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Summary. — A covariant Hamiltonian formalism for quantized fields
together with a relativistic Fock space method are used to quantize
masses of elementary particles with micrononcausal structures. As a simple
model, a neutral scalar meson coupled to itself and to a neutral vector
gauge meson is examined. It is shown that two neutral scalar mesons
whose masses are m, produce a bound pair in which repulsive local two-
body potentials, and attractive nonlocal self-potentials derived from
their self-energies, play major roles. The elementary neutral scalar
meson of mass m, is assumed to be a bound pair whose whole rest mass
is also m,. The quantization of m, is discussed by employing a relativistic
cut-off, but without using bare masses of particles involved.

PACS. 0.370. — Theory of quantized fields.
PACS. 12.35. — Composite models of particles.

1. — Introduction.

One of the most important problems in particle physics has been the subject
of quantization of masses of elementary particles, which are inherently as-
sociated with the divergences of their self-energies. In spite of successes of the
renormalization of mass and charge in quantum field theory, there still remains
the question of divergences. In view of the existence of hundreds of elementary
particles, it is apparent that we need to construct a theory which enables us
to quantize their masses and, at the same time, to avoid the divergences.

In a previous paper (1), in order to attain that object, we have proposed

(*) To speed up publication, the author of this paper has agreed to not receive the
proofs for correction.
() H. Exarsu: Suppl. Nuovo Cimento, 3, 526 (1956).
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such a theory for pseudoscalar mesons. In this paper we reinvestigate the theory
in the case of a neutral scalar meson interacting with itself and with a neutral
vector gauge meson. This case yields a general testing ground for studying
the quantization of masses of elementary particles within the framework of
a covariant Hamiltonian formalism for quantized fields proposed before (2).

This paper is planned as follows. In sect. 2 we discuss & convenient system
of units proposed by HEISENBERG (*) and by NAMBU (%), which permits us to
formulate the mass quantization theory in a rather simple manner. In sect. 3,
as first principles, we discuss briefly the notion of micrononcausality which
plays an important role in the microworld and provides a basis for our in-
vestigation. In sect. 4, as a simple example, we present the covariant Hamil-
tonian formalism for quantized neutral scalar fields. This paper is concerned
with putting the formalism in a somewhat generalized one. Therefore, we feel
it useful to make the discussion of our formalism as self-contained as possible.
In sect. 3, for a pair of neutral scalar mesons we derive a wave equation which
contains local potentials between them together with their respective self-
potentials. To obtain the respective self-potentials, in sect. 6, we calculate the
self-energies of the neutral scalar meson in interaction with itself and with a
neutral vector gauge meson. We discuss the relation of our prescription for
determining the self-potentials to the procedure for the mass renormalization
in standard quantum field theory. From the nonlocal forms of the self-potentials
we derive their localized forms by assuming a relativistic eut-off in the evaluation
of divergent integrals with respect to Euclidean relative co-ordinates. After
collecting all results derived in this manner, we find the sum of local and lo-
calized potentials in terms of which two scalar mesons are able to make a bound
pair; the existence of such a pair is mainly due to the presence of localized
attractive self-potentials and local repulsive two-body potentials. The situation
is somewhat similar to that of the Cooper pairs of electrons in which the at-
tractive phonon-mediated interaction produces correlated pairs of electrons
in spite of the existence of a repulsive Coulomb potential between electrons.

In gect. 7, we discuss the mass eigenvalues of the bound scalar-meson pair.

2. — Heisenberg-Nambu natuoral units.

As is well known, to construct reasonable quantum mechanics, it may be
necessary to introduce a fundamental constant with the dimensions of length.
Several people assumed the existence of fundamental length scales some of

(2) H. Exatsu: Prog. Theor. Phys., 30, 236 (1963). This paper will be referred to as I.
See also Nuovo Oimento A, 58, 891 (1968) and H. Exarsu and 8. KawacucHi: Nuovo
Cimento A, 27, 458 (1975).

(®) W. HESENBERG: Ann. Phys. (Leipzig), 32, 20 (1938).

(4) Y. NamBuU: Prog. Theor. Phys., 7, 595 (1952).
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which serve as cut-off parameters for the divergences in quantum field theory.
+ In connection with a mass unit, NAMBU (%) had proposed a systems of units
in terms of which one finds

(2.1) Me= 0 = ——, My, =15, my=20, mg=71

-3

’

The author (°) pointed out that the Nambu units is identical with Heisenberg’s
natural units (3):

i=c=r,=1, ro: classical electron radius;
(2.2) g = a2, @y Bohr radius;
A=, A: Compton wave-length of an electron.

HEISENBERG employed 7, as a certain limit or a cut-off beyond which quantum
mechanics may not be applied. In the last part of this paper, we shall adopt
the Heisenberg-Nambu natural units in which, however, 7, is assumed to be
the Thomson radius and is a measurable object in experiments on Cempton
scattering of an electron. We avoid to use the words « classical electron radius »
which are not associated with the idea of quantum mechanics. Furthermore,
we would not regard 7, as a universal cut-off.

In principle, one may take a mass of an arbitrary elementary particle or
even the Planck mass as a unit of mass or of reciprocal length. In view of the
gradual endless increase of the number of elementary particles with large masses,
it is convenient for us to utilize the Heisenberg-Nambu natural units in which
the lightest massive particle assumes a special role.

3. — Micrononcausality as first principles.

We now turn to the problem of first principles in quantum field theory.
The microcausality condition implies that the commutators (or anticommu-
tators) of two field operators vanish if these fields are taken at points which
have a finite spacelike separation. Moreover, we have proposed the principle
of micrononcausality (2) as an additional and complementary principle to
that of the microcausality in quantum field theory. It can be expressed in the
following way: any virtual elementary particle with a real mass can propagate
between two points separated by a spacelike distance with a velocity faster
than the light velocity. We exclude, however, the tachyons with imaginary
masses and real energy-momenta. In order to illustrate our assertion of
micrononcausality, we will merely mention an example of virtual particles.

(®) H. Exarsu, H. Hasecawa and P. Y. Pac: Phys. Rev., 95, 263 (1954).
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In Yukawa’s theory of nuclear forces, virtual pions are exchanged between
two nucleons. As is well known, the two nucleons with timelike energy-mo-
menta emit and absorb the virtual pions with spacelike energy-momenta in
the ¢-channel exchange. It is to be noted, however, that the virtual pions can
have real masses but imaginary energy-momenta, so that their velocities be-
come larger than the light velocity.

Micrononcausal Euclidean wave functions for virtual hadrons exceeding
the light velocity have been studied in a previous paper (!). We emphasize
that the micrononcausality plays an essential role in the bound-state problems
of atoms, nuclei and elementary particles. Indeed, the author believes that the
micrononcausality is the most important principle for such problems.

4. — Covariant Hamiltonian formalism for quantized neutral scalar fields.

We start by considering a classical real scalar field ¢(x, ) in which 7 (%),
having the dimensions of (length)?, is an invariant time common to all fields
involved, and « denotes », (u=1,2,3,4, @, =2y, #=c¢=1). The field
@(x, ) called the t-representation of the field, is divided into two parts,

(4.1) pla, 7) = ¢, 7) + ¢ 2, 7),
where ¢(xz, v) and ¢z, ) are positive- and negative-frequency parts of

@(x, 7), respectively. This statement is qualified as will be seen below.
Assuming formally the Lagrangian density

L= — (¢, 7) 2 a, 1) — dog(a, 7 pP(a, 7)) +

(4.2) + 0w (@, T) Ou g, T) 4

(°) H. Exatsvu, A. TARENAKA and M. OkAzAXI: Nuovo Cimento A, 43, 575 (1978).
(") The time-ordered list of many papers in which invariant fifth parameters are in-
troduced is as follows: V. A. Fock: Phys. Z. Sowjetunion, 12, 404 (1937); E.C.G.
STUCKELBERG: Helv. Phys. Acta, 14, 322 (1941); 15, 23 (1942); Y. NamBU: Prog. Theor.
Phys., 5, 82 (1950); R. P. FeyNMaN: Phys. Rev., 80, 440 (1950); J. SCHWINGER: Phys.
Rev., 82, 664 (1951); L. P. Horwirz and C. PiroN: Helv. Phys. Acta, 46, 316 (1973);
J. R. FancHI: Phys. Rev. D, 20, 3108 (1979); L. HorstEr: J. Math. Phys. (N. Y.),
21, 2461 (1980); 22, 2307 (1981); L.P. Horwrrz and Y. Lavie: Phys. Rev. D, 26,
819 (1982), and references therein; R. KuBo: Nuovo Cimento A, 85, 293 (1985). The
invariant time 7 in the present paper differs from those fifth parameters in that =
is essentially associated with the notion of micrononcausality. This point was emphasized
in ref. (1).
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and

(4.3) 6fd1fd4x L=0, dw=dz,de;de,dx,,

we obtain the Euler-Lagrange equations of motion

(4.4) i0.gO(, 7) = 0 gz, 7)),

{4.5) 10z, 7) = — L o™z, 1) .
The Hamiltonian density is found to be

(4.6) M= — 8,¢9(x,T) 0, (x, T) .

273

On quantization the real field ¢(2, r) becomes a Hermitian field ¢*(z, 7) =

= @(x, 7). We assume the expansions of the field operators as

(4.7) PP T) = 2:"1)* f dm2 gz, m?) O(me) exp [ime 7],
(4.8) ¢, 7) = (2:‘;),; f dm2 g, me) B(m2) exp [— imiv] ,
together with

(4.9) PP (x, m?)H(m?) = ﬁofdr(p“f’(x, 7) exp [—im27],
(4.10) e (x, m?)0(m?) = ﬁo fdl’(p(_)(m, 7) exp [1m?7],

where ¢'+)(2, m?) are called the m-representation of the field. Note that ¢'*)(x, 7)
and @®(z, m?) have the dimensions of (length)—2 and (length)-?, respectively,
so that we put 7, on the right-hand sides of eqs. (4.7)-(4.10). The mass va-
riable m? is assumed to have the dimensions of (length)-2 (dimensionless #?
and 7 are defined by m? = m®r;* and v = 7r;). Physical masses of elementary
particles are denoted by m,, m,, m,., m, etc., all of which have lower indices,

as in (2.1).

We must then require that ¢ (x, m?) and ¢z, m?) obey the Klein-Gordon

equation

(4.11) (0 — m?) gD (@, m?) =0.



274 H., ENATSU

The Fourier expansions of the fields ¢'*)(z, m?) are

(4.12)  ¢M(x, m*) =

("jr)‘?fd% exp [tkyx,]0(kE + m?)0(ky) a(k, m2) ,

(4.13) ¢z, m2) = %% fd% exp [— ik 2] O(k% 4 m*) 0(ko) a*(k, m?)

(4.14) [P, m*)]* = 2w, m?),

where a(k, m®) and a*(k,m?) are annihilation and creation operators, and
¢z, m?) and ¢(x, m?) are the positive- and negative-frequency parts of
p(x, m?), respectively.

Now we assume the generalized commutation relations

(4.15) [a(k, m2), a*(k', m'?)] = 2k, 0(k — k') 8(r2(m2 —m'2)) ,

(4.16)  [a(k,m?), a(k',m'?)] = [a*(k, m2),a*(k',m'?)] =0, ky=-+Vk:Lme.
The number operator can be written in the form

(4.17) N— f A4z O (@, 7) gt (x, T) .

Using the relations (4.7), (4.8), (4.12) and (4.13), and integrating with respect

to z, and k,, we can rewrite N as

2
(4.18) N = (2:(-’5)4J‘d4x dm?dm’ d*k d*k" exp [—im'?7 + im?T — ik, 2, + ikua,]-

“0(m*) 0(m'%) 0(ko) O(ko) O(ky* 5 m") 6(ky + m®) a* (k' m'2) a(k, m?) =

= rﬁfdmzdm’zd‘*k exp [—im'2t 4 im27]0(m2)H(m’2)-
“0(ko) O(— m? + m'2) 6(k2 + m?) a*(k, m'2) a(k, m?) =
= rﬁfdmz Atk 6(m?) 6(ko) O(k2 + m?) a*(k, m?) a(k, m?)
where use has been made of
(4.19) fd‘*k O(k: + m'2) O(k2 + m?) :fd% O(—m? - m'?) (k% + m?).
In a similar manner, for the Hamiltonian

(4.20) M= f Az M= — f A4 g, 7) D P2, T),
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one finds

(4.21) M= ?ﬁfdmzd“kmzﬁ(mz) 0(ko) 6(K2 +- m?) a*(k, m?*)a(k, m?).

The vacuum state is defined as

(4.22) a(k, m?)|0> =0, Pz, 1)[0>=0.

Thus, for a one-particle state we obtain

(4-23) lk’ mey = a*(ky m2)|0> ’ N|k7 mEy = |k7 m*) ’
(4.24) lk, mzlk’, m'ey = 2k0(5(k — k')é(?ﬁ(ﬂﬂ — m’2)) .

It should be noted that, using the equations of motion (4.4) and (4.5) for quan-
tized fields, one finds the conservation law

(4.25) fdap 2.0, 7) +fd4x Bufult, ) = 0

where

(4.26) o(x, 1) = ¢ (@, 1) P2, 7)),

(4-27) ju(x? T) = Ii[aﬂ(p(—)(x; T) <P(+)(93, T) - <P(“)(90; T) 5u¢(+)(3"7 T)] .

Now we turn to the derivation of the commutation relation between

@M (@, m*) and ¢ (2, m'?). An evaluation of the commutation relation along
the lines of the above calculations yields

(4.28)  [¢(@, m?), @’y m™)] =

1 7 . 1.7 4
= Wfd‘*k Ak’ (ko) O(ko) exp [ikuxy— ik, x,]"

“[a(k, m?), a*(k', m'®)]16(k; + m*)o(k,’ + m'®) =
1 7 7 . 7.7 !
= _h(Qﬂ)3J‘dk dko dtk’ 0(k,) 0(k,) exp [ikyaxy — ik, ,
2k 6k — k') O(r5(m® — m'*)) 6(k% — k) O(k,? + m?) =
= (2i)3fdk° d*k' 0 (ko) O(kq) exp [tk (X — X') — i(ky @y — kg 2g)]-
<Dy O(rE(m* — m'*)) O — ki) S(KE + m?) =
1

RCIOE f A4k’ (ko) exp [ik' (X— X') — ikg(ao — ()]

O(rg(m® —m'?))o(k,} + m®) = iAD(x — &', m2) §(rg(m* — m'?)),
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where the AW (x — &', m?) is defined by

(4.29) APz —2', m?) = (;t§3fd4lc’0(lc(’,) exp [ik, (2, — 2,)]10(k,2 + m?) .

In the evaluation of (4.28), the commutation relation (4.15) has been used and
the integrations with respect to k and %, have been performed in this order.

Fourier expansions (4.7) and (4.8) enable one to get the commutation re-
lation between ¢™(z, 7) and ¢(2', v') for a timelike interval (v, — :)vl'l)2 < 0,

(4.30) (9P, )y @', )] = 14Dz — o', T — T').
Expressed in terms of (4.7) and (4.8), the left-hand side becomes

(4-31) [‘P(H(w, 7)7 (P(_)(x" TI)] =
2
ES :j_;fdmz dm'2 G(MZ)B(’m/'z) exp [im% —im'? ‘17’] [(pH‘)(J;, mz), (p(‘)(m', m'z)] —

;.8
= ;L; dm? dm'26(m?) 6(m'?) exp [im?t — im'27']-

AP — 2’y m2) §(r2(m2 — m'?)) =
_ dm20(m?) exp [ims(t — 7")]AD(x — z', m?) .

27

Then we obtain

(4.32) APz —z', T —1'") = ;ly—lfde(mz) exp [imi(z — )] AP (2 — ', m?) .
£

Similarly we derive that

(+.33)  [g9(@, 7), g, T)] = idOw — 2, T —7')

(4.34) A9z —a,1—1')= %T—J‘dmzﬂ(mﬂ exp [— im2(r — 1) AN e — ', m?),

(4.35)  AP(w — ', m?) = (?;)3fd4k0(ko) exp [— ikulry — @) O(KE + m2) .

The function A(x — 2', v — 1') is defined as

(4.36) A —u',r—1")= %fdmZ exp [im*(v — 7')]

AP — o'y m?) Ome) | A — ', —m?) O — m¥)] =

=N —a,7—1)+ A% -2, T—1').
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The expansions of the Hermitian field ¢(x, 7) can be written

(4.37) Pz, 7) = ¢z, 1) + o2, T) =

= (27”;)ifdm2 gt (2, m?) B(m2) + ¢(@, — m?) (— m?)] exp [im?7] =
B (22)*[ dm (w, m?) exp [im?<],

(4.38) ¢*(x,7) = "o fdm%*(w, m?) exp [—im21] =

(2m)
= (27;;)* fdmz ¢* (@, — m?) exp [im27].

It is easy to show that
(4.39) ¢*(w’ —m?) = ¢(x7 m?),
(4.40) (¢ @y, — m2))*6(— m?) = ¢ (@, —~ m?)6(—m?),
(4.41) (g (@, m2))*B(m?) = ptH(w, m?)6(m?) .
Let us define
(4.42) 0@, 7) = i(pP(@, ) — (3, 7)) -
It follows that
(4.43) [p"(z, 1), @', ¥')] = 4@ — o', v — 7'),

(444) A@— o', r— 1) =i(dP@—a, 1 — T)— ANw— o', T— 7).
Now the functions A(x — ', T — ') and APz — ', T — ') can be obtained

from the corresponding functions A(z — ', m?) and AW(x— ', m?) in the
m-representation;

(4.45) Az —a'y1—1)= 21—n dm A(z — o', m?) exp [im?(t —7')],

(4.46) ANy — 'yt —1') = % dm2 A (x — 2', m?) exp [im2(t — )],

where (8)

(4.47) Az, m?) = — 2¢(x) A, m?) =

i 1 L2, .
) ]

(4.48) AV (z, m?) = @—jZFJ‘d[)’ dsk exp [ik, § + ikya, + ifm?],

(®) J. ScEWINGER: Phys. Rev., 75, 651 (1949).

18 — Il Nuovo Cimenio A.
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and ¢ and § are parameters. The computations of the integrals involved in
(4.45) and (4.46) have been carried out in ref. (1), with the result

(4.49) A@— o'y 71— v') = —iew— o) A(a, 7|2, 7'),
(4.50) A%z — o'y v — ') =e(v— v')A(w, Tl2', 7)),
where
PN —1 . (x” - xl,l)2
451 AT T) = T P [’ 4(1—1')]’
(4.51) o) t1, >,
-1, <1,
Note that
(4.52) li_g; Az, z|e'y ') = e(v — ') 6(x — &) yrr d(x) = 0(m,y) 0(X).

The commutation relation {4.30) can be rewritten in the form
(4.53)  [¢pP(, 1), @, T')] = L{e(w — ') + e(v — ')} A(a, |2, 7).
Taking the limit v — 7/, finally we get

(4.54) lp(w, 7), p(&', 7)] = d(z — 2").

This is a fundamental commutation relation. We note that (4.64) is not as-
sumed, but is derived from the general commutation relation (4.15).

5. — Wave equation for a composite scalar meson with a micrononcausal
structure.

In this section we shall propose a wave equation for a composite scalar
meson with a micrononcausal structure. Let us consider a system of two scalar
mesons separated by a spacelike distance. They interact with each other through
fields mediating between them. The interaction is usually expressed in terms
of a local potential in a wave equation. When the two scalar mesons come
near to each other, new potentials may take place over short distances. As
will be seen later, these potentials arise from the self-energies of the scalar
mesons. We call the new potentials self-potentials, which, in general, com-
prise the masses of virtual scalar mesons as well as other virtual particles.
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Now we shall consider the description of such a system in a relativistie
Fock space. The Hamiltonian operator of the system is agssumed to be

b1y M=M,+M+M,+ M, + M,,

(5.2) M, = — f 442 8, (2, 7) B (2, 7)

(5.3)  My—=—i f dsx' dva” g ", 7) V(| — 2']) g, 7)

(5.4) M,— —1 f A4z’ dsa” pN@', 7) (", 7) V2 — z”})w)@”, 7) g, 7)
(5.8) M;=— ifd‘*m’ dw’ @, 7)o, ) V(o' — 2"])

(5.6) M,=—V7|dw o, 7)), 1),

where M, is the mass operator for free scalar mesons, and M, contains the inter-
particle local potential V,(|#'—a"|) which is a function of |2'—a’|. In the
lowest order of approximation, M, is the operator corresponding to the Feynman
graphs for ¢usual» self-energies in the m-representation, while M, and m,
are related to tadpole Feynman graphs. The characteristic features of the
tadpole graphs are that they contain loops of virtual particles, so that Vy
and V;° include divergent constants arising from the Feynman function, say,
Ay(x, m*) for z; — 0. We indicate this fact symbolically by the superscripts
of V. and V.

The existence of the factor ¢ in front of the integrals of M, and M, seems
to violate the hermiticity of the Hamiltonian M. However, it is only super-
ficially so since in the integrals over relative co-ordinates, we employ the
Euclidean metric by the replacement x, - — ixz,. Therefore the factor 7 can be
absorbed in the integration measure, and the self-potential parts become real
in wave equations as will be seen later.

Examples of the Feynman graphs for the case of the scalar mesons, inter-
acting with itself and with vector mesons, will be considered in the next section.

Let us now define the energy-momentum operator as

(5.7) P, =— %fd‘% (fp(‘)(% 7) Ou PP(@, 1) — O ‘P(—)(x’ 7) (P(H(x} '5)) .

Using the commutation relations

(58) [‘P(H("v, T)y (P(_)(x/a T)] = 6($ —a') ’

(5.9) [‘PH-)(‘I’; ), ¢, T)] = [‘P(_)(m7 7}, <P(_’(CU', )] =0,

18* — Il Nuovo Cimenio A.
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and assuming that V7' (|o'—«"|) is a function of |o'—&"|, we can prove that

(5.10) [N, Mo+ M,+ M,+ M]=0,
(5.11) [P, Mo+ M, + My + M, =0
and

(6.12) [Py, N]=0.

The evaluations of [N, M;] and [P., M,] are performed by the formula for
operators 4, B, C and D

(5.13) [AB, OD] = A[B, 01D + [4, C]BD 4 CA[B, D] + C[4, D]B.
We find
(5.14) [N, M) =
= — ifd%’d‘*w” sz [z, T) gD (x, T), @@, T) (2!, )] Vo (Jo" — 2’|} =
= f A4 daz’ A" {2, 7) pP(a’, 7) O(@ — ") —
—@a", T) (2, T)8(2'— @)} Vy(la" —2'|) =0,
(5.15)  [Pu, My] = —1 f Ltz dea’ A" [{p @, 7) du g, 7) —
— 8,4 (p‘_)(w, T) (p(‘")(w, T)}, (p(_)(w”, T) (pH')(w', T)] Vl( |x”—' w,l) =
= [t dsw’ 0L V(o — o)) + S Vi(jo"~ |} 0", 1) g, 7) = 0,
o= 2= — 2
Therefore we get

(5.16) [N, M]=0, [P, M]=0.
A complete set of states can be thus formed by taking the set of all states
(5.17) [m3y my @),

where m? and n stand for eigenvalues of M and N, respectively, while w denotes
the eigenvalues of other quantities required to form a complete set of ob-
servables including P,.
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The state

1
(5.18) |@1y @ay vesy Bpy TY = \ﬁ_'(p‘—)(ml, ) PN @5y T) oo P (0, T)]|0)

represents a n-particle state localized at @y, @, ..., @, at invariant time 7. We
agsume that all points x;, ., ..., £, have spacelike relations with one another.
The relativistic Fock amplitude for a two-particle state

1
(5.19) Lemdz,(P1y Toy T) = \72_—'<0l¢(+’(xl7 )(P(+) Toy T lQmu 2, w)

is the probability amplitude (or wave function) for finding the scalar mesons

in the state [2m?, 2, w) at @; and x, ((x,, — ®,,)? > 0) at invariant time 7.

Our next task is to find a wave equation for ysmis(®:, %:, 7). The cova-
riant Heisenberg equation of motion satisfied by the field operator ¢(w,, 7) is

(5.20) 10wy, T) = [M, ¢'P(ay, T)] .

In terms of the commutation relations (5.8) and (5.9), the right-hand side of
(6.20) is rewritten as

(5.21) [M, P, )l =L+ L+ 1+ I,
(6.22) I, =|(d%[p" (2, 1), (@1, 7)]DepP(2, 7) = — L P (24, 7)
(5.23) I, =—i f A5’ A" [ ", 7) P, T), (@, )] V([0 — 2']) =
= 'ifd%’ P!, 7) Vo oy — 2'])
(5.24) I,= %fd‘*x” ¢(@", T) P (", T) g P, 7) V|2 — 2"]) + |
+ $[as g, ©) (e, ) g, 1) Vil o' — )

(6.25) L= — it A%’ [g(a, 7) pOla, ) ¢Plar, 2] VE(fo'— 2] —
— V:’ d4x’ [w(—)(w" T) ¢(+)(w” T), ¢(+)(ml’ T)] p—

— /L'(p(-l-)(wl, T)fdﬁ??” V;o(l$1 . ml/') + VT(P(-H(@H, T) .

Similar expressions hold for ¢™(x,, t). Differentiating Hamd2,0(%1y @2y T) With
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respect to 7, we obtain

(5.26) 'iafxzm;,z,a,(wi, Ty, T) =

\/_ Ofior @ P (@1, 7) P @y, T) + 1P (@1, T) 0P s, T) |20, 2, ) =
— % <0[{_ D1¢(+)(m17 't)(p‘+’(902, 7) + <P(+)(501, 1)(— Dz(PH—)(xz, T))} +
+ifan’ o, T) g (@, 7) Valloy —']) +

+ [t g, T) g, 7) Vil foy — ') +

+ $|d%” P (@, T) g "y T) P, T) @Dy, T) Vo 2, — ”]) +

+ %fd‘lx’(p‘“(wl, 7) @, T) P (@, T) P (@, T) V(o' — 2,]) +

+ 1P ( @y, T) PP (4, T)fd".%‘” Velle, —2"]) +

+ i@, 7 ey, T) a0 VE(jay — ') +

+ V2 Py, 1) P (s, T) + VE2) (@1, T) g, 7)[2m5, 2, 0)
where covariant Heisenberg equations of motion for ¢ (2, , 7) and ¢ (., ), and
(5.27) Olg(@, 7) =0, <0jg (@, 7) =0

have been used, and V;>(1) and V;(2) in (5.26) denote V;° taken at the points
@, and @,, respectively.
Then we obtain the wave equation for Hemt o0y Tay T),

(5.28) ii%x(wl‘, Xy, T) =
= (— O = O g, @, 7) + i [a% Vol jas — a']) 1@, @4, 7) +
- if @ Vi(ja,— o)) xlas, o', 7) + Vil o — ) o, 0, 7) +
+ {if s V(e — o)) + ifase’ VE{jos — o))} s, 2y 7) +
+ (V2(1) + V2(2)) (@, @2y 7)
where the subscripts of the wave function are suppressed.

The nonlocal terms containing V,(|z, — #'|) and V(| — 2'|) in eq. (5.28)
can be transformed into local forms in the following way.
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For the covariant Heisenberg operator ¢ (z, 1), it is evident that

(5.29) ¢ (x, 1) = exp [— i M1] ) {(x, 0) exp [t M 7]
and
(5.30) exp [— Py, ¢9(w, 7) exp [iPyau] = pH(@ + a, 7)

where the four-vector a, stands for translation. Then the wave function
(@1, 22, ) can be written as

(5.31) 2(@yy 25y T) = 0| (21, T) P2y, T)|2m2, 2, 0) =
= {0[¢P (g; 0) @'t (—gy 0) [2mg, 2, ) exp [{(2mf7 + PuX,)] =

= @(x) exp [i(2miT + PuX,)],
in which

(5.32) Xy= 5@+ )y, @u= @y, — &, wh>0.

We consider one of the nonlocal self-potential parts in (5.28):
(5.33) W= J A Vy(lo, — o)) y(@', @, 1), (@, — )2 > 0.

To work out the integrals in eq. (5.33), it is helpful to introduce the replacement

’ / "
Py — Xy = L1y — Lay — (xy~m2u) =Ty — Ty,

(5.34) {

" __ 7 L2
Ty = Ty — Ty, X, >0,

Assuming the short range of the nonlocality in the nonlocal self-potential
Vi(|w, — '[), we approximate to y and WX* by

(5.35) 1@’y @y, T) =y (@1, @y, T) = D(@) exp [§(2miT + PuX,)]

and

(5.36) WY —i f A" Vy(|e — 2"|) B(w) exp [i(2mi 7 + PpX)] + ...,

so that

(5.37) Vi) = ifd‘w” Vi(jo —a")), (@ — a2 > 0,
is a localized self-potential.

In this local approximation, we suppose that the potentials for the first
scalar meson consist of two parts; one of them is the local potential part
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Vi(x) + 3 Vi(x), provided the second scalar meson is placed at the origin of the
relative co-ordinates x,, and the other is the tadpole self-potential

(5.38) V(2) = i@ V3(Je,—a'|) + VE(2)

which acts upon the second scalar meson merely at the origin., Exactly in the
same way, when the first scalar meson is placed at the origin of ®,, the other
local potential is V,(x) 4 4 V(#) and the tadpole self-potential

(5.39) V(1) = i[as VE(je,—a']) + VEQ)

works on the first scalar meson at the origin. It is evident that the wave
eq. (5.28) is symmetric under the interchange , <> 2, because of the symmetry
property of the wave function, x(x,, 2., v} = y{®2, ®1, 7).

As a result, we are left with the wave equation for y{(x, X, )

(5.40) 0 y(@, X,7) = — (30 + 20,) z(2, X, 7) +

+ [mfdw Vi(le — ")) + Vi(J2]) -+

+ 2ifd4w’ Ve(les—2'f) + 2V1°(2)] ylz, X, 1),
where we take the origin of the relative co-ordinates at the point »,. The pas-

sage from a Minkowski space to a Euclidean space for the relative co-ordinates
is straightforward

@y—>—im,, g —>—riwy, d"—>—i(dw")g,
(5'41) ’ m___ ! oo s M T
Ty =y — Ty, By = (B — @)y > — 12 = — (T — @),

Finally we obtfain the wave equation
(5.42) 0z y(wm, X, 7) = — (30 + 200p) x(@s, X, 7) +
+ [2[@@")s i len— o2]) + Vil foal) +
+ 2[(@4a")5 V3(lo8)) + 277(2) | 1tos, X, ).

6. — A simple model.

As an example, in the case of a neutral scalar meson interacting with itself
and with a neutral vector meson, we shall proceed to calculate the localized
self-potentials discussed in the. previous section. Hereafter we employ the
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Heusenberg-Nambu natural units # = ¢ =17,=1. The renormalized La-
grangian density in conventional quantum field theory is

(61)  Z=—}:[up(w, m3) dugp(, m*) + m* (@, m?)p(e, m]:—
— 1 [Gu(@y, M?) G us(, M2) - 2 M2 Up(w, M?) Up(w, M?)]: —

— fuipla, m) Bup(a, m) Ular, M9):— 2 (g, mt))o: —

gt w2t e pta, m)e,
where
(6.2) G, M?) = 8, Us(w, M2) — 8, Un(w, ?) ,

: . denotes a normal product, and the last term is the counterterm. The
positive constants f, and f; are dimensionless, while the positive constant f,
hag the dimensions of (length)-1. M? and m? stand for squared physical masses
of the vector and scalar mesons, respectively. We have agsumed that the neutral
vector field U,(r, M?) is a gauge field and the model is renormalizable, so that
the additional %, comprises all other terms necessary to assure the renor-
malizability. Our intention is, however, to present the main ideas and not to
embark upon a rigorous treatment of renormalization.

AN 70N /// ™~
| \ i \ \
- T T F-—- ———t————- -
\ / \ )
\_,// \\_,’/
a) b c)
“TTNN 7T
l/ \\ l/ \l
| ) \ ) TTTTT Ro———=
\\T// ____\2>_<i/____
|
______ I,
d) e f)

Fig. 1. — Lowest-order self-energy Feynman graphs for scalar mesons. (Here dashed
lines refer to scalar mesons and solid lines refer to vector mesons.)

Now let us consider the self-energies of the neutral scalar meson. We shall
describe some results arising from the S-matrix in the interaction picture of
conventional quantum field theory. To the lowest order of approximation,
there are 6 Feynman graphs shown in fig. 1, in which a), b) and ¢) denote
« usual » self-energies.
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For fig. 1a), the contribution of the S-matrix is (6.3)
(6.3)  Sa=8+8:,

(6.4) 8= _ ﬁfdw A" 3, ¢, me) Ag(a' — o', m)-
“du Ag(x'— 2", M?) 8Z<p‘+)(m”, m),

{6.5) 82 = —fi|dw’ A" o (a’, m2) dyy A/’ — x", M2)-
2 ’ ’
0, 0y, A" — ", m?) ' P(a", m2) , (X, — 1) >0,
where

(6.6) duy A’ — 2", M2) = (6W — 1-1% 2 a;) Ag(a/— ", M2,

and A, (x, M?) and A,(xz, m?) are the Feynman functions for the vector and
scalar mesons, respectively. We have employed the unitary gauge for the
neutral vector meson.

We would like to inject a remark here concerning the condition (wl"——
— ac;:)z > 0 imposed above. In principle, we may take a timelike separation
(¢, — @,)* < 0 as well in the expressions (6.4) and (6.5). However, as SCHWING-
ER (*) showed, it is an important point that in quantum electrodynamics,
when the self-energy of an electron interacting with an electromagnetic field
is evaluated in co-ordinate space, the result is

(6.7) E'L”“fis-exp [ m?s],
in s
0

where s is a «spacelike » interval and the well-known logarithmic divergence
emerges in the limit s — 0.

The spacelike separation of «, and ,, interpreted in the above-explained
gense, will be assumed in the following. This condition is in conformity with
our bagic postulate of the micrononcausality that virtual particles can pro-
pagate between two spacelike-separated points cv," and :v,': with velocities faster
than the light velocity.

We now have the task of calculating the singularities for (v, — 2,)* — 0
in the self-potentials.

Noting that

(6.8) 050", dus Ag(ar' — ", M2) = — lié O §(a — ")

(®) J. ScCHWINGER: Phys. Rev., 82, 664 (1951),
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and

(6.9) (L' — M) Ag(2’ — ", M?) = id(a' — 2"},

we find that

(6.20) Oy Oy [(otpr Apls' — "y M2)) Ap(a’ — 2", m2)] =

(O 0(a' — 2")) Ag(@' — @, m?) — % (0,02 — 2")) 0, '@’ — ", m?) +

+ (dw Au(x’ — a", M2)) 8,0, Ap(x'— 2", m2) .

i
e

Since two terms including §(x'—«") contribute to the tadpole self-potentials,
we ignore them for the moment. Affer integrations by parts, we get

(6.11) 8, =8; + 82 :fd“x’ dsz” g (2', m2)-
A2 fi(duw Ap(a' — ", M) 3;, 8, Aw(' — 2", m2)} g D(2", m?) .

At this point, we employ the Euclidean postulate for the relative co-ordinates
Z, = (x,— x,) through the substitution

(6.12) Zy—>—iZy, R =Z +Z+Z 4+ Z:>0,

then, in terms of the modified Bessel functions, the expression in the curly
bracket of (6.11), being a self-potential in the Euclidean version, can be written as

(6.13)  Vu(R) = 2fi(du Au(Z, M?)) 0u 0y Ap(Z, m?) =
_ o (11[2) [5/” K,(MR) L b K,(MR) MZ.2, K3(MR)].

A MR R R®
- Cu Oy Ap( R, m?) Oy = ¢
IO Sl O y [ u aZ”7

where use is made of (1)

MEK,(MR)
(6.14) A2, M) = = L2
and

M K,(MR K (M

(615)  AudiAplR, M) = — [(xw 2(132 ) _ 2,7, _73;33 )]_

(1) G. LeiBBRANDT, R. M. WitLiams and D. M. CaPPER: Nuove Cimenio A, 12, 611
(1972).
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In order to simplify V,(R), we assume that

(6.16) ZuZy s 0umRe.

Thus we obtain

(ME) | H,ME) K,ME) :
611) Vi) =21t (1) [Bg + S — Ty | e ).

Noting that

(6.18) Koo MR) = 2% K(ME) + Ko (MR),
(6.19) (0 — m3) AglZ, mt) = — 8(Z)8(Z4) ,

and for small B

MR
(6.20) KoMR) = —I,(MR) (y +In ——) + .y
finally one finds the expression
. of M \? _6____3))]1[2
(6.21) Va(RB) = —2f; (4——7!21”) [Rf* Tt + ... (B —0).

Similarly, we can carry out calculations over the graphs shown in fig. 1b),
¢) and d). The contributions of these graphs are as follows:

(6.22) 8,=— —;— fﬁfd‘lx’d‘m” P (', m?) [Ag(x' — 2", m*) ]2 P(2", m?) ,

028 Vo®) =—1 1 () gt -

(6.24) Sc=— %fﬁfd'*x’d‘m” @', m?) [Ag(x'— 2", m*) PP (2", m?)

©020) Vi) =—1 (i) g

(6.26) S;=— % fifd‘lw’d‘*x” g (@', m2) Agla’' — x", m?) Ag(0, m?) gD (a’, m?)

1
(6.27) V= ~ ot f2 Ax(0, m

where to derive V; we carried out the integration over Z, in terms of the polar
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co-ordinates

Z,=Rsinysinf' cos¢’, Z,= Rsinysinf sing
(6.28) { ' v L. ’

Z;= Rsiny cosl’, Z,= Rcosy,

with the result

(6.29) f m* (KI(MR)) RdR— —

472\ mR T omEme’

0

Let us now turn to the contributions of fig. 1¢) and f), which can be written as

(6.30) 8, = —if, f da’ (2", m?) Ag(0, m¥) (', m2) ,
(6.30a) V= f, 450, m3) ,

(6.31) 8, =—i f e’ (@', ma)(— dme) gt (a!, m2)
(6.31a) V, = —ome.

It is noted that some contributions from the tadpole self-potential terms ignored
in (6.10) and (6.21) should be added to the right-hand sides of (6.30) and (6.30a).

The idea of renormalization of the mass of the scalar meson in standard
quantum field theory may be interpreted, in co-ordinate-space treatment, as
the requirement that the sum of the self-potentials V,, V,,..., ¥V, should
satisfy the following relation:

(6.32) Vot Vot Vot Vo4 V3)—0m2 =0,

in the limit B — 0.

However, in this prescription there seem to be two points inadequate for
the present-day picture of « elementary » particles; the first point is that the
scalar meson is supposed to be a particle without an internal structure, and the
second point is that the self-potentials are considered as classical mechanical
objects.

Amending these points, we propose to consider a « composite » scalar meson
consisting of two scalar mesons, and to treat the self-potentials as quantum
mechanical operators in a wave equation. Therefore, at the present stage we
do not take limit B — 0. Our final object is to determine a finite mass cor-
rection dm? in terms of the wave equation.

Now we turn to the calculation of two-body local potentials corresponding
to the Feynman graphs shown in fig. 2. For fig. 2a), the contribution of the
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a) b) ¢

Fig. 2. — Lowest-order Feynman graphs for two scalar-meson systems. (Same con-
ventions as in fig. 1.)

S-matrix is

(6.33) S = — f2a%’ A’ g (a', m?) B (e, m?) du
Ap(a’ — 2", M2) (2", m2) 0, g (2", m2) .
Noting that

(6.34) 0,9 (x', m?) = (91 )gfd‘lk’('ik;t) exp [ik,x,10(k,} + m?) 0(ko) a(k', m?)

and, assuming that the scalar mesons have small momenta
(6.35) (1k;)(¢k:)5w — m2 (k(’) — m, g —m),

one obtains the two-body local potential

(6.36) VeulR) = f2 (OfM)z [1% — ?%1-2 — ] .

The contributions associated with the Feynman graphs b) and ¢) in fig. 2, are
(6.37) Sy = — ﬁfd"x’ dew” (', m?) g (z’, me)-
Ap(a' — 2", m?) (2", m2)<p‘+’(w”, mk),

{6.38) Vzb(R) = _"fg (L)I%_F vy

47t
(6.39) S, =— %ﬁfd%r daz” g (', m2)<p(+)(x’, m2)-
(@' — ', m)P g "y me) (@, me)

1 1)1
(6.40)  Vau(R) :—Eﬁf(ﬁ) Tt

So far we have considered field operators and potentials in the m-represen-
tation. In the wave equation (5.42), these must be expressed in terms of the
z-representation. To see the relation between the two representations, let us
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consider the covariant Heisenberg equation of motion for ¢ (,, 7) of the first
scalar meson. Employing a simplified Hamiltonian operator M in which M,
and M, are omitted, from (5.20) we find

(6.41)  iB: P (wy, 7) = — LhgW(ay, 7) +1 f A’ Vi(ley — &) gy 7) +
—I—fd'*w’(p‘"’(w’, )@y 7) Vol |o'— wll)tp‘+)(a'1, 7).

We can obtain the corresponding equation in the m-representation by con-
sidering mass operators (11) and two-body interaction operators. For simplicity,
if we only retain the terms — (1/3!)f.¢® and 1 dm?¢? in (6.1), and take into
account the results (6.22) and (6.37), in lowest order we get the modified equa-
tion of motion for ¢ (x,, m?):

(6.42)  [heP(ay, m?) = (m* —om?) (@, m*) —
21 f A/ [ Ag(2, — @', m3)PptP(a’, m?) — 3 f dsa’ g (@, me)-
@@y m2) Ap(@ — 21, m?) (i1, m?)
where the last term on the right-hand side deseribes the interaction with the

other scalar meson.

Now, according to (4.7), (4.8), (4.45) and (4.46), we can replace @*)(z,, 7)
and 4,(z, 7) by the following Fourier transforms:

(6.43) P (w1, T) > w PP (g, m?)B(m?) exp [ ;- im27],
1

(6.44) Agle, — 2, 1—1’)[T=f/—>0—7!— Ag(2y — 2’y m?y .

Therefore, in (6.41), if we assume that

(6.45) Vl( |2, — ') = Fi[Aplay — @'y T — 7)o

(6.46) Vo(|o, —2'|) = FiAe(x, — 2", T — ) |rerr

and compare eq. (6.41) with eq. (6.42), we find

(6.47) Fi=—4a’}fs, F;=—4a*fi,

(*1) J. SCHWINGER: Proc. Natl. Acad. Sci. USA, 37, 452, 455 (1951); N. N, BoGoLIU-

Bov and D. V. SHIRKOV: Introduction to the Theory of Quantized Fields (New York,
N.Y., 1976), p. 444.
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so that we get

(6.48) Vi(|oy—a'|) = 472V, (2),

(6.49) Vol |y — '|) = 4n2 Vy(4) A= [(2y, — x,) .

We now proceed fo derive local forms of the attractive nonlocal seli-potentials
in the Euclidean space. From (6.21), {6.23) and (6.25), we find

b
(6.50) Vo(|0m — #la]) = -—(1%4— =+ ),
where
_i(my
(8.51) &= 7l (M) T 4872’

2
(652)  b=gZ,

(6.53) B2 = (@, — x,’:)i y  Bug == (Trp — Tou)g m;lim = (w,’, — Top)g -

We define the polar co-ordinates

Tpm =1, xm=r;, dwg=ridr,sinzgdp sin0”d9” de",

(6.54) {R = (r® 4- r} — 2rr, cos B)t.

The derivation of the local forms containing only @ is straightforward:

(6.55) Vi(r) = Vis 4 Vi,
(6.56) Vi, =— 47mfr§ dry AL, ,
(1]
(6.57) Al = ;; sin® fdf[1— 20 cos f + 0*]* (e = %) ,
[
(6.58) Vi, =— 4nafr§drzAf,z ,
(6.59) AL, = 716 J‘sin%dﬂ [1—20cos8f - 0] ( = ;—) .
2 2
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Using the relation (2)

ELg

J‘ sin24~1g dw . P(,u)]"’(%).
(1+e*+20co8w)y I'(u+$)
(1]
(6.60) Fy,v—u+tpn+40%), lel<l, Reu>0,
Irq)rg)_=
F(3,2;2;0% = (1—¢*7*, %52— =35
and similar ones for ¢, one finds that
(6.61) L= o (1—gt),  Aby= o (1—o¥)
' T VT 208
and
27%a
(6.62) Vii=——1 f e*(1—e*)~"de,
<
:zza
(6.63) N f (0 —1)-2do .

The integrals involved in V7, and V3, diverge at the point ¢ = 1, so that we
introduce a relativistic cut-off paramefer ¢ in view of the repulsive local po-
tential (6.36). Then, the localized self-potentials are found to be

swtal [ F 2n2
(6.64) Vi(r)=— jfz“[ f@3(1—@2)"“d0 + f«f(ez—l)—ade]:— “2 0.
0 1+e

Furthermore, taking into account the local two-body potentials (6.36), (6.38)
and (6.40) (R% — r?), one obtains the total potential V{(r) as

51 _ K, 4 K(r)

(6.65) V(r) = 2Vi(r) + Valr) = a0
wit

2 m * 1 2
(6.66) K, =6f; (ﬂ) —mh

(1?) I.8. GrapsHTEYN and I.M. Ryzmik: Tables of Integrals, Series and Products
(Academic Press, New York, N.Y., 1965), p. 384.
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42 m 2 1 2
[1Zf1 (T[) + mfs] g(e)

(6.68) Ey(r) = f2 4 3fim? (y +ln ?)

(6.67) K,

I

If K,, K, and K, are all positive, the potential V(r) has an important form
with an attractive part for large separations of the two scalar mesons and a
large repulsive part for small separations. Then, V(r) has a minimum value
at r=r,_. Therefore, this case is somewhat similar to the cases of an inter-
acting gas of molecules (the Lennard-Jones potential), diatomic molecules,
two-nucleon bound systems and the Cooper pairs of electrons.

Up to now we have been neglecting the tadpole terms. It can be easily
seen that almost all tadpole terms lead to repulsive self-potentials merely at
the origin of the relative co-ordinates »,;. These repulsive self-potentials could
be added to the repulsive part of V(r) without affecting essentially the shape
of V(r).

Moreover, we could congider higher-order terms in coupling constants, so
far neglected, and the nonlocal part of wave function, omitted in (5.36). How-
ever, to simplify matters and to draw qualitative conclusion from our simple
model, we restrict our attention to the case in which the potential V(r) plays
a dominant role.

As to the cut-off parameter e, we notice that ¢ is assumed to be a constant.
The introduction of a cut-off parameter in the integration over y is not simple.
Let 7, be a small cut-off radius for r,, such that the region of integration over
7, is defined by 0 — 7 — 7y, 7 -+ 7, — oo, Which corresponds to the region of
y="1y/r: 0 >1— 19, 1+ 5 — co. Here r is arbitrary at this stage, while r,
is a constant. Therefore, instead of 5, we assume that the cut-off parameter ¢
introduced in (6.64) is to be a constant parameter such that &= ry[r., Where
7. is defined above.

7. — Eigenvalues of masses.

We now turn to consider the problem of finding quantized masses of
« elementary » neutral scalar mesons. For this it is necessary to state some
points contained in our theory.

First, as shown in the case of hydrogen mass levels (2), quantized masses
of particles should be derived as eigenvalues of wave equations. Secondly,
the quantized masses of particles should be a consequence of their interactions.
However, bare masses of particles would not be assumed, so that their physical
masses are expressed in terms of masses of particles concerned, coupling con-
stants, quantum numbers and cut-off parameters. Thirdly, internal properties
of particles such as spin, isospin, strangeness, parity and others are well de-
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scribed by means of micrononcausal Euclidean wave functions (°), so that, at
the present stage, we need not introduce constituent particles to explain such
internal properties of particles.

Now the wave equation to be solved is obtained from (5.42):

(7.1) iaf%(w]ny X, T) = (_ %DX_ 2Dwg+ V("'))X(xE7 X, 1),

where V(r) is defined by (6.65). Notice that in (6.65) we should replace the
mass variable m? by an eigenvalue m?. Moreover, we assume that the scalar
meson interacts with the vector meson with a physical mass M ; we employ
M? instead of M? (the quantization of M* is another problem).

According to the procedure given in I and ref. (%), eq. (7.1) is separated into
the following equations:

(7.2) (Ox—my) P(X) =0,

Am: —m

(7.3) D,Edi(xE)—%[ . W+V([xE1)]<p(xE)=o,

2 2

(7.4) x(2g, X, 7) = P(X) exp [@ m:,-r] D (xg) €Xp [7« (2m§ — 7—2"3) -c] .

Introducing the polar co-ordinates for z,, as in I
(7.5) (d%ru)g = r3dr sin2xdec sin 0 df dy ,
from (7.3) we find the wave equation for r

n2—1
7'2

1
(7.6) dr2 r dr 2 ™o Vi —

d*F(r) | 3 dF(r) Jr[wfv 2

In principle, we can find the eigenvalues m3 for the bound pair as
(7.7) mi = 4m? —@Q,

where @(> 0) is a complicated function of m?, M2 f,, f., f;, ¢ and quantum
numbers. It is easily seen that the condition (6.32) and eq. (7.3) indicate the
correspondence between @2 and 2J0m3. We require that the whole rest mass
My should be equal to the physical mass m, of the neutral scalar meson. One
finds the relation for the « mass defect » @

(7.8) Q = 3m?.
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Then, our final task is to find a reasonable cut-off »,, and, in turn, to deter-
mine the radius 7,.(>r,,), both of which satisfy eq. (7.8). These may be worked
out numerically because of the complexity of the function Q.

Although our discussion is based on a simple idealized model, our theory
is shown to be suitable for a qualitative understanding of the quantization of
masses of elementary particles. As a realistic model, the Weinberg-Salam
model will be discussed in a subsequent publication.

@ RIASSUNTO ()

Si usa il formalismo dell’hamiltoniana covariante per campi quantizzati insieme al
metodo relativistico dello spazio di Fock per quantizzare le masse delle particelle ele-
mentari con strutture micrononcausali. Si esamina, come modello semplice, un mesone
scalare neutro accoppiato a se stesso e ad un mesone di gauge vettoriale neutro. Si
mostra che due mesoni scalari neutri le cui masse sono m, producono una coppia le-
gata in cui i potenziali locali repulsivi a due corpi e gli autopotenziali attrattivi non
locali derivati dalla loto autoenergie giocano ruoli preponderanti. Si assume che il
mesone scale neutro elementare di massa m, sia una coppia legata la cui massa in
quiete & anche m,. Si discute la quantizzazione di m, utilizzando un taglio relativistico,
ma senza usare le masse nude delle particelle implicate.

(*) Traduzione a cura della Redazione.
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