I
a=1
—[(za — ) + (20 — 2.)| E.QE,
- (w-2) (B9, - E.oE,)|
0yi
+ ) 5 E®E,
i=1j=1
dY_ ifxl#xg#mg
dX
dX° s Xo X+ XeoltsloX—ssIol
51 9x — S21— 83 DA+ AL+ s5LIQA —3561Q
if x,# =1,
(Fa-5a) 1+ gaIol it o1 =z2=y
Box A .3 Computation of the deriv ative of a general isotropic tensor function
— "/(Ia)_'ll(l’ﬂ) yl(lc)
1= (Za—2.)2 ~ @a—tc
So = 2 y(ﬂ?,,,)—y(ﬂ?,-) s 2 I(iE )
2 = ¢ (2q—w.) za—x, 9 Lc
_ o ylrad)—y(re)  y(za)ty' ()
s3 =2 (€a—x.)3 (@a—0)2 (178)

S4 =— S5 = T S3

5623’,‘383.

Again, the subscripts (a,b,c) are cyclic perm utations of (12, 3).
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(i) Given X compute its eigenvalues, z;, and eigenprojections, F;

(GOTO Box A .2).

(ii) Compute the eigenvalues of Y, y; := y(=;), and their derivatives,
y'(x;) for 1 = 1,2, 3.

dY

(iii) Assem ble the derivativecw

2
Z {(a’,a—jb()'li(l;),,—z(.) |:(11§ - (xb‘f’l'c) 1

a=1
- [(.f(, - ZEb) + (33(1, - .”L'(-)] EG®E(I,

- (CU()—CL‘(:) (Eb®Eb - E(:®E(:) + yl(mu.) E(1,®Ea.}
dY_ lf xl#.ﬁg#wg
dX

09X ol XoX+uXel+sIoX-sIol
if x,#£ =1,
y’(xl) 1 if T1=2T2=23

Bo x A.4 Computation of the deriv ative for a particular class of isotropic tensor functions
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