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Summary

The main purpose of this work is to present a continuum formulation to model growth, differentiation and
damage, valid for both hard and soft tissues. The governing equations follow the classical theory of multi-
phasic continuous media, including the influence of extracellular matrix composition and cell populations.
Finally, this general framework is simplified and particularized to numerically simulate two important bio-
logical processes, such as, bone remodelling and bone fracture healing. These two simplified formulations
have been implemented into a finite element context that allowed us to predict the evolution of the main
aspects involved in such biological processes as growth, cell proliferation, migration, differentiation or death,
and tissue pattern formation.

1 INTRODUCTION

It is well-known that tissue structure develops by a complex interaction between cells and
their surrounding medium controlled by genetic instructions. The theoretical analysis of
combined genetic and epigenetic development of living tissues (evo-devo models [1]) has
become an important topic of research during the last years [2, 3]. One of the main factors
that influences on this process is the mechanical environment, and thus, structural tissues
are optimized in terms of their specific mechanical function [2]. This has motivated the
appearance in the last years of many numerical models in order to better understand the
interaction between mechanical and biological processes in developmental biology [2, 4].
Normally, these processes are classified according to their specific target into: remodelling,
growth, differentiation, damage or healing models.

Remodelling describes the adaptive process by which the tissue modifies optimally its
microstructure and hence its mechanical properties according to the mechanical environ-
ment that it supports. One of the most accepted hypotheses is that remodelling is activated
with the goal of repairing the internal microdamage produced as a consequence of tissue
function. An in depth review on this topic is presented in Section 3.1. Other extensive
reviews may be found in [5, 6, 7].

Growth involves the addition or loss of mass, shaping the organs and adjusting their
final dimensions. Hard tissues, such as bone, undergo only small deformations and growth
is the result of surface mass apposition. On the contrary, soft tissues such as blood vessels or
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ligaments experience large deformations and suffer volumetric growth that leads to internal
residual stresses. The kinematics of growth was firstly described mathematically by Skalak
et al. in their milestone work [8]. Growth and deformation were there formulated as a
sequence of two mappings: one representing load-free growth and the other the deformation
due to the actual forces acting on the tissue. An extensive review of the most significant
work in this field may be found in [9, 10, 2].

Tissue differentiation describes the differentiation to the various cell types from a non-
specialized cell source [2, 4]. An extensive revision of the works that have been focused on
modelling this biological process is made in Section 4.1.

Partial or total tissue damage is quite common. It can be caused by the sudden ap-
pearance of an overload that exceeds tissue strength, or by cyclic loads that gradually
accumulate damage at a rate that cannot be repaired by tissue remodelling. After global
tissue disruption healing is activated, with many cellular events involved [11, 12]. Healing
is one of the most complete biological events, usually implying the appearance of tissue
differentiation, growth and remodelling at the same time in a combined way. Not many
numerical models have been developed to study this process, and most of them have been
only focused on particular aspects as growth or differentiation. Nevertheless, a full revision
is later performed in Section 4.1.

Although, as expressed above, most models have been developed to model specific bio-
logical processes, these events do not occur separately, but simultaneously. Therefore, their
combined analysis requires to formulate more general models. Several works with strong
theoretical fundamentals have been recently developed in this field. For example, Lubarda
and Hoger [13] proposed a formulation of the mechanics of solids with a growing mass, into
the global framework of finite deformation continuum thermodynamics. Kuhl and Stein-
mann presented a theoretical and numerical model for open system thermodynamics with
application to hard tissues [14] and healing [15]. Garikipati et al. [16] proposed a com-
plete formulation for mass transport and multiphasic mechanics in living tissues including
growth.

In these formulations tissues are described from a macroscopic view point as a continuum
mixture of cells and different types of extracellular matrices (ECMs) composed by fluid and
several solid aggregates [2]. They give structural support to the tissue and provide cells
with nutrients and signals including deformation and flow-induced stresses. These ECMs
are produced by the cells and secreted into the surrounding medium.

The interaction between ECM and cell populations influences the dynamics of ECM ac-
cumulation and cell biological processes (proliferation, migration or differentiation) [17] [18]
[19]. Some models have been developed that partially take into account these effects. Oster
et al. [17] proposed a theoretical model in which mechanical interactions between cells and
extracellular matrix determined growth patterns. Manoussaki [18] developed a numerical
model to simulate the basic features of two mechanisms of blood vessel formation (angiogen-
esis and vasculogenesis), showing that mechanical interaction between endothelial cells and
ECM is necessary to predict realistic results. In a similar way, Namy et al. [19] presented
a computer model in which mechanical interactions of endothelial cells with extracellular
matrix influence both active cell migration and cellular traction forces. They were able
to reproduce several features of the tubulogenesis morphogenetic process in vitro. More
recently Ramtani [20] developed a theoretical model to simulate wound healing, proposing
that the wound contraction mechanism is not exclusively due to cell-ECM interaction forces
but rather to both ECM-cell and cell-cell interactions.

In this work, we propose a more general continuum formulation for tissue growth, dif-
ferentiation and damage, controlled by the mechanical environment, and that includes the
main biological processes associated to each specialized cell population. We consider as
independent variables those associated to the extracellular matrix (volumetric fractions,
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damage degree, intrinsic density), cells (population densities) and growth kinematics. We
establish all the typical governing equations in the context of continuum mixture theory
(continuity, momentum principles, energy balance and entropy inequality), coupling me-
chanics, mass transport and cell dynamics. Finally, two applications: bone remodelling
and bone fracture healing, including their numerical implementation and some examples
are presented. We will show that the general formulation presented in this work can be
used to formulate and simulate these two biological process.

The paper is organized as follows. Section 2 treats the fundamental balance equations
for mass and cells and the kinematics of growth. In Section 3 we particularize this general
formulation to the bone remodelling process, whereas in Section 4 we apply it to the healing
course of a fracture. In each of these two cases we comment a numerical example and include
additional references. Finally, a discussion and some concluding remarks are included in
the last Section 5.

2 GLOBAL FRAMEWORK

We consider each tissue composed of N species (different tissue components and fluid) and
M types of cells (normally each of them is related to one specie). We identify one of the
species as the kinematic reference, while the rest are allowed to move relatively with respect
to it.

We define the concentration (apparent density) of each specie ρi
0 as mass of such specie

at current time per unit total volume in the initial reference configuration Ω0. This variable
can also be expressed as ρi

0 = ρi
0(V

i
m − hi

0), being ρi
0 the real tissue density, V i

m the volume
fraction of specie i with respect to the initial volume and hi

0 a scalar variable that quantifies
the volume fraction of microcracks per unit total volume in the initial configuration within
the specie i, both at current time. In the same way, we define the cellular concentration of
each cell type j in Ω0 as cj

0.
We can also express the different variables in the current configuration Ωt. Here, the

concentrations of the species would be denoted by ρi and the cellular concentrations by ci.
The previous volume fractions in the reference and in the current states are related through
the expression:

Jvi
m = V i

m (1)

Jhi = hi
0 (2)

where J = det(F), being F the deformation gradient associated to the reference volume
with respect to which the different species diffuse and hi the microcrack volume fraction
in specie i per unit volume in the current configuration. Moreover, summing over all the
species it is clear that ∑

i

V i
m = 1 (3)

J
∑

i

vi
m =

∑
i

V i
m = 1 (4)

h0 =
∑

i

hi
0 (5)

Jh = J
∑

i

hi = h0 (6)
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with h0 the total volume fraction of microcracks with respect to the initial total volume
and h the one corresponding to the current volume.∗ In a similar way, we can relate the
concentrations of species and cells in the initial and current configurations, that is, with
respect to the initial and current total volumes, as:

ρi
0(X , t) = Jρi(x, t) = Jρi

0(v
i
m − hi) (7)

ci
0(X , t) = Jci(x, t) (8)

2.1 Balance of Mass

The balance of mass in the reference configuration Ω0 is stated as:

∂ρi
0

∂t
=

∂ρi
0

∂t
(V i

m − hi
0) + ρi

0

∂V i
m

∂t
− ρi

0

∂hi
0

∂t
= Πi −∇ ·Mi i = 1, ..., N (9)

and in the current configuration Ωt

dρi

dt
+ρi∇ ·v =

dρi

dt
(vi

m−hi)+ρi dvi
m

dt
−ρi dhi

dt
+ρi∇ ·v = πi−∇ ·mi i = 1, ..., N (10)

where Πi, πi are the net production of mass of the specie i per unit volume in the reference
and current configurations respectively, M i,mi the fluxes of transported mass of specie
i per unit time and unit surface in the reference and current configurations respectively,
related by the Piola transform M i = JF−1mi. Finally, d

dt denotes the material time
derivative and ρi(x(X , t), t) = ρi

0(X, t).
We have to keep in mind that biological processes are treated as open systems with

respect to mass. Changes in mass can either be caused by local formation/resorption
(net mass production) or mass diffusion (flux).† In fact, an open system is allowed to
exchange mass, momenta, energy and entropy [14] with the exterior. In the particular
case of assuming that new mass comes from the losses of other species (closed system with
respect to mass) we could write:

N∑
i

πi =
N∑
i

Πi

J
=

1
J

N∑
i

Πi = 0 ⇒
N∑
i

πi =
N∑
i

Πi = 0 (11)

Moreover, the fluid is usually assumed to be incompressible and with no microcracks.
This implies

∂ρ̄f
0

∂t
= 0 hf

0 = 0 (12)

and, therefore,

ρ̄f
0

∂V f
m

∂t
= Πf −∇ ·M f (13)

or

ρ̄f dvf
m

dt
+ ρf∇ · v = πf −∇ ·mf (14)

∗Soft tissues are usually assumed to be saturated and incompressible so J = 1 and therefore
P

i vi
m = 1.

On the contrary, hard tissues are porous and its change of volume is mainly associated to changes in porosity
due to mass apposition or resorption.

†Flux of species is allowed through material surfaces as it is evident for the fluid phase.
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From Eq.(9) it becomes clear that the rate of volume fraction of each specie ∂V i
m

∂t is
determined from the net mass production Πi, the flux of mass Mi, the real tissue density
evolution ∂ρi

0
∂t and the rate of microcrack volume ∂hi

0
∂t . Next, we specify the evolution of

each of these variables.

2.1.1 Production of mass

We assume that the production of mass, without taking into account the species actual
density variation, is due to the activity of cells on that specie. Thus, we propose the
expression:

Πi − ∂ρi
0

∂t
(V i

m − hi
0) =

M∑
j=1

cj
0B

i
j ρ̄

i
0(τ = 0) (15)

where Bi
j is the net volume production of specie i by cells of j type per unit cell and unit

time, being τ = t−tpr and tpr the time at which a certain amount of mass is newly produced.
It is interesting to remark that in the case of dead cells, production and removing of volume
is null, therefore Bi

d = 0.
Equivalently, this expression can be written in the current configuration

πi − dρi

dt
(vi

m − hi) =
M∑

j=1

cjβi
j ρ̄

i(τ = 0) (16)

Normally, most growth models assume that real tissue density is kept constant during
growth and remodelling [16]. However, there are tissues whose real density changes with
time. One typical example is bone, where its extracellular matrix is mineralized in a process
that can last 6 months or more [21]. Therefore this evolution, ∂ρi

0
∂t , has to be explicitly

characterized to complete the model.

2.1.2 Damage growth and removal

Fatigue microdamage contributes to degrade mechanical properties in living tissues [22, 23,
24, 25, 26]. In fact, the microscopic measure of the density of internal microcracks h may be
related to the macroscopic mechanical degradation. In the isotropic theory of Continuum
Damage Mechanics [27, 28] this macroscopic degradation is normally quantified by means
of a variable d0, known as continuum damage variable, which is restricted to the interval
[0, 1). And thus, for any material that incorporates damage, the Helmholtz free-energy
function is usually expressed as:

Ψ = Ψ(ε, d0) = (1− d0)Ψ0(ε) (17)

where Ψ0 is the effective strain-energy function of the undamaged or intact material [27, 28].
In the particular case of elastic materials, damage is experimentally related to the loss of
stiffness by means of the expression

d0 = 1− E

E0
(18)

where E0 corresponds to a reference value of the elastic modulus associated to the ideal
undamaged material.

We should remark that this isotropic approach is the most simple. In this case, damage
is assumed to be uniformly distributed in all the spatial directions. However, damage may
be distributed in preferential directions. In this case an anisotropic approach would be
necessary, which could be easily extrapolated from the isotropic case, simply replacing the
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Figure 1. Schematic draw of how tissue remodelling repairs damage: (a) Initial distribution
of microdamage. (b) Microdamage fraction per total volume after tissue resorption
is reduced. (c) Microdamage fraction after new tissue formation remains constant

scalar d0 by a second order tensor d0 [29]. In this paper, as a first approach, we have only
focused on isotropic damage models.

Both variables d0 and h0 are physically related, although its relationship is yet not fully
understood and depends on many factors, such as, load state, porosity, etc. In general, this
relation can be expressed as:

f(d0) = h0 (19)

Only particular correlations have been determined in bone tissue as for example that
proposed by Burr et al. [30] that obtained a linear relationship between stiffness loss and
crack effective area for intact canine femurs subjected to bending.

Contrary to inert materials, in living tissues, damage can be repaired, so the damage
rate has to be expressed as a balance of damage growth and repair for each specie i:

∂hi
0

∂t
=

∂hi
0

∂t
|G − ∂hi

0

∂t
|R (20)

Damage increase ∂hi
0

∂t |G is due to external mechanical loads that we consider independent
of the biological processes involved. Therefore the definition of the corresponding evolution
requires to know experimentally how damage accumulates with load. Damage repair ∂hi

0
∂t |R

on the contrary is induced by remodelling or growth, being therefore clearly dependent on
the biological processes developed within each specific specie by means of the evolution
of ∂V i

m
∂t . As a first approach, we assume that damage hi

0 is uniformly distributed inside
a representative macroscopic volume of the extracellular matrix and that damage repair
is produced in a random way. Thus, when matrix is removed, damage is reduced, while
when new undamaged matrix is deposited, damage is kept constant (see Figure 1). The
mathematical law is then written as:

∂hi
0

∂t
|R =

⎧⎪⎪⎨
⎪⎪⎩

0 if
∂V i

m

∂t
≥ 0

−∂V i
m

∂t

hi
0

V i
m

if
∂V i

m

∂t
< 0

(21)

2.2 Balance of Cells

In a similar way, we define the balance of cells in the reference configuration Ω0 as

∂ci
0

∂t
= Πi

c −∇ ·M i
c i = 1, ...,M (22)

and in the current configuration Ωt

dci

dt
+ ci∇ · v = πi

c −∇ ·mi
c i = 1, ...,M (23)
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where, ci = ci
0J
−1 is the cell concentration of each cell type i (number of cells per unit

volume) in the current configuration, πi
c = Πi

cJ
−1 the net production of cells per unit

volume and time in the current configuration, and finally, mi
c = J−1Mi

cF
T is the cell flux

of type i per unit time and surface in the current configuration.
In this case, condition

∑M
i πi

c =
∑M

i Πi
c = 0 is never imposed since cells can proliferate

as consequence of mitosis. We consider therefore the system always open with respect to
cells. We have to remark that cell death is here considered as differentiation to a specific
type of cell, so

M∑
i

Πi
c =

M∑
i

Πi
cpr

(24)

The net production of cells of type i can have different origins: proliferation, differenti-
ation from different cells to this kind of cell or differentiation of this type of cell to other
types (including dead cells). Thus, we can express the production of cells as:

Πi
c = Πi

cpr
+

M∑
j=1,j �=i

cj
0A

i
j −

M∑
j=1,j �=i

ci
0A

j
i (25)

Πi
c = Πi

cpr
+ ci

0

M∑
j=1,j �=i

(
cj
0

ci
0

Ai
j −Aj

i ) = ci
0[A

i
pr +

M∑
j=1,j �=i

(
cj
0

ci
0

Ai
j −Aj

i )] (26)

where Πi
cpr

is the production of cells of type i due to mitosis (proliferation) per unit time
and volume in the initial configuration, Ai

pr is the same variable but per unit cell instead of
per unit volume, and Ai

j is the generation of cells of type i due to differentiation of type j

per unit cell j and per unit time. All these factors Ai
pr, A

i
j are dependent on the mechanical

and biochemical environments. From the previous equation we conclude that:

M∑
i=1

Πi
c =

M∑
i=1

ci
0A

i
pr (27)

and
M∑
i=1

ci
M∑

j=1,j �=i

(
cj
0

ci
0

Ai
j −Aj

i ) = 0 (28)

Ad
pr = 0 (29)

Ai
d = 0 ∀i (30)

2.2.1 Balance of linear momentum

We shall distinguish between the balance of linear momentum for species and for cells.
Let us start with the balance associated to each specie i in the reference configuration,

Ω0. The tissue is subjected to surface tractions, T , such as, T =
∑

i P
iN on ∂Ω0, where P i

is the partial first Piola-Kirchhoff stress tensor corresponding to specie i, and body forces
per unit mass, G. We assume that all the species deform at each point with a common
deformation gradient F . The mass fluxes, M i, and mass sources, Πi, also contribute to the
balance of linear momentum. It is now convenient to define the material velocity of specie i

relative to the reference phase as V i = FMi

ρi
0

. As fluxes are defined relative to the reference
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phase, which does not diffuse, the total material velocity for each specie is V + V i, being
V the material velocity of the reference phase.

Taking into account all these considerations the balance of linear momentum of each
specie i, written in integral form over Ω0, becomes:

d

dt

∫
Ω0

ρi
0(V + Vi)dV =

∫
Ω0

ρi
0GdV +

∫
Ω0

ρi
0L

idV +

+
∫

Ω0

Πi(V + Vi)dV +
∫

∂Ω0

PiNdA−

−
∫

∂Ω0

(V + Vi)Mi ·NdA (31)

where Li is the force per unit mass exerted upon specie i by all the other species and cells
present in the tissue.

Next, we write the balance of linear momentum in the reference configuration, Ω0, for
the cell population j. In this case, we consider the mass of cells negligible, in comparison
with the mass associated to the tissue. Therefore

0 =
∫

Ω0

cj
0L

j
cdV +

∫
∂Ω0

Pj
cNdA (32)

where Lj
c is the force per unit cell exerted upon cells j by the other species and cells present

in the tissue and P j
c is the first Piola-Kirchhoff stress tensor corresponding to the cell

population j.
In the case of a closed system with respect to mass, summing over all species and cells,

and taking into account that the change of momentum of the whole system is only affected
by external agents, we can write∑

i

∫
Ω0

(ρi
0L

i + Πi(V + Vi))dV +
∑

j

∫
Ω0

cj
0L

j
cdV = 0 (33)

Taking into account the relation (11) for closed systems with respect to mass, we can
obtain ∑

i

(ρi
0L

i + ΠiVi) +
∑

j

cj
0L

j
c = 0 (34)

Operating and localizing (31)(32) it is easy to obtain the differential version of the bal-
ance of linear momentum in the reference configuration for each specie i and cell population
j:

ρi
0

∂(V + V i)
∂t

= ρi
0(G + Li) + ∇ · P i − [∇(V + V i)] ·M i (35)

0 = cj
0L

j
c + ∇ · P j

c (36)
Or equivalently, in the current configuration,

ρi d

dt
(v + vi) = ρi(g + li) + ∇ · σi −

− [∇(v + vi)] ·mi − ρi[∇ · (v + vi)] · (v + vi) (37)

0 = cjljc + ∇ · σj
c (38)

with no more than applying the push-forward operation weighted by J−1 to (35) (36) [31].
In (37)(38) li(x(X , t), t) = Li(X , t), ljc(x(X , t), t) = Lj

c(X , t), g(x(X), t) = G(x(X), t),
σi = J−1P iF T and σj

c = J−1P j
cF

T .
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2.2.2 Balance of angular momentum

For species, this balance is written as

P iF T = FP iT (39)

σi = σiT (40)

both in the reference and deformed configurations respectively [16].
We now study this balance for the cell populations. The integral form of the balance of

angular momentum written over Ω0 for a cell population j is,

0 =
∫

Ω0

X × cj
0L

j
cdV +

∫
∂Ω0

X ×Pj
cNdA (41)

Applying the divergence theorem gives

0 =
∫

Ω0

X × cj
0L

j
cdV +

∫
Ω0

X ×∇ · P j
cdV −

∫
Ω0

ε : P j
c (42)

where ε is the permutation symbol. Using now the balance of linear momentum for the
cells j gives

0 = −
∫

Ω0

ε : P j
c (43)

Localizing this result and applying the properties of the permutation symbol we get the
symmetry condition

P i
cF

T = FP iT
c (44)

and, equivalently, for the Cauchy stresses

σi
c = σiT

c (45)

2.2.3 Balance of energy

In addition to the terms previously introduced, some others have to be included. These
are: Ei, the internal energy per unit mass of specie i; Ej

c , the internal energy per unit cell
of cell type j; Ri, the heat supply to specie i per unit mass of that specie (we have not
considered the heat supply to cells); and the heat flux vector i, Qi. All of them defined on
Ω0. Interaction energetic terms appear between species and cells: the energy per unit mass
and unit time transferred to the specie i by all other species and cells, Ẽi; and the energy
per unit cell transferred to the cell type j by all other species and cells, Ẽj

c . Working in
the initial configuration Ω0, we relate the rate of change of internal and kinetic energies of
species and cells to the work done by mechanical loads, processes of mass/cell production
and transport, heating and energy transfer:

d

dt

∫
Ω0

ρi
0(E

i +
1
2
‖V + Vi‖2)dV =

∫
Ω0

(ρi
0G · (V + Vi) + ρi

0R
i)dV +

+
∫

Ω0

ρi
0L

i · (V + Vi)dV +

+
∫

Ω0

[Πi(Ei +
1
2
‖V + Vi‖2) + ρi

0Ẽ
i]dV +

+
∫

∂Ω0

[(V + Vi) ·Pi −Mi(Ei +
1
2
‖V + Vi‖2)−Qi]NdA (46)
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Note that we assume the internal energy only dependent of temperature, time and
point and therefore production of new mass is assumed to have the same internal energy
(in average) that the point where it appears

d

dt

∫
Ω0

cj
0E

j
cdV =

∫
Ω0

cj
0L

j
c · (V + Vj

c)dV +
∫

Ω0

(Πj
cE

j
c + cj

0Ẽ
j
c )dV +

+
∫

∂Ω0

[(V + Vj
c) ·Pj

c −Mj
cE

j
c ] ·NdA (47)

Applying the divergence theorem and using the balance of mass, balance of momenta
and localizing the result, we have

ρi
0

∂Ei

∂t
= Pi : ∇(V + Vi)−∇ ·Qi + ρi

0R
i + ρi

0Ẽ
i −∇Ei ·Mi (48)

cj
0

∂Ej
c

∂t
= Pj

c : ∇(V + Vj
c) + cj

0Ẽ
j
c −∇Ej

c ·Mj
c (49)

Or equivalently in the current configuration

ρi dei

dt
= σi : ∇(v + vi)−∇ · qi + ρiri + ρiẽi −∇ei ·mi − ρi[∇ · (v + vi)]ei (50)

cj dej
c

dt
= σj

c : ∇(v + vj
c) + cj ẽj

c −∇ej
c ·mj

c − cj [∇ · (v + vj
c)]e

j
c (51)

In the case of a closed system with respect to mass, the inter-species energy transfer is
related to interaction forces and mass sources, being therefore reduced to:∑

i

(ρi
0L

i ·Vi + Πi(Ei +
1
2
‖Vi‖2) + ρi

0Ẽ
i) +

∑
j

(cj
0L

j
c · V j

c + cj
0Ẽ

j
c ) = 0 (52)

Summing (48) (49) over species i and cells j, respectively

∑
i

(ρi
0

∂Ei

∂t
) +

∑
j

(cj
0

∂Ej
c

∂t
) =

=
∑

i

(Pi : Ḟ + Pi : ∇Vi −∇ ·Qi + ρi
0R

i + ρi
0Ẽ

i −∇Ei ·Mi) +

+
∑

j

(Pj
c : Ḟ + Pj

c : ∇ ·Vj
c + cj

0Ẽ
j
c −∇Ej

c ·Mj
c) (53)

being Ḟ = ∇V. Substituting from Eq.(52), we finally obtain

∑
i

(ρi
0

∂Ei

∂t
) +

∑
j

(cj
0

∂Ej
c

∂t
) =

=
∑

i

(Pi : Ḟ + Pi : ∇Vi −∇ ·Qi + ρi
0R

i − ρi
0L

i ·Vi −

−Πi(Ei +
1
2
‖Vi‖2)−∇Ei ·Mi) +

+
∑

j

(Pj
c : Ḟ + Pj

c : ∇Vj
c − cj

0L
j
c · V j

c −Πj
cE

j
c −∇Ej

c ·Mj
c) (54)
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This expression can also be written in the current configuration

∑
i

(ρi dei

dt
) +

∑
j

(cj dej
c

dt
) =

=
∑

i

(σi : (d + di)−∇ · qi + ρiri − ρili · vi −

−Πi(ei +
1
2
)(‖vi‖2)−∇ei ·mi) +

+
∑

j

(σj
c : (d + dj

c)− cj
0l

j
c · vj

c − πj
ce

j
c −∇ej

c ·mj
c)−

−
∑

i

ρiei[∇ · (v + vi)]−
∑

j

cjej
c[∇ · (v + vj

c)] (55)

with d = sym∇v, di = sym∇vi and dj
c = sym∇vj

c.

2.2.4 The entropy inequality: Clausius-Duhem form

Let H i be the entropy per unit mass of each specie i, Hj
c the entropy associated to the

cell population per unit cell and Θ the absolute temperature. In this case, the entropy
production inequality for the system as a whole is expressed as:

∑
i

d

dt

∫
Ω0

ρi
0H

idV +
∑

j

d

dt

∫
Ω0

cj
0H

j
cdV ≥

∑
i

∫
Ω0

(ΠiH i +
ρi

0R
i

Θ
)dV +

+
∑

j

∫
Ω0

Πj
cH

j
cdV −

∑
i

∫
∂Ω0

(Mi ·NH i +
Qi

Θ
·N)dA−

∑
j

∫
∂Ω0

Mj
c ·NHj

c dA (56)

Using the divergence theorem, the mass balance Eq.(9), the cellular balance Eq.(22)
and localizing the resulting expression, we obtain the entropy inequality:

∑
i

(ρi
0

∂H i

∂t
) +

∑
j

(cj
0

∂Hj
c

∂t
) ≥

≥
∑

i

(
ρi

0R
i

Θ
−∇H i ·Mi − ∇ ·Qi

Θ
+

∇Θ ·Qi

Θ2
)−

∑
j

(∇Hj
c ·Mj

c) (57)

and in the current configuration

∑
i

(ρi dηi

dt
) +

∑
j

(cj dηj
c

dt
) ≥

≥
∑

i

(
ρiri

θ
−∇ηi ·mi − ∇ · qi

θ
+

∇θ · qi

θ2
)−

∑
j

(∇ηj
c ·mj

c)−

−
∑

i

(ρiηi[∇ · (v + vi)])−
∑

j

cjηj
c [∇ · (v + vj

c)]) (58)

Combining balance of linear momentum Eqs.(35) and (36), balance of energy (54) and
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the entropy inequality multiplied by the absolute temperature Θ gives

∑
i

ρi
0(

∂Ei

∂t
−Θ

∂H i

∂t
) +

∑
j

cj
0(

∂Ej
c

∂t
−Θ

∂Hj
c

∂t
) +

∑
i

Πi(Ei +
1
2
||Vi||2) +

+
∑

i

∇Θ ·Qi

Θ
+

∑
i

(ρi
0

∂

∂t
(V + Vi)− ρi

0G−∇ ·Pi + ∇(V + Vi) ·Mi) ·Vi −

−
∑

j

(∇ ·Pj
c) ·Vj

c −
∑

i

(Pi : Ḟ + Pi : ∇Vi − (∇Ei −Θ∇H i) ·Mi)−

−
∑

j

(Pj
c : Ḟ + Pj

c : ∇Vj
c −Πj

cE
j
c − (∇Ej

c −Θ∇Hj
c ) ·Mj

c) ≤ 0 (59)

This expression is the reduced entropy inequality, also known as the Clausius-Duhem
inequality, for this type of processes.

In the current configuration would be:

∑
i

ρi(
dei

dt
− θ

dηi

dt
− (ei − θηi)[∇ · (v + vi)]) +

+
∑

j

cj
0(

dej
c

dt
− θ

dηj
c

dt
− (ej

c − θηj
c)[∇ · (v + vj

c)])) +

+
∑

i

πi(ei +
1
2
||vi||2) +

∑
i

∇θ · qi

θ
+

+
∑

i

(ρi d

dt
(v + vi)− ρig−∇ · σi + ∇(v + vi) ·mi) · vi −

∑
j

(∇ · σj
c) · vj

c −

−
∑

i

(σi : (d + di)− (∇ei − θ∇ηi) ·mi)−

−
∑

j

(σj
c : (d + dj

c)− πj
ce

j
c − (∇ej

c − θ∇ηj
c) ·mj

c) ≤ 0 (60)

2.2.5 The kinematics of growth

Literature on biological growth [8, 10] usually assumes that the total deformation gradient
is multiplicatively decomposed into two terms, one corresponding to the growth tensor Fg

which describes the amount and orientation of material added at each point, and the other
to the true stress-related deformation tensor Fe that represents the deformation needed to
accommodate the tissue to the addition of material during growth and also to the external
loads [32]. In fact, the growth tensor Fg is, in general, incompatible.

As each specie i can grow in a different way, the growth tensor has to be defined for
each of them through F gi

. Therefore, for each specie:

F = Fei
Fgi

(61)

2.2.6 Constitutive relations from the Clausius-Duhem inequality

As usual in field theories of continuum physics, we use the Clausius-Duhem inequality (59)
to obtain constitutive laws and thermodynamic constraints on the evolution of the differ-
ent variables involved. It is usual to express the Clausius-Duhem inequality in terms of
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the specific Helmholtz free energy Ψ. The specific internal energy is then expressed as
Ei = Ψi + ΘH i or equivalently for the cells Ei

c = Ψi
c + ΘH i

c. We assume that the mate-
rial behaviour is elastic, fulfilling the axioms of locality, determinism, objectivity [31] and
that the mass-specific Helmholtz free energy associated to each specie is a function of the
tissue deformation tensor, temperature, specie density and damage Ψi = Ψ̂i(Fei

,Θ, ρi
0, d

i
0).

Similarly, the cellular-specific Hemholtz free energy is defined as Ψi
c = Ψ̂i

c(F
ei

,Θ, ci
0). It is

interesting to remark at this point that, since we consider cell populations from a macro-
scopic point of view, we assume that the cell free energy depends on the deformation tissue
Fei

. Applying now the chain rule and regrouping terms, we get

∑
i

(ρi
0

∂Ψi

∂Fei −PiFgiT
) : Ḟ

ei

+
∑

j

(cj
0

∂Ψj
c

∂Fej −Pj
cF

gjT
) : Ḟ

ej

+
∑

i

ρi
0(

∂Ψi

∂Θ
+ H i)

∂Θ
∂t

+

+
∑

j

cj
0(

∂Ψj
c

∂Θ
+ Hj

c )
∂Θ
∂t

+
∑

i

Πi(Ψi + ΘH i +
1
2
||Vi||2) +

∑
i

ρi
0

∂Ψi

∂di
0

ḋi
0 +

+
∑

i

∇Θ ·Qi

Θ
+

∑
i

(ρi
0

∂

∂t
(V + Vi)− ρi

0G−∇ ·Pi + ∇(V + Vi) ·Mi) ·Vi −

−
∑

j

(∇ ·Pj
c) ·Vj

c −
∑

i

[Pi : (Fei
Ḟ

gi

+ ∇Vi)− (∇Ψi + H i∇Θ) ·Mi] +
∑

i

(ρi
0

∂Ψi

∂ρi
0

ρ̇i
0) +

+
∑

j

(cj
0

∂Ψj
c

∂cj
0

ċj
0)−

∑
j

[Pj
c : (Fej

Ḟ
gj

+ ∇Vj
c)− (∇Ψj

c + Hj
c ∇Θ) ·Mj

c] +

+
∑

j

Πj
c(Ψ

j
c + ΘHj

c ) ≤ 0 (62)

Moreover, if we assume that in biological tissues the spatial temperature distribution is
almost uniform (∇Θ = 0), expression (62) can be rewritten as

∑
i

(ρi
0

∂Ψi

∂Fei −PiFgiT
) : Ḟ

ei

+
∑

j

(cj
0

∂Ψj
c

∂Fej −Pj
cF

gjT
) : Ḟ

ej

+

+
∑

i

ρi
0(

∂Ψi

∂Θ
+ H i)

∂Θ
∂t

+
∑

j

cj
0(

∂Ψj
c

∂Θ
+ Hj

c )
∂Θ
∂t

+

+
∑

i

Πi(Ψi + ΘH i +
1
2
||Vi||2) +

∑
i

ρi
0

∂Ψi

∂di
ḋi +

+
∑

i

(ρi
0

∂

∂t
(V + Vi)− ρi

0G−∇ ·Pi + ∇(V + Vi) ·Mi) ·Vi −
∑

j

(∇ ·Pj
c) ·Vj

c −

−
∑

i

[Pi : (Fei
Ḟ

gi

+ ∇Vi)− (∇Ψi) ·Mi] +
∑

i

(ρi
0

∂Ψi

∂ρi
0

ρ̇i
0) +

∑
j

(cj
0

∂Ψj
c

∂cj
0

ċj
0)−

−
∑

j

[Pj
c : (Fej

Ḟ
gj

+ ∇Vj
c)− (∇Ψj

c) ·Mj
c] +

+
∑

j

Πj
c(Ψ

j
c + ΘHj

c ) ≤ 0 (63)
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Using standard arguments in continuum mechanics [33] and considering the behaviours
of cells and species as independent, we easily obtain the following constitutive relations:

PiFgiT
= ρi

0

∂Ψi

∂Fei (64)

Pj
cF

gjT
= cj

0

∂Ψj
c

∂Fej (65)

H i = −∂Ψi

∂Θ
(66)

Hj
c = −∂Ψj

c

∂Θ
(67)

And the following constraints:

(ρi
0

∂V

∂t
− ρi

0G−∇ ·Pi + (∇V) ·Mi + ρi
0F
−T∇Ψi) ·Vi ≤ 0 (68)

(ci
0F

−T ∇Ψi
c −∇ ·Pi

c) ·Vi
c ≤ 0 (69)

Eq.(64) specifies a constitutive relation for PiFgiT
which corresponds to the elastic

stress that the extracellular matrix (ECM) of each specie i experiences. Moreover, we also
obtain the cellular stress Pj

cF
gjT

that defines the combined effect of cell-ECM and cell-cell
interaction [34] in terms of Ψj

c (see Eq.(65)).
The entropy H i per unit mass of specie i is defined through Eq.(66) that corresponds to

the definition usually employed in thermal physics. In a similar way, the entropy associated
to cell populations per unit cell Hj

c is determined by Eq.(67).
The thermodynamic constraints derived from the Clausius-Duhem inequality are nor-

mally fulfilled by means of phenomenological constitutive relations. A clear example is the
constitutive equation of heat conduction, that has been here removed due to the assumption
of uniform temperature. And thus, from constraint (68) the following constitutive equation
was originally proposed by Garikipati et al. [16] for species fluxes:

ρi
0V

i = −D̃
i

ρi
0

(ρi
0

∂V

∂t
− ρi

0G−∇ ·Pi + (∇V)Mi + ρi
0F
−T ∇Ψi) (70)

with the constraint w · D̃i
w ≥ 0,∀w ∈ R3, being D̃

i
the mobility tensor of specie i.

In a similar way, a phenomenological constitutive equation can be proposed from con-
straint (69) as

Mi
c = −Hi(∇Ψi

c − (∇ ·Pi
c) ·

F

ci
0

) ,w ·Hiw ≥ 0,∀w ∈ R3 (71)

or equivalently

ci
0V

i
c = −Hi

ci
0

(ci
0F

−T ∇Ψi
c −∇ ·Pi

c) ,w ·Hiw ≥ 0,∀w ∈ R3 (72)

In (71)(72) the cellular flux is defined as the product of a mobility tensor Hi (which
is positive semi-definite) for each cell type and the corresponding thermodynamic driving
force. The first term of this driving force represents that cells tend to move in the direction
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contrary to their energy gradient, whereas the second term indicates the existence of a force
that controls cell movement along ∇ · P i

c [17].
With all these constitutive relations it is ensured the non-positiveness of certain terms

of the entropy inequality, which is further reduced to

∑
i

[ρi
0

∂Ψi

∂ρi
0

ρ̇i
0 −Pi : (Fei

Ḟ
gi

+ ∇Vi)] +
∑

i

ρi
0

∂Ψi

∂di
0

ḋi
0 +

+
∑

i

[ρi
0V

i · (∂V
i

∂t
+ (∇Vi)F−1Vi) + Πi(Ψi + Θ

∂Ψi

∂Θ
+

1
2
‖Vi‖2)] +

+
∑

j

[cj
0

∂Ψj
c

∂cj
0

ċj
0 −Pj

c : (Fej
Ḟ

gj

+ ∇Vj
c) + Πj

c(Ψ
j
c + Θ

∂Ψj
c

∂Θ
)] ≤ 0 (73)

In summary, the complete definition of this model requires to characterize the following
functions for all the species: the production of mass Πi by means of Bi

j (see Eq.(16)), the

real tissue density evolution ∂ρi
0

∂t , the mechanical damage growth ∂hi
0

∂t |G and the mass-specific
Helmholtz free energy Ψi; and for the cell populations: the production of cells Πi

c by means
of Aj

i , A
i
pr (see Eq.(26)), and finally, the cellular-specific Helmholtz free energy Ψi

c.
It is interesting to remark that in the particular case that all tissues are biphasic (one

solid specie and fluid) and fully hydrated with no reference to cells, this general theory
coincides with the classical biphasic poroelastic theory (see Appendix I).

3 A FIRST EXAMPLE OF APPLICATION: BONE REMODELLING

Bone tissue is a porous, heterogeneous and anisotropic material that adapts itself to the
mechanical environment in order to get the maximum stiffness with the minimum weight.
This adaptative process is known as bone remodelling. Nevertheless we have to keep in
mind that bone mass homeostasis is not only determined by mechanical load, but also by
calcium availability and sex steroids [35].

Bone remodelling is the coordinated result of two opposite processes of bone formation
and resorption performed by teams of cells known as basic multicellular units (BMUs) that
work on bone surfaces [36]. Resorption of bone by osteoclasts is followed by refilling of the
resorption cavity by osteoblasts (additional details of the BMU activity are described in
several works [21, 37]).

Many authors have described this bone activity by means of appropriate numerical
models. Next, a review of the most significative is presented.

3.1 State of the Art of Computational Models on Bone Remodelling

From the 19th century many theoretical models have been proposed to explain how the
mechanical environment influences on bone remodelling, being the ”Wolff´s Law” the first
of them [38]. With the development of faster computers and more reliable software, many
of these theories have been tested and simulated using computational algorithms. This
has motivated the development of many numerical models in the last years with the same
objective of simulating the bone remodelling capacity [39, 40, 41, 42, 43, 44, 45, 46, 47].

Early formulations started with the theory of adaptive elasticity by Cowin and Hegedus
[48] which was later used in a FEA simulation model by Hart et al. [49]. Adaptation
of trabecular bone’s apparent density based on isotropic behaviour and controlled by me-
chanical macroscopic variables, such as stress or strain, has been analyzed by different
authors [39, 40, 50, 51]. Extensions to anisotropic behavior of this kind of models were
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also performed by several authors [43, 44, 45, 46, 47]. More recently, several models of
bone adaptation have been presented, based on the idea that remodelling is activated by
microdamage with the aim of repairing it [41, 42, 52]. To obtain a deeper insight into these
models, several authors have provided relevant overviews [5, 6].

Most of these adaptive models are purely phenomenological and explain the net increase
or decrease of bone apparent density by the coordinated and simultaneous activity of os-
teoblasts and osteoclasts. However, more biologically-based models are necessary in order
to take into account the effects of both biological and mechanical factors. In this sense,
some attempts have been made in the last years [53, 37, 21, 54].

Actually, Huiskes et al. [53] proposed a model that includes a separate description of
osteoclastic resorption and osteoblastic formation. A biological osteocyte mechanosensory
system was employed in order to enable the simulation of remodelling in a mechanobiological
way.

Hazelwood et al. [37] developed a model of mechanical adaptation with metabolic items
of bone remodelling. Their model simulates the evolution of bone porosity by a two-stage
process (resorption-formation) performed by BMUs. The rate of appearance of these units
is calculated as a function of the bone tissue surface available for remodeling and the level
of disuse and accumulated microdamage. Although this model established an important
advance in understanding the remodelling process, it presents some limitations. In fact, it
does not consider the three-dimensional geometry of BMU, but used a 2D approximation.
Moreover, the process of mineral accumulation in newly osteoid bone volume, which plays
an important role in bone remodelling as many authors have pointed out [55], was not
taken into account. Additionally, the influence of the damage level on the macroscopic
stiffness was also neglected, which itself alters the mechanical local stimulus and, therefore,
influences on the remodelling process. Apart from these theoretical items, the model was
only applied to simulate the porosity increase in cortical bone.

Hernandez, Beaupré and Carter [21, 54, 56] proposed a computational model of bone
remodelling that considers the complete activity of BMUs from a three-dimensional point of
view and accounts for changes in the degree of mineralization of bone tissue. Measurements
taken from histomorphometric studies of human bone were used to represent the rate of
appearance, shape, rate of progression and lifespan of BMUs as well as the time periods
during which bone is resorbed and formed at each individual remodelling site. Although
this model implied a significant advance in the comprehension and simulation of the bone
remodelling process, it is certainly restricted. The theoretical formulation of this model
considers a mechanical stimulus [21, 54] which was not employed in the numerical analyses.
Furthermore, the impact of cumulative microdamage was neglected despite its significance
indicated by many authors [41, 37, 22, 57].

More recently Garćıa-Aznar et al. [7] proposed a more extended computational model of
bone remodelling considering that both mechanical and biological factors work in a couple
way in order to control more efficiently the bone remodelling process. This model is, in
fact, a particular case of the general formulation proposed in the first part of this paper.
Therefore, we use it here as an example of application of this formulation.

3.2 Particularization of the General Formulation to Bone Remodelling

The model proposed by Garćıa-Aznar et al. [7] is based on the following simplificative
assumptions with respect to the general formulation previously proposed:

1. In this case, instead of working with the concentration of bone cells, we use the same
concentration but of BMUs.

2. We consider only one solid specie, obviously the reference phase, that corresponds to
bone tissue with its specific cells (BMUs).
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3. Due to the high stiffness of bone tissue, it is usual to work under the small strains
assumption, hence current and initial configurations are coincident.

Next, the BMU balance, mass balance and growth equations are particularized for this
specific example.

3.2.1 Balance of BMUs

In this case we define the balance of BMUs in the reference configuration Ω0 as

∂NBMU

∂t
= ΠBMU = Π+

BMU −Π−BMU (74)

where NBMU is the number of BMUs per unit volume in the reference configuration and
ΠBMU is the net production of BMUs per unit volume and time in the reference configu-
ration. Therefore, we assume as a first approach that the BMU flux is null MBMU = 0,
that is the advance of BMUs is negligible with respect to the dimensions of the macroscopic
reference volume.

Following the model proposed by Garćıa-Aznar et al. [7], the birth-rate of BMUs is
determined by the law:

Π+
BMU (t) = fbio(1− s)Sv (75)

where fbio is a biological parameter that depends on factors like age, sex, nutrition, etc.,
Sv is a measurable variable that defines the available bone surface per unit bone volume
that directly depends on bone porosity [58] and s is an inhibitory signal transmitted by the
osteocytic network to the BMUs present on the bone surface. This signal is dependent on

the strain level ε̄i =
√

2U
E for each load case i, the number of applied cycles Ni and the

damage level d, through the expression:

s(ε̄, N, d) =
(
∑

i Niε̄
m
i )1/m

(
∑

i Niε̄m
i )1/m + c

(1− d)a (76)

where m is an exponent that controls the influence of the strain amplitude versus the
number of cycles, c is a constant that determines the influence of the mechanical usage and
a is a parameter that weights the effect of damage in the inhibitory signal.

We also assume that BMUs die when they finish their activity, therefore
∫ t

0
Π−BMU (t′)dt′ =

∫ t−σL

−σL

Π+
BMU (t′)dt′ (77)

where σL is the lifespan of a BMU and refers to the time during which the first appearing
osteoclasts are active.

3.2.2 Balance of mass

In this case we only consider bone tissue. Thus, we obtain the following expression for the
mass balance:

∂ρb
0

∂t
=

∂ρb

∂t
(V b

m − h0) + ρb ∂V b
m

∂t
− ρb ∂h0

∂t
= Πb (78)

where the temporal evolution of each variable is determined in an independent way. Next
we justify the evolution of each term.
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Figure 2. Evolution of the ash fraction with time. κ has been chosen such that
50 % of the secondary mineralization is achieved after 6 years

Firstly, we start with the term that defines the evolution of the real bone tissue density
∂ρb

∂t . Bone formation involves three different steps: production of the extracellular matrix
(osteoid), primary mineralization of the matrix that occurs very quickly (in 6 days a 60% of
the maximum mineral content is produced) and secondary mineralization that is very slow
and takes 6 years or more. This process is basic in the determination of the mechanical
properties of bone like elasticity modulus and strength. Garćıa-Aznar et al. [7] model the
evolution of the real tissue density using an intermediate variable α (mineralization degree
or ash fraction) that is experimentally correlated to the real tissue density through the
following expression [21, 59]:

ρ̄b = 1.41 + 1.29α (79)

They assume that primary mineralization occurs immediately, while the mineralization
rate during the secondary phase is

α(t) = αmax + (α0 − αmax)e−κt (80)

where α0 denotes the ash fraction resulting from the primary phase and αmax its maximum
physiological value. The constant κ determines the velocity of this process (Figure 2).

As the degree of mineralization is not directly correlated with the bone volume fraction,
an averaged ash fraction ᾱ is introduced that takes into account the different mineralization
stages of the remodelled bone

ᾱ(t) =
(V b

m(0)− h0(0))α(0) +
∫ t
0

(
(V̇F (τ)− h0(τ))α(t − τ)− (V̇R(τ)− h0(τ))ᾱ(τ)

)
dτ

V b
m(t)− h0(t)

(81)
where VF and VR are the volume ratios of created and resorbed bone respectively, during
the bone remodelling process developed by the BMUs.

As previously explained, during BMU activity, bone is continuously renewed by resorp-
tion and formation, and therefore the bone volume fraction V b

m changes depending on the
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Figure 3. Model for the focal bone balance

different mechanical usages. We consider the following equations of evolution:

V̇F (t) =
∫ t−TR−TI

t−TR−TI−TF

(∫ t′

t′−σL

Π+
BMU (t′′)dt′′

)
ABMU

TF

fb

fc
(t′)vBMUdt′ (82a)

V̇R(t) =
∫ t−TR

t

(∫ t′

t′−σL

Π+
BMU (t′′)dt′′

)
ABMU

TR
vBMUdt′ (82b)

V̇ b
m = V̇F − V̇R (83)

where Π+
BMU is the BMU birth-rate defined by Eq.(74), TR, TF and TI are the resorption,

formation and reversal periods respectively, vBMU is the rate of progression of a BMU,
ABMU is the cross section of a BMU (distinguishing between cortical and trabecular bone)
and fb

fc
(t′) is the ratio between osteoblasts and osteoclasts activities that is assumed to be

controlled by the mechanical stimulus ξ =
∑

i Niε̄
m
i by means of a standard law (see Figure

3) in remodelling models.
It is also considered that microcracks appear in bone as consequence of fatigue load, but

this damage is repaired by bone remodelling. In fact, many authors consider that damage
is the main stimulus that activates bone remodelling [37, 52, 41]. We also consider that
damage has an important role in the activation of bone remodelling by means of expression
(76). Therefore, the damage rate is the difference between damage accumulation by loads
and damage repair by bone remodelling following the rule previously presented in (20).

As previously commented, microcrack density h0 influences on the degradation of the
mechanical properties of the tissue quantified by means of the variable damage d0 defined
in (18). The general expression that relates both variables (19) is in this example simplified
to:

h0 = kd0 (84)

with k = 0.00034 [30].
It has been experimentally observed that damage accumulation due to mechanical load

is different for tension and compression [60]; for example, Garćıa-Aznar et al. [7] proposed
a different evolution law depending on the load type. Moreover, since fatigue behaviour of
bone subjected to cyclic loads is normally studied through the evolution of the degradation
of the elastic modulus (d0), it is usual to express the microcrack evolution in terms of this
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variable:

∂h0

∂t
|G = k

∂d0

∂t
|G =

⎧⎪⎪⎨
⎪⎪⎩

k
C1

γ1
eγ1d0 ε̃δ1 in compression

k
C2

C3γ2
(1− d0)1−γ2e−C3(1−d0)γ2

ε̃δ2 in tension
(85)

where all parameters Cj , γj and δj were determined from experiments of Pattin et al. [60].
Bone as living tissue is able to repair this damage. Assuming a uniform damage distri-

bution and a random bone remodelling process, damage is reduced following the expression
(21), or equivalently

∂h0

∂t
|R =

⎧⎨
⎩

0 in formation

−V̇R
h0

V b
m

in resorption
(86)

3.2.3 Material behaviour

The material behavior in this model [7] is also simplified. Bone is considered to behave as
linear elastic and heterogeneous, with the elasticity modulus depending on the bone volume
fraction vb, the mineralization ratio ᾱ, and the damage level d0 through the rule:

E = 84370v2.58
b ᾱ2.74(1− d0)MPa (87)

Additionally, we assume that the Poisson ratio is set to a constant value ν = 0.3.

3.2.4 Numerical example

In a previous paper [7] several examples were developed in order to check the potential
of the model to predict stress fractures and bone remodeling activated by disuse, overload
and damage. Here, we review some of the most significative results. For example, we show
(see Figure 4) the evolution of the bone volume fraction for different initial densities (2.05,
1.0 and 0.5 g/cm3) under uniaxial constant strain applied for a fixed number of cycles
per day (10,000 cycles/day), corresponding to different states of strain level: equilibrium
(ξ = ξ∗0), overload (ξ = 2ξ∗0), high overload (ξ = 7ξ∗0) and disuse (ξ = 0). For cortical bone
(initial density of 2.05 g/cm3) the model responds with a slight increase in bone volume
fraction for overload, with a small decrease in the case of high overload due to microdamage
accumulation and a higher reduction in case of disuse. However, for cancellous bone (initial
density of 1.0 or 0.5 g/cm3) a slight increase in bone volume fraction is produced under
overload and high overload. The differences found in the response of bone under high
overload are mainly due to the different levels of damage produced in each case (see Figure
5). In the case of cortical bone we can see how damage increases very quickly and later it
is repaired by means of bone remodelling activation and consequent bone resorption. For
trabecular bone the level of damage is so small that it does not activate bone remodelling,
and therefore damage continuously increases without loss of bone volume.

Finally, this model has been also used to study the bone remodeling induced by the
implantation of a hip prosthesis. Specific description of this numerical simulation can be
found in the work of Garćıa-Aznar et al. [7]; here we only review the main results obtained.
We can see in Figure 6 the initial distribution of bone volume fraction considered in the
intact femur, the mesh of the prosthesis that is implanted and the corresponding evolution
of the bone volume fraction predicted with this model.

For the two biological factors fbio considered, femoral adaptive bone remodelling occurs
over the entire bone that surrounds the fixation, although the main bone loss was obtained
proximally and this loss decreases from the proximal to the distal area. Obviously a higher
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Figure 4. Evolution of the bone volume fraction for different initial densities, ρ0 =
2.05, 1.0, and 0.5 g/cm3 (all with reference to an initial ash fraction of
0.6), and for states of equilibrium ξ = ξ∗0 , overload ξ = 2ξ∗0 , high
overload ξ = 7ξ∗0 and disuse ξ = 0. [7]

biological factor fbio causes a higher bone loss. Moreover we found that after the second
year of simulation, bone loss was minimal. Both facts have been also determined clinically
in similar regions and for comparable periods of time [61].

4 A SECOND EXAMPLE OF APPLICATION: BONE FRACTURE
HEALING

Bone fracture healing is a regenerative biological response of bone to traumatic bone le-
sions in order to restore its original integrity. A bone fracture causes haemorrhage and
tissue disruption. This damaged tissue is normally known as debris tissue and its spatial
distribution is fully dependent on how the fracture is produced. Later, a complex cellular
process is activated consisting of inflammation, growth, tissue differentiation, ossification
and remodelling. Initially, within the first few days after fracture, the inflammatory process
begins to remove debris from the fracture site and to form a hematoma. At the same time,
fibroblasts proliferate and capillary sprouts grow into blood clot in the injured area, forming
granulation tissue in response to cytokines released by tissue damage. The role of this new
formed tissue is very important because allows the invasion of mesenchymal stem cells to the
fracture site. But, although this reparative process starts, if the fracture is not completely
stabilized, the movement continues causing additional disruption to this granulation tissue,
altering the normal reparative process and leading to a non-union or delayed union. If the
stability is sufficient, stem cells start to differentiate into osteoblasts forming intramembra-
nous woven bone adjacent to bone and distal to the fracture. Later, bone and cartilage are
produced in different parts of the callus, as a consequence of stem cell differentiation into
osteoblasts and chondrocytes. At the same time, the intramembranous ossification front
advances to the centre of the callus. After this, the endochondral ossification process starts
with cartilage calcification and replacement with new bone. When the bony bridge closes
the fracture gap, bone reunion is produced in this region. Finally, the external callus is
fully resorbed and the woven bone in the gap is remodelled into organised cortical bone. All
these processes that appear during this complex regenerative event depend directly on the
relative movement between the bone fragments. In fact, bone is formed directly in absence
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Figure 5. Microdamage accumulation under high overload in bones with different
initial densities: (a)ρ0 = 2.05 and (b)ρ0 = 1.0 g/cm3 [7]

of movement [62, 63], or non-union is produced if this movement is very large.
Although there is experimental evidence that the regenerative events that occur during

fracture healing are influenced by the mechanical conditions [62] [63], it is very difficult to
quantify experimentally at the tissue level how the local mechanical stimulus is related to cell
expression and therefore to tissue formation, remodelling and growth. This fact motivated
that some researchers started proposing different phenomenological rules [64, 65, 66]. These
theories and new ones have been now tested by means of computational models that,
although simplifications of the reality, are useful for different purposes. Next, a review of
the most interesting computer-based models is presented.

4.1 State of the Art of Computational Models on Bone Fracture Healing

Most computational models that have been developed to simulate bone fracture healing are
based on finite element analyses. They can be divided into three categories: those that,
with a known configuration of the callus determined histologically, study the level of strain
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Figure 6. Description of the numerical simulation performed on a 2D model of
a femur. After implantation the evolution of the bone volume fraction
predicted by the model for different biological factors and for different
periods of time is shown: (a) 330, (b) 660 and (c) 990 days

or stress produced in the different tissues [67, 68, 69]; those that study the process of tissue
differentiation [70, 71, 72, 73, 74]; and finally models that try to simulate differentiation
and callus growth in a coupled way [75, 76, 77].

Carter et al. [68, 67] used finite elements to show that the patterns of tissue differen-
tiation observed in fracture healing can be predicted from fundamental mechanobiological
rules. And thus they proposed a tissue differentiation theory, which correlates new tissue
formation with the local stress/strain history determined computationally. They suggested
several differentiation rules that are graphically summarized in Figure 7. In this figure
there are two lines that separate the different tissue regions. To the left of the pressure line,
the tissue supports a high hydrostatic pressure which serves as stimulus for the produc-
tion of cartilaginous matrix; to the right, the hydrostatic pressure is very low, causing the
production of bone matrix. There is a limit from which this tissue does not differentiate;
this is limited by the boundary line of the right. When the tissue is subjected to high
tensile strains (above the tension line) fibrous matrix is produced with cartilage or bone,
depending on the hydrostatic pressure level.

In a similar way Claes et al. [69] proposed a quantitative tissue differentiation theory
that relates the tissue strain and the hydrostatic pressure with the new tissue regenerated in
the fracture healing process (see Figure 8). They predicted these regulatory laws studying
three different healing stages (see Figure 9) quantified experimentally in a sheep model.
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Figure 7. Relationship between mechanical stimulus and tissue differentiation
(From [68] with permission)

Kuiper et al. [78, 79, 75] developed a differentiation tissue theory using the tissue shear
strain and fluid shear stress as the mechanical stimuli regulating tissue differentiation and
the strain energy as the mechanical stimulus regulating bone resorption. They used an
axisymmetric biphasic model of finite elements of a fracture and applied movements on the
cortical bone in an attempt to predict typical healing patterns including callus growth. The
results showed that larger movements increased callus size and delayed bone healing.

Lacroix et al. [80, 72] predicted successfully, by means of FEA, many different bone
fracture healing patterns in the case of a fixed callus. For this purpose they used the
phenomenological differentiation rules proposed by Prendergast et al. [70] (see Figure 10)
to predict interfacial tissue formation between implant and bone.

Ament and Hofer [76] proposed a tissue regulation model based on a set of fuzzy logic
rules derived from medical experiments, using the strain energy density as the mechanical
stimulus that controls the process of tissue differentiation.

In their first work, Bailon-Plaza and van der Meulen [71] studied the fracture healing
process controlled by growth factors with a fixed geometry of the external callus. They
used the finite differences method to simulate the sequential tissue regulation and the dif-
ferent cellular events, including haptokinetic and haptotactic mesenchymal cell migration
depending on the matrix densities, space-limited cell proliferation as well as environment-
dependent cell differentiation, growth factors and matrix production and resorption. In a
posterior work, they included the influences of mechanical factors modulating cell differen-
tiation and ossification.

More recently, Gómez et al. [77] developed a continuum mathematical model that
simulates the process of tissue regulation and callus growth, taking into account different
cellular events (i.e., mesenchymal cell migration; mesenchymal cell, chondrocyte, fibroblast
and osteoblast proliferation, differentiation and dead), and matrix synthesis, degradation,
damage, calcification and remodelling over time. This model is also a particularization
of the general formulation proposed in the first part of this paper. It will be used as an
example of application of this formulation.



On Numerical Modelling of Growth, Differentiation and Damage in Structural Living Tissues 495

Figure 8. Tissue differentiation rules proposed by Claes and Heigele [69]

4.2 Particularization of the General Formulation to Bone Fracture Healing

In order to understand the model proposed by Gómez et al. [77] as a particularization
of the general framework presented in this work it is necessary to take into account the
following global simplifications:

1. We assume that all processes involved in bone fracture healing (tissue growth, dif-
ferentiation and damage) are guided by a single mechanical stimulus: the second
invariant of the deviatoric strain tensor (ϕ ≡ J2).

2. We have simplified the growth law, working on small strains.

3. The cellular-specific Helmholtz free energy is independent of the elastic strain gradient
tensor and temperature, so Ψj

c = Ψ̂j
c(c

j
0). This assumption has important implica-

tions on the constitutive equations. Actually, in this particular case, cellular stresses

become null Pj
cF

gjT
= cj

0

∂Ψj
c

∂Fej = 0. A similar conclusion can be obtained for the

entropy ηi
c per unit cell: from (67) Hj

c = −∂Ψj
c

∂θ
= 0. In the constitutive equation

(72) the gradient of the cellular-specific Helmholtz free energy can be operated as

∇Ψj
c =

∂Ψj
c

∂cj
0

∇cj
0 = μ∇cj

0, with μ normally known as cellular electro-chemical poten-

tial. Therefore, considering that V j
c =

FM j
c

cj
0

, the constitutive relation (72) is then

particularized to:

Mj
c = −Hj

c∇Ψj
c = −Hj

cμ∇cj
0 = −Dj

c∇cj
0 (88)

being Dj
c = Hj

cμ the so-called cell diffusion tensor. In this particular case we have
considered that Ψj

c = 0 for all cells, except for stem cells.
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Figure 9. Material properties and ossification paths for the three modelled healing
stages: (a) first stage (1 week); (b) second stage (4 weeks); (c) third
stage (8 weeks)(From [69] with permission)

4. We consider that the different tissues involved in the healing process can be consti-
tuted by: bone (b), cartilage (c), fibrous tissue (f), granulation tissue (g) and debris
tissue (d). We consider the different cell types associated respectively with each of
these tissues: bone cells (cb), cartilage cells (cc), fibroblasts (cf ), mesenchymal stem
cells (cs) and dead cells (cd). All cells, except dead ones, produce extracellular matrix
of the associated tissues. Obviously, debris tissue is not produced by dead cells, but
it is a consequence of disruption of healthy tissue, and therefore, this kind of tissue is
only considered in the initial conditions of the simulation.

5. All species (except fluid) are assumed to be not diffusive (M i = 0, if i 	= f), therefore,
we can use the mixture rule to define tissue mechanical properties.

6. As a first approach, we assume that the only tissues with non-negligible mechanical
damage are granulation and debris tissues.

Next, cellular balance, mass balance and growth equations are particularized for this
specific example.

4.2.1 Balance of cells

The evolution of each kind of cell considered in the model is determined through Eq.(22).
Next we particularize the terms Πi

c and ∇ ·Mi
c for each cell type. The net production of

cells is controlled by terms Ai
pr and Ai

j in Eq.(26).
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Figure 10. Tissue differentiation law based on mechanical strain and fluid flow
(From [72] with permission)

Mesenchymal stem cells

We assume that mesenchymal stem cell proliferation is regulated by the mechanical stimu-
lus; so, we proposed:

As
pr =

αpr · ϕ(x, t)
ϕ(x, t) + ϕpr

(89)

where As
pr is the stem cell production per unit time and unit cell, ϕ the mechanical stimulus

and αpr, ϕpr model constants (see [77]).
Mesenchymal stem cells only appear as consequence of proliferation, they cannot differ-

entiate from other cells, so
As

b = As
c = As

f = 0 (90)

However, mesenchymal stem cells can differentiate into other cells: bone cells (intramem-
branous ossification), cartilage cells (chondrogenesis) and fibroblasts. Some authors [81]
suggest, based on their experimental works, that tissue differentiation, and consequently,
mesenchymal cell differentiation, are mechanobiologically dependent. Using this idea we
propose a set of mechanoregulated rules by means of functions Ab

s(ϕ, t), Ac
s(ϕ, t), Af

s (ϕ, t)
and Ad

s(ϕ, t) that control the process of stem cell differentiation into each specialized cell
as a function of the mechanical stimulus ϕ and time t, and that will be defined in the next
sections.

As the flux of cells is defined through the constitutive equation (67) and particularized
to (88), ∇ ·Ms

c is

∇ ·Ms
c = −∇ · (D∇cs

0) = −cs
0∇ ·D−D∇2cs

0 (91)

where D is the diffusion matrix that is assumed to be isotropic D = D1. We assume that
stem cells can move easily in a non-disrupted tissue, but if disrupted is not able to support
their movement. Therefore we have defined this diffusion coefficient D as dependent on the
damage level of the granulation tissue dg

0:

D(dg
0) = D0 · 1− dg

0

dg
0 + w

(92)

with w a parameter of the model [77].
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Although D is not completely uniform, as a first approach, we assume that its divergence
is negligible cs

0∇ ·D 
 0 in comparison with the rest of terms. Therefore the evolution of
the mesenchymal stem cells can be finally written as:

∂cs
0

∂t
= cs

0[A
s
pr −Ab

s −Ac
s −Af

s −Ad
s]−D∇2cs

0 (93)

Cartilage cells

We assume that chondrocyte proliferation is negligible when compared to differentiation,
therefore:

Ac
pr = 0 (94)

Chondrocytes appear as a consequence of stem cell differentiation, although they can
disappear if cartilage develops further to be replaced by bone (endochondral bone forma-
tion), a process which also occurs in the growth plate.

On one hand, the functions that define the differentiation into cartilage cells can be
expressed as:

Ac
s(ϕ, t) =

{
1 if ϕbone < ϕ < ϕcartilage and t > tcm
0 other cases

(95)

Ac
b(ϕ, t) = Ac

f (ϕ, tm) = 0 (96)

ϕbone and ϕcartilage are stimulus limits in which this type of differentiation progresses and
tcm a parameter that determines the minimum time that stem cells need to differentiate into
cartilage cells, all these values are included in [77].

On the other hand, cartilage cells are considered to differentiate into other cells by
means of the following expressions:

As
c(ϕ, t) = 0 (97)

Ab
c(ϕ, t) =

⎧⎨
⎩

hsource(ϕ, cb
0) if ϕ < ϕbone ; pmi > pmin

mi and cb
0 < cb

0min

1 if ϕ < ϕbone ; pmi > pmin
mi and cb

0 > cb
0min

0 other cases
(98)

Af
c (ϕ, t) = Ad

c(ϕ, tm) = 0 (99)

with cb the bone cell density (number of cells/day.mm3), ϕbone the stimulus that limits
intramembranous ossification, pmi the percentage of mineralization of cartilage, and pmin

mi

and cb
0min

model constants [77].
Ab

c(ϕ, t) defines the appearance of bone cells through endochondral ossification. This
process consists of the invasion of cartilage by blood vessels and consequently by bone
cells. Chondrocytes within cartilaginous tissue enlarge and die at the same time, but not
before producing enzymes that cause the cartilage matrix to be filled with calcium crystals.
Then, growing blood vessels start invasion, bringing osteoblasts and matrix-destroying cells
called osteoclasts. At this moment, osteoclasts digest cartilage, while osteoblasts begin to
secrete hard extracellular matrix material, continuing until they get trapped becoming new
osteocytes. Finally cartilage is completely replaced. Therefore Ab

c(ϕ, t) has to characterize
this complex event, that in reality is not a process of chondrocyte differentiation to bone
cells alone, but a replacement of one tissue by other. In order not to modify the formulation,
we assume that the first differentiation only occurs when bone tissue exists, and there is
enough vascularization to ensure vessel invasion. Mathematically we describe this process
as the incorporation of a source associated to the Laplacian of bone cells cb

0, such as:

hsource(ϕ, cb
0) = Db · (ϕbone − ϕ)

2 · ϕbone
·∇2cb

0

1
cc
0

(100)
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with Db the maximum diffusion coefficient.
Once that first ossification occurs, we assume that enough vascularization exists and

therefore direct ossification happens. Moreover, we assume that the chondrocyte flux is
null Mc

c = 0, in comparison with the movement of other cells, such as mesenchymal stem
cells.

Therefore the dynamics of chondrocyte population is defined by

∂cc
0

∂t
= cs

0A
c
s − cc

0A
b
c (101)

Bone cells

Bone cells can appear through intramembranous or endochondral ossification, as conse-
quence of the differentiation of mesenchymal stem cells or cartilage calcification respectively.
Migration and proliferation of osteoblasts is considered negligible in comparison with the
increase of osteoblast population due to intramembranous and endochondral ossification.
Therefore:

Ab
pr = 0 (102)

Mb
c = 0 (103)

We propose that the evolution of bone cell density (cb) is dependent on the mechanical
stimulus ϕ and time (t) through the corresponding functions:

Ab
s(ϕ, t) =

⎧⎨
⎩

Db · ∇2cb
0

1
cs
0

ϕlim < ϕ < ϕbone ; t > tbm and cb
0 < cb

0min

1 ϕlim < ϕ < ϕbone ; t > tbm and cb
0 > cb

0min

0 other cases

(104)

Ab
c(ϕ, t) = (Equation 98) (105)

Ab
f (ϕ, t) = 0 (106)

with Db a diffusion coefficient(mm2/day) and tbm the maturation time. With this expression,
we assume again that when a sufficient level of vascularization is achieved the bone cell
differentiation does not depend on this source term and a direct tissue differentiation is
produced. The function that defines the direct differentiation of mesenchymal stem cells
into bone cells (intramembranous ossification) has been also chosen in a similar way to the
endochondral one, that is, by means of a source term, but in this case independent on the
mechanical stimulus ϕ.

As these bone cells mature, they cannot differentiate into other type of cells, therefore
we propose:

As
b = Ac

b = Af
b = 0 (107)

with these assumptions the complete evolution of bone cells can be written as:

∂cb
0

∂t
= cs

0A
b
s + cc

0A
b
c (108)

Fibroblasts

The migration and proliferation of fibroblasts is also considered negligible:

Af
pr = 0 (109)

Mf
c = 0 (110)
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Fibroblasts appear as consequence of mesenchymal stem cell differentiation. Then:

Af
s (ϕ, t) =

{
1 ϕfibrous < ϕ < ϕdeath and t > tfm
0 other cases

(111)

Af
b (ϕ, t) = 0 (112)

Af
c (ϕ, t) = 0 (113)

being ϕfibrous, ϕdeath the limits corresponding to fibroblast differentiation [77].
We also assume that fibroblasts cannot differentiate into other kind of cells, therefore

As
f = Ac

f = Ab
f = 0 (114)

Under these conditions the evolution of fibroblasts would be:

∂cf
0

∂t
= cs

0A
f
s (115)

Dead cells

Finally, we have also considered the possibility that cells die under a sufficiently high stim-
ulus. The law proposed for this evolution is then

Ad
s(ϕ, t) =

{
1 if ϕ > ϕdeath

0 other cases
(116)

4.2.2 Balance of mass

As previously remarked, we have considered two different phases: fluid (fl) and solid. But
in the solid we distinguish among different kind of species: granulation tissue (g), cartilage
(c), bone (b), fibrous tissue (f) and debris (d).

We assume that the balance of mass expressed in (9) is verified for all of these species
with null mass flux

∇ ·M i = 0 i = g, c, b, f, d (117)

The time evolution of the real tissue density ρ̄i
0 is also considered null

∂ρi
0

∂t
= 0 i = g, c, b, f, d (118)

Sometimes, when the bone fracture site is not sufficiently stabilized, healing may not
be successful resulting in a non-union. This process normally occurs at the beginning of
the healing process. We assume that this effect is mainly due to the micro-fissuration that
occur in the newly recent formed tissues, that is, granulation tissue. Therefore, although
all tissue types may be susceptible of being damaged, we assume that only granulation and
debris tissues can experience this mechanical degradation during the healing process. The
rest of tissues like bone, cartilage and fibrous are specialized tissues that have been created
as consequence of a cellular differentiation that requires specific mechanical conditions. If
these limitations are not fulfilled tissue differentiation process would not happen, which is
previous to the occurrence of damage.

Therefore, we assume that

∂hi
0

∂t
= 0 i = c, b, f (119)
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Volume Debris Bone Cartilage Calcified Fibrous Granulation

Tissue Tissue Cartilage Tissue Tissue

Collagen I 0. 0.2848 0. 0. 0.1861 0.018
Collagen II 0. 0. 0.135 0.135 0. 0.
Collagen III 0.018 0. 0. 0. 0. 0.

Ground Substance 0.082 0.0352 0.079 0.079 0.07885 0.082
Mineral 0. 0.43 0. 0.015 0. 0.

Table 1. Composition used for each different tissue type [57]

and

f(ϕ) = ϕ− ϕdamage =>

{
if f < 0 =>

∂hi
0

∂t = 0
if f > 0 =>

∂hi
0

∂t > 0
i = g, d (120)

with this, Eq.(9) is simplified to

∂ρi
0

∂t
= ρi ∂V i

m

∂t
= Πi i = c, b, f (121)

and
∂ρi

0

∂t
= ρi ∂V i

m

∂t
(1− hi

0) + ρiV i
m(−∂hi

0

∂t
) = Πi i = g, d (122)

Obviously, this micro-fissuration process causes a mechanical degradation quantified
by means of damage variable d0 as was shown in (19). As a first approach, we have also
considered a linear relationship between both variables h0 and d0, following expression (84).

We assume that mass generation is always produced, keeping constant the composition
of the extracellular matrix (ECM) for each different tissue (see Table 1), so we propose the
next expression for each tissue:

Πg

ρg = cs
0 ·Bg

s + cc
0B

g
c + cb

0B
g
b + cf

0Bg
f Bg

s ≥ 0;Bg
c , Bg

b , Bg
f ≤ 0

Πc

ρc = cc
0 · Bc

c + cb
0B

c
b Bc

c ≥ 0;Bc
b ≤ 0

Πb

ρb
= cb

0 ·Bb
b Bb

b ≥ 0

Πf

ρf
= cf

0 ·Bf
f Bf

f ≥ 0 (123)

where Bi
j is the net matrix production of tissue i per cell j and unit time and ci

0 is the cell
density i associated to each tissue.

We assume this expression is valid for all tissues except for mature bone, in which
the development of bone matrix volume is determined using the internal bone remodelling
formulation proposed by Beaupré et al. [50, 82]:

Πb

ρb
= krem · ṙ · Sv if 0 < ϕ < ϕmature (124)

where ṙ is the formation/resorption of bone matrix volume per available bone surface per
time, Sv is the specific bone surface measured by Martin [58] and krem is the percentage of
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bone surface that is active for remodelling. Although this remodelling law is phenomenolog-
ical, it allows to consider in a simplified way the influence on healing of bone remodelling.
Obviously, more complex bone remodelling theories can be used, even including the actual
effect of bone cells by means of packets of BMUs as has been shown in the previous example.

We also consider that damaged tissue can be repaired when the stimulus level is low
enough. In this case, we assume that stem cells can produce new matrix repairing the
disrupted matrix in a proportional way similar to that proposed previously in (21):

∂dg
0

∂t
= −∂V g

m

∂t

dg
0

V g
m

or equivalently
∂hg

0

∂t
= −∂V g

m

∂t

hg
0

V g
m

(125)

Due to the linear relation between h0 and d0 we have used the latter as independent
variable, without the need of evaluating h0 and therefore not establishing the value of k,
which is not actually known.

4.2.3 Kinematics of growth

As a first approach we work under the theory of small deformations. Therefore, if the
deformation gradient tensor is written in terms of the displacement gradient tensor L as
F = 1 + L, then the product F gF e can be expanded to

F = F gF e = (1 + Lg)(1 + Le) = 1 + Lg + Le + LgLe (126)

that under small deformations simplifies to

F = F gF e 
 1 + Lg + Le (127)

We assume that callus growth is mainly due to two different processes that are essen-
tially isotropic and that occur in different tissues: mesenchymal cell proliferation (granula-
tion tissue) and endochondral ossification in cartilage. Therefore we propose the following
expressions:

Lgg
= f v

pr(cs, ϕ)1

Lgc
= gv

end(ϕ, t)1
(128)

where gv
end(ϕ, t) controls the rate of callus growth due to endochondral ossification and

f v
pr(cs, ϕ) defines the rate of callus growth due to proliferation.

It is assumed that the concentration of mesenchymal cells can proliferate from zero to
a maximum or saturation cell density. When the saturation concentration of stem cells is
reached the only way cells can proliferate is increasing the callus size at a constant level of
cell concentration:

f v
pr =

{
0 ifcs

0 < cs
max

cs
0

cs
max

ifcs
0 > cs

max
(129)

where cs
0(x, t) is the stem cell density (number of stem cells/mm3) and c0

max is the saturation
stem cell density (number of stem cells/mm3).

During endochondral ossification cartilage cells increase their volume up to ten times
their original volume [83], extracellular matrix cartilage calcifies and is later replaced by
bone. The number of cartilage cells is almost constant during this process [84], which allows
to define growth as:

gv
end(ϕ, t) =

{
ϕ−ϕcalcified

ϕbone−ϕcalcified
· khyper

cc
0

if (ϕ < ϕcalcified) and (cc
0 < cc

min)
0 in other cases

(130)
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with ϕcalcified, khyper and cc
min constants of the model.

It is assumed that the change of chondrocyte density is produced in order to get an
equilibrium value (cc

min). When this value is reached the volume growth becomes zero.
Moreover, with this growth law Lg is compatible.

4.2.4 Material behaviour

All tissues are assumed to be biphasic and isotropic. The material properties of the different
tissues, except for mature bone, are determined using a mixture rule, similar to other
authors [85, 72]. The modulus of elasticity E and the Poisson´s ratio ν are determined
from the proportion of each component px (the subscript x denotes the specific component
indicated in Table 1):{

E(MPa) = 2000pmi + 430pcI + 200pcII + 100pcIII + 0.7pgs

ν = 0.33pmi + 0.48pcoll + 0.49pgs
(131)

Properties of mature bone are determined as a function of the apparent density [86]:{
E = 2014 · ρ2.5, ν = 0.2 if ρ ≤ 1.2g/cc.
E = 1763 · ρ3.2, ν = 0.32 if ρ ≥ 1.2g/cc.

(132)

Permeability is also different for each type of tissue. In soft tissues, permeability was
computed according to its composition and porosity, following the model proposed by Levick
[87]. However, for hard tissues, we assumed constant permeability distinguishing between
cortical and trabecular bone, and calcified cartilage, with respective values of 7x10−15 mm2,
7x10−11 mm2 and 3.5x10−12 mm2.

Moreover we have considered the possibility of loss of stiffness as consequence of tissue
disruption in granulation tissue. As a result of this disruption the elastic modulus of the
granulation tissue is reduced as follows:

Eg
new = Eg

0(1− dg
0) (133)

where E0 is the elastic modulus of the intact granulation tissue.

4.2.5 Numerical example

This formulation has been implemented in a Finite Element commercial code in combina-
tion with an automatic mesh generation program [88]. An updated Lagrangian approach
was used; therefore a continuous update of the mesh is required because fracture callus
progressively grows during healing, modifying its shape and geometry. All independent
variables, cell concentration ci

0 for each cell type i and variables associated to extracellular
matrix were stored as nodal values. The callus shape was defined by the position of the
nodes. Each loading increment was divided in three different analysis steps (see Figure
11). In the first step, the mechanical stimulus was determined using a biphasic analysis.
Next, a diffusion analysis was performed to simulate the migration of stem cells and the
advance of the ossification front. With the mechanical stimulus determined at each node,
growth is calculated due to stem cell proliferation and chondrocyte hypertrophy, and thus,
a ”thermoelastic” analysis step was performed to determine the new position of the nodes
and the new callus geometry. With this idea, the local cell density (mesenchymal stem cells
or chondrocytes) was used as thermal expansion coefficient, while the values of the cellular
proliferation (Eq.(129)) and the chondrocyte growth function (130) were used as temper-
ature rise. Nodal positions were updated using the displacements calculated in the third
step, and the new positions were used to define a new callus geometry. Finally, all variables
of the model were updated. After each loading increment, a new 3D mesh of tetrahedral
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Figure 11. Scheme of the numerical implementation

Volume Gap Periosteum Endosteum Medular channel Cortical Bone

Collagen I 0. 0.018 0.02 0. 0.2706
Collagen II 0. 0. 0. 0. 0.
Collagen II 0. 0. 0. 0. 0.
Collagen III 0.018 0.0 0. 0.018 0.

Ground Substance 0.082 0.082 0.08 0.082 0.0334
Mineral 0. 0. 0. 0. 0.4085
Water 0.9 0.9 0.9 0.9 0.2375

Pore volume 0. 0. 0. 0. 0.0
Pore volume 0. 0. 0. 0. 0.05

Table 2. Initial composition in % volume used for the simulation

elements was automatically generated from the position of nodes using the Detri mesh
generator [88].

In order to study the potential of this approach, we have analyzed the 3D evolution
of the periosteal callus of a simplified human tibia fracture (see Figure 12) that has been
simulated as a cylinder with symmetric conditions in the line through the fracture gap.
The healing fracture has been studied for a simple loading case corresponding to an axial
interfragmentary displacement. Obviously the history of this displacement changes with
time depending on the stiffness of the fixator used to treat the fracture and the reparative
evolution of the callus. In this simple example, we have used a loading history measured
experimentally [89] (see Figure 11) in a fracture of this kind. All the model parameters have
been taken from a previous work of the same authors [77]. As initial conditions for cells
we assumed that the gap and medullar channel were empty of cells, the periosteum full of
undifferentiated mesenchymal cells and there existed a small layer of osteoblasts between
cortical bone and periosteum. Regarding material initial conditions, we considered the
components distribution distinguishing among different spatial regions presented in Table 2.

Figure 12 shows the first 8 weeks of temporal evolution for stem cell, bone cell and chon-
drocyte density, according to the mechanical stimulus proposed. Initially, mesenchymal cells
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Figure 12. Cellular distributions at different times of the healing process: numerical results
and histological sections (histologies taken from van der Meulen, Cornell University,
NY; Sarmiento and Russell http://www.hwbf.org/ota/bfc/index.htm, 2002; [62])

Figure 13. Meshes showing the evolution of the callus

proliferate quickly in the callus site, leading to the corresponding callus growth. First, cal-
cification in humans occurs 7 days after injury in the inner periosteum as intramembranous
ossification and the differentiation of stem cells into osteoblasts is also shown at this time.
By day 14, chondrogenesis (stem cell differentiation into chondrocytes) is produced quickly
in the callus, occupying most of the callus.

Endochondral ossification in humans requires from 4 to 16 weeks [90]. In the model
this process begins in the 4th week and requires about 8 weeks (12). The rate of this event
depends directly on the stability of the fracture and additional factors, such as physiological
or metabolical. In this case, the process is controlled by the interfragmentary movement
applied, which has been measured for the evolution of a successful fracture healing [89]).
And thus, in our simulation, after 8 weeks we can see how the callus is fully formed and
mineralized. Chondrocyte population has disappeared and bone cells occupy the larger
part of the callus.

Therefore this model is able to simulate the different cellular events that are normally
involved in fracture healing and the progressive evolution of the callus (see Figure 13).
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5 CONCLUDING REMARKS

We have presented in this paper a general constitutive theory for growth, differentiation,
remodelling and damage of living tissues. The theory is formulated using as main continuum
variables the ECM matrix density of each specie and the cell population density of each
cell. The balance laws are determined and the constitutive relations deduced.

The continuum approach analyzes the evolution of ECM for different tissues and cell
populations. The model includes biophysical facts like: ECM deposition for each specie due
to cells, ECM degradation caused by mechanical stimulus, and cell activities (proliferation,
differentiation and migration) regulated by mechanical influences. This model is able to
describe the development of biological tissues, taking into account the complex behavior of
cell-ECM interactions, mechanical influences and time.

Two particularizations have been developed to show its potential applicability. First, the
simulation of bone remodelling corresponds to a particular case of this theory, in which only
the influence of damage in the bone remodelling process is analyzed, not considering growth
nor differentiation. This formulation has been presented and numerically implemented in
a previous work developed by Garćıa-Aznar et al. [7]. In the second example, we used the
general framework to model a more complex process, such as bone fracture healing, where
growth, differentiation and damage act on the tissue. This has also been implemented
numerically in a previous work [77], illustrating a qualitative reasonable prediction of the
resulting cell and tissue distribution patterns.

In spite of some simplifications in both examples, they have been able to predict sev-
eral biophysical features in qualitative agreement with well-known experimental or clinical
results.

Although the numerical implementations here shown present some simplifications (small
deformations, no residual stresses, null cell-matrix interaction, etc.) the global formulation
proposed is sufficiently general to be used in other biomechanical applications, such as limb
lengthening, tendons and vessels growth and remodelling, and others.

Nevertheless and although this approach is completely general, some aspects have not
been considered. For example, in the case of stem cell motion we have only analyzed the
Fick’s law, whereas the model proposed by Oster et al.. [17] includes the interaction with
other cells beyond their nearest neighbors via an additional biharmonic diffusion term and
that cells tend to move from less to more adhesive regions of their substrata (haptotaxis
term). However the inclusion of this effect would be easy. The model here presented only
consider mechanical influences, although other mathematical models of fracture healing
and development [71, 91] have considered the regulatory effects of growth factors and mor-
phogens. Nevertheless, we have to keep in mind that both effects mainly contribute to the
way of mechanical signals are translated into cell activities (gene expression, differentiation,
metabolism and motility). In fact, when a tissue is deformed induces extracellular matrix
deformation and interstitial fluid flow; these cause mechanical effects on the cells. At the
same time, soluble biologic factors, such as, growth factors, hormones and cytokines, in the
interstitial fluid or attached to the matrix initiate intracellular processes that influence on
how cells sense and respond under this mechanical environment.
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APPENDIX I

For saturated biphasic tissues with solid (s) and fluid (f) phases, the saturation condition
becomes

vs
m + vf

m = 1 (134)

If we operate in the balance of mass of both solid and fluid in the current configuration,
replacing v by vs and redefining vf as the total fluid velocity, that is, substituting in all
the previous formulae vf by vf − vs, and particularizing for hs = 0, πs = 0, ρ̄s = constant
and ρ̄f = constant, we obtain from (10) the following equations:

ρ̄s dvs
m

dt
+ ρs∇ · vs = ρ̄s dvs

m

dt
+ ρ̄svs

m∇ · vs = 0 (135)

ρ̄f dvf
m

dt
+ ρ̄fvf

m∇ · vs = −∇ ·mf (136)

As mf = −ρf (vs−vf ) = −ρ̄fvf
m(vs−vf ) then previous expressions can be written as:

dvs
m

dt
= −vs

m∇ · vs (137)

dvf
m

dt
= −vf

m∇ · vs + ∇ · (vf
mvs − vf

mvf ) (138)

If we combine these balance equations with the saturation condition (134), we obtain:

−(vs
m + vf

m)∇ · vs + ∇ · [(1 − vs
m)vs − vf

mvf ] (139)

and operating we finally obtain the standard continuity equation for biphasic systems:

∇ · (vs
mvs + vf

mvf ) = 0 (140)

As the fluid is considered incompressible, it means that its mass-specific Helmhotz free
energy does not depend on the strain. In this case it is usual to modify the definition of
the mass-specific Helmholtz free energy in the current configuration adding the saturation
condition (134) by means of a Lagrange multiplier p:

Σiρ
iψi = ρsψ

s + p(vs
m + vf

m − 1) (141)

Using this condition in the Clausius-Duhem inequality expressed in the current config-
uration, we get:

ρs[J−1(
∂ψ

s

∂F
· F T ) : ∇vs +

∂ψ
s

∂θ
θ̇ + ηsθ̇] + (vs

m + vf
m − 1)ṗ + p(v̇s

m + v̇f
m)−

−σs : ∇vs − σf : ∇vf + ρsls · vs + ρf lf · vf +

+πs(ψs + θηs +
1
2
‖vs‖2)] ≤ 0 (142)
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Using the balance of mass, replacing again v by vs and vf by vf − vs, and using the
definition of the fluid flux mf = ρf (vf − vs) we obtain:

ρs[J−1(
∂ψ

s

∂F
· F T ) : ∇vs +

∂ψ
s

∂θ
θ̇ + ηsθ̇] + (vs

m + vf
m − 1)ṗ +

+p[
πs

ρ̄s(1− ds)
− vs

m∇ · vs +
ḋs

1− ds
− dρ̄s

dt

1
ρ̄s

] +

+p[−vf
m∇ · vs −∇ · (vf

m(vf − vs))]−
−σs : ∇vs − σf : ∇vf + ρsls · vs + ρf lf · vf +

+πs(ψs + θηs +
1
2
‖vs‖2)] ≤ 0 (143)

Collecting terms we get:

ρs[J−1(
∂ψ

s

∂F
· F T )− pvs

m1− σs] : ∇vs + ρs(
∂ψ

s

∂θ
+ ηs)θ̇ + (vs

m + vf
m − 1)ṗ +

+p[
πs

ρ̄s(1− ds)
+

ḋs

1− ds
− dρ̄s

dt

1
ρ̄s

]−

−(pvf
m1 + σf ) : ∇vf +

+(−p∇vf
m + ρf lf ) · vf + (−p∇vs

m + ρsls) · vs +

+πs(ψs + θηs +
1
2
‖vs‖2)] ≤ 0 (144)

In order to verify this inequality we have to fulfill:

σs = J−1(
∂ψ

s

∂F
· F T )− pvs

m1

σf = −pvf
m1

ηs = −∂ψ
s

∂θ

vs
m + vf

m − 1 = 0

(−p∇vf
m + ρf lf ) · vf ≤ 0

(−p∇vs
m + ρsls) · vs ≤ 0 (145)

We can also express these equations in the initial configuration as:

(PF T )s =
∂Ψs

∂F
· F T − pV s

m1

(P F T )f = −pV f
m1

Hs = −∂Ψs

∂Θ
V s

m + V f
m − 1 = 0

(−p∇V f
m + ρf

0FLf ) · V f ≤ 0
(−p∇V s

m + ρsFLs) · V s ≤ 0 (146)
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11 M. Doblaré, J.M. Garćıa and M.J. Gómez (2004). Modelling bone tissue fracture and healing:
a review. Engineering Fracture Mechanics, 71 (13-14), 1809–1840.

12 H. Isaksson, W. Wilson, C.C. van Donkelaar, R. Huiskes and K. Ito. Comparison of biophysical
stimuli for mechano-regulation of tissue differentiation during fracture healing. J. Biomech, in
press.

13 V.A. Lubarda, A. Hoger (2002). On the mechanics of solids with a growing mass. Int. J. Solids
Struct., 39, 4627–4664.

14 E. Kuhl and P. Steinmann (2003). Theory and numerics of geometrically non-linear open system
mechanics. Int. J. Numer. Metho. Engng., 58.

15 E. Kuhl and P. Steinmann (2004). Computational modeling of healing: an application of the
material force method. Biomech. Model. Mechanobiol., 2 (4).

16 K. Garikipati, E.M. Arruda, K. Grosh, H. Narayanan and S. Calve (2004). A continuum treat-
ment of growth in biological tissue: the coupling of mass transport and mechanics. Journal of
the Mechanics and Physics of Solids, 52 (7), 1595–1625.

17 G.F. Oster, J.D. Murray and A.K. Harris (1983). Mechanical aspects of mesenchymal morpho-
genesis. J Embryol. exp. Morph., 78, 83–125.

18 D. Manoussaki (2003). A mechanochemical model of angiogenesis and vasculogenesis. Mathe-
matical Modelling and Numerical Analysis, 37 (4), 581–599.

19 P. Namy, J. Ohayon and P. Tracqui (2004). Critical conditions for pattern formation and in vitro
tubulogenesis driven by cellular traction fields. Journal of Theoretical Biology, 227, 103–120.

20 S. Ramtani (2004). Mechanical modelling of cell/ecm and cell/cell interactions during the
contraction of a fibroblast-populated collagen microsphere: theory and model simulation. J.
Biomech., 37 (11), 1709–18.
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