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S u m m a r y .  - - A  covar ian t  Hami l ton ian  formal ism for quant ized  fields 
together  wi th  a re la t iv is t ic  Fock  space me thod  are used to quant ize  
masses of e lementa ry  par t ic les  wi th  micrononcausal  s t ructures .  As a simple 
model,  a neut ra l  scalar meson coupled to itself and to a neut ra l  vec tor  
gauge meson is examined .  I t  is shown tha t  two neut ra l  scalar mesons 
whose masses are m. produce a bound  pair  in which repulsive local two- 
body  potent ia ls ,  and a t t r ac t ive  nonlocal  self-potentials  der ived f rom 
their  self-energies, p lay  ma jo r  roles. The  e lementa ry  neut ra l  scalar 
meson of mass m 8 is assumed to be a bound  pair  whose whole rest  mass 
is also m.. The quant iza t ion  of m B is discussed by  employ ing  a re la t iv is t ic  
cut-off, bu t  wi thou t  using bare  masses of part icles  involved.  

PACS. 0.370. - Theory  of quant ized  fields. 
PACS. 12.35. - Composi te  models  of particles.  

1 .  - I n t r o d u c t i o n .  

One of the most important problems in particle physics has been the subject 
of quantization of masses of elementary particles, which are inherently as- 

sociated with the divergences of their self-energies. In spite of successes of the 

renormalization of mass and charge in quantum field theory, there still remains 
the question of divergences. In view of the existence of hundreds of elementary 

particles, it is apparent that  we need to construct a theory which enables us 
to quantize their masses and, at the same time, to avoid the divergences. 

In a previous paper (1), in order to attain that  object, we have proposed 

(*) To speed up publ icat ion,  the  au thor  of this paper  has agreed to not  receive the  
proofs for correction.  
(1) H.  ENATSU: Suppl. Nuovo Cimento, 3, 526 (1956). 
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such a theory  for pseudoscalar  mesons. In  this paper  we reinvest igate  the theory  
in the case of a neut ra l  scalar meson interact ing with itself and with a neut ra l  
vector  gauge meson. This case yields a general tes t ing ground for s tudying  

the  quant iza t ion  of masses of e l ementa ry  particles within the  f r amework  of 
a covar iant  Hami l ton ian  formal ism for quant ized fields proposed before (2). 

This pape r  is p lanned as follows. In  sect. 2 we discuss a convenient  sys tem 
of units proposed b y  HEISE~BERa (3) and  b y  N A ~ U  (4), which permi ts  us to 

fo rmula te  the  mass  quant iza t ion  theory  in a ra ther  simple manner .  In  sect. 3, 

as first principles, we discuss briefly the notion of micrononcausal i ty  which 

plays  an  i m p o r t a n t  role in the  microworld and  provides a basis for our in- 

vest igat ion.  In  sect. 4, as a simple example ,  we present  the  covar iant  t tamfl -  

tonian  formal i sm for quant ized neut ra l  scalar fields. This pape r  is concerned 
with pu t t ing  the  formal ism in a somewhat  generalized one. Therefore,  we feel 
i t  useful to make  the  discussion of our formal ism as self-contained as possible. 

I n  sect. 5, for a pair  of neut ra l  scalar mesons we derive a wave  equat ion which 
contains local potent ia ls  be tween t h e m  together  with their  respect ive self- 

potentials .  To obtain  the  respect ive self-potentials,  in sect. 6, we calculate the  

self-energies of the neut ra l  scalar meson in in teract ion with itself and  with  a 

neut ra l  vector  gauge meson. We discuss the  relat ion of our prescr ipt ion for 

determining the  self-potentials to the  procedure  for the  mass renormal izat ion 

in s tandard  q u a n t u m  field theory.  F r o m  the nonlocal forms of the  self-potentials 

we derive their  localized forms b y  assuming a relat ivist ic cut-off in the  evaluat ion 
of divergent  integrals with respect  to Eucl idean relat ive co-ordinates.  After  
collecting all results derived in this manner ,  we find the  sum of local and  lo- 
calized potent ia ls  in te rms  of which two scalar mesons are able to make  a bound 
pair ;  the  existence of such a pair  is main ly  due to the presence of localized 

a t t r ac t ive  self-potentials and  local repulsive two-body  potentials .  The s i tuat ion 

is somewhat  similar to t ha t  of the  Cooper pairs of electrons in which the  at-  
t rac t ive  phonon-media ted  interact ion produces correlated pairs of electrons 

in spite of the  existence of ~ repulsive Coulomb potent ia l  be tween electrons. 

In  sect. 7, we discuss the  mass  eigenvalues of the  bound scalar-meson pair.  

2 .  - H e i s e n b e r g - N a m b u  n a t u r a l  u n i t s .  

As is well known, to construct  reasonable q u a n t u m  mechanics,  i t  m a y  be 

necessary to introduce a fundamen ta l  constant  wi th  the  dimensions of length.  

Several  people assumed the  existence of fundamen ta l  length scales some of 

(2) It. ENATSU: Prog. Theor. Phys., 30, 236 (1963). This paper will be referred to as I. 
See also Nuovo Cimento A, 58, 891 (1968) and H. ENATSU and S. KAWAGUCm: Nuovo 
Cimento A, 27, 458 (1975). 
(3) W. HEISENB~RG: Ann. Phys. (Leipzig), 32, 20 (1938). 
(4) Y. NAMBU: Prog. Theor. Phys., 7, 595 (1952). 
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which serve as cut-off pa ramete r s  for the  divergences in q u a n t u m  field theory.  

I n  connection with  a mass unit,  IqAm~U (~) had  proposed a sys tems of units 
in te rms  of which one finds 

1 
(2.1) m~ ~ a - -  137 ' my ~ 1.5 , ~nn - -~ 2.0 , m. K 7.1 , 

The au thor  (~) pointed  out  tha t  the  lqambu units is identical  with Heisenberg ' s  
na tura l  units  (a) : 

(2.3) 

~:O=ro~--], 

ao z o~ - 2  , 

~ - 1  

r o: classical electron radius ; 

ao: Bohr  radius;  

2: Compton  wave- length  of an electron.  

tt~,ISE~BERG employed re as a certain l imit  or a cut-off beyond  which q u a n t u m  
mechanics m a y  not  be applied. I n  the  last  pa r t  of this paper ,  we shall adop t  

the  Heisenberg- Iqambu na tu ra l  units in which, however,  re is assumed to be 
the  Thomson radius and is a measurable  object  in exper iments  on Compton  
scat ter ing of an electron. We  avoid to use the words (~ classical electron radius ~) 

which are not  associated with  the  idea of q u a n t u m  mechanics.  Fur the rmore ,  
we would not  regard re as a universal  cut-off. 

I n  principle, one m a y  take  a mass  of an a rb i t r a ry  e lementa ry  part icle or 

even the  P lanck  mass as a uni t  of mass or of reciprocal  length.  In  view of the 

gradual  endless increase of the  num ber  of e lementa ry  particles wi th  large masses, 
i t  is convenien~ for us to utilize the Heisenberg- lqambu na tu ra l  units in which 
the  l ightest  massive  part icle assumes a special role. 

3. - M i c r o n o n c a u s a l i t y  as  f irst  p r i n c i p l e s .  

We now turn  to the  prob lem of first principles in q u a n t u m  field theory.  
The microcausal i ty  condition implies t h a t  the commuta to r s  (or an t i commu-  

ta ters)  of two field operators  vanish if these fields are t a k e n  a t  points  which 

have  a finite spacelike separat ion.  Moreover,  we have  proposed the principle 

of micrononcausal i ty  (2) as an addi t ional  and complemen ta ry  principle to 

t ha t  of the  micrecausa l i ty  in q u a n t u m  field theory.  I t  can be expressed in the  

following way:  any  v i r tua l  e lementa ry  part icle with a real mass  can p ropaga te  

between two points  separa ted  b y  a spacelike distance with a veloci ty  fas ter  

t han  the  light velocity.  We exclude, however,  the  tachyons  with imaginary  

musses and real energy-momenta .  In  order to i l lustrate our assertion of 

micrononcausal i ty ,  we will mere ly  ment ion  an example  of v i r tua l  particles.  

(~) H. E N A T S U ,  H. HASEGAWA and P .Y.  PAC: Phys. Rev., 95, 263 (1954). 
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In  Yukawa ' s  theory  of nuclear forces, v i r tua l  pions ~re exchanged between 
two nucleons. As is well known, the  two nucleons with t imel ike energy-mo- 

m e n t a  emi t  and  absorb  the  v i r tua l  pions wi th  spaeelike ene rgy -momen ta  in 
the  t-channel exchange.  I t  is to be noted,  however,  t h a t  the  v i r tua l  pious can 

have  real masses bu t  imaginary  energy-momenta ,  so t h a t  their  velocities be- 
come larger than  the  light velocity.  

Micrononcausal  Eucl idean wave functions for v i r tua l  hadrons  exceeding 

the l ight veloci ty  have  been studied in a previous pape r  (e). We  emphasize  

t ha t  the micrononcausa l i ty  plays an essential role in the  bound-s ta te  problems 

of a toms,  nuclei and e lementa ry  particles. Indeed,  the  au thor  believes t h a t  the  
micrononcausal i ty  is the  mos t  impor t an t  principle for such problems.  

4. - Covariant Hamiltonian formalism for quantized neutral scalar fields. 

We s ta r t  b y  considering a classical real scalar field q~(x, ~) in which ~ (~), 
hav ing  the  dimensions of (length) 2, is an invar ian t  t ime  common to all fields 

involved,  and  x denotes xu (# ~ 1 ,  2, 3, 4, x4~-iXo, ] g : v : l ) .  The field 

q~(x, 3) called the  z-representat ion of the field~ is divided into two par t s  9 

(4.1) ~(x, 3) = ~(+)(x, 3) + ~H(x, 3), 

where q~(+)(x, v) and qJ(-~(x, 3) are posit ive- and  negat ive- f requency par t s  of 
q~(x, ~), respect ively.  This s t a t emen t  is qualified as will be seen below. 

Assuming formal ly  the  Lagrangian  densi ty  

(4.2) 

i 
~. = - -  ~ (~<-)(x, ~) a~(+)(x, ~) - -  ~ ( - ) ( x ,  ~) ~(+)(x, ~)) § 

A- ~ ( - ) ( x ,  3) ~.~(+(x, 3) ,  

~ ---- ~-~ ' ~ - -  ~ x ~  ' 

(6) H. ENATSU, A. TAKENAKA and M. 0KAZAKI: I~UOVO Cimento A, 43, 575 (1978). 
(7) The time-ordered list of many papers in which invariant fifth parameters are in- 
troduced is as follows: V.A. FocK: Phys. Z. Sowjetunion, 12, 404 (1937); E .C.G.  
STUCKELBERG: Helv. Phys. Acta, 14, 322 (1941); 15, 23 (1942); Y. NA~BU: Prog. Theor. 
Phys., 5, 82 (1950); R. P. FEYNMAN: Phys..Rev., 80, 440 (1950); J. SCHWING]~R: Phys. 
Rev., 82, 664 (1951); L .P .  HORWITZ and C. PIRON: Helv. Phys. Acta, 46, 316 (1973); 
J. R. FANCHI: Phys. Rev. D, 20, 3108 (1979); L. HOLSTER: J..Math. Phys. (N. Y.), 
21, 2461 (1980); 22, 2307 (1981); L .P .  HORWITZ and Y. LAvI~: Phys. Rev. D, 26, 
819 (1982), and references therein; R. KUBO: Nuovo Cimento A, 85, 293 (1985). The 
invariant time v in the present paper differs from those fifth parameters in that v 
is essentially associated with the notion of micrononeausality. This point was emphasized 
in ref. (1). 
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and 

( 4 . 3 )   fd fd4xL=o, d 'x  = dxo dx~ dx~ dxz, 

we obtain the  Euler-Lagrange equations of motion 

(4.4) iO~o(-)(x,  ~) = [] ~(-)(x,  ~) , 

(4.5) iO~(+)(x ,  ~) = - [] ~(+~(x, ~) . 

The Hamil tonian  density is found to be 

(4.6) H : - -  ~ ~(-)(x, ~) ~ ( + ) ( x ,  ~).  

On quant izat ion the  real field ~(x, v) becomes a Hermi t ian  field r v ) :  
= q(x, ~). We assume the expansions of the  field operators as 

(4.7) 

(4.8) 

(2~)tJ Y ' ' m ~ ) O ( m ~ ) e x p [ i m 2 T ] '  

~( - ) (x ,  ~) - ro [dm~,~(_)t x (2z)�89 Y ~ ' m 2 ) O ( m ~ ) e x p [ - - i m ~ ] '  

together  with 

(4.9) q~(+)(x,m~)O(m2)-- , l t  fdTq~(+)(x,z)exp[--im~T] 

(4.10) ~(-)(x, m S) O(m ~) - -  exp Jim2 ~],  

where q~(-~)(x, m S) are called the m-representat ion of the field. Note tha t  q~(~:)(x, ~) 

and ~0(~)(x, m S) have the dimensions of (length) -2 and (length) -1, respectively, 

so tha t  we pu t  ro on the r ight-hand sides of eqs. (4.7)-(4.10). The mass va- 

riable m S is assumed to have the dimensions of (length) -~ (dimensionless ~2 

and f are defined by  m ~ ---- ~2r[~ and v---- fr~). Physical  masses of e lementary  
particles are denoted by  m e, m ~ ,  m ~ ,  m ~ ,  etc., all of which have lower indices, 
as in (2.1). 

We must  then  require tha t  ~(+)(x, m 2) and ~0(-)(x, m :) obey the Klein-Gordon 
equation 

(4.11) ([] - -  m2)q)(+)(x, m ~) = O. 
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T h e  Four i e r  expans ions  of the  fields ~o(~)(x, m ~) are  

(4.~2) 

(4.~3) 

(t.~4) 

where  

H. ENATSU 

qS+)(x, m 2) --  (~)~ ~k exp  [ik, x,](~(k~ ~- m2)O(ko)a(k, m~),  

[~(+)(x, m~)] * ~-- ~(-)(x, m~),  

a(k, m ~) a n d  a*(k, m ~) are  ann ih i l a t ion  a n d  c rea t ion  opera to r s ,  a n d  
qD(+)(x, m 2) a n d  ~(-)(x, m 2) a re  t he  pos i t ive-  a n d  n e g a t i v e - f r e q u e n c y  p a r t s  of 
~o(x, m~), r e spec t ive ly .  

n o w  we a s s u m e  the  genera l ized  c o m m u t a t i o n  re la t ions  

(4.15) [a(k, m2), a*(k', m'2)] ~ 2ko~(k - -  k ~) ~(r~(m 2 -  m '2 ) ) ,  

(4.]6) [a(k,m~), a(k ' ,m'2)]:[a*(k ,  m2) ,a*(k ' ,m '2)] :O,  k o : - ~ V / ~ m 2 , .  

The  n u m b e r  o p e r a t o r  can  be  w r i t t e n  in t he  f o r m  

= f  d'x~,-,(x, ~)~,+,(x, ~) . (4.17) N 

Us ing  the  re la t ions  (4.7), (4.8), (4.12) a n d  (4.13), a n d  i n t eg ra t i ng  wi th  r e spec t  
to  x~ and  k', ,  we can  rewr i t e  ~Y as 

r 2 
(4.18) N - -  ,,o 4 (d 'xdm2dm'2d4kd'k '  exp  [--im'2• -~ im2"c--ik~x~ ~- ik~,x~]. 

(2~) J 

�9 O(m 2) O(m '2) O(ko) O(k~)(~(k~ 2 -~- m '2) (~(k~ ~- m 2) a*(k', m '~) a(k, m ~) : 

~-- r~j'dm~dm'2d~k exp  [--im'2T Jr im2~:]O(m2)O(m'~). 

�9 O(ko)5(-- m 2 Jr m'~)5(k~ ~- m 2) a*(k, m '2) a(k, m ~) = 

= r~j'dm ~ d4k 0(m 2) O(ko) 5(k~ Jr m 2) a*(k, m ~) a(k, m2), 

where  use  has  been  m a d e  of 

(4.~o) ~d~k ~(k~ + m'~) ~(k i + m~) =fd~k 8(-- ~ + ~'~)~(k i + m~). 

I n  a s imi lar  m a n n e r ,  for  t he  g a m i l t o n i a n  

(4.20) M 
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one finds 

(4.21) M = r~fdm~ d~km~O(m~)O(ko)a(k~ ~- m ~) a*(k, m~)a(k,  m~) .  

The v a c u u m  s ta te  is defined as 

2 7 5  

the  lines of the  above c~lculations yields 

(4.28) [~(+)(x, m*), ?( )(x', m'~)] = 

] I d  ' , �9 , , -- ('2-~)~ --~kd~k O(ko)O(ko) exp [iGx~-- ,k~x~]. 

�9 [a(k, m~), a*(k', m'~)]a( G + m%~(G ~ + m'% = 

= .1  fdkdkod@'O(ko)O(k; )  exp [ i k . x . - - i k ~ x , ' , ] .  

�9 2koa(k - -  k ' )~(r~(m 2 - -  m'2)) a(k~ - -  k'~2)6(ky -~ m ~) = 

= 1 (dkod@'O(ko)O(ko) e x p [ i k ' ( X - - X ' ) - - i ( k o x o - -  k'oxo)]" 

2 " T 2 2 r2 �9 2 " ~o6( o(m - - m  ))6(,co--ko2)a(k~ ~ + m ~) = 

1 
f d@' O(l,'o) exp [ i k '  ( X - -  X ' )  - -  iko( xo --x'o) ]. (2~)~ 

�9 a(r~(m ~ - -  m'~))~(k'~ ~ + m ~) : iA(+)(x - -  x ' ,  m~)~(r~(m ~ - -  m '~ ) ) ,  

(4.26) Q(x, r) = ~(-)(x, r)~(+)(x, ~),  

(4.27) j~(x, ~) z i [ ~ ( - ) ( x ,  ~)q4+)(x, 7:) - -  ~(-)(x, T) G~(+)(x, T)] . 

NOW we t u r n  to the  der ivat ion of the  c o m m u t a t i o n  re la t ion be tween  
~0c+)(x, m 2) and  ~(-)(x', m'2). An  evalua t ion  of the  c o m m u t a t i o n  rela t ion along 

(4.22) a(k, m2)10> = 0 ,  ~(+)(x, ~)10> = 0 .  

Thus,  for a one-particle s ta te  we obta in  

(4.23) [k, m2> ~- a*(k, m~)[0>, /elk, m ~> = Ik, m2}, 

(4.24) @, ~ % ' ,  ~'~> = 2 k o a ( k -  k ' )a (r~ (~2 - -~ '~ ) ) .  

I t  should be no ted  tha t ,  using the  equat ions  of mot ion  (4.4) and  (4.5) for quan-  
t ized fields, one finds the  conservat ion law 

where 
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where  t he  A ( + ) ( x -  x ' ,  m 2) is def ined b y  

?. 
- - ~  4 / / (4.29) A(+)(x - -  x ' ,  m 2) - -  ,-~-:, 1,1 k 0(leo) exp  [i~'~(x~ - -  x~)]~(k~ s + m s ) .  

( z ~ ) a J  

I n  t he  e v a l u a t i o n  of (4.28), t he  c o m m u t a t i o n  re la t ion  (4.15) has  been  used  a n d  
t h e  in t eg ra t ions  wi th  r e spec t  to  k a n d  ko h a v e  been  p e r f o r m e d  in th is  order .  

F o u r i e r  expans ions  (4.7) a n d  (4.8) enab le  one to  ge t  t he  c o m m u t a t i o n  re- 

l a t ion  b e t w e e n  ~(+)(x, ~) a n d  ~(-)(x', ~') for  a t ime l ike  i n t e r v a l  ( x ~ -  x',)s < 0, 

(4.30) [~(+)(x, ~), ~(-)(x', ~')] ~-- i A ( + ) ( x -  x ' ,  ~ -  ~ ' ) .  

E x p r e s s e d  in t e r m s  of (4.7) a n d  (4.8), the  l e f t - h a n d  side becomes  

(4.31) ~(+)(x, ~), ~(-~(x', ~')] ---- 

r s ,  
~-- o |d ins  din, ~ O(m2 ) O(m,S) exp  [im 2 ~ - -  i m  '~ ~'] E~+)(x, mS), ~(-)(x', re 's) |  ---- 

*?,2 

: ~ f d n S d m ' S O ( n ~ ) O ( m  's) cxp  [ imsT - - i m ' s ~ ' ]  �9 
z ~ j  

�9 A ( + ) ( x  - -  x ' ,  m s)  O ( r g ( m  s - -  m " ) )  = 

i I "  
= ,-;-2_ IdmSO(m2) e x p  [imS(~ - -  T')] A(+l(x - -  x ' ,  m s) . 

z ~  d 

T h e n  we ob t a in  

(4.32) A(+)(x - -  x ' ,  T - -  z ' )  = 1 ~dm~O(m~ ) exp  [im2(~ - -  ~')] A(+) (x - -x ' ,  mS).  
z ~ j  

Simi la r ly  we  der ive  t h a t  

(4.33) [~(-)(x, ~), q)(+)(x', T')] ~ iA( )(x - - x ' ,  T - -  ~') , 

1 
(4.34) A ( - ) ( x - - x ' ,  T - - ~ ' )  : ~ ]dmSO(m ~) exp  [ - - i m S ( ~ -  ~ ' ) ] A ( - ) ( x - - x ' ,  m~) ,  

(4.35) A ( - ) ( x - - x ' ,  m ~) - -  2 i a fd@O(~'o) exp  [ - - ,~ , (x , "  �9 - -  xz)]5(~:,' ~ + m s) . 
( ~ ) J  

T h e  func t ion  A ( x -  x ' ,  ~ : -  ~') is def ined as 

1 
(4.36) A(x - -  .~Y, ~ - -  ~') ~ ~ ]d in  ~ exp  [im~('~ ~ - -  ~')]" 

�9 [A(+)(x - -  x ' ,  m ~) O(m s) ~- ~ ] ( - ) ( x  - -  x ' ,  - -  m s) 0 ( - -  mS) |  --~ 

= A ( + ) ( x  - -  x ' ,  ~ - -  ~ ' )  § A ( - ) ~ x  - -  x ' ,  ~: - -  "~ ' ) .  
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The expansions of the  t te rmi t ian  field q~(x, v) can be wri t ten 

(4.37) ~(x, 3) = ~(+~(x, 3) ~- ~(-)(x, 3) = 

(4.38) ~0*(x, v) - -  
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qJ-)(x, - -  m S) 0(--  mS)] exp [im~3] : 

(~-~)t m2r  m ~) exp [ i ra '3] ,  

-z T~ ) . d 

-- (~), fdm~C*(x,--m") 

r  - m") = r ms) ,  

(q~c+~(x, - m") ) * O ( -  m S) = ~o(-)(x, - m~)O(  - ms) ,  

(q~(-)(x, ms)) * O(m ~) = ~(+'(x, m S) O(m"). 

~ ' ( x ,  3) = i(q~(+)(x, 3 ) -  ~(-'(x, 3)). 

I t  is easy to show tha t  

(4.39) 

(4.40) 

(4.41) 

Let  us define 

(4.42) 

I t  follows tha t  

[~o('(x, 3), ~o(x', 3')] = i A ( ~ ( x -  x ' ,  3 -  3 ' ) ,  (4.43) 

(4.44) A(1)(x- x' ,  ~ -  3') = i ( A r  x', ~ -  ~ ' ) -  A(-~(x- x', T -  T')). 

exp [ira ~ 3] . 

Now the  functions A ( x -  x ' ,  z -  z ' )  and A(1~(x -  x ' ,  z -  z ' )  can be obtained 
from the  corresponding functions d ( x - - x ' ~  m 2) and A(1)(x - x ' ,  m ~) in the  
m-representation; 

(4.45) A ( x -  x', 3 - 3') • ~ ~ d ~  (x ~.) exp [ ~ ( 3  - 3')] ,  

Ar - -  x ' ,  r - -  3') = 1 fdm~ A(1)(x _ x ' ,  m S) exp [im2(3 - -  3')] 
z ~  j 

(4.46) 

where (8) 

(4.47) 

(4.48) 

A(x ,  m S) = - - 2 ~ ( x ) A ( x ,  m S) = 

= _ 1 d x~ i m  ~ q] 

A(, , (x  ' m~ ) = ,1_ f d f i d ' k  exp [ik~fl -~ ik•x• ~- i f lm 2] 
(zT~) d 

(8) J. SCHWINGER-* Phys. l~ev., 75, 651 (1949). 

18 - I I  N ~ o  ~i~r~n~a A ,  



(4.49) 

(4.50) 

where 
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and q and fl are parameters .  The computat ions of the integrals involved in 
(4.45) and (4.46) have been carried out in ref. (1), with the  result  

A ( x -  x', 7 : -  r  = - i ~ ( x -  x ' )A(x ,  ~[x', 7:') , 

A( ' ( x - -  x', ~ - -  3') = ~(~-- ~')A(x,  ~lx', r  , 

- i [ (x. - x~)~ 1 
A ( x , ' ~ l x ' , ~ '  ) = 1 6 ~ - -  ,)~exp i ~ - ~ - ~ j ,  

(4.51) 
, e (~ - -T ' )  = 1 ,  T > ~ '  

: 1 ,  T ~  T r . 

Note  t ha t  

(4.52) ~-~'limA(x' v[x' ,  ~') = s(~ - -  ~ ' )~ (x - -  x')[~_~. , ~(x) = ~(x0)~(X) . 

The  commuta t ion  relat ion (4.30) can be rewri t ten in the form 

(4.53) [~(+(x, 3), r  3')] = � 8 9  x') + s ( ~ -  ~')}A(x, ~[x', 3 ' ) .  

Taking the  limit v -+ ~', finally we get 

(4.54) [~(+)(x, ~), ~(+(x', 3)] = ~ ( x -  x') .  

This is a fundamenta l  commuta t ion  relation. We note  tha t  (4.54) is not  as- 
sumed, bu t  is derived f rom the  general commuta t ion  relation (4.15). 

5 . -  W a v e  equat ion  for a c o m p o s i t e  sca lar  m e s o n  w i t h  a m i c r o n o n c a u s a l  

s tructure .  

In  this section we shall propose a wave equat ion for a composite scalar 
meson with a micrononcausal  structure.  Le t  us consider a system of two scalar 
mesons separated by  a spacelike distance. They  interact  with each other  through 
fields mediat ing between them. The interact ion is usually expressed in terms 
of a local potent ia l  in a wave equation. When  the  two scalar mesons come 
near  to  each other,  new potentials  may  take place over short distances. As 
will be seen later, these potentials arise f rom the self-energies of the scalar 
mesons. We call the new potentials  self-potentials, which, in general, com- 

prise the  masses of v i r tual  scalar mesons as well as other  v i r tual  particles. 
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Now we shall consider the description of such a system in a relativistic 
Fock space. The Hamil tonian operator of the system is assumed to be 

(5.~) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

Mo = - - f d ' x  ~ q/-)(x, ~:) ~, r 7), 

M~ = - -  i f d 'x '  d'x" qg-)(x H, ~) V,( Ix" - -  x'[) ~(+)(x', 7),  

f d + ,i M2 - -  �89 "x'd'x" qg-)(x ', ~)q~<->(x", T) Vs( lx ' - -  x"l)q~( )(x , 7:)q4+)(x', , ) ,  

f V ~ x' 

M ,  --- - v ~ f d , x '  ~,-,<x', 7)~(+,(x', ~) , 

where 21/o is the mass operator for free scalar mesons, and M2 contains the inter- 
particle local potential  V2([x'--x"[) which is a function of Ix'--x"[. In the 
lowest order of approximation, M1 is the operator corresponding to the Feynman  
graphs for <( usual ~> self-energies in the m-representation, while M3 and m4 
are related to tadpole Feynman  graphs. The characteristic features of the 
tadpole graphs are tha t  they  contain loops of virtual  particles, so tha t  V~ ~ 
and V~ include divergent constants arising from the Feynman  function, say, 
Av(x, m s) for x~-~ 0. We indicate this fact symbolically by the superscripts 

co co of V 3 and V~. 
The existence of the factor i in front  of the integrals of M~ and 9/3 seems 

to violate the hermitici ty of the Hamil tonian M. However, i t  is only super- 
ficially so since in the integrals over relative co-ordinates, we employ the 
Euclidean metric by the replacement Xo --->- ix4. Therefore the factor i can be 
absorbed in the integration measure, and the self-potential parts become real 
in wave equations as will be seen later. 

Examples of the Feynman  graphs for the case of the scalar mesons, inter- 
acting with itself and with vector mesons, will be considered in the next  section. 

Let  us now define the energy-momentum operator as 

(5.7) P~ = - [ d ' x  (~<=)~x. ~ ) ~  r 7) - -  ~, r 7)r  7 ) ) .  
2 3  . . . .  

Using the commutat ion relations 

(5.S) [r ~), r T)] = 6(x --  x ' ) ,  

(5.9) [r , ) ,  r 3)] = [r z), r ~)] = 0 ,  

1 8 "  - I1 Nuovo Cimento A. 
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and assuming that  V~(lx'--x"[) is a function of Ix'--x"[, we can prove that  

(5.~0) 

(5.~1) 

and 

[N, M o + M ~ + M s + M , ] - - - - - O ,  

(5.12) [P~,, N] = o .  

The evaluations of [_~, M~] and [Pu, M~] are performed by the formula for 
operators A, B, C and D 

(5.13) [AB, CD] = A[B, C]D -[- [A, C]BD + CA[B, D] + C,[A, DJB. 

We find 

(5.14) 

(5.~5) 

[iV, M1] = 

= - i fd,x '  d,x" d,x [~(-~(x, ~) ~+(x, % ~(-)(x", ~) ~+(x', ~)] 171(Ix"-- z ' l)  = 

= -- i fd ,x  d~x' d,x" {~'-'(x, ~) ~+(x', ~)O(x-- x") - -  

- -  ~,-)(~", ~) ++,(x, ~) ~(x ' - -  x)) V~( Ix"-- x'l) = O, 

[ p . , / , ]  = - �89 ddx' d,x" [{~(-'(x, ~ ) ~  ~,+'(x, ~) - -  

- 2. ~,-,(x, T)~,+,(x,-c)}, ~(-,(x",-~) ~,+(x',  ~:)] v ~ ( I x " - x ' l )  = 

= - j "  " " ' ' v ~ ( I x " -  = d,x'd,x" (~.V,(lx - - x  I) + ~,, x,I)}v,-,(x",.~)v,+,(x,, ~) o ,  

I t  

~" - ~ x ~ .  ~ x ' , .  

Therefore we get 

(5.16) [N, M] -= 0 ,  [Pu, M] = 0 . 

A complete set of states can be thus formed by taking the set of all states 

(5.17) imp., n, ~ > ,  

and n stand for eigenvalues of M and ~ ,  respectively, while eo denotes where m. 
the eigenvalues of other quantities required to form a complete set of ob- 
servables including Pu. 
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The s ta te  

1 
(5.18) Ix~, x,, ..., x , ,  3)  = ~-~.~ ~(-)(x~, ~) ~-)(x~, 3) ... ~(-)(x,, ~)10) 

281 

represents a n-particle s tate  localized at  x~, x, ,  ..., x ,  a t  invar iant  t ime 3. We 
assume tha t  all points x~, x~, ..., x~ have spaeelike relations with one another .  

The relativistic Fock  ampli tude for a two-part icle s ta te  

(5.19) 
1 

Y ~ : .  

is the probabi l i ty  ampli tude (or wave function) for finding the  scalar mesons 
in the s ta te  [2m2,, 2, co) a t  x~ and x~ ((x~ --  x~)  ~ > O) at  invar iant  t ime ~. 

Our nex t  task is to find a wave equat ion for X~,~:,~.~(x~, x~, ~). The cova- 
r iant  Heisenberg equat ion of mot ion satisfied by  the  field opera tor  ~(+)(xl, ~) is 

(5.20) i~,~+)(x~, ~) = [M, ~(+)(xl, v)] .  

In  terms of the commuta t ion  relations (5.8) and (5.9), the  r ight-hand side of 
(5.20) is rewri t ten  as 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

[M, q(+)(xl, v)] = Io -i- 11 § I~ § I~, 

Io = fd ' x  [~(-)(x, 3), ~(+)(xl, 3)] [] ~c+)(x, 3) = - -  [31~(+)(xl, 3) ,  

z, = - i fd ,x '  d,x" [~,-'(x", 3) ~'+'(x', 3), 7,'+'(x.,, 3)] V,( Ix"-- x'l) = 

= ~fd,x'r ~) Vl(Ixl --  x ' l ) ,  

z~ = �89 ~(-'(x", ,:)qJ,+)(x", 3)~(+'(x1, 3) V~( Ix l -  x,,r) § 

+  fd,x' 3) w'+'(x', r , ( rx , -  xll), 

V ~ x v x y _ _  z. = - - i f d ' x '  d*x"W-)(x', ~)~(+'(x', 3) ~'+'(x,, 3)] .(I - -  ]) 

- -  VTfd'x '  [~(-~(x', 3)~(+~(x', 3), ~(+)(x,, 3)] = 

---- i~(+'(x~, 3) fddx " VT( ]xl --  x"l) § V'2~(+'(x~, ~) . 

Similar expressions hold for ~(+)(x~, ~). Differentiat ing g,.,:,~,~(xl, x2, ~) with 
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respect to 3) we obtain 
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(5.~6) i ~  Z~m~,~,~,(xl , x~, "~) = 

1 
= ~-~ <0i i~(+)(x~ , ~)~(+)(x2, 3) + i7~(+)(x~, 3)~qr w)12mL 2, ~> = 

1 
= ~ <o1{- G~v,+,(x,, ~)v,+,(x~, 3) + v,+>(~,, ~ ) ( -  D~v,+,(~, ~))} + 

+ ifd'x' ~(+>(x', T) ~(+>(x~, T) V~(Ix~ -- x'[) + 

+ ifd'x' ~(+)(x,, ~) ~'+>(x', ~) V~(lx~ -- x'l) + 

+ �89162 ~)~'->(x", ~)~(+'(x", ~)~(+)(x~, ~)V2(lx,--x"l) + 

+ ~fa,x' ~(+>(~, ~) ~c-)(x,, ~) ~+)(x,, ~) ~(+,(x', ~) v , ( I x ' -  x~l) + 

+ ~,+)(x~, ~)~,+)(x~, ~)fd,x" V~(Ix~- x"l) + 

+ i~(+)(xl, ~)~,+)(x~, ~:)fd,x" V':(lx~- x"l) + 

+ V~(1)q~(+)(x~, ~)~(+)(x~, ~) -~ V~(2)~(+)(x~, ~)~(+)(x~, ~)12m~, 2, co>, 

where covariant Heisenberg equations of motion for ~(+)(xx, 3) and q(+)(x~ ) ~), and 

(5.27) <Ol(p(-)(x~, T) = o, <OEq(-)(x~, T) = 0 

have been used, and V~(1) and V~(2) in (5.26) denote V~ taken at the points 
xl and x~, respectively. 

Then we obtain the wave equation for g2~:,~,~(Xl, x,, ~), 

(5.28) i ~ x ( x ~ ,  x~, ~) = 

= ( -  D I -  c]2)z(x,, x2, ~) + ~fd,x'V,(rxl -- x'l)Z(x', x~, ~) + 
' 

+ (v7(1) + vT(2))z(xl, x2, T), 

where the subscripts of the wave function are suppressed. 
The nonlocal terms containing V,(Ixl--x'l) and Vl(IX~--x'[) in eq. (5.28) 

can be transformed into local forms in the following way. 
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For the eovariant t teisenberg operator ~(+)(x, 3), it  is evident tha t  

W(+)(x, 3) ---- exp [-- iMw] W(+~(x, 0) exp [iMv] (5.29) 

and 

(5.3o) 
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in which 

(5.32) X~ ~ �89 (xl~ ~- x ~ ) ,  x ,  = xl~ --  x ~ ,  

We consider one of the nonlocal self-potential parts in (5.28): 

(5.33) W ~  = i fd ' x '  V~(Ix ~ -- x'l) y,(x', x , ,  ~), (x~, 

~ > 0 .  X~ 

(5.35) 

and 

(5.36) 

so tha t  

(5.37) 

- ~ ' ) ~ >  o .  

To work out the integrals in eq. (5.33), it  is helpful to introduce the replacement 

(5.34) { ~ . - ~ ;  = ~ . - ~ , . - ( ~ - x ~ . ) =  ~ , - ~ ,  
x~ = x~--x~g,  U2 xz > 0 .  

Assuming the short range of the nonlocality in the nonlocal self-potential 
Vl(Ix~--x'[),  we approximate to i~ and W~ L by 

g(x', x2, 3) ~ Z(xl, x~, 3) = ~b(x) exp [ i (2m~ @ P~X~)] 

W [  r" = i fd4x " V~(Ix - -  x"l)q~(x) exp [i(2m~T + P~X~,)] ~- . . . ,  

I "  

V~(x) ~Jd,x" Vl(Ix - -  x"l),  (x~ --  x~)~ > O, 

is a localized self-potential. 

In this local approximation, we suppose tha t  the potentials for the first 
scalar meson consist of two parts;  one of them is the local potential  part  

exp [-- iPl, a,] ~(+~(x, 3) exp [ iP,  a,] = ~(+)(x -~ a, 3), 

where the four-vector a ,  stands for translation. Then the wave function 
):(xl,x~, 3) can be writ ten as 

(5.31) Z(xl, x2, 3) -~ <01Tc+)(xl, v)~(+)(x2, ~)[2m~, 2, w> = 
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V~(x) -~ �89 V~(x), provided the second scalar meson is placed at the origin of the 
relative co-ordinates x~, and the other is the tadpole self-potential 

(5.38) v(2) = i f d ' x ' V T ( l ~ -  x'l) + V7(2), 

which acts upon the second scalar meson merely at the origin. Exactly in the 
same way, when the first scalar meson is placed at the origin of x~, the other 
local potential is Va(x)~ �89 and the tadpole self-potential 

(5.39) v(1) = ifd,x' VT(l~-- x'l) + VT(~) 

works on the first scalar meson at the origin. I t  is evident that  the wave 
eq. (5.28) is symmetric under the interchange x~ ~-~ x~ because of the symmetry 
property of the wave function~ g(xl, x2, T) ---- Z(x~, x~, T). 

AS a result, we are left with the wave equation for X(x, X, ~) 

(5.40) i ~ z ( x ,  x ,  ~) --- - -  (�89 § 2 D~)z(x, x ,  ~) + 

+ V (lxl)+ 

+ 2 j'd'x' 

where we take the origin of the relative co-ordinates at the point x~. The pas- 
sage from a Minkowski space to a Euclidean space for the relative co-ordinates 
is straightforward 

(5.41) 
" ~ - -  i x ' ,  d ' x "  ~ - -  i ( d ' x " ) ~ ,  x o .-> _ _  i x  a ~ Xo  

*' ' ~' ( x ' - -  X~)o - + - -  i x 7  = - - i ( x ' - - x ~ ) ,  Xl. , ~ X l ~ - -  X21 ~ ~ Xo ~ 

Finally we obtain the wave equation 

(5.42) i ~ Z ( x ~ ,  X, ~) = - -  (�89 + 2 []~)z(x~,  x ,  ~) + 

+ [2f(d'x") Vi(Ix . - x l)+ V,(I/q)+ 

X + 2f(d,x")~ VT(Ix:l) + 2V,(2)]z( ~, x, ~). 

6.  - A s i m p l e  m o d e l .  

As an example, in the case of a neutral scalar meson interacting with itself 
and with a neutral vector meson, we shall proceed to calculate the localized 
self-potentia]s discussed in t h o  previous section. Hereafter we employ the 
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Heusenberg-Nambu na tura l  units ?~ ~ e -  r0----1. The renormalized La- 
grangian densi ty in conventional  quan tum field theory  is 

(6.]) 

where 

~f = - -  �89 of(x, m 2) ~ of(x, m ~) -Jr- m ~ of(x, m 2) ~f(x, m')] : - -  

- -  �88 : [G,,(x, i 2) a~,,(x, M ~) ~- 2 M  ~ U~,(x, M 2) Us(x, M')]" - -  

2 , / I x --f~:q(x, m ~) ~,~(x, m')  U~,(x, M ' ) ' - - ~ . . W t  , m ' ) ) ' : -  

+ ze,+ m,))," 
4! 

(6.2) G#v(x, M ~) = ~ U,(x, M~) -- ~, U~,(x, M ~) , 

: : denotes a normal  product ,  and the last t e rm is the  counter term. The 
positive constants /1 and ]3 are dimensionless, while the  posit ive constant  ]~ 
has the dimensions of (length) -1. M 2 and m ~ s tand for squared physical masses 

of the  vector  and scalar mesons, respectively. We have assumed tha t  the  neutral  
vector  field U~,(x~ M ~) is a gauge field and the model  is renormalizable,  so t ha t  
the addit ional  .Sf~ comprises all other  terms necessary to assure the  renor- 
malizability. Our intent ion is, however, to present  the  main ideas and not  to 
embark  upon a rigorous t rea tment  of renormalization.  

{ \ / \ / f ~'\ 

I ~ _ _ _ _ /  \ / \ . . . . . . . .  ~ ~ . . . . .  ~ . . . .  

" / \ / 
\ / / 

a )  b )  c )  

/ \ / \ 

I I I ! 
\ / \ / 

I 
[ 
a) e) r) 

. . . . .  

Fig. 1. - Lowest-order self-energy Feynman graphs for scalar mesons. (Here dashed 
lines refer to scalar mesons and solid lines refer to vector mesons.) 

:Now let us consider the self-energies of the  neutra l  scalar meson. We shall 

describe some results arising from the  S-matr ix  in the interact ion picture  of 
conventional  quan tum field theory.  To the  lowest order of approximat ion,  
there  are 6 F e y n m a n  graphs shown in fig. 17 in which a)~ b) and o) denote  

(~ u s u a l ,  self-energies. 
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For  fig. l a ) ,  the contribution of the S-matrix is (6.3) 

(6.3) S, =- S~ ~- S~, 

(6.4) 

(6.5) 

where 

(6.6) 

I "  
S 1 = - -  l~Jd4x' d4x" ~ ~0(-)(x', m 2)/I F(x'-- x", m~) �9 

�9 ! X It ' d,~AF(x  - -  M ~) ~ ~(+)(x", m S) 

= - -  ] ~ d ' x '  d ' x "  q~(-)(x', m 2) d ~ z l ~ ( x ' - -  x", .M~) �9 S~ 

I II [ If ! 1! 2 �9 ~ A ( x  - - x  ,m~)c f (+)(x" ,m~) ,  (x~, - -x l , )  > 0 ,  

d,~/IF(x - -  x , M ~) ----- ( ~  - -  ~ ~ A~(x - -  x", 

and AF(x , M S) and A~(x,  m ~) are the Feynman  functions for the vector and 
scalar mesons, respectively. We have employed the uni tary  gauge for the 
neutral  vector meson. 

I 

We would like to inject a remark here concerning the condition ( x -  
--x~) ~ > 0 imposed above. In principle, we may  take a timelike separation 

! - -  (x~ x~) ~ ~ O as well in the expressions (6.4) and (6.5). However, as ScnwI~G- 
E~ (9) showed, it  is an important  point tha t  in quantum elcctrodynamics, 
when the self-energy of an electron interacting with an electromagnetic field 
is evaluated in co-ordinate space, the result is 

(6.7) 

0 

where s is a <~ spacelike ~) interval and the well-known logarithmic divergence 
emerges in the limit s -> 0. 

! Y 

The spacelike separation of x~ and x~, interpreted in the above-explained 
sense, will be assumed in the following. This condition is in conformity with 
our basic postulate of the micrononcausality t ha t  virtual  particles can pro- 

! l! 
pagate between two spacelike-separated points x~ and x,  with velocities faster 
than  the light velocity. 

! - -  We now have the task of calculating the singularities for (x~ x:)2-~ 0 
in the self-potentials. 

Noting tha t  

i 
( 6 . 8 )  ' ' ' x " ,  - -  - -  D ' ~ ( x ' - -  x " )  ~, ~ d~,~AF(x - -  M ~) = M~ 

(~) J. SCHWINGER: Phys. Rev., 82, 664 (1951). 
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and 

(6.9) ( ~ ' - -  M s ) A ~ ( x  ' -  x", M s) = i ~ ( x ' - -  x") , 

we find that 

(6.:0) ~; ~ : [ ( ~ . ~ / . , -  ~,,, M~)) 2~(x'--  s ,  ms)] = 

i 2 i  (~'~a(x'- x")) ~ ' ,~(~ ' -  x", ~s) + ~)s (D'a(~'- x") )d~(x'-x",  m~)-  

+ (d~A~(x'-- ~'", i~)) ~ ~'~A~(x'-- x", m~). 

Since two terms including (~(x'--x") contribute to the tadpole self-potentials, 
we ignore them for the moment.  After integrations by  parts,  we get 

(6.]1) S~ = S~ + $2 =fd'x'd'x"q~'-'(x', /rb2) �9 

�9 ~ 2 t /1 X H ,  �9 { , ] l (d.~AF(x--x, Ms)) ~, 3'.LIF(X ' -  m2)}V(+'(x",m 2) 

At this point, we employ the Euclidean postulate  for the relative co-ordinates 
Z----  ( x ' , -  x~) through the subst i tut ion 

(6.J2) Zo -~ - i z . ,  R ~ = z~ + z~ + z~ + z l  > o ,  

then, in terms of the modified Bessel functions, the expression in the  curly 
bracket  of (6.11), being a self-potential in the Euclidean version, can be wri t ten as 

(6.13) vo(R) = 2/~(d~.A~.(Z, Ms)) ~ ~.A.(Z, m s) = 

= 2t~ ( i ~ ]  [~ XI(MR) ~ s ( i R )  
\4~ ~][  ~ MR -/~#~ R s 

MZ~ Z~ .K3 (MR) ] j" 

" ~ A F ( R ,  m ~) , 

where use is made of (lo) 

(6.14) dF(Z,  M~) - -  
M K I ( M R )  

4~2R 

and 

~Z~ ' 

(6.15) ~ A ~ , ( R ,  M 2) --  ~2M 2 [ ~  K2(MR)R 2 

(10) G. LEIBBRANDT, R.M. WILLIAMS and D.M. CAPPEI~: Nuovo Cimento A,  12, 611 
(1972). 
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In order to simplify V~(R), we assume that  

(6.16) Zu Z~ ~ ~u,R ~ . 

Thus we obtain 

(6.17) 
~r~ / L M-~ + - -  

H. ~ENATSU 

Noting tha t  

(6.18) 

(6.19) 

and for small R 

X2(MR) .K3(MR)] []At(R, mS). (MR)~ (--ff~ j 

2 n  
.K,+~(MR) -= ~ ~K,,(MR) + .K,,_~(MR), 

(D --  m2) A~(Z, m ~) -~ --  (~( Z) 8(Z,) , 

(6.20) iWo(MR ) = --Io(MR) (7 + 

finally one finds the expression 

(o)[0 
(6.21) V~(R) = --  21', 4 ~  1~ 6 

MR) ln%~- +..., 

3 ~ M  ~ 
4-...] (R ~ 0 ) .  

Similarly, we can carry out calculations over the graphs shown in fig. lb), 
v) and d). The contributions of these graphs arc as follows: 

(6.22) so = - ~  l*.f a,x'a,x" ~(-,(x', m*) [Ar(x'-x", m~)]s~(+'(x", m2) , 

1 ~ ( 1 1 ' 1  (6.23) Vb(R) =-- -~  /~ ~ ~ + .. . ,  

1 ~r ' - 4 "  (6.24) Sc = -- "~ ]~Jd'x a x ~'-'(x', m') [AF(x'-- x", m*)]3~,+)(x", m ' ) ,  

(6.25/ Vo(RI =-11~ ~ ~ + . . . ,  

l ~ f  (6.26) Sa = - - ~ 1  d4x'd4x"cf(-)(x ', m~)Ar(x ' - x ' ,  m~)Ar( O, m~)cf(+)( x', m2), 

1 
(6.27) V~ = --  - - /~A~(0 ,  mS), 

2m 2 

where to derive V~ we carried out the integration over Z~ in terms of the polar 
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co-ordinates 

(6.28) { Z~ ~-- R sin ~ sin 0' cos ? ' ,  

Z8 ~-- R sin ? cos 0', 

Zs ~ R sin ~ sin 0' sin ~ ,  

Z4 ---- R cos r ,  

with the result  

(6.29) 

c o  

2 ~ s m  s 
o 

Let  us now tu rn  to the contributions of fig. le) and ]), which can be wri t ten  as 

(6.30) 

(6.30a) 

(6.31) 

(6.31a) 

se = - i / . J d 4 x  ' ~ ( - ' ( x ' .  mS) A.(O, m s) qJ+)(x', ms),  

vT= ] ~ A ~ ( o ,  m s ) ,  

- -  i f d 4 x  ' q~(-)(x', m s ) ( - -  6 m  2) q~(+)(x ~, m s ) ,  SI  

V~ = - -  ~ m  s . 

I t  is noted  t ha t  some contributions f rom the  tadpole self-potential terms ignored 

in (6.10) and (6.21) should be added to the  r ight-hand sides of (6.30) and (6.30a). 
The idea of renormalizat ion of the  mass of the  scalar meson in s tandard  

quan tum field theory  may  be interpreted,  in co-ordinate-space treatment~ as 
the requirement  tha t  the sum of the  self-potentials Va, V,~ ...~ Ve should 
satisfy the  following relat ion:  

(6.32) ( r e §  vb + r e §  v~ § V:)--~ms= o, 

in the  limit R--> 0. 

However ,  in this prescript ion there  seem to be two points inadequate  for  
the present-day picture of (( e lementary  ,> particles; the  first point  is t ha t  the  

scalar meson is supposed to  be a part icle wi thout  an internal  structure,  and the 
second point  is t ha t  the  self-potentials are considered as classical mechanical  
objects. 

Amending these points, we propose to  consider a (( composite ~> scalar meson 
consisting of two scalar mesons, and to t rea t  the  self-potentials as quan tum 

mechanical  operators in a wave equation. Therefore,  a t  the present  stage we 
do not  take limit R - >  0. Our final object  is to  determine a finite mass cor- 
rect ion ~m s in terms of the wave equation. 

Now we tu rn  to  the calculation of two-body local potentials  corresponding 
to the F e y n m a n  graphs shown in fig. 2. For  fig. 2a), the  contr ibut ion of the 
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a) 

I i i 1 

1 I I I \~  

/ 

I I 
I I I " " - ~ /  I 
I I I I 

b) c) 

Fig. 2. - Lowest-order Feynman graphs for two scalar-meson systems. (Same con- 
ventions as in fig. 1.) 

S - m a t r i x  is 

S2a = - -  l~ f d ' x '  ddx " q~(-)(x', m 2) ~, ~(+~(x', m S) d,~" (6.33) 

�9 A ~ ( x ' - -  x", J l  2) qS-)(x ", m S) ~ q~(+'(x", m 2) . 

Not ing  t h a t  

(6.34) ~'~q~(+)(x', m S) - -  , 1  Iddk, ( ik; )  exp  [ik~x'~] (~(k~ 2 ~- m 2) O(ko)a(k',  m S) 
tzx~)=j 

and,  assuming  t h a t  t he  scalar  mesons  have  small  m o m e n t a  

(6.35) �9 / �9 ii u ( ,k , ) ( ,k . )d , ,  -~ m" (k~ -+ m, ko - + m ) ,  

one obta ins  the  t w o - b o d y  local  po ten t i a l  

] (6.36) V~,(R) = J[ ~ ~ ,  R~ . . . .  

The  cont r ibu t ions  associa ted wi th  the  F e y n m a n  graphs  b) and  c) in fig. 2, are  

(6.37) S2b = - - /~ (ddx  ' ddx" ~o(-)(x ', m~) @+)(x ', m~)" 

�9 A~(x'--x", m')~(-)(x", m~)~(+)(x", m~), 

(6.38) V2b(R) = - -  ]2 ~ ~ @ . . . ,  

(6.39) $1~ = - -  �89 (d~x ' ddSq~(-)(x ', ~2)  (p(+)(Xl, ms) �9 

�9 [ A ~ ( x ' - - x " ,  m2)]2 ~(-)(x ", m 2) ~(+)(x", m~),  

(6.40) V2~(/~) = - -  ~ J~ ~ ~-~ @ . . . .  

So fa r  we have  considered field opera tors  and  po ten t ia l s  in t he  m-represen-  
ta t ion .  I n  the  wave  equa t ion  (5.42), these  m u s t  be expressed in t e rms  of t he  

T-representa t ion .  To see the  re la t ion  be tween  the  two represen ta t ions ,  le t  us 
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consider the covariant Iteisenberg equation of motion for @+)(x~, ~) of the first 
scalar meson. Employing a simplified Hamil tonian operator M in which Ma 
and M~ are omitted, from (5.20) we find 

(6.41) 

§ fd~x' ~(-'(x', ~)~(§ ~) Vs( Ix'-- x~l)~+'(Xl, ~) . 

We can obtain the corresponding equation in the m-representation by con- 
sidering mass operators (n) ~nd two-body interaction operators. For  simplicity, 
if we only retain the terms -- (1/3!)]s~ s and � 8 9  ~ in (6.1), and take into 
account the results (6.22) and (6.37), in lowest order we get the modified equa- 
tion of motion for q(+)(x~, mS): 

(6.42) DlqS+)(xl, m s) = (ms - -  ~m~)q3(+)(xl, m 2) - -  

i mS)]o q)(+)(x', mS) - / : f d , x '  X l  ' ~ 2 ) .  

�9 ~0(+)(x ', ms)AF(x ' -  xx, mS)~r m2), 

where the l~st term on the r ight-hand side describes the interaction with the 
other scalar meson. 

)Iow, according to (4.7), (4.8), (4.45) and (4.46), we can replace ~(• ~) 
and A~(x, ~) by the following Fourier transforms: 

(6.43) 

(6.44) 

] 
~(• ~) --> ~ q~(i)(xl, m s) O(m s) exp [J: imS'~] , 

1 
Z ~ F ( X l  - -  X l ,  ~ - -  T I ) I V = $ ,  ~ - -  Z~F(X 1 - -  X ' ,  m 2) . 

27r 

Therefore, in (6.41), if we ~ssume tha t  

(6.45) 

(6.46) 

V l ( r ~ -  ~'] )  = F~ [ ~ ( ~  - x' ,  ~ - ~,)]sf~=~,, 

2 r T r  vs(IXl-x ' l )  = Fs~F(Xl - - �9  ~ - - ) l~=~ ' ,  

and compare eq. (6.41) with eq. (6.42), we find 

(6.47) F ~ = - - 4  ~ l t s  /~s 4 s , s  ,v  ~ ] 2  ~ 2 = - -  7l: ]2  , 

(11) j .  SCI~WINGER: ['roe. Natl. Acad. Sei. USA, 37, 452, 455 (1951); N. N. BOGOLIU- 
BOY and D.V. SHIRKOV: Introduction to the Theory o] Quantized Fields (New York, 
N.Y., 1976), p. 444. 
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so t ha t  we get 

(6.48) 

(6.49) 

H .  E I ~ A T S U  

Vx(IXl- -  X'[) ~-~ 4~2 Vb(~) ,  

V~(IX,-- ~'l) = 4~ '  V, , (Z) ,  = [ ( x ~ . -  x~)~]~. 

We now proceed to  derive local forms of the a t t rac t ive  nonlocal self-potentials 

in the  Eucl idean space. F rom (6.21), (6.23) and (6.25), we find 

(6.50) 

where 

31: (-_/' ~: 
(6.51) a = ~ ,  \Mt + 4-~' 

(6.52) b - -  8a ~ , 

~ ( x l .  - -  x ~ . ) ~ . ,  (6.53) R 2 = (x~ - -  x~)~., x~. 
n x.~ = ( x ; -  x , . ) . .  

We define the  polar co-ordinates 

~ , x~E : 2, d x~ : r~ dr~ sin ~ fl dfl sin 0" dO" d~" [ X p E  : T u~ T2 4 

(6.54) [ R : (r ~ ~ r~ - -  2rr2 cos fl)�89 

The derivat ion of the local forms containing only a is s t raightforward:  

(6.55) V~x(r) = W" L 1,1 " ~  V 1 , 2 ,  

(6.56) V ~'1,1 = - 4~afr~dr2AL, 
o 

(6.57) ./J.IL1 : f i  m 2 f l d f l [ 1 - - 2 ~  cosfl + ~ ] - '  

o 

(6.58) 

(6.59) 

1,2 : - -  4~t~ r 2  2 

x,~, = ~ ['sin, ~ d~ E~-- 2~ co~ ~ + ~'l -~ 
r~ j 

o 

r 
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Using the relation (~) 
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(6.60) 

f sin*~-lco dw _ F(~u) F(1) .  
(1 + q~ + 2~ cos ~)~ F(/x + �89 

0 �9 F(v, v - ~  + 1; g + �89 ~ ) ,  

F(3,  2; 2; e ~) = (1 - ~ ) -~ ,  F(~) p(�89 _ 
F(2) 2 '  

and similar ones for a, one finds t ha t  

[~l< J, R e #  > 0, 

(6.61) 

and 

AIL 1 ~--- 7~ ~7~ (1 - -  e~)  - '  , 
AIL, 2 __~ 7~ (1 --  a') -a 

1 

(6.62) V1L, i ---- re 
0 

2:~a  f~3(~__  1)-3 de . (6.63) V1L~ - -  r~ 
1 

The integrals involved in V~,I and V~,2 diverge at  the point ~ ---- 1, so tha t  we 
introduce a relativistic cut-off parameter  e in view of the repulsive local po- 
tential (6.36). Then, the localized self-potentials are found to be 

(6.64) V~(r) - -  2 :~a  a(1--O')-3d~ ~- 3(0~--1)-8d ~ = g(e) 
r ~ T 2  �9 

0 l + e  

Furthermore,  taking into account the local two-body potentials (6.36), (6.38) 
and (6.40) (R ~ --> re), one obtains the tota l  potential  V(r) as 

(6.65) V(r) = 2 ~ ( r )  + V~(r) = 
t~1 1~ + ~.(r) 
r a r 2 , 

wit 

(6.66) X ,  = 611 ~M]  4~ ]~' 

(12) I.S. GRADSHTEYN and I.M. RyzItIK: Tables o] Integrals, Series and Products 
(Academic Press, New York, N.Y., 1965), p. 384. 
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(6.67) K~ = [ '~ ~,M] + ~ ]~ g(~)' 

M r \  
K~(r) = ]~ -ff 3]~,m ~ ~, q- l n y - ) .  (6.68) 

I f  K1, K~ and K3 are all posit ive,  the  potent ia l  V(r) has an i m p o r t a n t  fo rm 

with  an a t t r ac t ive  pa r t  for large separat ions of the  two scalar mesons and  a 

large repulsive pa r t  for small separat ions.  Then, V(r) has a m i n i m u m  value 

a t  r - - - - r  m. Therefore,  this case is somewhat  similar to the  cases of an inter-  
act ing gas of molecules (the Lennard-Joncs  potential) ,  d ia tomic molecules, 

two-nucleon bound systems and the Cooper pairs of electrons. 
Up to  now we have  been neglecting the tadpole  terms.  I t  can be easily 

seen t h a t  a lmost  all tadpole  te rms lead to repulsive sell-potentials mere ly  a t  
the  origin of the  relat ive co-ordinates x,~. These repulsive self-potentials could 

be  added to the  repulsive pa r t  of V(r) without  affecting essentially the  shape 

of V(r). 
Moreover,  we could consider higher-order t e rms  in coupling constants ,  so 

far  neglected, and the  nonlocal pa r t  of wave  function, omi t ted  in (5.36). How- 

ever, to simplify ma t t e r s  and  to draw qual i ta t ive conclusion f rom our simple 

model ,  we restr ict  our a t t en t ion  to the  case in which the  potent ia l  V(r) plays 

a dominan t  role. 
As to the  cut-off p a r a m e t e r  s, we notice t ha t  s is assumed to be a constant .  

The in t roduct ion of a cut-off p a r a m e t e r  in the  in tegrat ion over  y is not  simple. 
Le t  r~, be a small  cut-off radius for r2, such t h a t  the region of in tegra t ion over  
r~ is defined b y  0 -+ r - -  r~c, r -t- r~c --> oo, which corresponds to the region of 
y ---- r2/r: 0 --> 1 --  ~, 1 q- ~1 --> vo. Here  r is a rb i t r a ry  a t  this stage, while r2c 
is a constant .  Therefore,  ins tead of V, we assume t h a t  the cut-off p a r a m e t e r  s 

in t roduced in (6.64) is to be  a constant  pa rame te r  such t ha t  s = r2o/rm, where 

r~ is defined above.  

7 .  - E i g e n v a l u e s  o f  m a s s e s .  

We now tu rn  to consider the  p rob lem of finding quant ized masses of 

<( e l ementa ry  ~> neut ra l  scalar mesons. For  this it is necessary to s ta te  some 

points  conta ined in our theory.  
First ,  as shown in the case of hydrogen mass  levels (2), quant ized masses 

of particles should be derived as eigenvalues of wave  equations.  Secondly, 

the  quant ized masses of particles should be a consequence of their  interactions.  

However ,  bare  masses of particles would not  be assumed, so t ha t  their  physical  

masses are expressed in t e rms  of masses of particles concerned, coupling con- 

s tants ,  q u a n t u m  numbers  and cut-off parameters .  Thirdly,  internal  proper t ies  

of part icles such as spin, isospin, strangeness,  pa r i ty  and others are wen d e -  
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scribed by means of micrononcausal Euclidean wave functions (e), so tha t ,  a t  
the present stage, we need not  introduce consti tuent particles to explain such 
internal properties of particles. 

Now the wave equation to be solved is obtained from (5.42): 

(7.1) i~  z(x~, x ,  ~) = ( -  �89 D ~ -  2 ~ + V (r) ) x(x,, x ,  ~) , 

where V(r) is defined by (6.65). Notice tha t  in (6.65) we should replace the 
mass variable m ~ by an eigenvalue m~. Moreover, we assume tha t  the scalar 
meson interacts with the vector meson with a physical mass M.;  we employ 
M~ instead of M 2 (the quantization of M ~ is another  problem). 

According to the procedure given in I and ref. (6), eq. (7.1) is separated into 
the following equations: 

(7.2) ([B~--m~)T(X) = O, 

l [ 4 m : - - m ~ + 2  V('xEI)] qb(xE) ---O ' (7.3) [~q i (x r )  - -~  - -  

[( 
L 2 j 

Introducing the polar co-ordinates for x,~ as in I 

(7.5) (d4x~)E ~ r 3 dr sin ~ a d a  sin 0 dO d ~ ,  

from (7.3) we find the wave equation for r 

d~F(r) 3 d E ( r ) [ ~  ~ 1 n~_--l.] F(r) ~ 0 
(7.6) ~ t r dr ~- - - m s - - - ~ V ( r )  r 2 J , 

(n ~ 1, 2, 3, ...). 

for the bound pair as In  principle, we can find the eigenvalues m w 

(7.7) m~  = 4 m ~ -  Q ,  

where Q(> O) is a complicated function of m ~, M ~, ]1, ]3, ]8, s and quan tum 
numbers. I t  is easily seen tha t  the condition (6.32) and eq. (7.3) indicate the 
correspondence between Q[2 and 2 ~m2~. We require tha t  the whole rest mass 
m w should be equal to the physical mass m. of the neutral  scalar meson. One 
finds the relation for the (~ mass defect )~ Q 

(7.s) Q = 3 n .  ~ . 
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Then~ ou r  f inal  t a s k  is t o  f ind  a r e a s o n a b l e  cut -off  r~~ and~ in  t u r n ,  to  d e t e r -  

m i n e  t h e  r a d i u s  r,~(>>r~), b o t h  of w h i c h  s a t i s fy  eq. (7.8). T h e s e  m a y  b e  w o r k e d  

o u t  n u m e r i c a l l y  b e c a u s e  of t h e  c o m p l e x i t y  of t h e  f u n c t i o n  Q. 

A l t h o u g h  ou r  d i scuss ion  is b a s e d  on  a s imp le  i d e a l i z e d  model~ our  t h e o r y  

is shown  t o  b e  s u i t a b l e  for  a q u a l i t a t i v e  u n d e r s t a n d i n g  of t h e  q u a n t i z a t i o n  of 

m a s s e s  of e l e m e n t a r y  pa r t i c l e s .  As  a r ea l i s t i c  model~ t h e  W e i n b e r g - S a l a m  

m o d e l  wi l l  b e  d i scussed  in  a s u b s e q u e n t  p u b l i c a t i o n .  

�9 R I A S S U N T O  (*) 

Si usa il formalismo dell 'hamfltoniana covariante per campi quantizzat i  insieme al 
metodo relativistico dello spazio di Fock per quantizzare le masse delle part icelle ele- 
mentar i  con s t rut ture  micrononcausali.  Si esamina, come modello semplice, un mesone 
sealare neutro accoppiato a se stesso e ad un mesone di gauge vettoriale neutro. Si 
mostra  che due mesoni scalari neutr i  le cui masse sono m~ producono una coppia le- 
ga ta  in eui i potenziali  locali repulsivi a due corpi e gli autopotenziali  a t t ra t t iv i  non 
locali der ivat i  dalla loto autoenergie giocano ruoli preponderanti .  Si assume che fl 
mesone scale neutro elementare di massa m. sia una coppia legata la eui massa in 
quiete ~ anche m I. Si diseute la quantizzazione d i m  s utilizzando un taglio relativistico, 
ma  senza usare le masse nude delle particelle implicate.  

(*) T~'aduzione a eura della Redazione. 
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